Topology design optimization of conductive thermal problems subject to design-dependent load using density gradients

In this article, a design sensitivity analysis method is developed for topology optimization of steady-state conductive thermal problems subject to design-dependent thermal loads using density gradients–based boundary detection. In a real physical heat conduction problem, a design-dependent thermal...

Full description

Saved in:
Bibliographic Details
Published inAdvances in mechanical engineering Vol. 11; no. 5; pp. 197 - 224
Main Authors Yoon, Minho, Koo, Bonyong
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.05.2019
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, a design sensitivity analysis method is developed for topology optimization of steady-state conductive thermal problems subject to design-dependent thermal loads using density gradients–based boundary detection. In a real physical heat conduction problem, a design-dependent thermal load through the convective boundary is an important factor; however, it is not easy to impose boundary conditions in heat conduction problem due to the difficulties of exact boundary representation. Here, the detection of convection boundaries is available by the density distinction between void and materials, which is similar to a gradient operator in image processing. Applying density gradients and Dirac delta function of densities, we impose a design-dependent load effect on thermal analysis and perform the design sensitivity analysis for topology optimization. At each optimization process, it is noted that the results of thermal analysis and the design sensitivities are influenced by the design-dependent thermal load. Through demonstrative numerical examples, the proposed approach using density gradients is proven to work yielding meaningful optimization results. The developed approach is applicable to the plant engineering and nuclear industries where thermo-mechanical coupling occurs inevitably by the thermal convection.
AbstractList In this article, a design sensitivity analysis method is developed for topology optimization of steady-state conductive thermal problems subject to design-dependent thermal loads using density gradients–based boundary detection. In a real physical heat conduction problem, a design-dependent thermal load through the convective boundary is an important factor; however, it is not easy to impose boundary conditions in heat conduction problem due to the difficulties of exact boundary representation. Here, the detection of convection boundaries is available by the density distinction between void and materials, which is similar to a gradient operator in image processing. Applying density gradients and Dirac delta function of densities, we impose a design-dependent load effect on thermal analysis and perform the design sensitivity analysis for topology optimization. At each optimization process, it is noted that the results of thermal analysis and the design sensitivities are influenced by the design-dependent thermal load. Through demonstrative numerical examples, the proposed approach using density gradients is proven to work yielding meaningful optimization results. The developed approach is applicable to the plant engineering and nuclear industries where thermo-mechanical coupling occurs inevitably by the thermal convection.
Author Koo, Bonyong
Yoon, Minho
Author_xml – sequence: 1
  givenname: Minho
  surname: Yoon
  fullname: Yoon, Minho
– sequence: 2
  givenname: Bonyong
  orcidid: 0000-0002-7980-6140
  surname: Koo
  fullname: Koo, Bonyong
  email: bykoo@kunsan.ac.kr
BookMark eNp9UU1r3DAQFSWFJmnuPQp6dqoPy5aOJfQjEOglPQt9jF0tXsmV5ML211ebDQkE0oukefPem9HMBTqLKQJCHyi5pnQcP9FBjpL2hCopyMjFG3R-hLojdvb05uwduiolWCLIQMig1Dmq92lNS5oP2EMJc8RprWEf_poaUgsm7FL0m6vhD-D6C_LeLHjNyS6wL7hsdgeu4poe1Z2HFaKHWPGSjMdbCXFuuVhCPeA5Gx9arrxHbyezFLh6vC_Rz69f7m--d3c_vt3efL7rXE_H2knPDCjXEyPcxHnPnJW9pNb63lLPbe_ZaIUgVFBrmKOjH4ZBCamEoDCpiV-i25OvT2an1xz2Jh90MkE_ACnP2uQa3AJ6dEwAkUT0xrc5OtVqy8lJO0E7KWleH09e7fe_NyhV79KWY2tfM8Y5U5TzI4ucWC6nUjJMT1Up0cdV6ZerapLhhcSF-jD-mk1Y_ifsTsJiZnju5lX-Pyc0p94
CitedBy_id crossref_primary_10_1016_j_jmapro_2021_01_035
crossref_primary_10_1007_s00158_024_03952_2
crossref_primary_10_1016_j_icheatmasstransfer_2025_108736
crossref_primary_10_1016_j_jcp_2020_109398
crossref_primary_10_1016_j_applthermaleng_2024_124224
crossref_primary_10_1002_nme_6775
crossref_primary_10_1080_0305215X_2022_2132240
crossref_primary_10_1007_s11431_022_2198_4
crossref_primary_10_1016_j_ijthermalsci_2024_109053
crossref_primary_10_3390_sym13050888
crossref_primary_10_1093_jcde_qwab032
Cites_doi 10.1007/s12206-010-0328-1
10.1080/10407790802483408
10.1007/s00158-016-1563-6
10.1002/fld.3954
10.1080/10407790.2010.522869
10.1177/1687814018813454
10.1007/s00158-005-0584-3
10.1155/2014/734568
10.1007/b98879
10.1016/j.ijheatmasstransfer.2017.01.099
10.1016/0045-7825(88)90086-2
10.1016/j.ijheatmasstransfer.2008.12.013
10.1016/S0045-7825(02)00559-5
10.1016/j.ijheatmasstransfer.2007.01.039
10.1002/nme.3151
10.1016/S0045-7825(03)00274-3
10.1016/j.ijheatmasstransfer.2016.08.020
10.1177/1687814019828228
10.1016/j.applthermaleng.2016.10.134
10.1016/j.jcp.2008.08.022
10.1016/j.finel.2008.06.001
10.1007/s00158-018-2110-4
10.1006/jcph.1994.1155
ContentType Journal Article
Copyright The Author(s) 2019
Copyright Sage Publications Ltd. May 2019
Copyright_xml – notice: The Author(s) 2019
– notice: Copyright Sage Publications Ltd. May 2019
DBID AFRWT
AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOA
DOI 10.1177/1687814019850735
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-8140
EndPage 224
ExternalDocumentID oai_doaj_org_article_7c25e08054ad401c9d2a8fc8bfefc810
10_1177_1687814019850735
10.1177_1687814019850735
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: NRF-2018R1D1A1B07050370
  funderid: https://doi.org/10.13039/501100003725
– fundername: Korean government, Ministry of Trade, Industry and Energy
  grantid: KETEP (No. 20174010201350)
GroupedDBID .DC
0R~
188
23M
2UF
2WC
4.4
54M
5GY
5VS
8FE
8FG
8R4
8R5
AAJPV
AASGM
ABAWP
ABJCF
ABQXT
ACGFS
ACIWK
ACROE
ADBBV
ADOGD
AEDFJ
AENEX
AEUHG
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AINHJ
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AUTPY
AYAKG
BCNDV
BDDNI
BENPR
BGLVJ
C1A
CAHYU
CCPQU
CNMHZ
E3Z
EBS
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IL9
ITC
J8X
K.F
KQ8
L6V
M7S
O9-
OK1
PHGZM
PHGZT
PIMPY
PTHSS
Q2X
RHU
ROL
SAUOL
SCDPB
SCNPE
SFC
TR2
UGNYK
AAYXX
ACHEB
CITATION
7TB
8FD
FR3
H8D
L7M
PQGLB
PUEGO
ID FETCH-LOGICAL-c417t-8d2ae9c40a5cf3342cb8481bbd4b1d3b4d27b550151ba2c17d6669589551ef9f3
IEDL.DBID DOA
ISSN 1687-8132
IngestDate Wed Aug 27 01:29:38 EDT 2025
Fri Jul 25 18:52:05 EDT 2025
Tue Jul 01 05:23:11 EDT 2025
Thu Apr 24 22:59:07 EDT 2025
Tue Jun 17 22:28:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Topology design optimization
design-dependent load
boundary detection
heat conduction
design sensitivity analysis
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-8d2ae9c40a5cf3342cb8481bbd4b1d3b4d27b550151ba2c17d6669589551ef9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7980-6140
OpenAccessLink https://doaj.org/article/7c25e08054ad401c9d2a8fc8bfefc810
PQID 2233291330
PQPubID 237349
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_7c25e08054ad401c9d2a8fc8bfefc810
proquest_journals_2233291330
crossref_primary_10_1177_1687814019850735
crossref_citationtrail_10_1177_1687814019850735
sage_journals_10_1177_1687814019850735
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190500
2019-05-00
20190501
2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 5
  year: 2019
  text: 20190500
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: New York
PublicationTitle Advances in mechanical engineering
PublicationYear 2019
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Lohan, Dede, Allison 2017; 55
Bruns 2007; 50
Page, Dirker, Meyer 2016; 103
Gao, Zhang, Zhu 2008; 44
Ahn, Cho 2010; 58
Gersborg-Hansen, Bendsøe, Sigmund 2006; 31
Joo, Lee, Kim 2017; 109
Iga, Nishiwaki, Izui 2009; 52
Sussman, Smereka, Osher 1994; 114
Yoon 2010; 24
Wang, Wang, Guo 2003; 192
Dbouk 2017; 112
Alexandersen, Aage, Andreasen 2014; 76
Cho, Jung 2003; 192
Zhou, Li 2008; 227
Ha, Cho 2008; 54
Makhija, Beran 2019; 59
Bendsøe, Kikuchi 1988; 71
Kreissl, Pingen, Maute 2011; 87
bibr1-1687814019850735
bibr19-1687814019850735
bibr17-1687814019850735
bibr3-1687814019850735
bibr6-1687814019850735
bibr14-1687814019850735
Choi KK (bibr22-1687814019850735) 2005
bibr8-1687814019850735
bibr12-1687814019850735
bibr5-1687814019850735
bibr10-1687814019850735
bibr15-1687814019850735
bibr23-1687814019850735
bibr21-1687814019850735
bibr18-1687814019850735
bibr2-1687814019850735
bibr24-1687814019850735
bibr9-1687814019850735
bibr11-1687814019850735
bibr7-1687814019850735
bibr13-1687814019850735
bibr4-1687814019850735
bibr16-1687814019850735
bibr20-1687814019850735
References_xml – volume: 55
  start-page: 1063
  year: 2017
  end-page: 1077
  article-title: Topology optimization for heat conduction using generative design algorithms
  publication-title: Struct Multidiscip Optim
– volume: 76
  start-page: 699
  year: 2014
  end-page: 721
  article-title: Topology optimisation for natural convection problems
  publication-title: Int J Numer Methods Fluids
– volume: 112
  start-page: 841
  year: 2017
  end-page: 854
  article-title: A review about the engineering design of optimal heat transfer systems using topology optimization
  publication-title: Appl Therm Eng
– volume: 227
  start-page: 10178
  year: 2008
  end-page: 10195
  article-title: A variational level set method for the topology optimization of steady-state Navier–Stokes flow
  publication-title: J Comput Phys
– volume: 52
  start-page: 2721
  year: 2009
  end-page: 2732
  article-title: Topology optimization for thermal conductors considering design-dependent effects, including heat conduction and convection
  publication-title: Int J Heat Mass Transf
– volume: 44
  start-page: 805
  year: 2008
  end-page: 813
  article-title: Topology optimization of heat conduction problem involving design-dependent heat load effect
  publication-title: Finite Elem Anal Des
– volume: 192
  start-page: 2539
  year: 2003
  end-page: 2553
  article-title: Design sensitivity analysis and topology optimization of displacement–loaded non-linear structures
  publication-title: Comput Methods Appl Mech Eng
– volume: 31
  start-page: 251
  year: 2006
  end-page: 259
  article-title: Topology optimization of heat conduction problems using the finite volume method
  publication-title: Struct Multidiscip Optim
– volume: 109
  start-page: 123
  year: 2017
  end-page: 133
  article-title: Topology optimization of heat sinks in natural convection considering the effect of shape-dependent heat transfer coefficient
  publication-title: Int J Heat Mass Transf
– volume: 71
  start-page: 197
  year: 1988
  end-page: 224
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput Methods Appl Mech Eng
– volume: 54
  start-page: 454
  year: 2008
  end-page: 475
  article-title: Level set-based topological shape optimization of nonlinear heat conduction problems
  publication-title: Numer Heat Transf Part B Fundam
– volume: 59
  start-page: 919
  year: 2019
  end-page: 940
  article-title: Concurrent shape and topology optimization for steady conjugate heat transfer
  publication-title: Struct Multidiscip Optim
– volume: 24
  start-page: 1225
  year: 2010
  end-page: 1233
  article-title: Topological design of heat dissipating structure with forced convective heat transfer
  publication-title: J Mech Sci Technol
– volume: 50
  start-page: 2859
  year: 2007
  end-page: 2873
  article-title: Topology optimization of convection-dominated, steady-state heat transfer problems
  publication-title: Int J Heat Mass Transf
– volume: 87
  start-page: 1229
  year: 2011
  end-page: 1253
  article-title: Topology optimization for unsteady flow
  publication-title: Int J Numer Methods Eng
– volume: 114
  start-page: 146
  year: 1994
  end-page: 159
  article-title: A level set approach for computing solutions to incompressible two-phase flow
  publication-title: J Comput Phys
– volume: 58
  start-page: 304
  year: 2010
  end-page: 322
  article-title: Level set-based topological shape optimization of heat conduction problems considering design-dependent convection boundary
  publication-title: Numer Heat Transf Part B Fundam
– volume: 103
  start-page: 1075
  year: 2016
  end-page: 1083
  article-title: Topology optimization for the conduction cooling of a heat-generating volume with orthotropic material
  publication-title: Int J Heat Mass Transf
– volume: 192
  start-page: 227
  year: 2003
  end-page: 246
  article-title: A level set method for structural topology optimization
  publication-title: Comput Methods Appl Mech Eng
– ident: bibr14-1687814019850735
  doi: 10.1007/s12206-010-0328-1
– ident: bibr7-1687814019850735
  doi: 10.1080/10407790802483408
– ident: bibr8-1687814019850735
  doi: 10.1007/s00158-016-1563-6
– ident: bibr13-1687814019850735
  doi: 10.1002/fld.3954
– ident: bibr21-1687814019850735
  doi: 10.1080/10407790.2010.522869
– volume-title: Structural sensitivity analysis and optimization 1
  year: 2005
  ident: bibr22-1687814019850735
– ident: bibr3-1687814019850735
  doi: 10.1177/1687814018813454
– ident: bibr15-1687814019850735
  doi: 10.1007/s00158-005-0584-3
– ident: bibr5-1687814019850735
  doi: 10.1155/2014/734568
– ident: bibr23-1687814019850735
  doi: 10.1007/b98879
– ident: bibr18-1687814019850735
  doi: 10.1016/j.ijheatmasstransfer.2017.01.099
– ident: bibr1-1687814019850735
  doi: 10.1016/0045-7825(88)90086-2
– ident: bibr17-1687814019850735
  doi: 10.1016/j.ijheatmasstransfer.2008.12.013
– ident: bibr24-1687814019850735
  doi: 10.1016/S0045-7825(02)00559-5
– ident: bibr16-1687814019850735
  doi: 10.1016/j.ijheatmasstransfer.2007.01.039
– ident: bibr12-1687814019850735
  doi: 10.1002/nme.3151
– ident: bibr2-1687814019850735
  doi: 10.1016/S0045-7825(03)00274-3
– ident: bibr9-1687814019850735
  doi: 10.1016/j.ijheatmasstransfer.2016.08.020
– ident: bibr4-1687814019850735
  doi: 10.1177/1687814019828228
– ident: bibr6-1687814019850735
  doi: 10.1016/j.applthermaleng.2016.10.134
– ident: bibr11-1687814019850735
  doi: 10.1016/j.jcp.2008.08.022
– ident: bibr10-1687814019850735
  doi: 10.1016/j.finel.2008.06.001
– ident: bibr19-1687814019850735
  doi: 10.1007/s00158-018-2110-4
– ident: bibr20-1687814019850735
  doi: 10.1006/jcph.1994.1155
SSID ssib050600699
ssj0000395696
ssib044728254
ssib023771143
Score 2.2040384
Snippet In this article, a design sensitivity analysis method is developed for topology optimization of steady-state conductive thermal problems subject to...
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 197
SubjectTerms Density gradients
Design optimization
Topology optimization
SummonAdditionalLinks – databaseName: Sage Journals GOLD Open Access 2024
  dbid: AFRWT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gKHqrzEtgX5gJA4mN04fsTHtmJVIcEBtaK3yI94L90E7WYP_ffMOM52CwJxySG2Iz_Gk2_smW8IeS81j0oowZSOgglp5szEYJiT1sbGBKUsBjh__aaubsSXW3l7QNoxFibP4OYTulVBj5Kyxt2Np9GzfMk4K1SVqJrAYgY8U4JF36_q4bR7TKqBb_B6ervCm22P_pD3bIxue0IOuVaST8jh-eL7j90O4KXWxR7hnRAaYzt3EotsfHOVAXzS9SXYFykJGHaJVWDbPdyF_tHNR_--lCLgEa7dcyVLf7fFMTnKsJSeD3L0nBw07QvybI-s8CXpr4d8Cvc0JK8P2oG2WeUwTtpFCpY1kseC-qSIKlfwvZyuZkM3W4cHPrTvcms2Zt_t6V1nA0X_-yWUtegjQpfr5InWb16Rm8Xn68srlnM2MC8K3bMqcNsYL-ZW-liWgnuHhP3OBeGKUDoRuHZgFQHQcJb7QoM0KCMrA8itiSaWr8mk7drmDaGNso4brmQMTqgoQIaEBPURonRIZjols3E2a58JzTGvxl1dZA7z3-d_Sj7uWvwcyDz-UfcCF2hXD2m404tuvazzrq6157IBzC2FDdDUGxh9FX3lYgPPYj4lZ-Py1qNk1wDISg4DKKH4Ay75Q9HfOnPyvxVPyVNAdGbwyDwjk369bd4CaurduyzqvwACTQvC
  priority: 102
  providerName: SAGE Publications
Title Topology design optimization of conductive thermal problems subject to design-dependent load using density gradients
URI https://journals.sagepub.com/doi/full/10.1177/1687814019850735
https://www.proquest.com/docview/2233291330
https://doaj.org/article/7c25e08054ad401c9d2a8fc8bfefc810
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4-LnoQn7g-lhxE8FB2myZpc1RxFUERWdFbyXMvuhW3Hvz3TtLsbhXUi5cWmqSkM5PON-3kG4SOWE4cp5wmPHc0oUz0E-GMSBST0llhOJd-g_PNLb96oNdP7KlV6svnhDX0wI3gerkmzAKsYVQaiAW0MEQWThfKWTg2m6vA57WCqfAOzgD3i9Z_yV7Ki8DuBEE2QKBQ3W3uhwJd_xeM2UrrCp5msI7WIkTEp83UNtCCHW-i1RZx4Baqh01tgw9sQgYGrmDlv8QtlbhyGKJcT-QKrzLsEd4L3C-WjpngybvyH19wXcXRybQSbo2fK2mwz4UfQdvY52vg0VvICqsn2-hhcDE8v0pi_YRE0zSvkwJEZYWmfcm0yzJKtPLk-UoZqlKTKWpIriBCAaevJNFpDprhghUCUJR1wmU7aGlcje0uwpZLRQThzBlFuaOgT8pgKRvHlCcW7aDeVJqljuTivsbFc5lGPvHv8u-gk9mI14ZY45e-Z15Bs36eEjtcAEMpo6GUfxlKBx1M1VvGdTopARxlBB4gg-Zjr_J500-T2fuPyeyjFUBeosmcPEBL9du7PQR0U6suWiwGl120fDq4fxzC-ezi9u6-G8z7EwfC-UI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELYgPUAPqLzUlLb4gJA4GLJ-ro-lahSg7QGloreVn7m02SrZHvrvGTvONgWBetnD2t61PePxN7vjbxD6IBSNkktOpIqccKFHREeviRXGxKC9lCYdcD47l5ML_v1SXG6k-iozuPycwqqgR9lY96s7nROXdWZpAmcZoAwTT9EWF2CIB2jraPzzV6_MlClVbXDXca7SMc1e-RKx3kgWLJ7NNgNXIefzSq8gNbhp9781_3rtg20ss_0_gKgbUWF5oxrvoBcFYeKjlUq8RE_C_BXa3uAdfI266So1wh32OYADt2A4rsuJTNxGDE5y4oEFS4gTQLyG55XMM0u8vLXp2w3u2tKarBPpdviqNR6nUPoZlM1TuAeeLXJQWbd8gy7GJ9PjCSnpF4jjlepI7akJ2vGRES4yxqmziXvfWs9t5ZnlnioLDg5gBmuoqxQIVmpRawBhIerI3qLBvJ2HXYSDNJZqKkX0lsvIQR24AEvgo7CJl3SIvqxns3GFmzylyLhqqkJH_uf8D9GnvsXNipfjP3W_JgH19RKjdr7RLmZNWaCNclQEgM-CGw9NnYbR19HVNga4VqMh2l-Lt1kraQPYilEYAIPij0nk90X_6szeYyu-R88m07PT5vTb-Y936DkANb0KtNxHg25xGw4ADHX2sKj9b9nk-RM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELYglRAcEI9WDRTwASFxMMn6tetjeUTlVSHUit5WfuaSZqtke-i_74zjpCkIxGUPa3v9Go-_WY-_IeS1qnnSUkum6ySZVGbMTAqGOWVtiiZobfGC8_djfXQqv5yps-Kbg3dhyggu36FbFbQoK2tc3RchjcoZ46jSTWZqAoMZ4IxQd8mOlGDjDcjO4eTnr41Ac1HX1RZ_HWTCq5obAURyvbEueDyrbgHmQo7phVWwBky1m6PNP6q9tZVlxv9bMHXLMyxvVpNH5GFBmfRwJRaPyZ04f0IebHEPPiX9ySo8whUN2YmDdqA8zsutTNolCoYycsGCNqQIEs_heyX6zJIuLx3-v6F9V0qzdTDdns46Gyi6008hbY4uH3S6yI5l_XKXnE4-nXw4YiUEA_OyqnvWBG6j8XJslU9CSO4d8u87F6SrgnAy8NqBkQO4wVnuqxomVxvVGABiMZkk9shg3s3jPqFRW8cN1yoFJ3WSIBJSgTYISTnkJh2S0Xo0W1_4yTFMxqytCiX57-M_JG83JS5W3Bz_yPseJ2iTD1m184tuMW3LIm1rz1UECK2kDVDUG-h9k3zjUoRnNR6Sg_X0tmtBbQFfCQ4dEJD8Bqf8JulvjXn2vxlfkXs_Pk7ab5-Pvz4n9wGrmZWv5QEZ9IvL-ALwUO9eFqm_Bs5l-iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+design+optimization+of+conductive+thermal+problems+subject+to+design-dependent+load+using+density+gradients&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Minho+Yoon&rft.au=Bonyong+Koo&rft.date=2019-05-01&rft.pub=SAGE+Publishing&rft.eissn=1687-8140&rft.volume=11&rft_id=info:doi/10.1177%2F1687814019850735&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7c25e08054ad401c9d2a8fc8bfefc810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon