Transverse parton distribution and fragmentation functions at NNLO: the quark case
A bstract We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of...
Saved in:
Published in | The journal of high energy physics Vol. 2019; no. 10; pp. 1 - 39 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2019
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of various ingredients in transverse momentum dependent factorization. Compared to existing regulators in the literature, the exponential regulator has a couple of advantages which we explain in detail. As a result, the calcula- tion is greatly simplified and we are able to obtain the next-to-next-to-leading order results up to
O
(
E
2
) in dimensional regularization. These terms are necessary for a higher order calculation which is made possible with the simplification brought by the new regulator. As a by-product, we have obtained the two-loop quark jet function for the Energy-Energy Correlator in the back-to-back limit, which is the last missing ingredient for its N
3
LL resummation. |
---|---|
AbstractList | We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of various ingredients in transverse momentum dependent factorization. Compared to existing regulators in the literature, the exponential regulator has a couple of advantages which we explain in detail. As a result, the calcula- tion is greatly simplified and we are able to obtain the next-to-next-to-leading order results up to O(E2) in dimensional regularization. These terms are necessary for a higher order calculation which is made possible with the simplification brought by the new regulator. As a by-product, we have obtained the two-loop quark jet function for the Energy-Energy Correlator in the back-to-back limit, which is the last missing ingredient for its N3LL resummation. We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of various ingredients in transverse momentum dependent factorization. Compared to existing regulators in the literature, the exponential regulator has a couple of advantages which we explain in detail. As a result, the calcula- tion is greatly simplified and we are able to obtain the next-to-next-to-leading order results up to O ( E 2 ) in dimensional regularization. These terms are necessary for a higher order calculation which is made possible with the simplification brought by the new regulator. As a by-product, we have obtained the two-loop quark jet function for the Energy-Energy Correlator in the back-to-back limit, which is the last missing ingredient for its N 3 LL resummation. Abstract We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of various ingredients in transverse momentum dependent factorization. Compared to existing regulators in the literature, the exponential regulator has a couple of advantages which we explain in detail. As a result, the calcula- tion is greatly simplified and we are able to obtain the next-to-next-to-leading order results up to O(E 2) in dimensional regularization. These terms are necessary for a higher order calculation which is made possible with the simplification brought by the new regulator. As a by-product, we have obtained the two-loop quark jet function for the Energy-Energy Correlator in the back-to-back limit, which is the last missing ingredient for its N3LL resummation. A bstract We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of various ingredients in transverse momentum dependent factorization. Compared to existing regulators in the literature, the exponential regulator has a couple of advantages which we explain in detail. As a result, the calcula- tion is greatly simplified and we are able to obtain the next-to-next-to-leading order results up to O ( E 2 ) in dimensional regularization. These terms are necessary for a higher order calculation which is made possible with the simplification brought by the new regulator. As a by-product, we have obtained the two-loop quark jet function for the Energy-Energy Correlator in the back-to-back limit, which is the last missing ingredient for its N 3 LL resummation. |
ArticleNumber | 83 |
Author | Wang, Xing Luo, Ming-Xing Xu, Xiaofeng Yang, Tong-Zhi Yang, Li Lin Zhu, Hua Xing |
Author_xml | – sequence: 1 givenname: Ming-Xing surname: Luo fullname: Luo, Ming-Xing organization: Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University – sequence: 2 givenname: Xing surname: Wang fullname: Wang, Xing organization: School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University – sequence: 3 givenname: Xiaofeng surname: Xu fullname: Xu, Xiaofeng organization: School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University – sequence: 4 givenname: Li Lin surname: Yang fullname: Yang, Li Lin email: yanglilin@pku.edu.cn organization: School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Center for High Energy Physics, Peking University – sequence: 5 givenname: Tong-Zhi surname: Yang fullname: Yang, Tong-Zhi organization: Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University – sequence: 6 givenname: Hua Xing surname: Zhu fullname: Zhu, Hua Xing organization: Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University |
BookMark | eNp1kc1LAzEUxINUsFbPXhe86KH2ZZNsst5Eqq2UKqLnkOajbq3ZmmQF_3u3rqIInvLymN8wyeyjnq-9RegIwxkG4KObyfgOw0kOuDwFQXZQH0NeDgXlZe_XvIf2Y1wBYIZL6KP7h6B8fLMh2myjQqp9ZqqYQrVoUtVelDeZC2r5Yn1SnxvXeL0dYqZSNp_Pbs-z9GSz10aF50yraA_QrlPraA-_zgF6vBo_XE6Gs9vr6eXFbKgp5mkoCKGCOS1KKoAobZxjQuMCjDOEcmYKZzgj1nAQmAu8wKYgmi-MNprlBSUDNO18Ta1WchOqFxXeZa0q-bmow1K2D6r02srCQsGtKzQVlhLBhcvLHAshcrow1ujW67jz2oT6tbExyVXdBN_GlzkBDozmjLQq1ql0qGMM1klddb-SgqrWEoPcViG7KuS2CtlW0XKjP9x32v8J6IjYKv3Shp88_yEf--iboA |
CitedBy_id | crossref_primary_10_1007_JHEP09_2020_181 crossref_primary_10_1007_JHEP09_2021_108 crossref_primary_10_1007_JHEP07_2021_121 crossref_primary_10_1103_PhysRevD_101_114023 crossref_primary_10_1103_PhysRevLett_128_052001 crossref_primary_10_1007_JHEP09_2020_146 crossref_primary_10_1007_JHEP11_2020_051 crossref_primary_10_1103_PhysRevLett_127_062001 crossref_primary_10_1103_PhysRevD_109_096004 crossref_primary_10_1007_JHEP04_2023_127 crossref_primary_10_1103_PhysRevD_103_014024 crossref_primary_10_1007_JHEP01_2020_040 crossref_primary_10_1007_JHEP11_2021_005 crossref_primary_10_1007_JHEP02_2023_256 crossref_primary_10_1007_JHEP06_2020_137 crossref_primary_10_1007_JHEP07_2020_005 crossref_primary_10_1142_S0217751X22502050 crossref_primary_10_1007_JHEP03_2020_099 crossref_primary_10_1007_JHEP04_2022_079 crossref_primary_10_1007_JHEP10_2020_164 crossref_primary_10_1103_RevModPhys_93_035005 crossref_primary_10_1007_JHEP11_2019_121 crossref_primary_10_1007_JHEP10_2021_088 crossref_primary_10_1007_JHEP09_2024_072 crossref_primary_10_1007_JHEP02_2023_067 crossref_primary_10_1007_JHEP02_2025_170 crossref_primary_10_1007_JHEP04_2024_114 crossref_primary_10_1140_epjp_s13360_021_01155_y crossref_primary_10_1088_1674_1137_abde2d crossref_primary_10_1103_PhysRevLett_124_092001 crossref_primary_10_1007_JHEP04_2023_106 crossref_primary_10_1007_JHEP08_2023_037 crossref_primary_10_1007_JHEP03_2022_047 crossref_primary_10_1103_PhysRevD_110_016003 crossref_primary_10_1007_JHEP08_2022_084 crossref_primary_10_1007_JHEP02_2023_075 crossref_primary_10_1007_JHEP08_2021_022 crossref_primary_10_1007_JHEP02_2021_166 crossref_primary_10_1103_PhysRevD_103_094005 crossref_primary_10_1140_epjc_s10052_020_8380_1 crossref_primary_10_1007_JHEP04_2022_178 crossref_primary_10_1007_JHEP04_2024_005 crossref_primary_10_1007_JHEP03_2020_072 crossref_primary_10_1007_JHEP06_2021_115 crossref_primary_10_1007_JHEP01_2023_083 crossref_primary_10_1007_JHEP03_2023_200 crossref_primary_10_1007_JHEP04_2021_102 crossref_primary_10_1103_PhysRevD_106_034002 crossref_primary_10_1007_JHEP01_2025_029 crossref_primary_10_1007_JHEP11_2023_220 crossref_primary_10_1007_JHEP12_2020_127 |
Cites_doi | 10.1140/epjc/s10052-011-1665-7 10.1103/PhysRevLett.122.192003 10.1103/PhysRevLett.118.062001 10.1140/epjc/s10052-012-2132-9 10.1016/0370-2693(78)90240-X 10.1016/0550-3213(87)90277-X 10.1103/PhysRevD.63.114020 10.1016/j.cpc.2014.11.024 10.1016/j.physletb.2005.07.019 10.1007/JHEP12(2018)132 10.1103/PhysRevLett.109.242003 10.1007/JHEP11(2018)061 10.1016/0550-3213(81)90339-4 10.1016/j.physletb.2012.05.016 10.1088/1126-6708/2005/08/049 10.1016/0550-3213(80)90003-6 10.1103/PhysRevLett.30.1346 10.1007/JHEP04(2017)020 10.1103/PhysRevLett.120.102001 10.1016/0550-3213(77)90384-4 10.1103/PhysRevLett.118.022004 10.1016/j.physletb.2016.09.060 10.1016/0550-3213(79)90040-3 10.1103/PhysRevLett.110.082001 10.1103/PhysRevD.93.011502 10.1142/S0217751X00000367 10.1016/0550-3213(74)90093-5 10.1007/JHEP04(2017)006 10.1016/0550-3213(91)90330-Z 10.1016/j.cpc.2014.10.019 10.1007/JHEP08(2019)161 10.1103/PhysRevD.72.114020 10.1006/jcph.1993.1074 10.1016/0370-2693(80)90636-X 10.1007/JHEP06(2014)155 10.1103/PhysRevD.50.R4239 10.1007/JHEP02(2018)108 10.5506/APhysPolB.46.2501 10.1007/JHEP08(2018)160 10.1016/S0550-3213(00)00223-6 10.1103/PhysRevLett.30.1343 10.1016/j.physletb.2018.11.037 10.1007/JHEP02(2015)155 10.1007/JHEP03(2016)168 10.1103/PhysRevD.67.034026 10.1016/0550-3213(81)90199-1 10.1007/JHEP07(2015)158 10.1103/PhysRevLett.33.244 10.1016/j.physletb.2010.12.024 10.1103/PhysRevLett.123.062001 10.1103/PhysRevD.63.014006 10.1007/JHEP06(2019)028 10.1103/PhysRevD.71.034005 10.1016/S0550-3213(02)00687-9 10.1088/1126-6708/2009/06/081 10.1142/S0217751X18410063 10.1103/PhysRevLett.121.162001 10.1007/JHEP04(2019)123 10.1016/0550-3213(94)90398-0 10.1016/j.nuclphysb.2004.10.051 10.1103/PhysRevD.66.014017 10.1016/j.physletb.2004.07.026 10.1007/JHEP05(2012)084 10.1142/S0217751X00002159 10.1016/0550-3213(82)90453-9 10.1016/j.cpc.2005.10.008 10.1007/JHEP02(2012)124 10.1007/JHEP09(2016)004 10.1016/S0550-3213(02)00837-4 10.1007/JHEP07(2019)100 10.1016/j.cpc.2017.09.014 10.1016/0370-2693(92)91895-G 10.1016/j.nuclphysb.2005.12.022 10.1016/0550-3213(85)90479-1 10.1103/PhysRevLett.110.251601 10.1088/1126-6708/1999/07/012 10.1016/S0550-3213(03)00264-5 10.1103/PhysRevD.65.054022 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2019 – notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP10(2019)083 |
DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 39 |
ExternalDocumentID | oai_doaj_org_article_6e067ef6c48e43878f292188824bdedc 10_1007_JHEP10_2019_083 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-833485fc894803acdff58c160dfd3475d6fd753ed7081781b1d63c7bdcdc52643 |
IEDL.DBID | C24 |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:06:00 EDT 2025 Fri Jul 25 10:01:13 EDT 2025 Tue Jul 01 03:54:49 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Fri Feb 21 02:34:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Effective Field Theories Perturbative QCD |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-833485fc894803acdff58c160dfd3475d6fd753ed7081781b1d63c7bdcdc52643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/JHEP10(2019)083 |
PQID | 2307054253 |
PQPubID | 2034718 |
PageCount | 39 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6e067ef6c48e43878f292188824bdedc proquest_journals_2307054253 crossref_citationtrail_10_1007_JHEP10_2019_083 crossref_primary_10_1007_JHEP10_2019_083 springer_journals_10_1007_JHEP10_2019_083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Y. Li, D. Neill and H.X. Zhu, An Exponential Regulator for Rapidity Divergences, submitted to Phys. Rev. D (2016), arXiv:1604.00392 [INSPIRE]. ArnoldPBKauffmanRPW and Z production at next-to-leading order: From large qTto smallNucl. Phys.1991B 3493811991NuPhB.349..381A[INSPIRE] EchevarriaMGScimemiIVladimirovAUnpolarized Transverse Momentum Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading orderJHEP2016090042016JHEP...09..004E35579071390.81168[arXiv:1604.07869]; [INSPIRE] BernZviDixonLanceKosowerDavid A.Dimensionally-regulated pentagon integralsNuclear Physics B199441237518161994NuPhB.412..751B12580001007.81512 E. Egorian and O.V. Tarasov, Two Loop Renormalization of the QCD in an Arbitrary Gauge, Teor. Mat. Fiz.41 (1979) 26 [Theor. Math. Phys.41 (1979) 863] [INSPIRE]. SmirnovAVFIRE5: a C++ implementation of Feynman Integral REductionComput. Phys. Commun.20151891822015CoPhC.189..182S1344.81030[arXiv:1408.2372]; [INSPIRE] M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, arXiv:1905.01311 [INSPIRE]. M.A. Ebert, I.W. Stewart and Y. Zhao, Towards Quasi-Transverse Momentum Dependent PDFs Computable on the Lattice, arXiv:1901.03685 [INSPIRE]. MeyerCAlgorithmic transformation of multi-loop master integrals to a canonical basis with CANONICAComput. Phys. Commun.20182222952018CoPhC.222..295M[arXiv:1705.06252]; [INSPIRE] DixonLJLuoM-XShtabovenkoVYangT-ZZhuHXAnalytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCDPhys. Rev. Lett.20181201020012018PhRvL.120j2001D[arXiv:1801.03219]; [INSPIRE] Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Nonperturbative effects in the energy energy correlation, JHEP07 (1999) 012 [hep-ph/9905339] [INSPIRE]. ZhuHXOn the calculation of soft phase space integralJHEP2015021552015JHEP...02..155Z[arXiv:1501.00236]; [INSPIRE] BizonWMonniPFReERottoliLTorrielliPMomentum-space resummation for transverse observables and the Higgs p⊥at N3LL + NNLOJHEP2018021082018JHEP...02..108B[arXiv:1705.09127]; [INSPIRE] JonesDRTTwo Loop Diagrams in Yang-Mills TheoryNucl. Phys.1974B 755311974NuPhB..75..531J[INSPIRE] BozziGCataniSFerreraGde FlorianDGrazziniMProduction of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracyPhys. Lett.2011B 6962072011PhLB..696..207B[arXiv:1007.2351]; [INSPIRE] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev.D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE]. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev.D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE]. CollinsJFoundations of perturbative QCDCamb. Monogr. Part. Phys. Nucl. Phys. Cosmol.20113212807608[INSPIRE] KorchemskyGPRadyushkinAVRenormalization of the Wilson Loops Beyond the Leading OrderNucl. Phys.1987B 2833421987NuPhB.283..342K[INSPIRE] M. Beneke, Lectures on soft-collinear effective theory, in proceedings of the Helmholtz International Summer School on Heavy Quark Physics, Moscow, Dubna, Russia, 6–16 June 2005. GehrmannTLuebbertTYangLLCalculation of the transverse parton distribution functions at next-to-next-to-leading orderJHEP2014061552014JHEP...06..155G[arXiv:1403.6451]; [INSPIRE] VladimirovAACorrespondence between Soft and Rapidity Anomalous DimensionsPhys. Rev. Lett.20171180620012017PhRvL.118f2001V[arXiv:1610.05791]; [INSPIRE] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE]. Angeles-MartinezRTransverse Momentum Dependent (TMD) parton distribution functions: status and prospectsActa Phys. Polon.2015B 4625012015AcPPB..46.2501A[arXiv:1507.05267]; [INSPIRE] MochSven-OlafVermaserenJozef Antoon MVogtAndreasThe quark form factor at higher ordersJournal of High Energy Physics20052005080490492005JHEP...05..049M D. de Florian and M. Grazzini, The Back-to-back region in e+e−energy-energy correlation, Nucl. Phys.B 704 (2005) 387 [hep-ph/0407241] [INSPIRE]. W. Bizon et al., The transverse momentum spectrum of weak gauge bosons at N3LL + NNLO, arXiv:1905.05171 [INSPIRE]. A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory, Nucl. Phys.B 661 (2003) 19 [Erratum ibid.B 685 (2004) 405] [hep-ph/0208220] [INSPIRE]. DixonLJMoultIZhuHXCollinear limit of the energy-energy correlatorPhys. Rev.2019D 1000140092019PhRvD.100a4009D4014087[arXiv:1905.01310]; [INSPIRE] M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to-next-to-leading order, Phys. Rev.D 93 (2016) 011502 [Erratum ibid.D 94 (2016) 099904] [arXiv:1509.06392] [INSPIRE]. GrossDJWilczekFUltraviolet Behavior of Nonabelian Gauge TheoriesPhys. Rev. Lett.19733013431973PhRvL..30.1343G[INSPIRE] CataniSDevotoSGrazziniMKallweitSMazzitelliJTop-quark pair production at the LHC: Fully differential QCD predictions at NNLOJHEP2019071002019JHEP...07..100C[arXiv:1906.06535]; [INSPIRE] D. Maˆıtre, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [INSPIRE]. J.M. Henn, E. Sokatchev, K. Yan and A. Zhiboedov, Energy-energy correlations at next-to-next-to-leading order, arXiv:1903.05314 [INSPIRE]. BertoneVScimemiIVladimirovAExtraction of unpolarized quark transverse momentum dependent parton distributions from Drell-Yan/Z-boson productionJHEP2019060282019JHEP...06..028B3982532[arXiv:1902.08474]; [INSPIRE] EbertMAStewartIWZhaoYDetermining the Nonperturbative Collins-Soper Kernel From Lattice QCDPhys. Rev.2019D 990345052019PhRvD..99c4505E3982904[arXiv:1811.00026]; [INSPIRE] CollinsJCSoperDEBack-To-Back Jets: Fourier Transform from B to K-TransverseNucl. Phys.1982B 1974461982NuPhB.197..446C[INSPIRE] KorchemskayaIAKorchemskyGPOn lightlike Wilson loopsPhys. Lett.1992B 2871691992PhLB..287..169K[INSPIRE] BecherTBellGAnalytic Regularization in Soft-Collinear Effective TheoryPhys. Lett.2012B 713412012PhLB..713...41B[arXiv:1112.3907]; [INSPIRE] ChenXPrecise QCD Description of the Higgs Boson Transverse Momentum SpectrumPhys. Lett.2019B 7884252019PhLB..788..425C[arXiv:1805.00736]; [INSPIRE] PolitzerHDReliable Perturbative Results for Strong Interactions?Phys. Rev. Lett.19733013461973PhRvL..30.1346P[INSPIRE] ChiuJ-yFuhrerAHoangAHKelleyRManoharAVSoft-Collinear Factorization and Zero-Bin SubtractionsPhys. Rev.2009D 790530072009PhRvD..79e3007C[arXiv:0901.1332]; [INSPIRE] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE]. KangZ-BProkudinASunPYuanFExtraction of Quark Transversity Distribution and Collins Fragmentation Functions with QCD EvolutionPhys. Rev.2016D 930140092016PhRvD..93a4009K[arXiv:1505.05589]; [INSPIRE] Gutierrez-ReyesDScimemiIWaalewijnWJZoppiLTransverse momentum dependent distributions with jetsPhys. Rev. Lett.20181211620012018PhRvL.121p2001G[arXiv:1807.07573]; [INSPIRE] BozziGiuseppeCataniStefanode FlorianDanielGrazziniMassimilianoTransverse-momentum resummation and the spectrum of the Higgs boson at the LHCNuclear Physics B20067371-2731202006NuPhB.737...73B1109.81387 ChetyrkinKGTkachovFVIntegration by Parts: The Algorithm to Calculate β-functions in 4 LoopsNucl. Phys.1981B 1921591981NuPhB.192..159C[INSPIRE] X.-d. Ji, J.-P. Ma and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell-Yan processes at low transverse momentum, Phys. Lett.B 597 (2004) 299 [hep-ph/0405085] [INSPIRE]. HennJMMultiloop integrals in dimensional regularization made simplePhys. Rev. Lett.20131102516012013PhRvL.110y1601H[arXiv:1304.1806]; [INSPIRE] LiuXRingerFVogelsangWYuanFLepton-jet Correlations in Deep Inelastic Scattering at the Electron-Ion ColliderPhys. Rev. Lett.20191221920032019PhRvL.122s2003L[arXiv:1812.08077]; [INSPIRE] Y. Gao, C.S. Li and J.J. Liu, Transverse momentum resummation for Higgs production in soft-collinear effective theory, Phys. Rev.D 72 (2005) 114020 [hep-ph/0501229] [INSPIRE]. G.A. Ladinsky and C.P. Yuan, The Nonperturbative regime in QCD resummation for gauge boson production at hadron colliders, Phys. Rev.D 50 (1994) R4239 [hep-ph/9311341] [INSPIRE]. ZhuHXLiCSLiHTShaoDYYangLLTransverse-momentum resummation for top-quark pairs at hadron collidersPhys. Rev. Lett.20131100820012013PhRvL.110h2001Z[arXiv:1208.5774]; [INSPIRE] CataniSDevotoSGrazziniMKallweitSMazzitelliJSargsyanHTop-quark pair hadroproduction at next-to-next-to-leading order in QCDPhys. Rev.2019D 990515012019PhRvD..99e1501C[arXiv:1901.04005]; [INSPIRE] LiYvon ManteuffelASchabingerRMZhuHXSoft-virtual corrections to Higgs production at N3LOPhys. Rev.2015D 910360082015PhRvD..91c6008L[arXiv:1412.2771]; [INSPIRE] CataniSGrazziniMSargsyanHTransverse-momentum resummation for top-quark pair production at the LHCJHEP2018110612018JHEP...11..061C[arXiv:1806.01601]; [INSPIRE] LustermansGWaalewijnWJZeuneLJoint transverse momentum and threshold resummation beyond NLLPhys. Lett.2016B 7624472016PhLB..762..447L1390.81643[arXiv:1605.02740]; [INSPIRE] C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → Xs γ in effective field theory, Phys. Rev.D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE]. AltarelliGParisiGAsymptotic Freedom in Parton LanguageNucl. Phys.1977B 1262981977NuPhB.126..298A[INSPIRE] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev.D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE]. BenekeM.ChapovskyA.P.DiehlM.FeldmannTh.Soft-collinear effective theory and heavy-to-light currents beyond leading powerNuclear Physics B20026431-34314762002NuPhB.643..431B0998.81538 NeillDRothsteinIZVaidyaVThe Higgs Transverse Momentum Distribution at NNLL and its Theoretical ErrorsJHEP2015120972015JHEP...12..097N[arXiv:1503.00005]; [INSPIRE] LiYZhuHXBootstrapping Rapidity Anomalous Dimensions for Transve P Sun (11396_CR14) 2018; A 33 LJ Dixon (11396_CR83) 2019; D 100 11396_CR59 11396_CR58 11396_CR57 DJ Gross (11396_CR94) 1973; 30 T Becher (11396_CR45) 2012; B 713 R Angeles-Martinez (11396_CR2) 2015; B 46 S Catani (11396_CR33) 2014; B 890 11396_CR67 LJ Dixon (11396_CR82) 2018; 120 11396_CR66 11396_CR65 11396_CR62 11396_CR7 V Bertone (11396_CR11) 2019; 06 C Meyer (11396_CR75) 2018; 222 YL Dokshitzer (11396_CR3) 1978; B 79 11396_CR70 11396_CR78 11396_CR74 I Moult (11396_CR35) 2018; 08 11396_CR72 D Gutierrez-Reyes (11396_CR20) 2018; 121 AV Smirnov (11396_CR73) 2015; 189 HD Politzer (11396_CR95) 1973; 30 X Liu (11396_CR16) 2019; 122 11396_CR37 D Gutierrez-Reyes (11396_CR22) 2019; 08 MA Ebert (11396_CR49) 2019; 04 J Collins (11396_CR1) 2011; 32 M. Beneke (11396_CR60) 2002; 643 PB Arnold (11396_CR6) 1991; B 349 E Panzer (11396_CR77) 2015; 188 11396_CR44 11396_CR43 G Altarelli (11396_CR99) 1977; B 126 G Lustermans (11396_CR68) 2016; B 762 Sven-Olaf Moch (11396_CR91) 2005; 2005 JC Collins (11396_CR18) 1982; B 197 S Catani (11396_CR34) 2018; 11 JC Collins (11396_CR61) 1982; B 194 Z-B Kang (11396_CR15) 2016; D 93 A Gao (11396_CR36) 2019; 123 Zvi Bern (11396_CR53) 1994; 412 G Bozzi (11396_CR8) 2011; B 696 D Neill (11396_CR19) 2017; 04 X Chen (11396_CR29) 2019; B 788 11396_CR56 11396_CR54 11396_CR52 11396_CR17 J-Y Chiu (11396_CR46) 2012; 05 JM Henn (11396_CR55) 2013; 110 C Meyer (11396_CR76) 2017; 04 11396_CR13 D Neill (11396_CR27) 2015; 12 DRT Jones (11396_CR97) 1974; B 75 HX Zhu (11396_CR31) 2013; 110 11396_CR23 11396_CR21 Y Li (11396_CR93) 2015; D 91 W Bizon (11396_CR28) 2018; 02 11396_CR26 11396_CR25 S Catani (11396_CR41) 2019; D 99 J-y Chiu (11396_CR47) 2009; D 79 W Furmanski (11396_CR100) 1980; B 97 MG Echevarria (11396_CR40) 2016; 09 G Curci (11396_CR101) 1980; B 175 Giuseppe Bozzi (11396_CR24) 2006; 737 JC Collins (11396_CR5) 1985; B 250 11396_CR30 HT Li (11396_CR32) 2013; D 88 11396_CR79 S Catani (11396_CR42) 2019; 07 11396_CR81 AA Vladimirov (11396_CR63) 2017; 118 11396_CR80 MG Echevarria (11396_CR48) 2016; D 93 MA Ebert (11396_CR64) 2019; D 99 IA Korchemskaya (11396_CR89) 1992; B 287 T Gehrmann (11396_CR38) 2012; 109 G Parisi (11396_CR4) 1979; B 154 11396_CR87 11396_CR86 11396_CR85 11396_CR84 T Gehrmann (11396_CR39) 2014; 06 Y Li (11396_CR50) 2017; 118 HX Zhu (11396_CR71) 2015; 02 GP Korchemsky (11396_CR88) 1987; B 283 M Ritzmann (11396_CR102) 2014; D 90 11396_CR92 P Nogueira (11396_CR69) 1993; 105 11396_CR90 WE Caswell (11396_CR96) 1974; 33 11396_CR12 KG Chetyrkin (11396_CR51) 1981; B 192 11396_CR10 11396_CR98 T Becher (11396_CR9) 2012; 02 |
References_xml | – reference: X.-d. Ji, J.-P. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev.D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE]. – reference: BozziGiuseppeCataniStefanode FlorianDanielGrazziniMassimilianoTransverse-momentum resummation and the spectrum of the Higgs boson at the LHCNuclear Physics B20067371-2731202006NuPhB.737...73B1109.81387 – reference: BecherTBellGAnalytic Regularization in Soft-Collinear Effective TheoryPhys. Lett.2012B 713412012PhLB..713...41B[arXiv:1112.3907]; [INSPIRE] – reference: X.-d. Ji, J.-P. Ma and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell-Yan processes at low transverse momentum, Phys. Lett.B 597 (2004) 299 [hep-ph/0405085] [INSPIRE]. – reference: ChiuJ-YJainANeillDRothsteinIZA Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field TheoryJHEP2012050842012JHEP...05..084C30429571348.81437[arXiv:1202.0814]; [INSPIRE] – reference: EbertMAMoultIStewartIWTackmannFJVitaGZhuHXSubleading power rapidity divergences and power corrections for qTJHEP2019041232019JHEP...04..123E[arXiv:1812.08189]; [INSPIRE] – reference: M. Beneke, Lectures on soft-collinear effective theory, in proceedings of the Helmholtz International Summer School on Heavy Quark Physics, Moscow, Dubna, Russia, 6–16 June 2005. – reference: CurciGFurmanskiWPetronzioREvolution of Parton Densities Beyond Leading Order: The Nonsinglet CaseNucl. Phys.1980B 175271980NuPhB.175...27C[INSPIRE] – reference: T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP06 (2009) 081 [Erratum JHEP11 (2013) 024] [arXiv:0903.1126] [INSPIRE]. – reference: ParisiGPetronzioRSmall Transverse Momentum Distributions in Hard ProcessesNucl. Phys.1979B 1544271979NuPhB.154..427P[INSPIRE] – reference: E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE]. – reference: S. Catani and M. Grazzini, Higgs Boson Production at Hadron Colliders: Hard-Collinear Coefficients at the NNLO, Eur. Phys. J.C 72 (2012) 2013 [Erratum ibid.C 72 (2012) 2132] [arXiv:1106.4652] [INSPIRE]. – reference: D. de Florian and M. Grazzini, The Back-to-back region in e+e−energy-energy correlation, Nucl. Phys.B 704 (2005) 387 [hep-ph/0407241] [INSPIRE]. – reference: CaswellWEAsymptotic Behavior of Nonabelian Gauge Theories to Two Loop OrderPhys. Rev. Lett.1974332441974PhRvL..33..244C[INSPIRE] – reference: LiYZhuHXBootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum ResummationPhys. Rev. Lett.20171180220042017PhRvL.118b2004L[arXiv:1604.01404]; [INSPIRE] – reference: D. Maˆıtre, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [INSPIRE]. – reference: DixonLJLuoM-XShtabovenkoVYangT-ZZhuHXAnalytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCDPhys. Rev. Lett.20181201020012018PhRvL.120j2001D[arXiv:1801.03219]; [INSPIRE] – reference: T. Lübbert, J. Oredsson and M. Stahlhofen, Rapidity renormalized TMD soft and beam functions at two loops, JHEP03 (2016) 168 [arXiv:1602.01829] [INSPIRE]. – reference: G.P. Korchemsky, Energy correlations in the end-point region, arXiv:1905.01444 [INSPIRE]. – reference: M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, arXiv:1905.01311 [INSPIRE]. – reference: LiHTLiCSShaoDYYangLLZhuHXTop quark pair production at small transverse momentum in hadronic collisionsPhys. Rev.2013D 880740042013PhRvD..88g4004L[arXiv:1307.2464]; [INSPIRE] – reference: SmirnovAVFIRE5: a C++ implementation of Feynman Integral REductionComput. Phys. Commun.20151891822015CoPhC.189..182S1344.81030[arXiv:1408.2372]; [INSPIRE] – reference: BertoneVScimemiIVladimirovAExtraction of unpolarized quark transverse momentum dependent parton distributions from Drell-Yan/Z-boson productionJHEP2019060282019JHEP...06..028B3982532[arXiv:1902.08474]; [INSPIRE] – reference: W. Bizon et al., The transverse momentum spectrum of weak gauge bosons at N3LL + NNLO, arXiv:1905.05171 [INSPIRE]. – reference: MochSven-OlafVermaserenJozef Antoon MVogtAndreasThe quark form factor at higher ordersJournal of High Energy Physics20052005080490492005JHEP...05..049M – reference: EbertMAStewartIWZhaoYDetermining the Nonperturbative Collins-Soper Kernel From Lattice QCDPhys. Rev.2019D 990345052019PhRvD..99c4505E3982904[arXiv:1811.00026]; [INSPIRE] – reference: CataniSGrazziniMTorreATransverse-momentum resummation for heavy-quark hadroproductionNucl. Phys.2014B 8905182015NuPhB.890..518C32924181326.81268[arXiv:1408.4564]; [INSPIRE] – reference: LiYvon ManteuffelASchabingerRMZhuHXSoft-virtual corrections to Higgs production at N3LOPhys. Rev.2015D 910360082015PhRvD..91c6008L[arXiv:1412.2771]; [INSPIRE] – reference: FurmanskiWPetronzioRSinglet Parton Densities Beyond Leading OrderPhys. Lett.1980B 974371980PhLB...97..437F[INSPIRE] – reference: NeillDRothsteinIZVaidyaVThe Higgs Transverse Momentum Distribution at NNLL and its Theoretical ErrorsJHEP2015120972015JHEP...12..097N[arXiv:1503.00005]; [INSPIRE] – reference: BecherTNeubertMWilhelmDElectroweak Gauge-Boson Production at Small qT: Infrared Safety from the Collinear AnomalyJHEP2012021242012JHEP...02..124B1309.81260[arXiv:1109.6027]; [INSPIRE] – reference: C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev.D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE]. – reference: KorchemskyGPRadyushkinAVRenormalization of the Wilson Loops Beyond the Leading OrderNucl. Phys.1987B 2833421987NuPhB.283..342K[INSPIRE] – reference: G.A. Ladinsky and C.P. Yuan, The Nonperturbative regime in QCD resummation for gauge boson production at hadron colliders, Phys. Rev.D 50 (1994) R4239 [hep-ph/9311341] [INSPIRE]. – reference: J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys.B 193 (1981) 381 [Erratum ibid.B 213 (1983) 545] [INSPIRE]. – reference: Gutierrez-ReyesDMakrisYVaidyaVScimemiIZoppiLProbing Transverse-Momentum Distributions With Groomed JetsJHEP2019081612019JHEP...08..161G[arXiv:1907.05896]; [INSPIRE] – reference: M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to-next-to-leading order, Phys. Rev.D 93 (2016) 011502 [Erratum ibid.D 94 (2016) 099904] [arXiv:1509.06392] [INSPIRE]. – reference: CollinsJCSoperDEStermanGFTransverse Momentum Distribution in Drell-Yan Pair and W and Z Boson ProductionNucl. Phys.1985B 2501991985NuPhB.250..199C[INSPIRE] – reference: LiuXRingerFVogelsangWYuanFLepton-jet Correlations in Deep Inelastic Scattering at the Electron-Ion ColliderPhys. Rev. Lett.20191221920032019PhRvL.122s2003L[arXiv:1812.08077]; [INSPIRE] – reference: CollinsJCSoperDEBack-To-Back Jets: Fourier Transform from B to K-TransverseNucl. Phys.1982B 1974461982NuPhB.197..446C[INSPIRE] – reference: J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE]. – reference: CollinsJCSoperDEParton Distribution and Decay FunctionsNucl. Phys.1982B 1944451982NuPhB.194..445C[INSPIRE] – reference: C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → Xs γ in effective field theory, Phys. Rev.D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE]. – reference: BenekeM.ChapovskyA.P.DiehlM.FeldmannTh.Soft-collinear effective theory and heavy-to-light currents beyond leading powerNuclear Physics B20026431-34314762002NuPhB.643..431B0998.81538 – reference: EchevarriaMGScimemiIVladimirovAUniversal transverse momentum dependent soft function at NNLOPhys. Rev.2016D 930540042016PhRvD..93e4004E[arXiv:1511.05590]; [INSPIRE] – reference: GehrmannTLuebbertTYangLLCalculation of the transverse parton distribution functions at next-to-next-to-leading orderJHEP2014061552014JHEP...06..155G[arXiv:1403.6451]; [INSPIRE] – reference: Y. Li, D. Neill and H.X. Zhu, An Exponential Regulator for Rapidity Divergences, submitted to Phys. Rev. D (2016), arXiv:1604.00392 [INSPIRE]. – reference: GehrmannTLubbertTYangLLTransverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark casePhys. Rev. Lett.20121092420032012PhRvL.109x2003G[arXiv:1209.0682]; [INSPIRE] – reference: ChetyrkinKGTkachovFVIntegration by Parts: The Algorithm to Calculate β-functions in 4 LoopsNucl. Phys.1981B 1921591981NuPhB.192..159C[INSPIRE] – reference: S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. – reference: E. Egorian and O.V. Tarasov, Two Loop Renormalization of the QCD in an Arbitrary Gauge, Teor. Mat. Fiz.41 (1979) 26 [Theor. Math. Phys.41 (1979) 863] [INSPIRE]. – reference: BizonWMonniPFReERottoliLTorrielliPMomentum-space resummation for transverse observables and the Higgs p⊥at N3LL + NNLOJHEP2018021082018JHEP...02..108B[arXiv:1705.09127]; [INSPIRE] – reference: BernZviDixonLanceKosowerDavid A.Dimensionally-regulated pentagon integralsNuclear Physics B199441237518161994NuPhB.412..751B12580001007.81512 – reference: DokshitzerYLDiakonovDTroianSIOn the Transverse Momentum Distribution of Massive Lepton PairsPhys. Lett.1978B 792691978PhLB...79..269D[INSPIRE] – reference: BozziGCataniSFerreraGde FlorianDGrazziniMProduction of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracyPhys. Lett.2011B 6962072011PhLB..696..207B[arXiv:1007.2351]; [INSPIRE] – reference: M.A. Ebert, I.W. Stewart and Y. Zhao, Towards Quasi-Transverse Momentum Dependent PDFs Computable on the Lattice, arXiv:1901.03685 [INSPIRE]. – reference: A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory, Nucl. Phys.B 661 (2003) 19 [Erratum ibid.B 685 (2004) 405] [hep-ph/0208220] [INSPIRE]. – reference: CollinsJFoundations of perturbative QCDCamb. Monogr. Part. Phys. Nucl. Phys. Cosmol.20113212807608[INSPIRE] – reference: MoultIZhuHXSimplicity from Recoil: The Three-Loop Soft Function and Factorization for the Energy-Energy CorrelationJHEP2018081602018JHEP...08..160M[arXiv:1801.02627]; [INSPIRE] – reference: GaoALiHTMoultIZhuHXPrecision QCD Event Shapes at Hadron Colliders: The Transverse Energy-Energy Correlator in the Back-to-Back LimitPhys. Rev. Lett.20191230620012019PhRvL.123f2001G[arXiv:1901.04497]; [INSPIRE] – reference: ZhuHXLiCSLiHTShaoDYYangLLTransverse-momentum resummation for top-quark pairs at hadron collidersPhys. Rev. Lett.20131100820012013PhRvL.110h2001Z[arXiv:1208.5774]; [INSPIRE] – reference: CataniSDevotoSGrazziniMKallweitSMazzitelliJTop-quark pair production at the LHC: Fully differential QCD predictions at NNLOJHEP2019071002019JHEP...07..100C[arXiv:1906.06535]; [INSPIRE] – reference: M.G. Echevarria, T. Kasemets, P.J. Mulders and C. Pisano, QCD evolution of (un)polarized gluon TMDPDFs and the Higgs qT-distribution, JHEP07 (2015) 158 [Erratum JHEP05 (2017) 073] [arXiv:1502.05354] [INSPIRE]. – reference: CataniSGrazziniMSargsyanHTransverse-momentum resummation for top-quark pair production at the LHCJHEP2018110612018JHEP...11..061C[arXiv:1806.01601]; [INSPIRE] – reference: CataniSDevotoSGrazziniMKallweitSMazzitelliJSargsyanHTop-quark pair hadroproduction at next-to-next-to-leading order in QCDPhys. Rev.2019D 990515012019PhRvD..99e1501C[arXiv:1901.04005]; [INSPIRE] – reference: T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE]. – reference: ZhuHXOn the calculation of soft phase space integralJHEP2015021552015JHEP...02..155Z[arXiv:1501.00236]; [INSPIRE] – reference: ArnoldPBKauffmanRPW and Z production at next-to-leading order: From large qTto smallNucl. Phys.1991B 3493811991NuPhB.349..381A[INSPIRE] – reference: T. Becher and M. Neubert, Drell-Yan Production at Small qT, Transverse Parton Distributions and the Collinear Anomaly, Eur. Phys. J.C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE]. – reference: J.M. Henn, E. Sokatchev, K. Yan and A. Zhiboedov, Energy-energy correlations at next-to-next-to-leading order, arXiv:1903.05314 [INSPIRE]. – reference: EchevarriaMGScimemiIVladimirovAUnpolarized Transverse Momentum Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading orderJHEP2016090042016JHEP...09..004E35579071390.81168[arXiv:1604.07869]; [INSPIRE] – reference: GrossDJWilczekFUltraviolet Behavior of Nonabelian Gauge TheoriesPhys. Rev. Lett.19733013431973PhRvL..30.1343G[INSPIRE] – reference: NeillDScimemiIWaalewijnWJJet axes and universal transverse-momentum-dependent fragmentationJHEP2017040202017JHEP...04..020N3657748[arXiv:1612.04817]; [INSPIRE] – reference: Angeles-MartinezRTransverse Momentum Dependent (TMD) parton distribution functions: status and prospectsActa Phys. Polon.2015B 4625012015AcPPB..46.2501A[arXiv:1507.05267]; [INSPIRE] – reference: MeyerCTransforming differential equations of multi-loop Feynman integrals into canonical formJHEP2017040062017JHEP...04..006M3657762[arXiv:1611.01087]; [INSPIRE] – reference: VladimirovAACorrespondence between Soft and Rapidity Anomalous DimensionsPhys. Rev. Lett.20171180620012017PhRvL.118f2001V[arXiv:1610.05791]; [INSPIRE] – reference: C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys.B 646 (2002) 220 [hep-ph/0207004] [INSPIRE]. – reference: KangZ-BProkudinASunPYuanFExtraction of Quark Transversity Distribution and Collins Fragmentation Functions with QCD EvolutionPhys. Rev.2016D 930140092016PhRvD..93a4009K[arXiv:1505.05589]; [INSPIRE] – reference: Y. Gao, C.S. Li and J.J. Liu, Transverse momentum resummation for Higgs production in soft-collinear effective theory, Phys. Rev.D 72 (2005) 114020 [hep-ph/0501229] [INSPIRE]. – reference: PolitzerHDReliable Perturbative Results for Strong Interactions?Phys. Rev. Lett.19733013461973PhRvL..30.1346P[INSPIRE] – reference: HennJMMultiloop integrals in dimensional regularization made simplePhys. Rev. Lett.20131102516012013PhRvL.110y1601H[arXiv:1304.1806]; [INSPIRE] – reference: LustermansGWaalewijnWJZeuneLJoint transverse momentum and threshold resummation beyond NLLPhys. Lett.2016B 7624472016PhLB..762..447L1390.81643[arXiv:1605.02740]; [INSPIRE] – reference: SunPIsaacsonJYuanCPYuanFNonperturbative functions for SIDIS and Drell-Yan processesInt. J. Mod. Phys.2018A 3318410062018IJMPA..3341006S[arXiv:1406.3073]; [INSPIRE] – reference: R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE]. – reference: NogueiraPAutomatic Feynman graph generationJ. Comput. Phys.19931052791993JCoPh.105..279N12104080782.68091[INSPIRE] – reference: KorchemskayaIAKorchemskyGPOn lightlike Wilson loopsPhys. Lett.1992B 2871691992PhLB..287..169K[INSPIRE] – reference: E.L. Berger and J.-w. Qiu, Differential cross-section for Higgs boson production including all orders soft gluon resummation, Phys. Rev.D 67 (2003) 034026 [hep-ph/0210135] [INSPIRE]. – reference: Gutierrez-ReyesDScimemiIWaalewijnWJZoppiLTransverse momentum dependent distributions with jetsPhys. Rev. Lett.20181211620012018PhRvL.121p2001G[arXiv:1807.07573]; [INSPIRE] – reference: PanzerEAlgorithms for the symbolic integration of hyperlogarithms with applications to Feynman integralsComput. Phys. Commun.20151881482015CoPhC.188..148P1344.81024[arXiv:1403.3385]; [INSPIRE] – reference: RitzmannMWaalewijnWJFragmentation in Jets at NNLOPhys. Rev.2014D 900540292014PhRvD..90e4029R[arXiv:1407.3272]; [INSPIRE] – reference: C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev.D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE]. – reference: C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev.D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE]. – reference: AltarelliGParisiGAsymptotic Freedom in Parton LanguageNucl. Phys.1977B 1262981977NuPhB.126..298A[INSPIRE] – reference: W. Bizoń et al., Fiducial distributions in Higgs and Drell-Yan production at N3LL + NNLO, JHEP12 (2018) 132 [arXiv:1805.05916] [INSPIRE]. – reference: Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Nonperturbative effects in the energy energy correlation, JHEP07 (1999) 012 [hep-ph/9905339] [INSPIRE]. – reference: ChenXPrecise QCD Description of the Higgs Boson Transverse Momentum SpectrumPhys. Lett.2019B 7884252019PhLB..788..425C[arXiv:1805.00736]; [INSPIRE] – reference: ChiuJ-yFuhrerAHoangAHKelleyRManoharAVSoft-Collinear Factorization and Zero-Bin SubtractionsPhys. Rev.2009D 790530072009PhRvD..79e3007C[arXiv:0901.1332]; [INSPIRE] – reference: DixonLJMoultIZhuHXCollinear limit of the energy-energy correlatorPhys. Rev.2019D 1000140092019PhRvD.100a4009D4014087[arXiv:1905.01310]; [INSPIRE] – reference: T. Gehrmann, T. Huber and D. Maˆıtre, Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett.B 622 (2005) 295 [hep-ph/0507061] [INSPIRE]. – reference: MeyerCAlgorithmic transformation of multi-loop master integrals to a canonical basis with CANONICAComput. Phys. Commun.20182222952018CoPhC.222..295M[arXiv:1705.06252]; [INSPIRE] – reference: D. Gutierrez-Reyes, I. Scimemi, W.J. Waalewijn and L. Zoppi, Transverse momentum dependent distributions in e+e−and semi-inclusive deep-inelastic scattering using jets, arXiv:1904.04259 [INSPIRE]. – reference: JonesDRTTwo Loop Diagrams in Yang-Mills TheoryNucl. Phys.1974B 755311974NuPhB..75..531J[INSPIRE] – ident: 11396_CR44 doi: 10.1140/epjc/s10052-011-1665-7 – volume: 122 start-page: 192003 year: 2019 ident: 11396_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.192003 – volume: D 93 start-page: 014009 year: 2016 ident: 11396_CR15 publication-title: Phys. Rev. – volume: 118 start-page: 062001 year: 2017 ident: 11396_CR63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.062001 – volume: D 90 start-page: 054029 year: 2014 ident: 11396_CR102 publication-title: Phys. Rev. – ident: 11396_CR37 doi: 10.1140/epjc/s10052-012-2132-9 – volume: B 79 start-page: 269 year: 1978 ident: 11396_CR3 publication-title: Phys. Lett. doi: 10.1016/0370-2693(78)90240-X – volume: B 283 start-page: 342 year: 1987 ident: 11396_CR88 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(87)90277-X – ident: 11396_CR57 doi: 10.1103/PhysRevD.63.114020 – volume: 189 start-page: 182 year: 2015 ident: 11396_CR73 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.11.024 – volume: B 890 start-page: 518 year: 2014 ident: 11396_CR33 publication-title: Nucl. Phys. – ident: 11396_CR90 doi: 10.1016/j.physletb.2005.07.019 – ident: 11396_CR30 doi: 10.1007/JHEP12(2018)132 – volume: 109 start-page: 242003 year: 2012 ident: 11396_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.242003 – volume: 11 start-page: 061 year: 2018 ident: 11396_CR34 publication-title: JHEP doi: 10.1007/JHEP11(2018)061 – ident: 11396_CR17 doi: 10.1016/0550-3213(81)90339-4 – volume: 32 start-page: 1 year: 2011 ident: 11396_CR1 publication-title: Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. – volume: B 713 start-page: 41 year: 2012 ident: 11396_CR45 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2012.05.016 – volume: 2005 start-page: 049 issue: 08 year: 2005 ident: 11396_CR91 publication-title: Journal of High Energy Physics doi: 10.1088/1126-6708/2005/08/049 – volume: D 100 start-page: 014009 year: 2019 ident: 11396_CR83 publication-title: Phys. Rev. – volume: B 175 start-page: 27 year: 1980 ident: 11396_CR101 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(80)90003-6 – volume: 30 start-page: 1346 year: 1973 ident: 11396_CR95 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.30.1346 – volume: 04 start-page: 020 year: 2017 ident: 11396_CR19 publication-title: JHEP doi: 10.1007/JHEP04(2017)020 – volume: 120 start-page: 102001 year: 2018 ident: 11396_CR82 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.102001 – volume: B 194 start-page: 445 year: 1982 ident: 11396_CR61 publication-title: Nucl. Phys. – volume: B 126 start-page: 298 year: 1977 ident: 11396_CR99 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(77)90384-4 – volume: 118 start-page: 022004 year: 2017 ident: 11396_CR50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.022004 – volume: B 762 start-page: 447 year: 2016 ident: 11396_CR68 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2016.09.060 – volume: B 154 start-page: 427 year: 1979 ident: 11396_CR4 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(79)90040-3 – volume: 110 start-page: 082001 year: 2013 ident: 11396_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.082001 – ident: 11396_CR67 doi: 10.1103/PhysRevD.93.011502 – ident: 11396_CR78 doi: 10.1142/S0217751X00000367 – ident: 11396_CR74 – volume: B 75 start-page: 531 year: 1974 ident: 11396_CR97 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(74)90093-5 – volume: D 88 start-page: 074004 year: 2013 ident: 11396_CR32 publication-title: Phys. Rev. – volume: 04 start-page: 006 year: 2017 ident: 11396_CR76 publication-title: JHEP doi: 10.1007/JHEP04(2017)006 – volume: B 349 start-page: 381 year: 1991 ident: 11396_CR6 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(91)90330-Z – ident: 11396_CR62 – volume: 188 start-page: 148 year: 2015 ident: 11396_CR77 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.10.019 – ident: 11396_CR85 – volume: 08 start-page: 161 year: 2019 ident: 11396_CR22 publication-title: JHEP doi: 10.1007/JHEP08(2019)161 – ident: 11396_CR43 – ident: 11396_CR25 doi: 10.1103/PhysRevD.72.114020 – ident: 11396_CR98 – volume: 105 start-page: 279 year: 1993 ident: 11396_CR69 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1993.1074 – volume: B 97 start-page: 437 year: 1980 ident: 11396_CR100 publication-title: Phys. Lett. doi: 10.1016/0370-2693(80)90636-X – volume: 06 start-page: 155 year: 2014 ident: 11396_CR39 publication-title: JHEP doi: 10.1007/JHEP06(2014)155 – ident: 11396_CR7 doi: 10.1103/PhysRevD.50.R4239 – volume: 02 start-page: 108 year: 2018 ident: 11396_CR28 publication-title: JHEP doi: 10.1007/JHEP02(2018)108 – ident: 11396_CR65 – volume: B 46 start-page: 2501 year: 2015 ident: 11396_CR2 publication-title: Acta Phys. Polon. doi: 10.5506/APhysPolB.46.2501 – volume: 08 start-page: 160 year: 2018 ident: 11396_CR35 publication-title: JHEP doi: 10.1007/JHEP08(2018)160 – ident: 11396_CR54 doi: 10.1016/S0550-3213(00)00223-6 – volume: 30 start-page: 1343 year: 1973 ident: 11396_CR94 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.30.1343 – volume: B 788 start-page: 425 year: 2019 ident: 11396_CR29 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2018.11.037 – volume: 02 start-page: 155 year: 2015 ident: 11396_CR71 publication-title: JHEP doi: 10.1007/JHEP02(2015)155 – ident: 11396_CR87 – ident: 11396_CR66 doi: 10.1007/JHEP03(2016)168 – ident: 11396_CR21 – volume: D 99 start-page: 051501 year: 2019 ident: 11396_CR41 publication-title: Phys. Rev. – ident: 11396_CR23 doi: 10.1103/PhysRevD.67.034026 – volume: B 192 start-page: 159 year: 1981 ident: 11396_CR51 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(81)90199-1 – ident: 11396_CR26 doi: 10.1007/JHEP07(2015)158 – volume: 33 start-page: 244 year: 1974 ident: 11396_CR96 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.33.244 – ident: 11396_CR84 – volume: B 696 start-page: 207 year: 2011 ident: 11396_CR8 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2010.12.024 – volume: 123 start-page: 062001 year: 2019 ident: 11396_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.062001 – volume: 12 start-page: 097 year: 2015 ident: 11396_CR27 publication-title: JHEP – volume: D 93 start-page: 054004 year: 2016 ident: 11396_CR48 publication-title: Phys. Rev. – ident: 11396_CR56 doi: 10.1103/PhysRevD.63.014006 – ident: 11396_CR70 – volume: 06 start-page: 028 year: 2019 ident: 11396_CR11 publication-title: JHEP doi: 10.1007/JHEP06(2019)028 – ident: 11396_CR12 doi: 10.1103/PhysRevD.71.034005 – ident: 11396_CR10 – volume: 643 start-page: 431 issue: 1-3 year: 2002 ident: 11396_CR60 publication-title: Nuclear Physics B doi: 10.1016/S0550-3213(02)00687-9 – ident: 11396_CR92 doi: 10.1088/1126-6708/2009/06/081 – volume: A 33 start-page: 1841006 year: 2018 ident: 11396_CR14 publication-title: Int. J. Mod. Phys. doi: 10.1142/S0217751X18410063 – volume: 121 start-page: 162001 year: 2018 ident: 11396_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.162001 – volume: 04 start-page: 123 year: 2019 ident: 11396_CR49 publication-title: JHEP doi: 10.1007/JHEP04(2019)123 – volume: D 79 start-page: 053007 year: 2009 ident: 11396_CR47 publication-title: Phys. Rev. – volume: 412 start-page: 751 issue: 3 year: 1994 ident: 11396_CR53 publication-title: Nuclear Physics B doi: 10.1016/0550-3213(94)90398-0 – ident: 11396_CR81 doi: 10.1016/j.nuclphysb.2004.10.051 – volume: D 91 start-page: 036008 year: 2015 ident: 11396_CR93 publication-title: Phys. Rev. – ident: 11396_CR59 doi: 10.1103/PhysRevD.66.014017 – ident: 11396_CR13 doi: 10.1016/j.physletb.2004.07.026 – volume: 05 start-page: 084 year: 2012 ident: 11396_CR46 publication-title: JHEP doi: 10.1007/JHEP05(2012)084 – ident: 11396_CR52 doi: 10.1142/S0217751X00002159 – volume: B 197 start-page: 446 year: 1982 ident: 11396_CR18 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(82)90453-9 – ident: 11396_CR79 doi: 10.1016/j.cpc.2005.10.008 – volume: D 99 start-page: 034505 year: 2019 ident: 11396_CR64 publication-title: Phys. Rev. – volume: 02 start-page: 124 year: 2012 ident: 11396_CR9 publication-title: JHEP doi: 10.1007/JHEP02(2012)124 – volume: 09 start-page: 004 year: 2016 ident: 11396_CR40 publication-title: JHEP doi: 10.1007/JHEP09(2016)004 – ident: 11396_CR72 doi: 10.1016/S0550-3213(02)00837-4 – volume: 07 start-page: 100 year: 2019 ident: 11396_CR42 publication-title: JHEP doi: 10.1007/JHEP07(2019)100 – volume: 222 start-page: 295 year: 2018 ident: 11396_CR75 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2017.09.014 – volume: B 287 start-page: 169 year: 1992 ident: 11396_CR89 publication-title: Phys. Lett. doi: 10.1016/0370-2693(92)91895-G – volume: 737 start-page: 73 issue: 1-2 year: 2006 ident: 11396_CR24 publication-title: Nuclear Physics B doi: 10.1016/j.nuclphysb.2005.12.022 – volume: B 250 start-page: 199 year: 1985 ident: 11396_CR5 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(85)90479-1 – volume: 110 start-page: 251601 year: 2013 ident: 11396_CR55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.251601 – ident: 11396_CR80 doi: 10.1088/1126-6708/1999/07/012 – ident: 11396_CR86 doi: 10.1016/S0550-3213(03)00264-5 – ident: 11396_CR58 doi: 10.1103/PhysRevD.65.054022 |
SSID | ssj0015190 |
Score | 2.5921416 |
Snippet | A
bstract
We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the... We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the... Abstract We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Classical and Quantum Gravitation Distribution functions Effective Field Theories Elementary Particles Fragmentation High energy physics Mathematical analysis Partons Perturbative QCD Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Quarks Regular Article - Theoretical Physics Regularization Regulators Relativity Theory String Theory Transverse momentum |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iCF7EnzidkoOH7VCXNmmTeVPZGEOniIPdSpofHtRubvX_96VNpxOGF69t2j5eXvN9Ie99D6GLDLb-KpIkyKQ2AZNxFgirZCCVE650eu3CFSffj5LBmA0n8eRHqy-XE1bJA1eO6yQG1lNjE8WEYVRwYaMuwBIQQ5Zpo5VbfQHz6s2UPz8AXkJqIR_CO8NB7zEkLQC7bpsIuoJBpVT_Cr_8dSRaIk1_F-14ioivK9P20IbJ99FWmaqpFgfoqYQXl01h8Azsn-ZYO_Vb37gKy1xjO5cv776qKMcOu8rwwrLAo9HdwxUG2oc_IDpesQIYO0Tjfu_5dhD4zgiBYiEvAuHqZ132VZcJQqXS1sZChQnRVlPGY51YDfsQozkgPgdmGuqEKp5ppVUMFIgeoc18mptjhAU1kYgF0C7GmTI0I1ZLWHmYBmpFVNJAl7WvUuVlw133ire0FjyunJs656bg3AZqLR-YVYoZ64feOOcvhzmp6_ICBEDqAyD9KwAaqFlPXer_v0Xq0tuBjEYxfKNdT-f37TX2nPyHPado272vSvhros1i_mnOgLgU2XkZo1_70egw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT-MwELX4EBIXtLuAKLDIhz3AIeDWTuJyWS2oqEJQEAKJW-TM2D0AaWnL_2cmdYpAYq-JE0Xj8bw38fiNEH9KSv2h41RSOvSJcWmZ2AAuccDClazXbvlw8vUg6z-Yy8f0Mf5wm8ayyiYm1oEaR8D_yE-4YJnoRSfVf8evCXeN4t3V2EJjWaxSCLaUfK2e9Qa3d4t9BOInqhH0UfnJZb9321aHBHrdI2X1JyyqJfs_8cwvW6M14lz8EBuRKsp_87n9KZZ89Uus1SWbMN0UdzXMcFWFl2NygFElkVVwYwMr6SqUYeKGL_F0USUZw2o3k24mB4Orm1NJ9E--kpc8SSA42xIPF737834SOyQkYNr5LLF8jparsLrGKu0AQ0gttDOFAbXJU8wCUj7iMSfkz4mhtjHTkJcICClRIb0tVqpR5XeEtNp3bGqJfpncgNelCugoAhkkiqUga4njxlYFRPlw7mLxXDTCx3PjFmzcgozbEoeLB8Zz5Yzvh56x8RfDWPK6vjCaDIu4gorME7D6kIGx3mib29DpEj-hDMGU6BFaYr-ZuiKuw2nx4TUtcdRM58ftb75n9_-v2hPrPHJe0rcvVmaTN_-bqMmsPIj-9w7lwOEN priority: 102 providerName: ProQuest |
Title | Transverse parton distribution and fragmentation functions at NNLO: the quark case |
URI | https://link.springer.com/article/10.1007/JHEP10(2019)083 https://www.proquest.com/docview/2307054253 https://doaj.org/article/6e067ef6c48e43878f292188824bdedc |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6sRfAiPrE-yh482EMkj02y9aaltRStpVjoLWz20YOaaq3_35ltoqh48BJCskvC7Ox-37Az3wKc5Rj6q1D6Xi618biMc09YJT2pSLiS9NoFFSffDZP-hA-m8XQNgqoWxmW7V1uSbqWuit0G_e4o8M8RsNot5A01qMcYuJNTd6jAodw4QELiVwo-vzt9Ax-n0f-NWP7YC3UQ09uGrZIbsqvVYO7Amil2YcPlaKq3PRg7XKE0CsNecMTnBdMke1ueWMVkoZldyNlzWU5UMAIt51dMLtlweHt_yZDvsVd0i0emEL_2YdLrPnT6Xnkkgqd4kC49QYWzlHbV5sKPpNLWxkIFia-tjnga68RqDECMThHqU6SkgU4ileZaaRUj94kOYL2YF-YQmIhMKGKBfIunXJko962WuORwjZzKV0kDLipbZarUC6djK56ySul4ZdyMjJuhcRtw_tnhZSWV8XfTazL-ZzPSuHYP5otZVk6ZLDGIpMYmigvDI5EKG7aRkGBIwHNttGrASTV0WTnx3jLKa0cWGsb4jVY1nF-v__ifo3-0PYZNul0l9J3A-nLxbk6RmCzzJtRE76YJ9evucDRuOseka9JpulAfr5Pw6gMYVeBn |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXxFMECvgAUntY6qy9uw4SQjwa0jYNCLVSb653bPcAbNIkCPGn-I3M7CNVkcqt113bWo0_-_u8ngfAi5KO_pg6mZTOh0S7rExMRJc45MSVnK_dcHDywSQfHem94-x4Df50sTDsVtntifVG7afI_8i32WGZ5EWaqbezs4SrRvHtaldCo4HFfvj9i45size7H2l-X6bpcOfwwyhpqwokqPvFMjEce8qeSwNtpHLoY8wM9nPpo1e6yHwePWn44Atiy4JUXd_nCovSo8eM5IOica_Bda3UgFeUGX5a3VqQGpJd-iBZbO-Ndr705SZR7GBLGnWB-eoCARdU7T8XsTW_De_A7VaYincNku7CWqjuwY3aQRQX9-FrTWrswxHEjOA2rYTnnLttuSzhKi_i3J3-aGOZKsGMWYNauKWYTMafXwsSm-KMMPlNIJHnAzi6Ess9hPVqWoVHIIwKqckMiT1daAyqlNE72u-0J0EnMe_Bq85WFttk5Vwz47vt0iw3xrVsXEvG7cHmqsOsydNxedP3bPxVM06wXT-Yzk9tu15tHojGQ8xRm6CVKUxMB6SG6DyiSx889mCjmzrbrvqFPcdoD7a66Tx_fcn3PP7_UM_h5ujwYGzHu5P9J3CLezXOhBuwvpz_DE9JFC3LZzUSBZxcNfT_AuFJHI4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-xUMAHkNpDWG_sxF4khCjd1fZBWFVU6s11_OgByG53t6r4a_11HSfOVkUqt16T2IrGX2Y-xzPfALwvcetvUk2TUluXcJ2VifRGJ9oE4cqg1y5DcfL3Ih8f8b3j7HgNLttamJBW2frE2lHbqQn_yHshYRnpRZqxno9pEZOd0ZfZWRI6SIWT1radRgORfff3Ardvi8-7O7jWH9J0NPz5bZzEDgOJ4X2xTGSoQw1ZTAMuKdPGep9J08-p9ZZxkdncW-TzzgqMnAIZXt_mzIjSGmsypBIM570H6wJ3RbQD69vDYnK4OsNAbkRbMSEqenvj4aRPNzHgDraoZDfiYN0u4AbH_edYto52o8fwKNJU8rXB1RNYc9VTuF-ni5rFMzisQ1zI6HBkhuCbVsQGBd7YPIvoyhI_16d_YmVTRUL8rCFO9JIUxcGPTwSpJzlDhP4iBkPpczi6E9u9gE41rdxLIJK5VGYSqR8X3DhWUm81ej9ukd5Rk3fhY2srZaJ0eeig8Vu1osuNcVUwrkLjdmFzNWDWqHbc_uh2MP7qsSC3XV-Yzk9V_HpV7jCoO58bLh1nUkifDpAb4e6El9ZZ04WNdulU9AELdY3YLmy1y3l9-5b3efX_qd7BA4S9Otgt9l_DwzCoySzcgM5yfu7eIENalm8jFAmc3DX6rwDuzyIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transverse+parton+distribution+and+fragmentation+functions+at+NNLO%3A+the+quark+case&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Luo%2C+Ming-Xing&rft.au=Wang%2C+Xing&rft.au=Xu%2C+Xiaofeng&rft.au=Yang%2C+Li+Lin&rft.date=2019-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2019&rft.issue=10&rft_id=info:doi/10.1007%2FJHEP10%282019%29083&rft.externalDocID=10_1007_JHEP10_2019_083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |