Higgs as heavy-lifted physics during inflation

A bstract Signals of heavy particle production during inflation are encoded as nonanalytic momentum scaling in primordial non-Gaussianity. These non-analytic signatures can be sourced by Standard Model particles with a modified Higgs scale uplifted by the slow-roll dynamics of inflation. We show tha...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2019; no. 4; pp. 1 - 31
Main Author Wu, Yi-Peng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract Signals of heavy particle production during inflation are encoded as nonanalytic momentum scaling in primordial non-Gaussianity. These non-analytic signatures can be sourced by Standard Model particles with a modified Higgs scale uplifted by the slow-roll dynamics of inflation. We show that such a lifting mechanism becomes more efficient with the presence of a strong Higgs-inflaton mixing, where the Higgs mass scale is further increased by a small speed of sound in the effective theory of inflation. As a primary step towards detecting new particles in the cosmological collider program, non-Gaussianity due to heavy Higgs production in the strong-mixing regime can act as important background signals to be tested by future cosmological surveys.
AbstractList Abstract Signals of heavy particle production during inflation are encoded as nonanalytic momentum scaling in primordial non-Gaussianity. These non-analytic signatures can be sourced by Standard Model particles with a modified Higgs scale uplifted by the slow-roll dynamics of inflation. We show that such a lifting mechanism becomes more efficient with the presence of a strong Higgs-inflaton mixing, where the Higgs mass scale is further increased by a small speed of sound in the effective theory of inflation. As a primary step towards detecting new particles in the cosmological collider program, non-Gaussianity due to heavy Higgs production in the strong-mixing regime can act as important background signals to be tested by future cosmological surveys.
Signals of heavy particle production during inflation are encoded as nonanalytic momentum scaling in primordial non-Gaussianity. These non-analytic signatures can be sourced by Standard Model particles with a modified Higgs scale uplifted by the slow-roll dynamics of inflation. We show that such a lifting mechanism becomes more efficient with the presence of a strong Higgs-inflaton mixing, where the Higgs mass scale is further increased by a small speed of sound in the effective theory of inflation. As a primary step towards detecting new particles in the cosmological collider program, non-Gaussianity due to heavy Higgs production in the strong-mixing regime can act as important background signals to be tested by future cosmological surveys.
A bstract Signals of heavy particle production during inflation are encoded as nonanalytic momentum scaling in primordial non-Gaussianity. These non-analytic signatures can be sourced by Standard Model particles with a modified Higgs scale uplifted by the slow-roll dynamics of inflation. We show that such a lifting mechanism becomes more efficient with the presence of a strong Higgs-inflaton mixing, where the Higgs mass scale is further increased by a small speed of sound in the effective theory of inflation. As a primary step towards detecting new particles in the cosmological collider program, non-Gaussianity due to heavy Higgs production in the strong-mixing regime can act as important background signals to be tested by future cosmological surveys.
ArticleNumber 125
Author Wu, Yi-Peng
Author_xml – sequence: 1
  givenname: Yi-Peng
  surname: Wu
  fullname: Wu, Yi-Peng
  email: ypwu@resceu.s.u-tokyo.ac.jp
  organization: Research Center for the Early Universe (RESCEU), Graduate School of Science The University of Tokyo
BookMark eNp9kE1LAzEQhoMoWD_OXhe86GHbSbrZJEcp1VYKetBzmE2ybcq6W5Ot0H_v1hUVQU8zTOZ5Mzwn5LBuakfIBYUhBRCj-9n0EbIrBlRdU8YPyIACU6nMhDr80R-TkxjXAJRTBQMynPnlMiYYk5XDt11a-bJ1NtmsdtGbmNht8PUy8XVZYeub-owclVhFd_5ZT8nz7fRpMksXD3fzyc0iNRkVbSoZFDCmYyswz22hWCGlQiMscGHGmRSszArFac6zojCFkoYXFmD_TA0yGJ-SeZ9rG1zrTfAvGHa6Qa8_Bk1YagytN5XTElGUFjlKKjPMuXRSlN1MWZtTyF2XddlnbULzunWx1etmG-rufM0YZQKo5KLbGvVbJjQxBld-_UpB7wXrXrDeC9ad4I7gvwjj2w9LbUBf_cNBz8XNXq4L3_f8hbwDUTuOEg
CitedBy_id crossref_primary_10_1007_JHEP09_2023_116
crossref_primary_10_1007_JHEP12_2023_197
crossref_primary_10_1088_1475_7516_2024_09_026
crossref_primary_10_1088_1475_7516_2022_08_083
crossref_primary_10_1007_JHEP07_2019_067
crossref_primary_10_1103_PhysRevD_108_115023
crossref_primary_10_1007_JHEP02_2022_085
crossref_primary_10_1103_PhysRevLett_129_111301
crossref_primary_10_1007_JHEP07_2021_018
crossref_primary_10_1088_1475_7516_2024_07_010
crossref_primary_10_1007_JHEP03_2025_051
crossref_primary_10_1007_JHEP07_2024_108
crossref_primary_10_1007_JHEP10_2022_192
crossref_primary_10_1007_JHEP02_2025_101
crossref_primary_10_1088_1475_7516_2023_04_002
crossref_primary_10_1088_1475_7516_2023_02_013
crossref_primary_10_1007_JHEP03_2022_181
crossref_primary_10_1088_1475_7516_2024_02_007
crossref_primary_10_1142_S0217751X23500756
crossref_primary_10_1007_JHEP01_2024_168
crossref_primary_10_1007_JHEP12_2021_098
crossref_primary_10_3390_universe8060305
crossref_primary_10_1007_JHEP03_2024_073
crossref_primary_10_1007_JHEP12_2019_088
crossref_primary_10_1007_JHEP02_2020_044
crossref_primary_10_1103_PhysRevD_109_043535
crossref_primary_10_1007_JHEP03_2024_070
crossref_primary_10_1088_1475_7516_2023_05_018
crossref_primary_10_3390_universe11030098
crossref_primary_10_1007_JHEP04_2021_127
crossref_primary_10_1007_JHEP12_2019_107
crossref_primary_10_1007_JHEP09_2024_176
crossref_primary_10_1007_JHEP12_2024_042
crossref_primary_10_1007_JHEP01_2021_021
crossref_primary_10_1007_JHEP07_2020_231
crossref_primary_10_1007_JHEP11_2021_076
Cites_doi 10.1103/PhysRevD.97.123528
10.1103/PhysRevD.81.063511
10.1088/1475-7516/2014/10/005
10.1007/JHEP06(2013)051
10.1155/2010/638979
10.1103/PhysRevD.50.6357
10.1007/JHEP02(2018)172
10.1088/1475-7516/2017/07/046
10.1103/PhysRevD.49.6410
10.1088/1475-7516/2018/05/013
10.1088/1475-7516/2013/11/043
10.1007/JHEP04(2012)128
10.1103/PhysRevD.85.103520
10.1088/1475-7516/2016/02/017
10.1103/PhysRevD.84.043502
10.1088/1475-7516/2012/09/021
10.1007/JHEP05(2018)011
10.1088/1475-7516/2011/09/014
10.1088/1475-7516/2013/04/004
10.1088/1475-7516/2018/01/041
10.1103/PhysRevLett.118.261302
10.1088/1475-7516/2017/11/045
10.1088/1475-7516/2018/06/009
10.1088/1475-7516/2010/04/027
10.1088/0264-9381/28/10/103001
10.1088/1475-7516/2012/10/051
10.1088/1475-7516/2014/01/033
10.1007/JHEP09(2018)022
10.1007/JHEP06(2018)105
10.1088/0253-6102/62/1/19
10.1088/1475-7516/2017/12/006
10.1002/prop.201500025
10.1088/1475-7516/2017/03/050
10.1007/JHEP04(2017)058
10.1088/1126-6708/2008/03/014
10.1007/JHEP04(2012)024
10.1088/1475-7516/2016/01/022
10.1007/JHEP12(2016)040
10.1088/1475-7516/2018/07/068
10.1016/j.physletb.2012.02.013
10.1088/1475-7516/2018/02/023
10.1088/1475-7516/2015/10/032
10.1007/JHEP05(2012)066
10.1007/JHEP08(2012)098
10.1088/1475-7516/2018/05/064
10.1007/JHEP12(2013)089
10.1088/1475-7516/2012/11/060
10.1103/PhysRevD.72.043514
ContentType Journal Article
Copyright The Author(s) 2019
Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2019
– notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP04(2019)125
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA/Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 31
ExternalDocumentID oai_doaj_org_article_8aa7fda5a8184a658e87faa79dd6106e
10_1007_JHEP04_2019_125
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-820b0313d7a66db92b889ac7d057c34872f4b951654bbcb98c5bd00d0571ca203
IEDL.DBID DOA
ISSN 1029-8479
IngestDate Wed Aug 27 01:30:11 EDT 2025
Tue Aug 12 07:14:57 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Tue Jul 01 03:54:26 EDT 2025
Fri Feb 21 02:33:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Effective Field Theories
Cosmology of Theories beyond the SM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-820b0313d7a66db92b889ac7d057c34872f4b951654bbcb98c5bd00d0571ca203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/8aa7fda5a8184a658e87faa79dd6106e
PQID 2212701857
PQPubID 2034718
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_8aa7fda5a8184a658e87faa79dd6106e
proquest_journals_2212701857
crossref_primary_10_1007_JHEP04_2019_125
crossref_citationtrail_10_1007_JHEP04_2019_125
springer_journals_10_1007_JHEP04_2019_125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References KumarSSundrumRHeavy-lifting of gauge theories by cosmic inflationJHEP2018050112018JHEP...05..011K383275210.1007/JHEP05(2018)0111391.85005[arXiv:1711.03988] [INSPIRE]
NoumiTYamaguchiMYokoyamaDEffective field theory approach to quasi-single field inflation and effects of heavy fieldsJHEP2013060512013JHEP...06..051N308335910.1007/JHEP06(2013)0511342.83110[arXiv:1211.1624] [INSPIRE]
ChenXWangYXianyuZ-ZStandard model background of the cosmological colliderPhys. Rev. Lett.20171182613022017PhRvL.118z1302C10.1103/PhysRevLett.118.261302[arXiv:1610.06597] [INSPIRE]
ChenXWangYXianyuZ-ZSchwinger-Keldysh diagrammatics for primordial perturbationsJCAP2017120062017JCAP...12..006C374991210.1088/1475-7516/2017/12/006[arXiv:1703.10166] [INSPIRE]
DegrassiGHiggs mass and vacuum stability in the Standard Model at NNLOJHEP2012080982012JHEP...08..098D10.1007/JHEP08(2012)098[arXiv:1205.6497] [INSPIRE]
AshoorioonAExtended effective field theory of inflationJHEP2018021722018JHEP...02..172A378508010.1007/JHEP02(2018)1721387.83119[arXiv:1802.03040] [INSPIRE]
E.J. Copeland et al., False vacuum inflation with Einstein gravity, Phys. Rev.D 49 (1994) 6410 [astro-ph/9401011] [INSPIRE].
FrancioliniGKehagiasARiottoAImprints of spinning particles on primordial cosmological perturbationsJCAP2018020232018JCAP...02..023F379593910.1088/1475-7516/2018/02/023[arXiv:1712.06626] [INSPIRE]
AchucarroAEffective theories of single field inflation when heavy fields matterJHEP2012050662012JHEP...05..066A10.1007/JHEP05(2012)066[arXiv:1201.6342] [INSPIRE]
S. Kumar and R. Sundrum, Seeing higher-dimensional grand unification in primordial non-gaussianities, arXiv:1811.11200 [INSPIRE].
GongJ-OLeeHMKangSKInflation and dark matter in two Higgs doublet modelsJHEP2012041282012JHEP...04..128G10.1007/JHEP04(2012)128[arXiv:1202.0288] [INSPIRE]
S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev.D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].
X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev.D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].
IyerAVPiSWangYWangZZhouSStrongly coupled quasi-single field inflationJCAP201801041376243310.1088/1475-7516/2018/01/041[arXiv:1710.03054] [INSPIRE]
GwynRPalmaGASakellariadouMSypsasSEffective field theory of weakly coupled inflationary modelsJCAP2013040042013JCAP...04..004G309440910.1088/1475-7516/2013/04/004[arXiv:1210.3020] [INSPIRE]
A.A. Starobinsky, Stochastic de Sitter (inflationary) stage in the early universe, in Current topics in field theory, quantum gravity and strings, in Current topics in field theory, quantum gravity and strings, H.J. de Vega and N. Sanchez eds., Springer Germany (1986).
DimastrogiovanniEFasielloMKamionkowskiMImprints of massive primordial fields on large-scale structureJCAP2016020172016JCAP...02..017D10.1088/1475-7516/2016/02/017[arXiv:1504.05993] [INSPIRE]
WangYWuY-PYokoyamaJZhouSHybrid quasi-single field inflationJCAP2018070682018JCAP...07..068W10.1088/1475-7516/2018/07/068[arXiv:1804.07541] [INSPIRE]
KehagiasARiottoAHigh energy physics signatures from inflation and conformal symmetry of de SitterFortsch. Phys.2015635312015ForPh..63..531K337120010.1002/prop.2015000251338.83216[arXiv:1501.03515] [INSPIRE]
AssassiVBaumannDGreenDMcAllisterLPlanck-suppressed operatorsJCAP2014010332014JCAP...01..033A10.1088/1475-7516/2014/01/033[arXiv:1304.5226] [INSPIRE]
Planck collaboration, Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys.594 (2016) A17 [arXiv:1502.01592] [INSPIRE].
YamaguchiMSupergravity based inflation models: a reviewClass. Quant. Grav.2011281030012011CQGra..28j3001Y280109210.1088/0264-9381/28/10/1030011217.83005[arXiv:1101.2488] [INSPIRE]
G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Shapes of gravity: tensor non-gaussianity and massive spin-2 fields, arXiv:1812.07571 [INSPIRE].
Moradinezhad DizgahALeeHMuñozJBDvorkinCGalaxy bispectrum from massive spinning particlesJCAP2018050132018JCAP...05..013M10.1088/1475-7516/2018/05/013[arXiv:1801.07265] [INSPIRE]
N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
GwynRPalmaGASakellariadouMSypsasSOn degenerate models of cosmic inflationJCAP2014100052014JCAP...10..005G10.1088/1475-7516/2014/10/005[arXiv:1406.1947] [INSPIRE]
D. Baumann and L. McAllister, Inflation and string theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2015) [arXiv:1404.2601] [INSPIRE].
WangYInflation, cosmic perturbations and non-gaussianitiesCommun. Theor. Phys.2014621092014CoTPh..62..109W330834010.1088/0253-6102/62/1/191294.83001[arXiv:1303.1523] [INSPIRE]
CheungCThe effective field theory of inflationJHEP2008030142008JHEP...03..014C239110610.1088/1126-6708/2008/03/014[arXiv:0709.0293] [INSPIRE]
ChenXWangYQuasi-single field inflation and non-GaussianitiesJCAP2010040272010JCAP...04..027C10.1088/1475-7516/2010/04/027[arXiv:0911.3380] [INSPIRE]
ChenXNamjooMHWangYOn the equation-of-motion versus in-in approach in cosmological perturbation theoryJCAP2016010222016JCAP...01..022C10.1088/1475-7516/2016/01/022[arXiv:1505.03955] [INSPIRE]
D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev.D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
EllistonJSeeryDTavakolRThe inflationary bispectrum with curved field-spaceJCAP2012110602012JCAP...11..060E10.1088/1475-7516/2012/11/060[arXiv:1208.6011] [INSPIRE]
KehagiasARiottoAOn the inflationary perturbations of massive higher-spin fieldsJCAP2017070462017JCAP...07..046K368541110.1088/1475-7516/2017/07/046[arXiv:1705.05834] [INSPIRE]
A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev.D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].
H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Non-gaussian enhancements of galactic halo correlations in quasi-single field inflation, Phys. Rev.D 97 (2018) 123528 [arXiv:1711.02667] [INSPIRE].
J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett.B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].
A. Achucarro et al., Mass hierarchies and non-decoupling in multi-scalar field dynamics, Phys. Rev.D 84 (2011) 043502 [arXiv:1005.3848] [INSPIRE].
TongXWangYZhouSOn the effective field theory for quasi-single field inflationJCAP2017110452017JCAP...11..045T10.1088/1475-7516/2017/11/045[arXiv:1708.01709] [INSPIRE]
LeeHBaumannDPimentelGLNon-gaussianity as a particle detectorJHEP2016120402016JHEP...12..040L10.1007/JHEP12(2016)0401390.83465[arXiv:1607.03735] [INSPIRE]
N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The cosmological bootstrap: inflationary correlators from symmetries and singularities, arXiv:1811.00024 [INSPIRE].
MeerburgPDMünchmeyerMMuñozJBChenXProspects for cosmological collider physicsJCAP2017030502017JCAP...03..050M10.1088/1475-7516/2017/03/050[arXiv:1610.06559] [INSPIRE]
AnHMcAnenyMRidgwayAKWiseMBQuasi single field inflation in the non-perturbative regimeJHEP2018061052018JHEP...06..105A383176210.1007/JHEP06(2018)105[arXiv:1706.09971] [INSPIRE]
ChenXWangYXianyuZ-ZStandard model mass spectrum in inflationary universeJHEP2017040582017JHEP...04..058C365771010.1007/JHEP04(2017)0581378.85005[arXiv:1612.08122] [INSPIRE]
SenatoreLZaldarriagaMThe effective field theory of multifield inflationJHEP2012040242012JHEP...04..024S10.1007/JHEP04(2012)024[arXiv:1009.2093] [INSPIRE]
PiSSasakiMCurvature perturbation spectrum in two-field inflation with a turning trajectoryJCAP2012100512012JCAP...10..051P10.1088/1475-7516/2012/10/051[arXiv:1205.0161] [INSPIRE]
SchmidtFChisariNEDvorkinCImprint of inflation on galaxy shape correlationsJCAP2015100322015JCAP...10..032S342100410.1088/1475-7516/2015/10/032[arXiv:1506.02671] [INSPIRE]
ChenXWangYQuasi-single field inflation with large massJCAP2012090212012JCAP...09..021C10.1088/1475-7516/2012/09/021[arXiv:1205.0160] [INSPIRE]
SaitoRKubotaTHeavy particle signatures in cosmological correlation functions with tensor modesJCAP2018060092018JCAP...06..009S383168910.1088/1475-7516/2018/06/009[arXiv:1804.06974] [INSPIRE]
ButtazzoDInvestigating the near-criticality of the Higgs bosonJHEP2013120892013JHEP...12..089B10.1007/JHEP12(2013)089[arXiv:1307.3536] [INSPIRE]
M. He, A.A. Starobinsky and J. Yokoyama, Inflation in the mixed Higgs-R2model, JCAP05 (2018) 064 [arXiv:1804.00409] [INSPIRE].
BaumannDGreenDEquilateral non-gaussianity and new physics on the horizonJCAP2011090142011JCAP...09..014B10.1088/1475-7516/2011/09/014[arXiv:1102.5343] [INSPIRE]
GongJ-OPiSSasakiMEquilateral non-Gaussianity from heavy fieldsJCAP2013110432013JCAP...11..043G316262310.1088/1475-7516/2013/11/043[arXiv:1306.3691] [INSPIRE]
ChenXWangYXianyuZ-ZNeutrino signatures in primordial non-gaussianitiesJHEP2018090222018JHEP...09..022C10.1007/JHEP09(2018)022[arXiv:1805.02656] [INSPIRE]
ChenXPrimordial non-gaussianities from inflation modelsAdv. Astron.201020106389792010AdAst2010E..72C10.1155/2010/638979[arXiv:1002.1416] [INSPIRE]
L Senatore (10411_CR30) 2012; 04
G Degrassi (10411_CR27) 2012; 08
AV Iyer (10411_CR53) 2018; 01
Y Wang (10411_CR20) 2018; 07
10411_CR32
10411_CR37
10411_CR36
A Achucarro (10411_CR39) 2012; 05
R Gwyn (10411_CR50) 2014; 10
10411_CR38
V Assassi (10411_CR5) 2014; 01
S Kumar (10411_CR31) 2018; 05
A Kehagias (10411_CR11) 2015; 63
10411_CR2
10411_CR1
10411_CR4
X Chen (10411_CR7) 2010; 04
T Noumi (10411_CR8) 2013; 06
G Franciolini (10411_CR13) 2018; 02
10411_CR6
A Kehagias (10411_CR12) 2017; 07
10411_CR22
10411_CR21
F Schmidt (10411_CR17) 2015; 10
10411_CR23
10411_CR26
X Chen (10411_CR48) 2017; 12
H An (10411_CR47) 2018; 06
A Moradinezhad Dizgah (10411_CR18) 2018; 05
R Gwyn (10411_CR49) 2013; 04
C Cheung (10411_CR29) 2008; 03
D Buttazzo (10411_CR28) 2013; 12
E Dimastrogiovanni (10411_CR16) 2016; 02
D Baumann (10411_CR35) 2011; 09
A Ashoorioon (10411_CR51) 2018; 02
X Chen (10411_CR45) 2012; 09
M Yamaguchi (10411_CR3) 2011; 28
10411_CR55
10411_CR10
10411_CR54
J-O Gong (10411_CR40) 2012; 04
PD Meerburg (10411_CR14) 2017; 03
S Pi (10411_CR46) 2012; 10
R Saito (10411_CR19) 2018; 06
X Chen (10411_CR24) 2017; 118
X Chen (10411_CR25) 2017; 04
X Chen (10411_CR42) 2010; 2010
X Tong (10411_CR52) 2017; 11
X Chen (10411_CR33) 2018; 09
X Chen (10411_CR44) 2016; 01
Y Wang (10411_CR43) 2014; 62
H Lee (10411_CR15) 2016; 12
J-O Gong (10411_CR9) 2013; 11
J Elliston (10411_CR34) 2012; 11
10411_CR41
References_xml – reference: ChenXWangYXianyuZ-ZNeutrino signatures in primordial non-gaussianitiesJHEP2018090222018JHEP...09..022C10.1007/JHEP09(2018)022[arXiv:1805.02656] [INSPIRE]
– reference: BaumannDGreenDEquilateral non-gaussianity and new physics on the horizonJCAP2011090142011JCAP...09..014B10.1088/1475-7516/2011/09/014[arXiv:1102.5343] [INSPIRE]
– reference: S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev.D 72 (2005) 043514 [hep-th/0506236] [INSPIRE].
– reference: GongJ-OPiSSasakiMEquilateral non-Gaussianity from heavy fieldsJCAP2013110432013JCAP...11..043G316262310.1088/1475-7516/2013/11/043[arXiv:1306.3691] [INSPIRE]
– reference: ChenXWangYXianyuZ-ZStandard model mass spectrum in inflationary universeJHEP2017040582017JHEP...04..058C365771010.1007/JHEP04(2017)0581378.85005[arXiv:1612.08122] [INSPIRE]
– reference: GwynRPalmaGASakellariadouMSypsasSEffective field theory of weakly coupled inflationary modelsJCAP2013040042013JCAP...04..004G309440910.1088/1475-7516/2013/04/004[arXiv:1210.3020] [INSPIRE]
– reference: WangYInflation, cosmic perturbations and non-gaussianitiesCommun. Theor. Phys.2014621092014CoTPh..62..109W330834010.1088/0253-6102/62/1/191294.83001[arXiv:1303.1523] [INSPIRE]
– reference: AchucarroAEffective theories of single field inflation when heavy fields matterJHEP2012050662012JHEP...05..066A10.1007/JHEP05(2012)066[arXiv:1201.6342] [INSPIRE]
– reference: KehagiasARiottoAOn the inflationary perturbations of massive higher-spin fieldsJCAP2017070462017JCAP...07..046K368541110.1088/1475-7516/2017/07/046[arXiv:1705.05834] [INSPIRE]
– reference: IyerAVPiSWangYWangZZhouSStrongly coupled quasi-single field inflationJCAP201801041376243310.1088/1475-7516/2018/01/041[arXiv:1710.03054] [INSPIRE]
– reference: PiSSasakiMCurvature perturbation spectrum in two-field inflation with a turning trajectoryJCAP2012100512012JCAP...10..051P10.1088/1475-7516/2012/10/051[arXiv:1205.0161] [INSPIRE]
– reference: NoumiTYamaguchiMYokoyamaDEffective field theory approach to quasi-single field inflation and effects of heavy fieldsJHEP2013060512013JHEP...06..051N308335910.1007/JHEP06(2013)0511342.83110[arXiv:1211.1624] [INSPIRE]
– reference: FrancioliniGKehagiasARiottoAImprints of spinning particles on primordial cosmological perturbationsJCAP2018020232018JCAP...02..023F379593910.1088/1475-7516/2018/02/023[arXiv:1712.06626] [INSPIRE]
– reference: CheungCThe effective field theory of inflationJHEP2008030142008JHEP...03..014C239110610.1088/1126-6708/2008/03/014[arXiv:0709.0293] [INSPIRE]
– reference: DimastrogiovanniEFasielloMKamionkowskiMImprints of massive primordial fields on large-scale structureJCAP2016020172016JCAP...02..017D10.1088/1475-7516/2016/02/017[arXiv:1504.05993] [INSPIRE]
– reference: S. Kumar and R. Sundrum, Seeing higher-dimensional grand unification in primordial non-gaussianities, arXiv:1811.11200 [INSPIRE].
– reference: GongJ-OLeeHMKangSKInflation and dark matter in two Higgs doublet modelsJHEP2012041282012JHEP...04..128G10.1007/JHEP04(2012)128[arXiv:1202.0288] [INSPIRE]
– reference: Planck collaboration, Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys.594 (2016) A17 [arXiv:1502.01592] [INSPIRE].
– reference: GwynRPalmaGASakellariadouMSypsasSOn degenerate models of cosmic inflationJCAP2014100052014JCAP...10..005G10.1088/1475-7516/2014/10/005[arXiv:1406.1947] [INSPIRE]
– reference: A. Achucarro et al., Mass hierarchies and non-decoupling in multi-scalar field dynamics, Phys. Rev.D 84 (2011) 043502 [arXiv:1005.3848] [INSPIRE].
– reference: N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The cosmological bootstrap: inflationary correlators from symmetries and singularities, arXiv:1811.00024 [INSPIRE].
– reference: SaitoRKubotaTHeavy particle signatures in cosmological correlation functions with tensor modesJCAP2018060092018JCAP...06..009S383168910.1088/1475-7516/2018/06/009[arXiv:1804.06974] [INSPIRE]
– reference: ChenXNamjooMHWangYOn the equation-of-motion versus in-in approach in cosmological perturbation theoryJCAP2016010222016JCAP...01..022C10.1088/1475-7516/2016/01/022[arXiv:1505.03955] [INSPIRE]
– reference: KumarSSundrumRHeavy-lifting of gauge theories by cosmic inflationJHEP2018050112018JHEP...05..011K383275210.1007/JHEP05(2018)0111391.85005[arXiv:1711.03988] [INSPIRE]
– reference: EllistonJSeeryDTavakolRThe inflationary bispectrum with curved field-spaceJCAP2012110602012JCAP...11..060E10.1088/1475-7516/2012/11/060[arXiv:1208.6011] [INSPIRE]
– reference: G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Shapes of gravity: tensor non-gaussianity and massive spin-2 fields, arXiv:1812.07571 [INSPIRE].
– reference: SenatoreLZaldarriagaMThe effective field theory of multifield inflationJHEP2012040242012JHEP...04..024S10.1007/JHEP04(2012)024[arXiv:1009.2093] [INSPIRE]
– reference: KehagiasARiottoAHigh energy physics signatures from inflation and conformal symmetry of de SitterFortsch. Phys.2015635312015ForPh..63..531K337120010.1002/prop.2015000251338.83216[arXiv:1501.03515] [INSPIRE]
– reference: H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Non-gaussian enhancements of galactic halo correlations in quasi-single field inflation, Phys. Rev.D 97 (2018) 123528 [arXiv:1711.02667] [INSPIRE].
– reference: D. Baumann and L. McAllister, Inflation and string theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2015) [arXiv:1404.2601] [INSPIRE].
– reference: DegrassiGHiggs mass and vacuum stability in the Standard Model at NNLOJHEP2012080982012JHEP...08..098D10.1007/JHEP08(2012)098[arXiv:1205.6497] [INSPIRE]
– reference: AshoorioonAExtended effective field theory of inflationJHEP2018021722018JHEP...02..172A378508010.1007/JHEP02(2018)1721387.83119[arXiv:1802.03040] [INSPIRE]
– reference: ChenXWangYQuasi-single field inflation and non-GaussianitiesJCAP2010040272010JCAP...04..027C10.1088/1475-7516/2010/04/027[arXiv:0911.3380] [INSPIRE]
– reference: YamaguchiMSupergravity based inflation models: a reviewClass. Quant. Grav.2011281030012011CQGra..28j3001Y280109210.1088/0264-9381/28/10/1030011217.83005[arXiv:1101.2488] [INSPIRE]
– reference: D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev.D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
– reference: X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev.D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].
– reference: ButtazzoDInvestigating the near-criticality of the Higgs bosonJHEP2013120892013JHEP...12..089B10.1007/JHEP12(2013)089[arXiv:1307.3536] [INSPIRE]
– reference: ChenXWangYQuasi-single field inflation with large massJCAP2012090212012JCAP...09..021C10.1088/1475-7516/2012/09/021[arXiv:1205.0160] [INSPIRE]
– reference: A.A. Starobinsky, Stochastic de Sitter (inflationary) stage in the early universe, in Current topics in field theory, quantum gravity and strings, in Current topics in field theory, quantum gravity and strings, H.J. de Vega and N. Sanchez eds., Springer Germany (1986).
– reference: Moradinezhad DizgahALeeHMuñozJBDvorkinCGalaxy bispectrum from massive spinning particlesJCAP2018050132018JCAP...05..013M10.1088/1475-7516/2018/05/013[arXiv:1801.07265] [INSPIRE]
– reference: A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev.D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].
– reference: ChenXWangYXianyuZ-ZStandard model background of the cosmological colliderPhys. Rev. Lett.20171182613022017PhRvL.118z1302C10.1103/PhysRevLett.118.261302[arXiv:1610.06597] [INSPIRE]
– reference: E.J. Copeland et al., False vacuum inflation with Einstein gravity, Phys. Rev.D 49 (1994) 6410 [astro-ph/9401011] [INSPIRE].
– reference: MeerburgPDMünchmeyerMMuñozJBChenXProspects for cosmological collider physicsJCAP2017030502017JCAP...03..050M10.1088/1475-7516/2017/03/050[arXiv:1610.06559] [INSPIRE]
– reference: J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett.B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].
– reference: LeeHBaumannDPimentelGLNon-gaussianity as a particle detectorJHEP2016120402016JHEP...12..040L10.1007/JHEP12(2016)0401390.83465[arXiv:1607.03735] [INSPIRE]
– reference: WangYWuY-PYokoyamaJZhouSHybrid quasi-single field inflationJCAP2018070682018JCAP...07..068W10.1088/1475-7516/2018/07/068[arXiv:1804.07541] [INSPIRE]
– reference: ChenXPrimordial non-gaussianities from inflation modelsAdv. Astron.201020106389792010AdAst2010E..72C10.1155/2010/638979[arXiv:1002.1416] [INSPIRE]
– reference: N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
– reference: AnHMcAnenyMRidgwayAKWiseMBQuasi single field inflation in the non-perturbative regimeJHEP2018061052018JHEP...06..105A383176210.1007/JHEP06(2018)105[arXiv:1706.09971] [INSPIRE]
– reference: TongXWangYZhouSOn the effective field theory for quasi-single field inflationJCAP2017110452017JCAP...11..045T10.1088/1475-7516/2017/11/045[arXiv:1708.01709] [INSPIRE]
– reference: ChenXWangYXianyuZ-ZSchwinger-Keldysh diagrammatics for primordial perturbationsJCAP2017120062017JCAP...12..006C374991210.1088/1475-7516/2017/12/006[arXiv:1703.10166] [INSPIRE]
– reference: M. He, A.A. Starobinsky and J. Yokoyama, Inflation in the mixed Higgs-R2model, JCAP05 (2018) 064 [arXiv:1804.00409] [INSPIRE].
– reference: AssassiVBaumannDGreenDMcAllisterLPlanck-suppressed operatorsJCAP2014010332014JCAP...01..033A10.1088/1475-7516/2014/01/033[arXiv:1304.5226] [INSPIRE]
– reference: SchmidtFChisariNEDvorkinCImprint of inflation on galaxy shape correlationsJCAP2015100322015JCAP...10..032S342100410.1088/1475-7516/2015/10/032[arXiv:1506.02671] [INSPIRE]
– ident: 10411_CR54
  doi: 10.1103/PhysRevD.97.123528
– ident: 10411_CR6
  doi: 10.1103/PhysRevD.81.063511
– volume: 10
  start-page: 005
  year: 2014
  ident: 10411_CR50
  publication-title: JCAP
  doi: 10.1088/1475-7516/2014/10/005
– volume: 06
  start-page: 051
  year: 2013
  ident: 10411_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP06(2013)051
– volume: 2010
  start-page: 638979
  year: 2010
  ident: 10411_CR42
  publication-title: Adv. Astron.
  doi: 10.1155/2010/638979
– ident: 10411_CR10
– ident: 10411_CR37
  doi: 10.1103/PhysRevD.50.6357
– volume: 02
  start-page: 172
  year: 2018
  ident: 10411_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP02(2018)172
– volume: 07
  start-page: 046
  year: 2017
  ident: 10411_CR12
  publication-title: JCAP
  doi: 10.1088/1475-7516/2017/07/046
– ident: 10411_CR21
– ident: 10411_CR2
  doi: 10.1103/PhysRevD.49.6410
– volume: 05
  start-page: 013
  year: 2018
  ident: 10411_CR18
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/05/013
– volume: 11
  start-page: 043
  year: 2013
  ident: 10411_CR9
  publication-title: JCAP
  doi: 10.1088/1475-7516/2013/11/043
– volume: 04
  start-page: 128
  year: 2012
  ident: 10411_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP04(2012)128
– ident: 10411_CR4
  doi: 10.1103/PhysRevD.85.103520
– volume: 02
  start-page: 017
  year: 2016
  ident: 10411_CR16
  publication-title: JCAP
  doi: 10.1088/1475-7516/2016/02/017
– ident: 10411_CR36
– ident: 10411_CR38
  doi: 10.1103/PhysRevD.84.043502
– volume: 09
  start-page: 021
  year: 2012
  ident: 10411_CR45
  publication-title: JCAP
  doi: 10.1088/1475-7516/2012/09/021
– volume: 05
  start-page: 011
  year: 2018
  ident: 10411_CR31
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)011
– volume: 09
  start-page: 014
  year: 2011
  ident: 10411_CR35
  publication-title: JCAP
  doi: 10.1088/1475-7516/2011/09/014
– volume: 04
  start-page: 004
  year: 2013
  ident: 10411_CR49
  publication-title: JCAP
  doi: 10.1088/1475-7516/2013/04/004
– volume: 01
  start-page: 041
  year: 2018
  ident: 10411_CR53
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/01/041
– volume: 118
  start-page: 261302
  year: 2017
  ident: 10411_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.261302
– volume: 11
  start-page: 045
  year: 2017
  ident: 10411_CR52
  publication-title: JCAP
  doi: 10.1088/1475-7516/2017/11/045
– volume: 06
  start-page: 009
  year: 2018
  ident: 10411_CR19
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/06/009
– ident: 10411_CR22
– ident: 10411_CR55
– volume: 04
  start-page: 027
  year: 2010
  ident: 10411_CR7
  publication-title: JCAP
  doi: 10.1088/1475-7516/2010/04/027
– volume: 28
  start-page: 103001
  year: 2011
  ident: 10411_CR3
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/28/10/103001
– volume: 10
  start-page: 051
  year: 2012
  ident: 10411_CR46
  publication-title: JCAP
  doi: 10.1088/1475-7516/2012/10/051
– ident: 10411_CR1
– volume: 01
  start-page: 033
  year: 2014
  ident: 10411_CR5
  publication-title: JCAP
  doi: 10.1088/1475-7516/2014/01/033
– volume: 09
  start-page: 022
  year: 2018
  ident: 10411_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)022
– volume: 06
  start-page: 105
  year: 2018
  ident: 10411_CR47
  publication-title: JHEP
  doi: 10.1007/JHEP06(2018)105
– volume: 62
  start-page: 109
  year: 2014
  ident: 10411_CR43
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/62/1/19
– volume: 12
  start-page: 006
  year: 2017
  ident: 10411_CR48
  publication-title: JCAP
  doi: 10.1088/1475-7516/2017/12/006
– volume: 63
  start-page: 531
  year: 2015
  ident: 10411_CR11
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201500025
– volume: 03
  start-page: 050
  year: 2017
  ident: 10411_CR14
  publication-title: JCAP
  doi: 10.1088/1475-7516/2017/03/050
– ident: 10411_CR23
– volume: 04
  start-page: 058
  year: 2017
  ident: 10411_CR25
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)058
– volume: 03
  start-page: 014
  year: 2008
  ident: 10411_CR29
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/03/014
– volume: 04
  start-page: 024
  year: 2012
  ident: 10411_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP04(2012)024
– volume: 01
  start-page: 022
  year: 2016
  ident: 10411_CR44
  publication-title: JCAP
  doi: 10.1088/1475-7516/2016/01/022
– volume: 12
  start-page: 040
  year: 2016
  ident: 10411_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP12(2016)040
– volume: 07
  start-page: 068
  year: 2018
  ident: 10411_CR20
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/07/068
– ident: 10411_CR26
  doi: 10.1016/j.physletb.2012.02.013
– volume: 02
  start-page: 023
  year: 2018
  ident: 10411_CR13
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/02/023
– volume: 10
  start-page: 032
  year: 2015
  ident: 10411_CR17
  publication-title: JCAP
  doi: 10.1088/1475-7516/2015/10/032
– volume: 05
  start-page: 066
  year: 2012
  ident: 10411_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP05(2012)066
– volume: 08
  start-page: 098
  year: 2012
  ident: 10411_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP08(2012)098
– ident: 10411_CR32
  doi: 10.1088/1475-7516/2018/05/064
– volume: 12
  start-page: 089
  year: 2013
  ident: 10411_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP12(2013)089
– volume: 11
  start-page: 060
  year: 2012
  ident: 10411_CR34
  publication-title: JCAP
  doi: 10.1088/1475-7516/2012/11/060
– ident: 10411_CR41
  doi: 10.1103/PhysRevD.72.043514
SSID ssj0015190
Score 2.5287192
Snippet A bstract Signals of heavy particle production during inflation are encoded as nonanalytic momentum scaling in primordial non-Gaussianity. These non-analytic...
Signals of heavy particle production during inflation are encoded as nonanalytic momentum scaling in primordial non-Gaussianity. These non-analytic signatures...
Abstract Signals of heavy particle production during inflation are encoded as nonanalytic momentum scaling in primordial non-Gaussianity. These non-analytic...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Astronomical models
Classical and Quantum Gravitation
Coding
Cosmology
Cosmology of Theories beyond the SM
Effective Field Theories
Elementary Particles
High energy physics
Particle production
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Standard model (particle physics)
String Theory
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6IfgifmJ1Sh982B6ypW3apE_iZGMMHEMc7K3koxVhbHOdgv-9lzbdVJhvJUlLuSR3v9xdfofQXSBCmmY8wr6nQ0xppnAcCIo10SyIODwWtQieRtFgQofTcGodbrlNq6x0YqGo9UIZH3nHN1TkxDAX3S_fsakaZaKrtoTGPqpDN4fDV73bG42fN3EEwCekIvQhrDMc9MaENsHoxS3PVMf-YYsKyv5fOPNPaLSwOP1jdGShovtQzu0J2kvnp-igSNlU-RlqG29x7orcBX36-YVnbxmgR7d0VeRuef_QhQVUZrudo0m_9_I4wLb6AVbUY2sMplkaYkXNRBRpGfuS81gopgFhqQDOGX5GJeCjKKRSKhlzFUpNiOn2lPBJcIFq88U8vURuJiRXaai1lJTSgAgGqChkvgLtIrPUd1C7kkOiLDW4qVAxSypS41JwiRFcAoJzUHPzwrJkxdg9tGsEuxlm6KyLhsXqNbG7I-FCsEyLUAB8oAJAUcpZBm2x1gDvotRBjWpaErvH8mS7IhzUqqZq273jf67-_9Q1OjQjy9ycBqqtVx_pDcCOtby1a-sb6zfTfw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MieBF_MTqlB48bIeOtE3a9KhjYwwUDw52C_loRRibrFPwv_elbSZTdvAWkhcIL8l7vyTv_QJwF0tG84InQRQaFlBa6CCLJQ0MMWmccCxWfxE8PiXjKZ3M2KwFocuFqaLd3ZNkZaldsttkPHwmtIsOK-uhV96DfYYHd7uoBzbBoXk4QEBCHIPP305bzqfi6N8Clr_eQisXMzqGowYb-vf1ZJ5AK1-cwkEVo6nLM-jb6-HSl6WPBvTzK5i_FQgX_fpuovTrhEMfV0wd3nYO09HwZTAOmu8OAk3DdB2gL1aWSdGkMkmMyiLFeSZ1ahBS6RgPFlFBFQKihFGltMq4ZsoQYptDLSMSX0B7sVzkl-AXUnGdM2OUopTGRKYIg1gaaTQnqsgjD_pOD0I3XOD2S4q5cCzGteKEVZxAxXnQ3XR4r2kwdos-WMVuxCx_dVWxXL2KZjsILmVaGMkk4gUqEQXlPC2wLjMG8VySe9Bx0yKaTVWKyLLRE0te5UHPTdVP847xXP1D9hoObbGOzOlAe736yG8QdKzVbbXMvgED182W
  priority: 102
  providerName: Springer Nature
Title Higgs as heavy-lifted physics during inflation
URI https://link.springer.com/article/10.1007/JHEP04(2019)125
https://www.proquest.com/docview/2212701857
https://doaj.org/article/8aa7fda5a8184a658e87faa79dd6106e
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD54QfBFvOJ0jj74MB_qsjRN0kc3NsfAMcSBbyWXFoQxxU7Bf-9J084piC--hDZJSzgnzffl0u8AXEYqZlkueUi7Ng4Zy02YRIqFllgRcYmXZSyCuwkfzdj4MX5cC_XlzoR5eWBvuI5USuRWxQqRhSnEy0yKHPMSaxH5eeZGX8S8ejJV7R8gLyG1kA8RnfFoMCWsjWCXXHVdVOw1DCql-r_xyx9boiXSDPdhr6KIwY1v2gFsZItD2CmPapriCK7dKnERqCLAcfT9I5w_5cgaA79EUQT-v8MAO44_5XYMs-HgoT8Kq6gHoWFdsQwRkrUTVLRCcW51QrWUiTLCIrMyEc4vaM408iIeM62NTqSJtSXEFXeNoiQ6ga3F8yI7hSBXWpostlZrxlhElEA2FAtqcFTReUYbcF3bITWVJLiLTDFPazFjb7jUGS5FwzWgvXrgxath_F615wy7quZkrMsMdG5aOTf9y7kNaNZuSatvq0ipE6UnTsOqAVe1q76Kf2nP2X-05xx23fv8yZ0mbC1f37ILJCVL3YJNObxtwXZvMJne412fMpfyfqvsmZjO6M0nEl3grg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6lIFQuiEIRgUD3UCQ4GByvd-09INQCaXiqB5C4Gb-2qhQlwAYQf6q_seN9hIJEb9xWfmk1Hs98tsffAHyNdcJ9LlPCui4hnOeWZLHmxFEn4lTiZ5mL4Ow87V_y46vkqgV_mrcwIayysYmloXYjG87Id1igIqeBuWjv5paErFHhdrVJoVGpxYl_esQtW7F7dIDzu8FY7_Biv0_qrALE8q4YE3R5JhAWOqHT1JmMGSkzbYVD5GJjxO8s5wZxR5pwY6zJpE2MozRUd61mNMZxP8A0j-MsrCjZ-zG5tUA0RBv6ICp2jvuHPynfRBebbXVDLu5_PF-ZIOAFqn11EVv6t948zNXANPpWadInaPnhAsyUAaK2WITtcDZdRLqI0Ho_PJHB7xyxalQdjBRR9doxQnWtYus-w-W7SGUJpoajoV-GKNdGWp84ZwznPKZaIAZLBLNoy0zuWRu2GzkoWxORh3wYA9VQKFeCU0FwCgXXhs1Jh5uKg-Ptpt-DYCfNAnl2WTC6-6Xqtaik1iJ3OtEIVrhGCOalyLEscw7BZOrb0GmmRdUrulDP-teGrWaqnqvf-J-V_w_1BT72L85O1enR-ckqzIZeVVRQB6bGd_d-DQHP2KyXWhbB9Xur9V-1hw32
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5BEKgX1AcVgdDuoZXgYOJ4vevdA0JNSRSgjSIEEjfXT1QJJcCmrfhr_XWM9xHaSvTGbeWXVuPxzGd7_A3Ah1gl3PksJaxnE8K5NySPFSeWWhGnGX6WuQi-jtPRBT-5TC6X4HfzFiaEVTY2sTTUdmbCGXmXBSpyGpiLur4Oi5gcDQ9vbknIIBVuWpt0GpWKnLr7X7h9Kw6Oj3CuPzI2HJx_HpE6wwAxvCfmBN2fDuSFVqg0tTpnOstyZYRFFGNixPLMc40YJE241kbnmUm0pTRU94xiNMZxl2FF4K6ItmClPxhPzhZ3GIiNaEMmREX3ZDSYUL6LDjff64XM3H_4wTJdwF8Y959r2dLbDV_Ceg1To0-VXr2CJTd9DatluKgp3sB-OKkuIlVEaMt_3pPr7x6Ra1QdkxRR9fYxQuWtIu024OJZ5PIWWtPZ1G1C5JXOjEus1ZpzHlMlEJElghm0bNo71ob9Rg7S1LTkITvGtWwIlSvBySA4iYJrw-6iw03FyPF0034Q7KJZoNIuC2Z3V7JemTJTSnirEoXQhSsEZC4THstyaxFapq4NnWZaZL2-C_mojW3Ya6bqsfqJ_9n6_1DvYQ1VWn45Hp9uw4vQqQoR6kBrfvfD7SD6met3tZpF8O25NfsB6sYTiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higgs+as+heavy-lifted+physics+during+inflation&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Yi-Peng+Wu&rft.date=2019-04-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2019&rft.issue=4&rft.spage=1&rft.epage=31&rft_id=info:doi/10.1007%2FJHEP04%282019%29125&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8aa7fda5a8184a658e87faa79dd6106e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon