Triple-Memory Networks: A Brain-Inspired Method for Continual Learning

Continual acquisition of novel experience without interfering with previously learned knowledge, i.e., continual learning, is critical for artificial neural networks, while limited by catastrophic forgetting. A neural network adjusts its parameters when learning a new task but then fails to conduct...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 5; pp. 1925 - 1934
Main Authors Wang, Liyuan, Lei, Bo, Li, Qian, Su, Hang, Zhu, Jun, Zhong, Yi
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2021.3111019

Cover

Loading…
Abstract Continual acquisition of novel experience without interfering with previously learned knowledge, i.e., continual learning, is critical for artificial neural networks, while limited by catastrophic forgetting. A neural network adjusts its parameters when learning a new task but then fails to conduct the old tasks well. By contrast, the biological brain can effectively address catastrophic forgetting through consolidating memories as more specific or more generalized forms to complement each other, which is achieved in the interplay of the hippocampus and neocortex, mediated by the prefrontal cortex. Inspired by such a brain strategy, we propose a novel approach named triple-memory networks (TMNs) for continual learning. TMNs model the interplay of the three brain regions as a triple-network architecture of generative adversarial networks (GANs). The input information is encoded as specific representations of data distributions in a generator, or generalized knowledge of solving tasks in a discriminator and a classifier, with implementing appropriate brain-inspired algorithms to alleviate catastrophic forgetting in each module. Particularly, the generator replays generated data of the learned tasks to the discriminator and the classifier, both of which are implemented with a weight consolidation regularizer to complement the lost information in the generation process. TMNs achieve the state-of-the-art performance of generative memory replay on a variety of class-incremental learning benchmarks on MNIST, SVHN, CIFAR-10, and ImageNet-50.
AbstractList Continual acquisition of novel experience without interfering with previously learned knowledge, i.e., continual learning, is critical for artificial neural networks, while limited by catastrophic forgetting. A neural network adjusts its parameters when learning a new task but then fails to conduct the old tasks well. By contrast, the biological brain can effectively address catastrophic forgetting through consolidating memories as more specific or more generalized forms to complement each other, which is achieved in the interplay of the hippocampus and neocortex, mediated by the prefrontal cortex. Inspired by such a brain strategy, we propose a novel approach named triple-memory networks (TMNs) for continual learning. TMNs model the interplay of the three brain regions as a triple-network architecture of generative adversarial networks (GANs). The input information is encoded as specific representations of data distributions in a generator, or generalized knowledge of solving tasks in a discriminator and a classifier, with implementing appropriate brain-inspired algorithms to alleviate catastrophic forgetting in each module. Particularly, the generator replays generated data of the learned tasks to the discriminator and the classifier, both of which are implemented with a weight consolidation regularizer to complement the lost information in the generation process. TMNs achieve the state-of-the-art performance of generative memory replay on a variety of class-incremental learning benchmarks on MNIST, SVHN, CIFAR-10, and ImageNet-50.
Continual acquisition of novel experience without interfering with previously learned knowledge, i.e., continual learning, is critical for artificial neural networks, while limited by catastrophic forgetting. A neural network adjusts its parameters when learning a new task but then fails to conduct the old tasks well. By contrast, the biological brain can effectively address catastrophic forgetting through consolidating memories as more specific or more generalized forms to complement each other, which is achieved in the interplay of the hippocampus and neocortex, mediated by the prefrontal cortex. Inspired by such a brain strategy, we propose a novel approach named triple-memory networks (TMNs) for continual learning. TMNs model the interplay of the three brain regions as a triple-network architecture of generative adversarial networks (GANs). The input information is encoded as specific representations of data distributions in a generator, or generalized knowledge of solving tasks in a discriminator and a classifier, with implementing appropriate brain-inspired algorithms to alleviate catastrophic forgetting in each module. Particularly, the generator replays generated data of the learned tasks to the discriminator and the classifier, both of which are implemented with a weight consolidation regularizer to complement the lost information in the generation process. TMNs achieve the state-of-the-art performance of generative memory replay on a variety of class-incremental learning benchmarks on MNIST, SVHN, CIFAR-10, and ImageNet-50.Continual acquisition of novel experience without interfering with previously learned knowledge, i.e., continual learning, is critical for artificial neural networks, while limited by catastrophic forgetting. A neural network adjusts its parameters when learning a new task but then fails to conduct the old tasks well. By contrast, the biological brain can effectively address catastrophic forgetting through consolidating memories as more specific or more generalized forms to complement each other, which is achieved in the interplay of the hippocampus and neocortex, mediated by the prefrontal cortex. Inspired by such a brain strategy, we propose a novel approach named triple-memory networks (TMNs) for continual learning. TMNs model the interplay of the three brain regions as a triple-network architecture of generative adversarial networks (GANs). The input information is encoded as specific representations of data distributions in a generator, or generalized knowledge of solving tasks in a discriminator and a classifier, with implementing appropriate brain-inspired algorithms to alleviate catastrophic forgetting in each module. Particularly, the generator replays generated data of the learned tasks to the discriminator and the classifier, both of which are implemented with a weight consolidation regularizer to complement the lost information in the generation process. TMNs achieve the state-of-the-art performance of generative memory replay on a variety of class-incremental learning benchmarks on MNIST, SVHN, CIFAR-10, and ImageNet-50.
Author Li, Qian
Zhu, Jun
Su, Hang
Lei, Bo
Wang, Liyuan
Zhong, Yi
Author_xml – sequence: 1
  givenname: Liyuan
  orcidid: 0000-0002-3869-8155
  surname: Wang
  fullname: Wang, Liyuan
  organization: School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Bo
  surname: Lei
  fullname: Lei, Bo
  organization: School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Qian
  orcidid: 0000-0001-7317-1570
  surname: Li
  fullname: Li, Qian
  organization: School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Hang
  surname: Su
  fullname: Su, Hang
  organization: Department of Computer Science and Technology, THBI Laboratory, BNRist Center, Institute for AI, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Jun
  orcidid: 0000-0002-6254-2388
  surname: Zhu
  fullname: Zhu, Jun
  email: dcszj@tsinghua.edu.cn
  organization: Department of Computer Science and Technology, THBI Laboratory, BNRist Center, Institute for AI, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Yi
  surname: Zhong
  fullname: Zhong, Yi
  email: zhongyithu@tsinghua.edu.cn
  organization: School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34529579$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEURi0E4lX-AEjVSN2wmdRvj7ujES8ppItmwc5yPHdaw8QO9owq_n0NCSxY4I2vrHOurO87QrshBkDolOAJIVh_X8zns98TiimZMFJeiN5Bh5RIWlPWNLvvs7o_QCc5P-ByJBaS6310wLigWih9iK4Wya97qO9gFdNzNYfhX0yP-Ud1Uf1M1of6NuS1T9BWdzD8jW3VxVRNYxh8GG1fzcCm4MOfL2ivs32Gk-19jBZXl4vpTT37dX07vZjVjhM11I1aCt0QrphjuoyaulYqLa0kgoLgS6EEBoGllLZ1jWPLtmMg286JtnGCHaPzzdp1ik8j5MGsfHbQ9zZAHLOhQnGOuSK4oN8-oA9xTKF8zlApNOOMSF6or1tqXK6gNevkVzY9m7eACtBsAJdizgk64_xgB18SKPH0hmDzUod5rcO81GG2dRSVflDftn8qnW0kDwDvghYcU4bZf-Ggkx8
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2024_3368341
crossref_primary_10_1007_s11431_023_2650_x
crossref_primary_10_1515_revneuro_2022_0137
crossref_primary_10_1109_ACCESS_2024_3369488
crossref_primary_10_1007_s12652_023_04686_7
crossref_primary_10_1016_j_compbiomed_2024_109028
crossref_primary_10_1016_j_displa_2025_102992
crossref_primary_10_1109_TNNLS_2023_3242448
crossref_primary_10_1109_TPAMI_2024_3429383
crossref_primary_10_1007_s00521_024_09542_z
crossref_primary_10_1016_j_neures_2022_12_024
crossref_primary_10_1007_s13042_023_01922_6
crossref_primary_10_1109_TKDE_2024_3419449
crossref_primary_10_1016_j_eng_2025_01_012
crossref_primary_10_1007_s10489_023_04701_6
crossref_primary_10_1007_s12559_024_10363_4
crossref_primary_10_1109_ACCESS_2024_3376441
crossref_primary_10_1109_TKDE_2024_3451161
crossref_primary_10_3389_fncom_2023_1092185
crossref_primary_10_1109_TNNLS_2023_3347477
crossref_primary_10_1109_TPAMI_2024_3367329
crossref_primary_10_1109_TMM_2023_3330082
crossref_primary_10_1109_TPAMI_2024_3446949
crossref_primary_10_1109_TNNLS_2022_3217403
Cites_doi 10.1016/j.neuron.2019.01.044
10.1038/nrn1607
10.1038/nrn2822
10.1002/1098-1063(2000)10:4<438::AID-HIPO10>3.0.CO;2-3
10.1037/a0033812
10.1126/science.1101864
10.1609/aaai.v35i10.17037
10.1016/j.neuron.2012.12.002
10.1609/aaai.v32i1.11651
10.1016/j.tics.2018.11.005
10.3156/jsoft.29.5_177_2
10.1126/science.1173215
10.1073/pnas.1611835114
10.1016/j.neunet.2019.01.012
10.1109/CVPR.2019.01158
10.1007/978-3-030-01252-6_33
10.1002/hipo.20167
10.1016/s0079-7421(08)60536-8
10.1109/TNNLS.2019.2958324
10.1016/j.cell.2016.10.021
10.1109/CVPR.2017.587
10.1007/978-3-030-01258-8_15
10.1007/978-3-030-01219-9_9
10.1037/0033-295X.102.3.419
10.7554/eLife.51005
10.4324/9781410612403
10.1038/nature08577
10.1007/s11263-015-0816-y
10.3389/fnsys.2013.00074
10.1038/nature15257
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3111019
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1934
ExternalDocumentID 34529579
10_1109_TNNLS_2021_3111019
9540230
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSF of China
  grantid: 62061136001; 61620106010; U19B2034; U181146; 62076145
  funderid: 10.13039/501100001809
– fundername: Beijing Academy of Artificial Intelligence (BAAI)
– fundername: NVIDIA NVAIL Program with GPU/DGX Acceleration
  funderid: 10.13039/100007065
– fundername: Tsinghua-Peking Joint Center for Life Sciences
  funderid: 10.13039/501100011620
– fundername: Tsinghua-Huawei Joint Research Program
– fundername: Beijing NSF
  grantid: JQ19016
– fundername: Tsinghua Institute for Guo Qiang
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-87b5981473c39b5992cd6796a6152e54b5750e50666adc8c3bdf3e6dfc5d8c53
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 10:46:50 EDT 2025
Mon Jun 30 06:42:12 EDT 2025
Thu Jan 02 22:53:55 EST 2025
Tue Jul 01 00:27:42 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Wed Aug 27 02:40:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-87b5981473c39b5992cd6796a6152e54b5750e50666adc8c3bdf3e6dfc5d8c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6254-2388
0000-0001-7317-1570
0000-0002-3869-8155
PMID 34529579
PQID 2659343164
PQPubID 85436
PageCount 10
ParticipantIDs proquest_journals_2659343164
crossref_citationtrail_10_1109_TNNLS_2021_3111019
crossref_primary_10_1109_TNNLS_2021_3111019
pubmed_primary_34529579
ieee_primary_9540230
proquest_miscellaneous_2574404710
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
Rusu (ref23) 2016
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
Shin (ref3)
ref1
ref16
Zenke (ref14); 70
ref19
ref18
Seff (ref41) 2017
van de Ven (ref24) 2019
Krizhevsky (ref44) 2009
Kemker (ref20) 2017
Serrà (ref17) 2018
Chaudhry (ref47) 2018
Achille (ref38) 2017
ref45
ref26
ref25
ref22
Radford (ref46) 2015
ref28
ref27
Odena (ref37)
ref29
ref8
Netzer (ref43)
ref7
Li (ref39)
ref9
ref4
ref6
LeCun (ref42) 1998
ref5
Wu (ref21)
Gulrajani (ref40)
References_xml – ident: ref28
  doi: 10.1016/j.neuron.2019.01.044
– ident: ref5
  doi: 10.1038/nrn1607
– ident: ref6
  doi: 10.1038/nrn2822
– year: 2009
  ident: ref44
  publication-title: Learning Multiple Layers of Features From Tiny Images
– year: 2017
  ident: ref41
  article-title: Continual learning in generative adversarial nets
  publication-title: arXiv:1705.08395
– ident: ref32
  doi: 10.1002/1098-1063(2000)10:4<438::AID-HIPO10>3.0.CO;2-3
– start-page: 4088
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref39
  article-title: Triple generative adversarial nets
– ident: ref9
  doi: 10.1037/a0033812
– start-page: 5962
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref21
  article-title: Memory replay GANs: Learning to generate new categories without forgetting
– ident: ref33
  doi: 10.1126/science.1101864
– start-page: 2990
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref3
  article-title: Continual learning with deep generative replay
– year: 2016
  ident: ref23
  article-title: Progressive neural networks
  publication-title: arXiv:1606.04671
– ident: ref26
  doi: 10.1609/aaai.v35i10.17037
– ident: ref31
  doi: 10.1016/j.neuron.2012.12.002
– year: 2019
  ident: ref24
  article-title: Three scenarios for continual learning
  publication-title: arXiv:1904.07734
– start-page: 5767
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref40
  article-title: Improved training of Wasserstein GANs
– year: 2018
  ident: ref47
  article-title: Efficient lifelong learning with A-GEM
  publication-title: arXiv:1812.00420
– ident: ref4
  doi: 10.1609/aaai.v32i1.11651
– ident: ref11
  doi: 10.1016/j.tics.2018.11.005
– ident: ref12
  doi: 10.3156/jsoft.29.5_177_2
– ident: ref29
  doi: 10.1126/science.1173215
– ident: ref13
  doi: 10.1073/pnas.1611835114
– ident: ref2
  doi: 10.1016/j.neunet.2019.01.012
– year: 2017
  ident: ref20
  article-title: FearNet: Brain-inspired model for incremental learning
  publication-title: arXiv:1711.10563
– year: 1998
  ident: ref42
  publication-title: The MNIST Database of Handwritten Digits
– ident: ref22
  doi: 10.1109/CVPR.2019.01158
– ident: ref25
  doi: 10.1007/978-3-030-01252-6_33
– ident: ref7
  doi: 10.1002/hipo.20167
– ident: ref1
  doi: 10.1016/s0079-7421(08)60536-8
– ident: ref27
  doi: 10.1109/TNNLS.2019.2958324
– ident: ref10
  doi: 10.1016/j.cell.2016.10.021
– ident: ref18
  doi: 10.1109/CVPR.2017.587
– start-page: 2642
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref37
  article-title: Conditional image synthesis with auxiliary classifier GANs
– ident: ref19
  doi: 10.1007/978-3-030-01258-8_15
– start-page: 5
  volume-title: Proc. NIPS Workshop Deep Learn. Unsupervised Feature Learn.
  ident: ref43
  article-title: Reading digits in natural images with unsupervised feature learning
– ident: ref15
  doi: 10.1007/978-3-030-01219-9_9
– ident: ref8
  doi: 10.1037/0033-295X.102.3.419
– year: 2018
  ident: ref17
  article-title: Overcoming catastrophic forgetting with hard attention to the task
  publication-title: arXiv:1801.01423
– ident: ref34
  doi: 10.7554/eLife.51005
– year: 2017
  ident: ref38
  article-title: Critical learning periods in deep neural networks
  publication-title: arXiv:1711.08856
– ident: ref16
  doi: 10.4324/9781410612403
– volume: 70
  start-page: 3987
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref14
  article-title: Continual learning through synaptic intelligence
– year: 2015
  ident: ref46
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv:1511.06434
– ident: ref35
  doi: 10.1038/nature08577
– ident: ref45
  doi: 10.1007/s11263-015-0816-y
– ident: ref30
  doi: 10.3389/fnsys.2013.00074
– ident: ref36
  doi: 10.1038/nature15257
SSID ssj0000605649
Score 2.5403204
Snippet Continual acquisition of novel experience without interfering with previously learned knowledge, i.e., continual learning, is critical for artificial neural...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1925
SubjectTerms Algorithms
Artificial neural networks
Benchmarks
Biological effects
Biological neural networks
Brain
Brain modeling
Brain-inspired algorithm
catastrophic forgetting
Cerebral cortex
Classifiers
Computer architecture
continual learning
deep learning
Generative adversarial networks
Hippocampus
Information processing
Knowledge
Learning
Life sciences
Neocortex
Neural networks
Neural Networks, Computer
Prefrontal cortex
Synapses
Task analysis
Training data
Title Triple-Memory Networks: A Brain-Inspired Method for Continual Learning
URI https://ieeexplore.ieee.org/document/9540230
https://www.ncbi.nlm.nih.gov/pubmed/34529579
https://www.proquest.com/docview/2659343164
https://www.proquest.com/docview/2574404710
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp15KKbRNC5Ur9Va8xHacxNygAgFi98JW2lvk2E6FirKo7B7g13fGeQhVbdVblDivmbH9jT3zDcBnUVpFzFE8yDLlOPp5bhtvuHfWBRXyorCU4Dyd5RffsquFXmzA4ZgLE0KIwWdhQodxL98v3ZqWyo4MwguEzJuwiY5bl6s1rqekiMvziHalyCWXqlgMOTKpOZrPZtc36A1KgU4qnhHEFqpo01FTENezKSnWWPk73IzTzvk2TIcP7qJNfkzWq3rinn7jcvzfP3oFL3v8yU46g9mBjdC-hu2htgPru_ouEKXI_V3gU4rEfWSzLlr84ZidsFOqKsEvW9qjD55NYw1qhuCXEdXVLXGcsp629fsezM_P5l8veF9zgbtMFCscHGttSpEVyimDh0Y6T0tNFpGPDDqrEd6lQZPXY70rnap9gyr1jdO-dFq9ga122YZ3wJqs9EI0tsy0ykLR2FTUFmXfGK-MC00CYpB65Xo-ciqLcVdFvyQ1VVRaRUqreqUl8GW8575j4_hn612S-NiyF3YC-4Nyq77DPlQy10YRLUCWwKfxMnY12j-xbViusY2ObIqIyRJ42xnF-OzBlt7_-Z0f4IWkvIkYKbkPW6uf63CAaGZVf4xm_AtGnuxe
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoBLCxRoSgEjcYNsYztOYm4FUW1hkwuLtLfIsR2EqLJVu3tofz0zzkMIAeIWJc5rZmx_Y898A_CaF0YSc1TsRZHEOPq52LROx84a66XP8txQgnNZZfOv6aeVWu3A2ykXxnsfgs_8jA7DXr5b2y0tlZ1ohBcIme_AXUXJuH221rSikiAyzwLeFTwTsZD5asySSfTJsqoWX9AfFBzdVDzDiS9U0rajojCuXyalUGXl74AzTDxn-1COn9zHm_yYbTfNzN7-xub4v__0APYGBMpOe5N5CDu-ewT7Y3UHNnT2AyBSkcsLH5cUi3vDqj5e_PodO2Xvqa5EfN7RLr13rAxVqBnCX0ZkV9-J5ZQNxK3fHsPy7OPywzweqi7ENuX5BofHRumCp7m0UuOhFtbRYpNB7CO8ShsEeIlX5PcYZwsrG9eiUl1rlSuskk9gt1t3_hBYmxaO89YUqZKpz1uT8Mag7FvtpLa-jYCPUq_twEhOhTEu6uCZJLoOSqtJafWgtAjeTPdc9nwc_2x9QBKfWg7CjuB4VG49dNnrWmRKSyIGSCN4NV3GzkY7KKbz6y22UYFPEVFZBE97o5iePdrS0Z_f-RLuzZflol6cV5-fwX1BWRQhbvIYdjdXW_8csc2meRFM-ifC3e-m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triple-Memory+Networks%3A+A+Brain-Inspired+Method+for+Continual+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wang%2C+Liyuan&rft.au=Lei%2C+Bo&rft.au=Li%2C+Qian&rft.au=Su%2C+Hang&rft.date=2022-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=33&rft.issue=5&rft.spage=1925&rft_id=info:doi/10.1109%2FTNNLS.2021.3111019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon