Transverse parton distribution and fragmentation functions at NNLO: the quark case

A bstract We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2019; no. 10; pp. 1 - 39
Main Authors Luo, Ming-Xing, Wang, Xing, Xu, Xiaofeng, Yang, Li Lin, Yang, Tong-Zhi, Zhu, Hua Xing
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of various ingredients in transverse momentum dependent factorization. Compared to existing regulators in the literature, the exponential regulator has a couple of advantages which we explain in detail. As a result, the calcula- tion is greatly simplified and we are able to obtain the next-to-next-to-leading order results up to O ( E 2 ) in dimensional regularization. These terms are necessary for a higher order calculation which is made possible with the simplification brought by the new regulator. As a by-product, we have obtained the two-loop quark jet function for the Energy-Energy Correlator in the back-to-back limit, which is the last missing ingredient for its N 3 LL resummation.
AbstractList We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of various ingredients in transverse momentum dependent factorization. Compared to existing regulators in the literature, the exponential regulator has a couple of advantages which we explain in detail. As a result, the calcula- tion is greatly simplified and we are able to obtain the next-to-next-to-leading order results up to O(E2) in dimensional regularization. These terms are necessary for a higher order calculation which is made possible with the simplification brought by the new regulator. As a by-product, we have obtained the two-loop quark jet function for the Energy-Energy Correlator in the back-to-back limit, which is the last missing ingredient for its N3LL resummation.
We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of various ingredients in transverse momentum dependent factorization. Compared to existing regulators in the literature, the exponential regulator has a couple of advantages which we explain in detail. As a result, the calcula- tion is greatly simplified and we are able to obtain the next-to-next-to-leading order results up to O ( E 2 ) in dimensional regularization. These terms are necessary for a higher order calculation which is made possible with the simplification brought by the new regulator. As a by-product, we have obtained the two-loop quark jet function for the Energy-Energy Correlator in the back-to-back limit, which is the last missing ingredient for its N 3 LL resummation.
Abstract We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of various ingredients in transverse momentum dependent factorization. Compared to existing regulators in the literature, the exponential regulator has a couple of advantages which we explain in detail. As a result, the calcula- tion is greatly simplified and we are able to obtain the next-to-next-to-leading order results up to O(E 2) in dimensional regularization. These terms are necessary for a higher order calculation which is made possible with the simplification brought by the new regulator. As a by-product, we have obtained the two-loop quark jet function for the Energy-Energy Correlator in the back-to-back limit, which is the last missing ingredient for its N3LL resummation.
A bstract We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the exponential regulator for rapidity divergences. We show that the exponential regulator provides a consistent framework for the calculation of various ingredients in transverse momentum dependent factorization. Compared to existing regulators in the literature, the exponential regulator has a couple of advantages which we explain in detail. As a result, the calcula- tion is greatly simplified and we are able to obtain the next-to-next-to-leading order results up to O ( E 2 ) in dimensional regularization. These terms are necessary for a higher order calculation which is made possible with the simplification brought by the new regulator. As a by-product, we have obtained the two-loop quark jet function for the Energy-Energy Correlator in the back-to-back limit, which is the last missing ingredient for its N 3 LL resummation.
ArticleNumber 83
Author Wang, Xing
Luo, Ming-Xing
Xu, Xiaofeng
Yang, Tong-Zhi
Yang, Li Lin
Zhu, Hua Xing
Author_xml – sequence: 1
  givenname: Ming-Xing
  surname: Luo
  fullname: Luo, Ming-Xing
  organization: Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University
– sequence: 2
  givenname: Xing
  surname: Wang
  fullname: Wang, Xing
  organization: School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University
– sequence: 3
  givenname: Xiaofeng
  surname: Xu
  fullname: Xu, Xiaofeng
  organization: School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University
– sequence: 4
  givenname: Li Lin
  surname: Yang
  fullname: Yang, Li Lin
  email: yanglilin@pku.edu.cn
  organization: School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Center for High Energy Physics, Peking University
– sequence: 5
  givenname: Tong-Zhi
  surname: Yang
  fullname: Yang, Tong-Zhi
  organization: Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University
– sequence: 6
  givenname: Hua Xing
  surname: Zhu
  fullname: Zhu, Hua Xing
  organization: Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University
BookMark eNp1kc1LAzEUxINUsFbPXhe86KH2ZZNsst5Eqq2UKqLnkOajbq3ZmmQF_3u3rqIInvLymN8wyeyjnq-9RegIwxkG4KObyfgOw0kOuDwFQXZQH0NeDgXlZe_XvIf2Y1wBYIZL6KP7h6B8fLMh2myjQqp9ZqqYQrVoUtVelDeZC2r5Yn1SnxvXeL0dYqZSNp_Pbs-z9GSz10aF50yraA_QrlPraA-_zgF6vBo_XE6Gs9vr6eXFbKgp5mkoCKGCOS1KKoAobZxjQuMCjDOEcmYKZzgj1nAQmAu8wKYgmi-MNprlBSUDNO18Ta1WchOqFxXeZa0q-bmow1K2D6r02srCQsGtKzQVlhLBhcvLHAshcrow1ujW67jz2oT6tbExyVXdBN_GlzkBDozmjLQq1ql0qGMM1klddb-SgqrWEoPcViG7KuS2CtlW0XKjP9x32v8J6IjYKv3Shp88_yEf--iboA
CitedBy_id crossref_primary_10_1007_JHEP09_2020_181
crossref_primary_10_1007_JHEP09_2021_108
crossref_primary_10_1007_JHEP07_2021_121
crossref_primary_10_1103_PhysRevD_101_114023
crossref_primary_10_1103_PhysRevLett_128_052001
crossref_primary_10_1007_JHEP09_2020_146
crossref_primary_10_1007_JHEP11_2020_051
crossref_primary_10_1103_PhysRevLett_127_062001
crossref_primary_10_1103_PhysRevD_109_096004
crossref_primary_10_1007_JHEP04_2023_127
crossref_primary_10_1103_PhysRevD_103_014024
crossref_primary_10_1007_JHEP01_2020_040
crossref_primary_10_1007_JHEP11_2021_005
crossref_primary_10_1007_JHEP02_2023_256
crossref_primary_10_1007_JHEP06_2020_137
crossref_primary_10_1007_JHEP07_2020_005
crossref_primary_10_1142_S0217751X22502050
crossref_primary_10_1007_JHEP03_2020_099
crossref_primary_10_1007_JHEP04_2022_079
crossref_primary_10_1007_JHEP10_2020_164
crossref_primary_10_1103_RevModPhys_93_035005
crossref_primary_10_1007_JHEP11_2019_121
crossref_primary_10_1007_JHEP10_2021_088
crossref_primary_10_1007_JHEP09_2024_072
crossref_primary_10_1007_JHEP02_2023_067
crossref_primary_10_1007_JHEP02_2025_170
crossref_primary_10_1007_JHEP04_2024_114
crossref_primary_10_1140_epjp_s13360_021_01155_y
crossref_primary_10_1088_1674_1137_abde2d
crossref_primary_10_1103_PhysRevLett_124_092001
crossref_primary_10_1007_JHEP04_2023_106
crossref_primary_10_1007_JHEP08_2023_037
crossref_primary_10_1007_JHEP03_2022_047
crossref_primary_10_1103_PhysRevD_110_016003
crossref_primary_10_1007_JHEP08_2022_084
crossref_primary_10_1007_JHEP02_2023_075
crossref_primary_10_1007_JHEP08_2021_022
crossref_primary_10_1007_JHEP02_2021_166
crossref_primary_10_1103_PhysRevD_103_094005
crossref_primary_10_1140_epjc_s10052_020_8380_1
crossref_primary_10_1007_JHEP04_2022_178
crossref_primary_10_1007_JHEP04_2024_005
crossref_primary_10_1007_JHEP03_2020_072
crossref_primary_10_1007_JHEP06_2021_115
crossref_primary_10_1007_JHEP01_2023_083
crossref_primary_10_1007_JHEP03_2023_200
crossref_primary_10_1007_JHEP04_2021_102
crossref_primary_10_1103_PhysRevD_106_034002
crossref_primary_10_1007_JHEP01_2025_029
crossref_primary_10_1007_JHEP11_2023_220
crossref_primary_10_1007_JHEP12_2020_127
Cites_doi 10.1140/epjc/s10052-011-1665-7
10.1103/PhysRevLett.122.192003
10.1103/PhysRevLett.118.062001
10.1140/epjc/s10052-012-2132-9
10.1016/0370-2693(78)90240-X
10.1016/0550-3213(87)90277-X
10.1103/PhysRevD.63.114020
10.1016/j.cpc.2014.11.024
10.1016/j.physletb.2005.07.019
10.1007/JHEP12(2018)132
10.1103/PhysRevLett.109.242003
10.1007/JHEP11(2018)061
10.1016/0550-3213(81)90339-4
10.1016/j.physletb.2012.05.016
10.1088/1126-6708/2005/08/049
10.1016/0550-3213(80)90003-6
10.1103/PhysRevLett.30.1346
10.1007/JHEP04(2017)020
10.1103/PhysRevLett.120.102001
10.1016/0550-3213(77)90384-4
10.1103/PhysRevLett.118.022004
10.1016/j.physletb.2016.09.060
10.1016/0550-3213(79)90040-3
10.1103/PhysRevLett.110.082001
10.1103/PhysRevD.93.011502
10.1142/S0217751X00000367
10.1016/0550-3213(74)90093-5
10.1007/JHEP04(2017)006
10.1016/0550-3213(91)90330-Z
10.1016/j.cpc.2014.10.019
10.1007/JHEP08(2019)161
10.1103/PhysRevD.72.114020
10.1006/jcph.1993.1074
10.1016/0370-2693(80)90636-X
10.1007/JHEP06(2014)155
10.1103/PhysRevD.50.R4239
10.1007/JHEP02(2018)108
10.5506/APhysPolB.46.2501
10.1007/JHEP08(2018)160
10.1016/S0550-3213(00)00223-6
10.1103/PhysRevLett.30.1343
10.1016/j.physletb.2018.11.037
10.1007/JHEP02(2015)155
10.1007/JHEP03(2016)168
10.1103/PhysRevD.67.034026
10.1016/0550-3213(81)90199-1
10.1007/JHEP07(2015)158
10.1103/PhysRevLett.33.244
10.1016/j.physletb.2010.12.024
10.1103/PhysRevLett.123.062001
10.1103/PhysRevD.63.014006
10.1007/JHEP06(2019)028
10.1103/PhysRevD.71.034005
10.1016/S0550-3213(02)00687-9
10.1088/1126-6708/2009/06/081
10.1142/S0217751X18410063
10.1103/PhysRevLett.121.162001
10.1007/JHEP04(2019)123
10.1016/0550-3213(94)90398-0
10.1016/j.nuclphysb.2004.10.051
10.1103/PhysRevD.66.014017
10.1016/j.physletb.2004.07.026
10.1007/JHEP05(2012)084
10.1142/S0217751X00002159
10.1016/0550-3213(82)90453-9
10.1016/j.cpc.2005.10.008
10.1007/JHEP02(2012)124
10.1007/JHEP09(2016)004
10.1016/S0550-3213(02)00837-4
10.1007/JHEP07(2019)100
10.1016/j.cpc.2017.09.014
10.1016/0370-2693(92)91895-G
10.1016/j.nuclphysb.2005.12.022
10.1016/0550-3213(85)90479-1
10.1103/PhysRevLett.110.251601
10.1088/1126-6708/1999/07/012
10.1016/S0550-3213(03)00264-5
10.1103/PhysRevD.65.054022
ContentType Journal Article
Copyright The Author(s) 2019
Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2019
– notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP10(2019)083
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 39
ExternalDocumentID oai_doaj_org_article_6e067ef6c48e43878f292188824bdedc
10_1007_JHEP10_2019_083
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-833485fc894803acdff58c160dfd3475d6fd753ed7081781b1d63c7bdcdc52643
IEDL.DBID C24
ISSN 1029-8479
IngestDate Wed Aug 27 01:06:00 EDT 2025
Fri Jul 25 10:01:13 EDT 2025
Tue Jul 01 03:54:49 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Fri Feb 21 02:34:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Effective Field Theories
Perturbative QCD
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-833485fc894803acdff58c160dfd3475d6fd753ed7081781b1d63c7bdcdc52643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/JHEP10(2019)083
PQID 2307054253
PQPubID 2034718
PageCount 39
ParticipantIDs doaj_primary_oai_doaj_org_article_6e067ef6c48e43878f292188824bdedc
proquest_journals_2307054253
crossref_citationtrail_10_1007_JHEP10_2019_083
crossref_primary_10_1007_JHEP10_2019_083
springer_journals_10_1007_JHEP10_2019_083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Y. Li, D. Neill and H.X. Zhu, An Exponential Regulator for Rapidity Divergences, submitted to Phys. Rev. D (2016), arXiv:1604.00392 [INSPIRE].
ArnoldPBKauffmanRPW and Z production at next-to-leading order: From large qTto smallNucl. Phys.1991B 3493811991NuPhB.349..381A[INSPIRE]
EchevarriaMGScimemiIVladimirovAUnpolarized Transverse Momentum Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading orderJHEP2016090042016JHEP...09..004E35579071390.81168[arXiv:1604.07869]; [INSPIRE]
BernZviDixonLanceKosowerDavid A.Dimensionally-regulated pentagon integralsNuclear Physics B199441237518161994NuPhB.412..751B12580001007.81512
E. Egorian and O.V. Tarasov, Two Loop Renormalization of the QCD in an Arbitrary Gauge, Teor. Mat. Fiz.41 (1979) 26 [Theor. Math. Phys.41 (1979) 863] [INSPIRE].
SmirnovAVFIRE5: a C++ implementation of Feynman Integral REductionComput. Phys. Commun.20151891822015CoPhC.189..182S1344.81030[arXiv:1408.2372]; [INSPIRE]
M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, arXiv:1905.01311 [INSPIRE].
M.A. Ebert, I.W. Stewart and Y. Zhao, Towards Quasi-Transverse Momentum Dependent PDFs Computable on the Lattice, arXiv:1901.03685 [INSPIRE].
MeyerCAlgorithmic transformation of multi-loop master integrals to a canonical basis with CANONICAComput. Phys. Commun.20182222952018CoPhC.222..295M[arXiv:1705.06252]; [INSPIRE]
DixonLJLuoM-XShtabovenkoVYangT-ZZhuHXAnalytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCDPhys. Rev. Lett.20181201020012018PhRvL.120j2001D[arXiv:1801.03219]; [INSPIRE]
Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Nonperturbative effects in the energy energy correlation, JHEP07 (1999) 012 [hep-ph/9905339] [INSPIRE].
ZhuHXOn the calculation of soft phase space integralJHEP2015021552015JHEP...02..155Z[arXiv:1501.00236]; [INSPIRE]
BizonWMonniPFReERottoliLTorrielliPMomentum-space resummation for transverse observables and the Higgs p⊥at N3LL + NNLOJHEP2018021082018JHEP...02..108B[arXiv:1705.09127]; [INSPIRE]
JonesDRTTwo Loop Diagrams in Yang-Mills TheoryNucl. Phys.1974B 755311974NuPhB..75..531J[INSPIRE]
BozziGCataniSFerreraGde FlorianDGrazziniMProduction of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracyPhys. Lett.2011B 6962072011PhLB..696..207B[arXiv:1007.2351]; [INSPIRE]
C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev.D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev.D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
CollinsJFoundations of perturbative QCDCamb. Monogr. Part. Phys. Nucl. Phys. Cosmol.20113212807608[INSPIRE]
KorchemskyGPRadyushkinAVRenormalization of the Wilson Loops Beyond the Leading OrderNucl. Phys.1987B 2833421987NuPhB.283..342K[INSPIRE]
M. Beneke, Lectures on soft-collinear effective theory, in proceedings of the Helmholtz International Summer School on Heavy Quark Physics, Moscow, Dubna, Russia, 6–16 June 2005.
GehrmannTLuebbertTYangLLCalculation of the transverse parton distribution functions at next-to-next-to-leading orderJHEP2014061552014JHEP...06..155G[arXiv:1403.6451]; [INSPIRE]
VladimirovAACorrespondence between Soft and Rapidity Anomalous DimensionsPhys. Rev. Lett.20171180620012017PhRvL.118f2001V[arXiv:1610.05791]; [INSPIRE]
J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
Angeles-MartinezRTransverse Momentum Dependent (TMD) parton distribution functions: status and prospectsActa Phys. Polon.2015B 4625012015AcPPB..46.2501A[arXiv:1507.05267]; [INSPIRE]
MochSven-OlafVermaserenJozef Antoon MVogtAndreasThe quark form factor at higher ordersJournal of High Energy Physics20052005080490492005JHEP...05..049M
D. de Florian and M. Grazzini, The Back-to-back region in e+e−energy-energy correlation, Nucl. Phys.B 704 (2005) 387 [hep-ph/0407241] [INSPIRE].
W. Bizon et al., The transverse momentum spectrum of weak gauge bosons at N3LL + NNLO, arXiv:1905.05171 [INSPIRE].
A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory, Nucl. Phys.B 661 (2003) 19 [Erratum ibid.B 685 (2004) 405] [hep-ph/0208220] [INSPIRE].
DixonLJMoultIZhuHXCollinear limit of the energy-energy correlatorPhys. Rev.2019D 1000140092019PhRvD.100a4009D4014087[arXiv:1905.01310]; [INSPIRE]
M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to-next-to-leading order, Phys. Rev.D 93 (2016) 011502 [Erratum ibid.D 94 (2016) 099904] [arXiv:1509.06392] [INSPIRE].
GrossDJWilczekFUltraviolet Behavior of Nonabelian Gauge TheoriesPhys. Rev. Lett.19733013431973PhRvL..30.1343G[INSPIRE]
CataniSDevotoSGrazziniMKallweitSMazzitelliJTop-quark pair production at the LHC: Fully differential QCD predictions at NNLOJHEP2019071002019JHEP...07..100C[arXiv:1906.06535]; [INSPIRE]
D. Maˆıtre, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [INSPIRE].
J.M. Henn, E. Sokatchev, K. Yan and A. Zhiboedov, Energy-energy correlations at next-to-next-to-leading order, arXiv:1903.05314 [INSPIRE].
BertoneVScimemiIVladimirovAExtraction of unpolarized quark transverse momentum dependent parton distributions from Drell-Yan/Z-boson productionJHEP2019060282019JHEP...06..028B3982532[arXiv:1902.08474]; [INSPIRE]
EbertMAStewartIWZhaoYDetermining the Nonperturbative Collins-Soper Kernel From Lattice QCDPhys. Rev.2019D 990345052019PhRvD..99c4505E3982904[arXiv:1811.00026]; [INSPIRE]
CollinsJCSoperDEBack-To-Back Jets: Fourier Transform from B to K-TransverseNucl. Phys.1982B 1974461982NuPhB.197..446C[INSPIRE]
KorchemskayaIAKorchemskyGPOn lightlike Wilson loopsPhys. Lett.1992B 2871691992PhLB..287..169K[INSPIRE]
BecherTBellGAnalytic Regularization in Soft-Collinear Effective TheoryPhys. Lett.2012B 713412012PhLB..713...41B[arXiv:1112.3907]; [INSPIRE]
ChenXPrecise QCD Description of the Higgs Boson Transverse Momentum SpectrumPhys. Lett.2019B 7884252019PhLB..788..425C[arXiv:1805.00736]; [INSPIRE]
PolitzerHDReliable Perturbative Results for Strong Interactions?Phys. Rev. Lett.19733013461973PhRvL..30.1346P[INSPIRE]
ChiuJ-yFuhrerAHoangAHKelleyRManoharAVSoft-Collinear Factorization and Zero-Bin SubtractionsPhys. Rev.2009D 790530072009PhRvD..79e3007C[arXiv:0901.1332]; [INSPIRE]
R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
KangZ-BProkudinASunPYuanFExtraction of Quark Transversity Distribution and Collins Fragmentation Functions with QCD EvolutionPhys. Rev.2016D 930140092016PhRvD..93a4009K[arXiv:1505.05589]; [INSPIRE]
Gutierrez-ReyesDScimemiIWaalewijnWJZoppiLTransverse momentum dependent distributions with jetsPhys. Rev. Lett.20181211620012018PhRvL.121p2001G[arXiv:1807.07573]; [INSPIRE]
BozziGiuseppeCataniStefanode FlorianDanielGrazziniMassimilianoTransverse-momentum resummation and the spectrum of the Higgs boson at the LHCNuclear Physics B20067371-2731202006NuPhB.737...73B1109.81387
ChetyrkinKGTkachovFVIntegration by Parts: The Algorithm to Calculate β-functions in 4 LoopsNucl. Phys.1981B 1921591981NuPhB.192..159C[INSPIRE]
X.-d. Ji, J.-P. Ma and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell-Yan processes at low transverse momentum, Phys. Lett.B 597 (2004) 299 [hep-ph/0405085] [INSPIRE].
HennJMMultiloop integrals in dimensional regularization made simplePhys. Rev. Lett.20131102516012013PhRvL.110y1601H[arXiv:1304.1806]; [INSPIRE]
LiuXRingerFVogelsangWYuanFLepton-jet Correlations in Deep Inelastic Scattering at the Electron-Ion ColliderPhys. Rev. Lett.20191221920032019PhRvL.122s2003L[arXiv:1812.08077]; [INSPIRE]
Y. Gao, C.S. Li and J.J. Liu, Transverse momentum resummation for Higgs production in soft-collinear effective theory, Phys. Rev.D 72 (2005) 114020 [hep-ph/0501229] [INSPIRE].
G.A. Ladinsky and C.P. Yuan, The Nonperturbative regime in QCD resummation for gauge boson production at hadron colliders, Phys. Rev.D 50 (1994) R4239 [hep-ph/9311341] [INSPIRE].
ZhuHXLiCSLiHTShaoDYYangLLTransverse-momentum resummation for top-quark pairs at hadron collidersPhys. Rev. Lett.20131100820012013PhRvL.110h2001Z[arXiv:1208.5774]; [INSPIRE]
CataniSDevotoSGrazziniMKallweitSMazzitelliJSargsyanHTop-quark pair hadroproduction at next-to-next-to-leading order in QCDPhys. Rev.2019D 990515012019PhRvD..99e1501C[arXiv:1901.04005]; [INSPIRE]
LiYvon ManteuffelASchabingerRMZhuHXSoft-virtual corrections to Higgs production at N3LOPhys. Rev.2015D 910360082015PhRvD..91c6008L[arXiv:1412.2771]; [INSPIRE]
CataniSGrazziniMSargsyanHTransverse-momentum resummation for top-quark pair production at the LHCJHEP2018110612018JHEP...11..061C[arXiv:1806.01601]; [INSPIRE]
LustermansGWaalewijnWJZeuneLJoint transverse momentum and threshold resummation beyond NLLPhys. Lett.2016B 7624472016PhLB..762..447L1390.81643[arXiv:1605.02740]; [INSPIRE]
C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → Xs γ in effective field theory, Phys. Rev.D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
AltarelliGParisiGAsymptotic Freedom in Parton LanguageNucl. Phys.1977B 1262981977NuPhB.126..298A[INSPIRE]
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev.D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
BenekeM.ChapovskyA.P.DiehlM.FeldmannTh.Soft-collinear effective theory and heavy-to-light currents beyond leading powerNuclear Physics B20026431-34314762002NuPhB.643..431B0998.81538
NeillDRothsteinIZVaidyaVThe Higgs Transverse Momentum Distribution at NNLL and its Theoretical ErrorsJHEP2015120972015JHEP...12..097N[arXiv:1503.00005]; [INSPIRE]
LiYZhuHXBootstrapping Rapidity Anomalous Dimensions for Transve
P Sun (11396_CR14) 2018; A 33
LJ Dixon (11396_CR83) 2019; D 100
11396_CR59
11396_CR58
11396_CR57
DJ Gross (11396_CR94) 1973; 30
T Becher (11396_CR45) 2012; B 713
R Angeles-Martinez (11396_CR2) 2015; B 46
S Catani (11396_CR33) 2014; B 890
11396_CR67
LJ Dixon (11396_CR82) 2018; 120
11396_CR66
11396_CR65
11396_CR62
11396_CR7
V Bertone (11396_CR11) 2019; 06
C Meyer (11396_CR75) 2018; 222
YL Dokshitzer (11396_CR3) 1978; B 79
11396_CR70
11396_CR78
11396_CR74
I Moult (11396_CR35) 2018; 08
11396_CR72
D Gutierrez-Reyes (11396_CR20) 2018; 121
AV Smirnov (11396_CR73) 2015; 189
HD Politzer (11396_CR95) 1973; 30
X Liu (11396_CR16) 2019; 122
11396_CR37
D Gutierrez-Reyes (11396_CR22) 2019; 08
MA Ebert (11396_CR49) 2019; 04
J Collins (11396_CR1) 2011; 32
M. Beneke (11396_CR60) 2002; 643
PB Arnold (11396_CR6) 1991; B 349
E Panzer (11396_CR77) 2015; 188
11396_CR44
11396_CR43
G Altarelli (11396_CR99) 1977; B 126
G Lustermans (11396_CR68) 2016; B 762
Sven-Olaf Moch (11396_CR91) 2005; 2005
JC Collins (11396_CR18) 1982; B 197
S Catani (11396_CR34) 2018; 11
JC Collins (11396_CR61) 1982; B 194
Z-B Kang (11396_CR15) 2016; D 93
A Gao (11396_CR36) 2019; 123
Zvi Bern (11396_CR53) 1994; 412
G Bozzi (11396_CR8) 2011; B 696
D Neill (11396_CR19) 2017; 04
X Chen (11396_CR29) 2019; B 788
11396_CR56
11396_CR54
11396_CR52
11396_CR17
J-Y Chiu (11396_CR46) 2012; 05
JM Henn (11396_CR55) 2013; 110
C Meyer (11396_CR76) 2017; 04
11396_CR13
D Neill (11396_CR27) 2015; 12
DRT Jones (11396_CR97) 1974; B 75
HX Zhu (11396_CR31) 2013; 110
11396_CR23
11396_CR21
Y Li (11396_CR93) 2015; D 91
W Bizon (11396_CR28) 2018; 02
11396_CR26
11396_CR25
S Catani (11396_CR41) 2019; D 99
J-y Chiu (11396_CR47) 2009; D 79
W Furmanski (11396_CR100) 1980; B 97
MG Echevarria (11396_CR40) 2016; 09
G Curci (11396_CR101) 1980; B 175
Giuseppe Bozzi (11396_CR24) 2006; 737
JC Collins (11396_CR5) 1985; B 250
11396_CR30
HT Li (11396_CR32) 2013; D 88
11396_CR79
S Catani (11396_CR42) 2019; 07
11396_CR81
AA Vladimirov (11396_CR63) 2017; 118
11396_CR80
MG Echevarria (11396_CR48) 2016; D 93
MA Ebert (11396_CR64) 2019; D 99
IA Korchemskaya (11396_CR89) 1992; B 287
T Gehrmann (11396_CR38) 2012; 109
G Parisi (11396_CR4) 1979; B 154
11396_CR87
11396_CR86
11396_CR85
11396_CR84
T Gehrmann (11396_CR39) 2014; 06
Y Li (11396_CR50) 2017; 118
HX Zhu (11396_CR71) 2015; 02
GP Korchemsky (11396_CR88) 1987; B 283
M Ritzmann (11396_CR102) 2014; D 90
11396_CR92
P Nogueira (11396_CR69) 1993; 105
11396_CR90
WE Caswell (11396_CR96) 1974; 33
11396_CR12
KG Chetyrkin (11396_CR51) 1981; B 192
11396_CR10
11396_CR98
T Becher (11396_CR9) 2012; 02
References_xml – reference: X.-d. Ji, J.-P. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev.D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].
– reference: BozziGiuseppeCataniStefanode FlorianDanielGrazziniMassimilianoTransverse-momentum resummation and the spectrum of the Higgs boson at the LHCNuclear Physics B20067371-2731202006NuPhB.737...73B1109.81387
– reference: BecherTBellGAnalytic Regularization in Soft-Collinear Effective TheoryPhys. Lett.2012B 713412012PhLB..713...41B[arXiv:1112.3907]; [INSPIRE]
– reference: X.-d. Ji, J.-P. Ma and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell-Yan processes at low transverse momentum, Phys. Lett.B 597 (2004) 299 [hep-ph/0405085] [INSPIRE].
– reference: ChiuJ-YJainANeillDRothsteinIZA Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field TheoryJHEP2012050842012JHEP...05..084C30429571348.81437[arXiv:1202.0814]; [INSPIRE]
– reference: EbertMAMoultIStewartIWTackmannFJVitaGZhuHXSubleading power rapidity divergences and power corrections for qTJHEP2019041232019JHEP...04..123E[arXiv:1812.08189]; [INSPIRE]
– reference: M. Beneke, Lectures on soft-collinear effective theory, in proceedings of the Helmholtz International Summer School on Heavy Quark Physics, Moscow, Dubna, Russia, 6–16 June 2005.
– reference: CurciGFurmanskiWPetronzioREvolution of Parton Densities Beyond Leading Order: The Nonsinglet CaseNucl. Phys.1980B 175271980NuPhB.175...27C[INSPIRE]
– reference: T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP06 (2009) 081 [Erratum JHEP11 (2013) 024] [arXiv:0903.1126] [INSPIRE].
– reference: ParisiGPetronzioRSmall Transverse Momentum Distributions in Hard ProcessesNucl. Phys.1979B 1544271979NuPhB.154..427P[INSPIRE]
– reference: E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
– reference: S. Catani and M. Grazzini, Higgs Boson Production at Hadron Colliders: Hard-Collinear Coefficients at the NNLO, Eur. Phys. J.C 72 (2012) 2013 [Erratum ibid.C 72 (2012) 2132] [arXiv:1106.4652] [INSPIRE].
– reference: D. de Florian and M. Grazzini, The Back-to-back region in e+e−energy-energy correlation, Nucl. Phys.B 704 (2005) 387 [hep-ph/0407241] [INSPIRE].
– reference: CaswellWEAsymptotic Behavior of Nonabelian Gauge Theories to Two Loop OrderPhys. Rev. Lett.1974332441974PhRvL..33..244C[INSPIRE]
– reference: LiYZhuHXBootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum ResummationPhys. Rev. Lett.20171180220042017PhRvL.118b2004L[arXiv:1604.01404]; [INSPIRE]
– reference: D. Maˆıtre, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [INSPIRE].
– reference: DixonLJLuoM-XShtabovenkoVYangT-ZZhuHXAnalytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCDPhys. Rev. Lett.20181201020012018PhRvL.120j2001D[arXiv:1801.03219]; [INSPIRE]
– reference: T. Lübbert, J. Oredsson and M. Stahlhofen, Rapidity renormalized TMD soft and beam functions at two loops, JHEP03 (2016) 168 [arXiv:1602.01829] [INSPIRE].
– reference: G.P. Korchemsky, Energy correlations in the end-point region, arXiv:1905.01444 [INSPIRE].
– reference: M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, arXiv:1905.01311 [INSPIRE].
– reference: LiHTLiCSShaoDYYangLLZhuHXTop quark pair production at small transverse momentum in hadronic collisionsPhys. Rev.2013D 880740042013PhRvD..88g4004L[arXiv:1307.2464]; [INSPIRE]
– reference: SmirnovAVFIRE5: a C++ implementation of Feynman Integral REductionComput. Phys. Commun.20151891822015CoPhC.189..182S1344.81030[arXiv:1408.2372]; [INSPIRE]
– reference: BertoneVScimemiIVladimirovAExtraction of unpolarized quark transverse momentum dependent parton distributions from Drell-Yan/Z-boson productionJHEP2019060282019JHEP...06..028B3982532[arXiv:1902.08474]; [INSPIRE]
– reference: W. Bizon et al., The transverse momentum spectrum of weak gauge bosons at N3LL + NNLO, arXiv:1905.05171 [INSPIRE].
– reference: MochSven-OlafVermaserenJozef Antoon MVogtAndreasThe quark form factor at higher ordersJournal of High Energy Physics20052005080490492005JHEP...05..049M
– reference: EbertMAStewartIWZhaoYDetermining the Nonperturbative Collins-Soper Kernel From Lattice QCDPhys. Rev.2019D 990345052019PhRvD..99c4505E3982904[arXiv:1811.00026]; [INSPIRE]
– reference: CataniSGrazziniMTorreATransverse-momentum resummation for heavy-quark hadroproductionNucl. Phys.2014B 8905182015NuPhB.890..518C32924181326.81268[arXiv:1408.4564]; [INSPIRE]
– reference: LiYvon ManteuffelASchabingerRMZhuHXSoft-virtual corrections to Higgs production at N3LOPhys. Rev.2015D 910360082015PhRvD..91c6008L[arXiv:1412.2771]; [INSPIRE]
– reference: FurmanskiWPetronzioRSinglet Parton Densities Beyond Leading OrderPhys. Lett.1980B 974371980PhLB...97..437F[INSPIRE]
– reference: NeillDRothsteinIZVaidyaVThe Higgs Transverse Momentum Distribution at NNLL and its Theoretical ErrorsJHEP2015120972015JHEP...12..097N[arXiv:1503.00005]; [INSPIRE]
– reference: BecherTNeubertMWilhelmDElectroweak Gauge-Boson Production at Small qT: Infrared Safety from the Collinear AnomalyJHEP2012021242012JHEP...02..124B1309.81260[arXiv:1109.6027]; [INSPIRE]
– reference: C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev.D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
– reference: KorchemskyGPRadyushkinAVRenormalization of the Wilson Loops Beyond the Leading OrderNucl. Phys.1987B 2833421987NuPhB.283..342K[INSPIRE]
– reference: G.A. Ladinsky and C.P. Yuan, The Nonperturbative regime in QCD resummation for gauge boson production at hadron colliders, Phys. Rev.D 50 (1994) R4239 [hep-ph/9311341] [INSPIRE].
– reference: J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys.B 193 (1981) 381 [Erratum ibid.B 213 (1983) 545] [INSPIRE].
– reference: Gutierrez-ReyesDMakrisYVaidyaVScimemiIZoppiLProbing Transverse-Momentum Distributions With Groomed JetsJHEP2019081612019JHEP...08..161G[arXiv:1907.05896]; [INSPIRE]
– reference: M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to-next-to-leading order, Phys. Rev.D 93 (2016) 011502 [Erratum ibid.D 94 (2016) 099904] [arXiv:1509.06392] [INSPIRE].
– reference: CollinsJCSoperDEStermanGFTransverse Momentum Distribution in Drell-Yan Pair and W and Z Boson ProductionNucl. Phys.1985B 2501991985NuPhB.250..199C[INSPIRE]
– reference: LiuXRingerFVogelsangWYuanFLepton-jet Correlations in Deep Inelastic Scattering at the Electron-Ion ColliderPhys. Rev. Lett.20191221920032019PhRvL.122s2003L[arXiv:1812.08077]; [INSPIRE]
– reference: CollinsJCSoperDEBack-To-Back Jets: Fourier Transform from B to K-TransverseNucl. Phys.1982B 1974461982NuPhB.197..446C[INSPIRE]
– reference: J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
– reference: CollinsJCSoperDEParton Distribution and Decay FunctionsNucl. Phys.1982B 1944451982NuPhB.194..445C[INSPIRE]
– reference: C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → Xs γ in effective field theory, Phys. Rev.D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
– reference: BenekeM.ChapovskyA.P.DiehlM.FeldmannTh.Soft-collinear effective theory and heavy-to-light currents beyond leading powerNuclear Physics B20026431-34314762002NuPhB.643..431B0998.81538
– reference: EchevarriaMGScimemiIVladimirovAUniversal transverse momentum dependent soft function at NNLOPhys. Rev.2016D 930540042016PhRvD..93e4004E[arXiv:1511.05590]; [INSPIRE]
– reference: GehrmannTLuebbertTYangLLCalculation of the transverse parton distribution functions at next-to-next-to-leading orderJHEP2014061552014JHEP...06..155G[arXiv:1403.6451]; [INSPIRE]
– reference: Y. Li, D. Neill and H.X. Zhu, An Exponential Regulator for Rapidity Divergences, submitted to Phys. Rev. D (2016), arXiv:1604.00392 [INSPIRE].
– reference: GehrmannTLubbertTYangLLTransverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark casePhys. Rev. Lett.20121092420032012PhRvL.109x2003G[arXiv:1209.0682]; [INSPIRE]
– reference: ChetyrkinKGTkachovFVIntegration by Parts: The Algorithm to Calculate β-functions in 4 LoopsNucl. Phys.1981B 1921591981NuPhB.192..159C[INSPIRE]
– reference: S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
– reference: E. Egorian and O.V. Tarasov, Two Loop Renormalization of the QCD in an Arbitrary Gauge, Teor. Mat. Fiz.41 (1979) 26 [Theor. Math. Phys.41 (1979) 863] [INSPIRE].
– reference: BizonWMonniPFReERottoliLTorrielliPMomentum-space resummation for transverse observables and the Higgs p⊥at N3LL + NNLOJHEP2018021082018JHEP...02..108B[arXiv:1705.09127]; [INSPIRE]
– reference: BernZviDixonLanceKosowerDavid A.Dimensionally-regulated pentagon integralsNuclear Physics B199441237518161994NuPhB.412..751B12580001007.81512
– reference: DokshitzerYLDiakonovDTroianSIOn the Transverse Momentum Distribution of Massive Lepton PairsPhys. Lett.1978B 792691978PhLB...79..269D[INSPIRE]
– reference: BozziGCataniSFerreraGde FlorianDGrazziniMProduction of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracyPhys. Lett.2011B 6962072011PhLB..696..207B[arXiv:1007.2351]; [INSPIRE]
– reference: M.A. Ebert, I.W. Stewart and Y. Zhao, Towards Quasi-Transverse Momentum Dependent PDFs Computable on the Lattice, arXiv:1901.03685 [INSPIRE].
– reference: A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4 supersymmetric gauge theory, Nucl. Phys.B 661 (2003) 19 [Erratum ibid.B 685 (2004) 405] [hep-ph/0208220] [INSPIRE].
– reference: CollinsJFoundations of perturbative QCDCamb. Monogr. Part. Phys. Nucl. Phys. Cosmol.20113212807608[INSPIRE]
– reference: MoultIZhuHXSimplicity from Recoil: The Three-Loop Soft Function and Factorization for the Energy-Energy CorrelationJHEP2018081602018JHEP...08..160M[arXiv:1801.02627]; [INSPIRE]
– reference: GaoALiHTMoultIZhuHXPrecision QCD Event Shapes at Hadron Colliders: The Transverse Energy-Energy Correlator in the Back-to-Back LimitPhys. Rev. Lett.20191230620012019PhRvL.123f2001G[arXiv:1901.04497]; [INSPIRE]
– reference: ZhuHXLiCSLiHTShaoDYYangLLTransverse-momentum resummation for top-quark pairs at hadron collidersPhys. Rev. Lett.20131100820012013PhRvL.110h2001Z[arXiv:1208.5774]; [INSPIRE]
– reference: CataniSDevotoSGrazziniMKallweitSMazzitelliJTop-quark pair production at the LHC: Fully differential QCD predictions at NNLOJHEP2019071002019JHEP...07..100C[arXiv:1906.06535]; [INSPIRE]
– reference: M.G. Echevarria, T. Kasemets, P.J. Mulders and C. Pisano, QCD evolution of (un)polarized gluon TMDPDFs and the Higgs qT-distribution, JHEP07 (2015) 158 [Erratum JHEP05 (2017) 073] [arXiv:1502.05354] [INSPIRE].
– reference: CataniSGrazziniMSargsyanHTransverse-momentum resummation for top-quark pair production at the LHCJHEP2018110612018JHEP...11..061C[arXiv:1806.01601]; [INSPIRE]
– reference: CataniSDevotoSGrazziniMKallweitSMazzitelliJSargsyanHTop-quark pair hadroproduction at next-to-next-to-leading order in QCDPhys. Rev.2019D 990515012019PhRvD..99e1501C[arXiv:1901.04005]; [INSPIRE]
– reference: T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
– reference: ZhuHXOn the calculation of soft phase space integralJHEP2015021552015JHEP...02..155Z[arXiv:1501.00236]; [INSPIRE]
– reference: ArnoldPBKauffmanRPW and Z production at next-to-leading order: From large qTto smallNucl. Phys.1991B 3493811991NuPhB.349..381A[INSPIRE]
– reference: T. Becher and M. Neubert, Drell-Yan Production at Small qT, Transverse Parton Distributions and the Collinear Anomaly, Eur. Phys. J.C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].
– reference: J.M. Henn, E. Sokatchev, K. Yan and A. Zhiboedov, Energy-energy correlations at next-to-next-to-leading order, arXiv:1903.05314 [INSPIRE].
– reference: EchevarriaMGScimemiIVladimirovAUnpolarized Transverse Momentum Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading orderJHEP2016090042016JHEP...09..004E35579071390.81168[arXiv:1604.07869]; [INSPIRE]
– reference: GrossDJWilczekFUltraviolet Behavior of Nonabelian Gauge TheoriesPhys. Rev. Lett.19733013431973PhRvL..30.1343G[INSPIRE]
– reference: NeillDScimemiIWaalewijnWJJet axes and universal transverse-momentum-dependent fragmentationJHEP2017040202017JHEP...04..020N3657748[arXiv:1612.04817]; [INSPIRE]
– reference: Angeles-MartinezRTransverse Momentum Dependent (TMD) parton distribution functions: status and prospectsActa Phys. Polon.2015B 4625012015AcPPB..46.2501A[arXiv:1507.05267]; [INSPIRE]
– reference: MeyerCTransforming differential equations of multi-loop Feynman integrals into canonical formJHEP2017040062017JHEP...04..006M3657762[arXiv:1611.01087]; [INSPIRE]
– reference: VladimirovAACorrespondence between Soft and Rapidity Anomalous DimensionsPhys. Rev. Lett.20171180620012017PhRvL.118f2001V[arXiv:1610.05791]; [INSPIRE]
– reference: C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys.B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].
– reference: KangZ-BProkudinASunPYuanFExtraction of Quark Transversity Distribution and Collins Fragmentation Functions with QCD EvolutionPhys. Rev.2016D 930140092016PhRvD..93a4009K[arXiv:1505.05589]; [INSPIRE]
– reference: Y. Gao, C.S. Li and J.J. Liu, Transverse momentum resummation for Higgs production in soft-collinear effective theory, Phys. Rev.D 72 (2005) 114020 [hep-ph/0501229] [INSPIRE].
– reference: PolitzerHDReliable Perturbative Results for Strong Interactions?Phys. Rev. Lett.19733013461973PhRvL..30.1346P[INSPIRE]
– reference: HennJMMultiloop integrals in dimensional regularization made simplePhys. Rev. Lett.20131102516012013PhRvL.110y1601H[arXiv:1304.1806]; [INSPIRE]
– reference: LustermansGWaalewijnWJZeuneLJoint transverse momentum and threshold resummation beyond NLLPhys. Lett.2016B 7624472016PhLB..762..447L1390.81643[arXiv:1605.02740]; [INSPIRE]
– reference: SunPIsaacsonJYuanCPYuanFNonperturbative functions for SIDIS and Drell-Yan processesInt. J. Mod. Phys.2018A 3318410062018IJMPA..3341006S[arXiv:1406.3073]; [INSPIRE]
– reference: R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
– reference: NogueiraPAutomatic Feynman graph generationJ. Comput. Phys.19931052791993JCoPh.105..279N12104080782.68091[INSPIRE]
– reference: KorchemskayaIAKorchemskyGPOn lightlike Wilson loopsPhys. Lett.1992B 2871691992PhLB..287..169K[INSPIRE]
– reference: E.L. Berger and J.-w. Qiu, Differential cross-section for Higgs boson production including all orders soft gluon resummation, Phys. Rev.D 67 (2003) 034026 [hep-ph/0210135] [INSPIRE].
– reference: Gutierrez-ReyesDScimemiIWaalewijnWJZoppiLTransverse momentum dependent distributions with jetsPhys. Rev. Lett.20181211620012018PhRvL.121p2001G[arXiv:1807.07573]; [INSPIRE]
– reference: PanzerEAlgorithms for the symbolic integration of hyperlogarithms with applications to Feynman integralsComput. Phys. Commun.20151881482015CoPhC.188..148P1344.81024[arXiv:1403.3385]; [INSPIRE]
– reference: RitzmannMWaalewijnWJFragmentation in Jets at NNLOPhys. Rev.2014D 900540292014PhRvD..90e4029R[arXiv:1407.3272]; [INSPIRE]
– reference: C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev.D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
– reference: C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev.D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
– reference: AltarelliGParisiGAsymptotic Freedom in Parton LanguageNucl. Phys.1977B 1262981977NuPhB.126..298A[INSPIRE]
– reference: W. Bizoń et al., Fiducial distributions in Higgs and Drell-Yan production at N3LL + NNLO, JHEP12 (2018) 132 [arXiv:1805.05916] [INSPIRE].
– reference: Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Nonperturbative effects in the energy energy correlation, JHEP07 (1999) 012 [hep-ph/9905339] [INSPIRE].
– reference: ChenXPrecise QCD Description of the Higgs Boson Transverse Momentum SpectrumPhys. Lett.2019B 7884252019PhLB..788..425C[arXiv:1805.00736]; [INSPIRE]
– reference: ChiuJ-yFuhrerAHoangAHKelleyRManoharAVSoft-Collinear Factorization and Zero-Bin SubtractionsPhys. Rev.2009D 790530072009PhRvD..79e3007C[arXiv:0901.1332]; [INSPIRE]
– reference: DixonLJMoultIZhuHXCollinear limit of the energy-energy correlatorPhys. Rev.2019D 1000140092019PhRvD.100a4009D4014087[arXiv:1905.01310]; [INSPIRE]
– reference: T. Gehrmann, T. Huber and D. Maˆıtre, Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett.B 622 (2005) 295 [hep-ph/0507061] [INSPIRE].
– reference: MeyerCAlgorithmic transformation of multi-loop master integrals to a canonical basis with CANONICAComput. Phys. Commun.20182222952018CoPhC.222..295M[arXiv:1705.06252]; [INSPIRE]
– reference: D. Gutierrez-Reyes, I. Scimemi, W.J. Waalewijn and L. Zoppi, Transverse momentum dependent distributions in e+e−and semi-inclusive deep-inelastic scattering using jets, arXiv:1904.04259 [INSPIRE].
– reference: JonesDRTTwo Loop Diagrams in Yang-Mills TheoryNucl. Phys.1974B 755311974NuPhB..75..531J[INSPIRE]
– ident: 11396_CR44
  doi: 10.1140/epjc/s10052-011-1665-7
– volume: 122
  start-page: 192003
  year: 2019
  ident: 11396_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.192003
– volume: D 93
  start-page: 014009
  year: 2016
  ident: 11396_CR15
  publication-title: Phys. Rev.
– volume: 118
  start-page: 062001
  year: 2017
  ident: 11396_CR63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.062001
– volume: D 90
  start-page: 054029
  year: 2014
  ident: 11396_CR102
  publication-title: Phys. Rev.
– ident: 11396_CR37
  doi: 10.1140/epjc/s10052-012-2132-9
– volume: B 79
  start-page: 269
  year: 1978
  ident: 11396_CR3
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(78)90240-X
– volume: B 283
  start-page: 342
  year: 1987
  ident: 11396_CR88
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(87)90277-X
– ident: 11396_CR57
  doi: 10.1103/PhysRevD.63.114020
– volume: 189
  start-page: 182
  year: 2015
  ident: 11396_CR73
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.11.024
– volume: B 890
  start-page: 518
  year: 2014
  ident: 11396_CR33
  publication-title: Nucl. Phys.
– ident: 11396_CR90
  doi: 10.1016/j.physletb.2005.07.019
– ident: 11396_CR30
  doi: 10.1007/JHEP12(2018)132
– volume: 109
  start-page: 242003
  year: 2012
  ident: 11396_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.242003
– volume: 11
  start-page: 061
  year: 2018
  ident: 11396_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)061
– ident: 11396_CR17
  doi: 10.1016/0550-3213(81)90339-4
– volume: 32
  start-page: 1
  year: 2011
  ident: 11396_CR1
  publication-title: Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.
– volume: B 713
  start-page: 41
  year: 2012
  ident: 11396_CR45
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2012.05.016
– volume: 2005
  start-page: 049
  issue: 08
  year: 2005
  ident: 11396_CR91
  publication-title: Journal of High Energy Physics
  doi: 10.1088/1126-6708/2005/08/049
– volume: D 100
  start-page: 014009
  year: 2019
  ident: 11396_CR83
  publication-title: Phys. Rev.
– volume: B 175
  start-page: 27
  year: 1980
  ident: 11396_CR101
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(80)90003-6
– volume: 30
  start-page: 1346
  year: 1973
  ident: 11396_CR95
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.30.1346
– volume: 04
  start-page: 020
  year: 2017
  ident: 11396_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)020
– volume: 120
  start-page: 102001
  year: 2018
  ident: 11396_CR82
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.102001
– volume: B 194
  start-page: 445
  year: 1982
  ident: 11396_CR61
  publication-title: Nucl. Phys.
– volume: B 126
  start-page: 298
  year: 1977
  ident: 11396_CR99
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(77)90384-4
– volume: 118
  start-page: 022004
  year: 2017
  ident: 11396_CR50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.022004
– volume: B 762
  start-page: 447
  year: 2016
  ident: 11396_CR68
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2016.09.060
– volume: B 154
  start-page: 427
  year: 1979
  ident: 11396_CR4
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(79)90040-3
– volume: 110
  start-page: 082001
  year: 2013
  ident: 11396_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.082001
– ident: 11396_CR67
  doi: 10.1103/PhysRevD.93.011502
– ident: 11396_CR78
  doi: 10.1142/S0217751X00000367
– ident: 11396_CR74
– volume: B 75
  start-page: 531
  year: 1974
  ident: 11396_CR97
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(74)90093-5
– volume: D 88
  start-page: 074004
  year: 2013
  ident: 11396_CR32
  publication-title: Phys. Rev.
– volume: 04
  start-page: 006
  year: 2017
  ident: 11396_CR76
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)006
– volume: B 349
  start-page: 381
  year: 1991
  ident: 11396_CR6
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(91)90330-Z
– ident: 11396_CR62
– volume: 188
  start-page: 148
  year: 2015
  ident: 11396_CR77
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.10.019
– ident: 11396_CR85
– volume: 08
  start-page: 161
  year: 2019
  ident: 11396_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)161
– ident: 11396_CR43
– ident: 11396_CR25
  doi: 10.1103/PhysRevD.72.114020
– ident: 11396_CR98
– volume: 105
  start-page: 279
  year: 1993
  ident: 11396_CR69
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1993.1074
– volume: B 97
  start-page: 437
  year: 1980
  ident: 11396_CR100
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(80)90636-X
– volume: 06
  start-page: 155
  year: 2014
  ident: 11396_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP06(2014)155
– ident: 11396_CR7
  doi: 10.1103/PhysRevD.50.R4239
– volume: 02
  start-page: 108
  year: 2018
  ident: 11396_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP02(2018)108
– ident: 11396_CR65
– volume: B 46
  start-page: 2501
  year: 2015
  ident: 11396_CR2
  publication-title: Acta Phys. Polon.
  doi: 10.5506/APhysPolB.46.2501
– volume: 08
  start-page: 160
  year: 2018
  ident: 11396_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)160
– ident: 11396_CR54
  doi: 10.1016/S0550-3213(00)00223-6
– volume: 30
  start-page: 1343
  year: 1973
  ident: 11396_CR94
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.30.1343
– volume: B 788
  start-page: 425
  year: 2019
  ident: 11396_CR29
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2018.11.037
– volume: 02
  start-page: 155
  year: 2015
  ident: 11396_CR71
  publication-title: JHEP
  doi: 10.1007/JHEP02(2015)155
– ident: 11396_CR87
– ident: 11396_CR66
  doi: 10.1007/JHEP03(2016)168
– ident: 11396_CR21
– volume: D 99
  start-page: 051501
  year: 2019
  ident: 11396_CR41
  publication-title: Phys. Rev.
– ident: 11396_CR23
  doi: 10.1103/PhysRevD.67.034026
– volume: B 192
  start-page: 159
  year: 1981
  ident: 11396_CR51
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(81)90199-1
– ident: 11396_CR26
  doi: 10.1007/JHEP07(2015)158
– volume: 33
  start-page: 244
  year: 1974
  ident: 11396_CR96
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.33.244
– ident: 11396_CR84
– volume: B 696
  start-page: 207
  year: 2011
  ident: 11396_CR8
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2010.12.024
– volume: 123
  start-page: 062001
  year: 2019
  ident: 11396_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.062001
– volume: 12
  start-page: 097
  year: 2015
  ident: 11396_CR27
  publication-title: JHEP
– volume: D 93
  start-page: 054004
  year: 2016
  ident: 11396_CR48
  publication-title: Phys. Rev.
– ident: 11396_CR56
  doi: 10.1103/PhysRevD.63.014006
– ident: 11396_CR70
– volume: 06
  start-page: 028
  year: 2019
  ident: 11396_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP06(2019)028
– ident: 11396_CR12
  doi: 10.1103/PhysRevD.71.034005
– ident: 11396_CR10
– volume: 643
  start-page: 431
  issue: 1-3
  year: 2002
  ident: 11396_CR60
  publication-title: Nuclear Physics B
  doi: 10.1016/S0550-3213(02)00687-9
– ident: 11396_CR92
  doi: 10.1088/1126-6708/2009/06/081
– volume: A 33
  start-page: 1841006
  year: 2018
  ident: 11396_CR14
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0217751X18410063
– volume: 121
  start-page: 162001
  year: 2018
  ident: 11396_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.162001
– volume: 04
  start-page: 123
  year: 2019
  ident: 11396_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)123
– volume: D 79
  start-page: 053007
  year: 2009
  ident: 11396_CR47
  publication-title: Phys. Rev.
– volume: 412
  start-page: 751
  issue: 3
  year: 1994
  ident: 11396_CR53
  publication-title: Nuclear Physics B
  doi: 10.1016/0550-3213(94)90398-0
– ident: 11396_CR81
  doi: 10.1016/j.nuclphysb.2004.10.051
– volume: D 91
  start-page: 036008
  year: 2015
  ident: 11396_CR93
  publication-title: Phys. Rev.
– ident: 11396_CR59
  doi: 10.1103/PhysRevD.66.014017
– ident: 11396_CR13
  doi: 10.1016/j.physletb.2004.07.026
– volume: 05
  start-page: 084
  year: 2012
  ident: 11396_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP05(2012)084
– ident: 11396_CR52
  doi: 10.1142/S0217751X00002159
– volume: B 197
  start-page: 446
  year: 1982
  ident: 11396_CR18
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(82)90453-9
– ident: 11396_CR79
  doi: 10.1016/j.cpc.2005.10.008
– volume: D 99
  start-page: 034505
  year: 2019
  ident: 11396_CR64
  publication-title: Phys. Rev.
– volume: 02
  start-page: 124
  year: 2012
  ident: 11396_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP02(2012)124
– volume: 09
  start-page: 004
  year: 2016
  ident: 11396_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP09(2016)004
– ident: 11396_CR72
  doi: 10.1016/S0550-3213(02)00837-4
– volume: 07
  start-page: 100
  year: 2019
  ident: 11396_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP07(2019)100
– volume: 222
  start-page: 295
  year: 2018
  ident: 11396_CR75
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2017.09.014
– volume: B 287
  start-page: 169
  year: 1992
  ident: 11396_CR89
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(92)91895-G
– volume: 737
  start-page: 73
  issue: 1-2
  year: 2006
  ident: 11396_CR24
  publication-title: Nuclear Physics B
  doi: 10.1016/j.nuclphysb.2005.12.022
– volume: B 250
  start-page: 199
  year: 1985
  ident: 11396_CR5
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(85)90479-1
– volume: 110
  start-page: 251601
  year: 2013
  ident: 11396_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.251601
– ident: 11396_CR80
  doi: 10.1088/1126-6708/1999/07/012
– ident: 11396_CR86
  doi: 10.1016/S0550-3213(03)00264-5
– ident: 11396_CR58
  doi: 10.1103/PhysRevD.65.054022
SSID ssj0015190
Score 2.5921416
Snippet A bstract We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the...
We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the...
Abstract We revisit the calculation of perturbative quark transverse momentum de- pendent parton distribution functions and fragmentation functions using the...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classical and Quantum Gravitation
Distribution functions
Effective Field Theories
Elementary Particles
Fragmentation
High energy physics
Mathematical analysis
Partons
Perturbative QCD
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Regular Article - Theoretical Physics
Regularization
Regulators
Relativity Theory
String Theory
Transverse momentum
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iCF7EnzidkoOH7VCXNmmTeVPZGEOniIPdSpofHtRubvX_96VNpxOGF69t2j5eXvN9Ie99D6GLDLb-KpIkyKQ2AZNxFgirZCCVE650eu3CFSffj5LBmA0n8eRHqy-XE1bJA1eO6yQG1lNjE8WEYVRwYaMuwBIQQ5Zpo5VbfQHz6s2UPz8AXkJqIR_CO8NB7zEkLQC7bpsIuoJBpVT_Cr_8dSRaIk1_F-14ioivK9P20IbJ99FWmaqpFgfoqYQXl01h8Azsn-ZYO_Vb37gKy1xjO5cv776qKMcOu8rwwrLAo9HdwxUG2oc_IDpesQIYO0Tjfu_5dhD4zgiBYiEvAuHqZ132VZcJQqXS1sZChQnRVlPGY51YDfsQozkgPgdmGuqEKp5ppVUMFIgeoc18mptjhAU1kYgF0C7GmTI0I1ZLWHmYBmpFVNJAl7WvUuVlw133ire0FjyunJs656bg3AZqLR-YVYoZ64feOOcvhzmp6_ICBEDqAyD9KwAaqFlPXer_v0Xq0tuBjEYxfKNdT-f37TX2nPyHPado272vSvhros1i_mnOgLgU2XkZo1_70egw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT-MwELX4EBIXtLuAKLDIhz3AIeDWTuJyWS2oqEJQEAKJW-TM2D0AaWnL_2cmdYpAYq-JE0Xj8bw38fiNEH9KSv2h41RSOvSJcWmZ2AAuccDClazXbvlw8vUg6z-Yy8f0Mf5wm8ayyiYm1oEaR8D_yE-4YJnoRSfVf8evCXeN4t3V2EJjWaxSCLaUfK2e9Qa3d4t9BOInqhH0UfnJZb9321aHBHrdI2X1JyyqJfs_8cwvW6M14lz8EBuRKsp_87n9KZZ89Uus1SWbMN0UdzXMcFWFl2NygFElkVVwYwMr6SqUYeKGL_F0USUZw2o3k24mB4Orm1NJ9E--kpc8SSA42xIPF737834SOyQkYNr5LLF8jparsLrGKu0AQ0gttDOFAbXJU8wCUj7iMSfkz4mhtjHTkJcICClRIb0tVqpR5XeEtNp3bGqJfpncgNelCugoAhkkiqUga4njxlYFRPlw7mLxXDTCx3PjFmzcgozbEoeLB8Zz5Yzvh56x8RfDWPK6vjCaDIu4gorME7D6kIGx3mib29DpEj-hDMGU6BFaYr-ZuiKuw2nx4TUtcdRM58ftb75n9_-v2hPrPHJe0rcvVmaTN_-bqMmsPIj-9w7lwOEN
  priority: 102
  providerName: ProQuest
Title Transverse parton distribution and fragmentation functions at NNLO: the quark case
URI https://link.springer.com/article/10.1007/JHEP10(2019)083
https://www.proquest.com/docview/2307054253
https://doaj.org/article/6e067ef6c48e43878f292188824bdedc
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6sRfAiPrE-yh482EMkj02y9aaltRStpVjoLWz20YOaaq3_35ltoqh48BJCskvC7Ox-37Az3wKc5Rj6q1D6Xi618biMc09YJT2pSLiS9NoFFSffDZP-hA-m8XQNgqoWxmW7V1uSbqWuit0G_e4o8M8RsNot5A01qMcYuJNTd6jAodw4QELiVwo-vzt9Ax-n0f-NWP7YC3UQ09uGrZIbsqvVYO7Amil2YcPlaKq3PRg7XKE0CsNecMTnBdMke1ueWMVkoZldyNlzWU5UMAIt51dMLtlweHt_yZDvsVd0i0emEL_2YdLrPnT6Xnkkgqd4kC49QYWzlHbV5sKPpNLWxkIFia-tjnga68RqDECMThHqU6SkgU4ileZaaRUj94kOYL2YF-YQmIhMKGKBfIunXJko962WuORwjZzKV0kDLipbZarUC6djK56ySul4ZdyMjJuhcRtw_tnhZSWV8XfTazL-ZzPSuHYP5otZVk6ZLDGIpMYmigvDI5EKG7aRkGBIwHNttGrASTV0WTnx3jLKa0cWGsb4jVY1nF-v__ifo3-0PYZNul0l9J3A-nLxbk6RmCzzJtRE76YJ9evucDRuOseka9JpulAfr5Pw6gMYVeBn
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXxFMECvgAUntY6qy9uw4SQjwa0jYNCLVSb653bPcAbNIkCPGn-I3M7CNVkcqt113bWo0_-_u8ngfAi5KO_pg6mZTOh0S7rExMRJc45MSVnK_dcHDywSQfHem94-x4Df50sTDsVtntifVG7afI_8i32WGZ5EWaqbezs4SrRvHtaldCo4HFfvj9i45size7H2l-X6bpcOfwwyhpqwokqPvFMjEce8qeSwNtpHLoY8wM9nPpo1e6yHwePWn44Atiy4JUXd_nCovSo8eM5IOica_Bda3UgFeUGX5a3VqQGpJd-iBZbO-Ndr705SZR7GBLGnWB-eoCARdU7T8XsTW_De_A7VaYincNku7CWqjuwY3aQRQX9-FrTWrswxHEjOA2rYTnnLttuSzhKi_i3J3-aGOZKsGMWYNauKWYTMafXwsSm-KMMPlNIJHnAzi6Ess9hPVqWoVHIIwKqckMiT1daAyqlNE72u-0J0EnMe_Bq85WFttk5Vwz47vt0iw3xrVsXEvG7cHmqsOsydNxedP3bPxVM06wXT-Yzk9tu15tHojGQ8xRm6CVKUxMB6SG6DyiSx889mCjmzrbrvqFPcdoD7a66Tx_fcn3PP7_UM_h5ujwYGzHu5P9J3CLezXOhBuwvpz_DE9JFC3LZzUSBZxcNfT_AuFJHI4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-xUMAHkNpDWG_sxF4khCjd1fZBWFVU6s11_OgByG53t6r4a_11HSfOVkUqt16T2IrGX2Y-xzPfALwvcetvUk2TUluXcJ2VifRGJ9oE4cqg1y5DcfL3Ih8f8b3j7HgNLttamJBW2frE2lHbqQn_yHshYRnpRZqxno9pEZOd0ZfZWRI6SIWT1radRgORfff3Ardvi8-7O7jWH9J0NPz5bZzEDgOJ4X2xTGSoQw1ZTAMuKdPGep9J08-p9ZZxkdncW-TzzgqMnAIZXt_mzIjSGmsypBIM570H6wJ3RbQD69vDYnK4OsNAbkRbMSEqenvj4aRPNzHgDraoZDfiYN0u4AbH_edYto52o8fwKNJU8rXB1RNYc9VTuF-ni5rFMzisQ1zI6HBkhuCbVsQGBd7YPIvoyhI_16d_YmVTRUL8rCFO9JIUxcGPTwSpJzlDhP4iBkPpczi6E9u9gE41rdxLIJK5VGYSqR8X3DhWUm81ej9ukd5Rk3fhY2srZaJ0eeig8Vu1osuNcVUwrkLjdmFzNWDWqHbc_uh2MP7qsSC3XV-Yzk9V_HpV7jCoO58bLh1nUkifDpAb4e6El9ZZ04WNdulU9AELdY3YLmy1y3l9-5b3efX_qd7BA4S9Otgt9l_DwzCoySzcgM5yfu7eIENalm8jFAmc3DX6rwDuzyIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transverse+parton+distribution+and+fragmentation+functions+at+NNLO%3A+the+quark+case&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Luo%2C+Ming-Xing&rft.au=Wang%2C+Xing&rft.au=Xu%2C+Xiaofeng&rft.au=Yang%2C+Li+Lin&rft.date=2019-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2019&rft.issue=10&rft_id=info:doi/10.1007%2FJHEP10%282019%29083&rft.externalDocID=10_1007_JHEP10_2019_083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon