A Human-Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control

This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 12; no. 6; pp. 1322 - 1333
Main Authors Wu, Yu, Jiang, Dai, Liu, Xiao, Bayford, Richard, Demosthenous, Andreas
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4545
1940-9990
1940-9990
DOI10.1109/TBCAS.2018.2878395

Cover

Loading…
Abstract This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm 2 ). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 mΩ p-p .
AbstractList This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm ). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 mΩ .
This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm 2 ). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 mΩ p-p .
This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm2). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 mΩp-p.This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm2). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 mΩp-p.
This paper presents a human–machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm2). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 Ωp-p.
Author Bayford, Richard
Demosthenous, Andreas
Wu, Yu
Liu, Xiao
Jiang, Dai
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-2818-7327
  surname: Wu
  fullname: Wu, Yu
  email: yu.wu.09@ucl.ac.uk
  organization: Department of Electronic and Electrical Engineering, University College London, London, U.K
– sequence: 2
  givenname: Dai
  orcidid: 0000-0001-9575-8831
  surname: Jiang
  fullname: Jiang, Dai
  email: d.jiang@ucl.ac.uk
  organization: Department of Electronic and Electrical Engineering, University College London, London, U.K
– sequence: 3
  givenname: Xiao
  orcidid: 0000-0001-5514-021X
  surname: Liu
  fullname: Liu, Xiao
  email: xiao@ucl.ac.uk
  organization: Department of Electronic and Electrical Engineering, University College London, London, U.K
– sequence: 4
  givenname: Richard
  orcidid: 0000-0001-8863-6385
  surname: Bayford
  fullname: Bayford, Richard
  email: r.bayford@ucl.ac.uk
  organization: Department of Electronic and Electrical Engineering, University College London, London, U.K
– sequence: 5
  givenname: Andreas
  orcidid: 0000-0003-0623-963X
  surname: Demosthenous
  fullname: Demosthenous, Andreas
  email: a.demosthenous@ucl.ac.uk
  organization: Department of Electronic and Electrical Engineering, University College London, London, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30371386$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1URB_wB0BCltiwmXD9mrGXISokUhFIpCsWI9dzp3E1Ywd7ZtF_j0NCF12w8pX8nfs455KchRiQkLcMFoyB-bT9vFr-XHBgesF1o4VRL8gFMxIqYwycHWrBK6mkOieXOT8AqJob_oqcCxANE7q-IL-WdD2PNlTfrNv5gHQTJky9dUhvsw_39HpANyXv7EA34x47G8rXNo7xPtn97pH2MdG1DR39kWKedph9pqsYphSH1-Rlb4eMb07vFbn9cr1draub7183q-VN5SRrpqrpwQnLpWbQKSWMtqgaAGldwzlyDVKqWinl7lwnbC0Bays7dKps2TW1E1fk47HvPsXfM-apHX12OAw2YJxzyxmvDQgwrKAfnqEPcU6hbFeousxSxbJCvT9R892IXbtPfrTpsf1nWwH4EXDl6Jywf0IYtIds2r_ZtIds2lM2RaSfiZyf7OQPZlk__F_67ij1iPg0S6uCcyb-AKD3mos
CODEN ITBCCW
CitedBy_id crossref_primary_10_1109_TBCAS_2020_3012057
crossref_primary_10_3389_fnbot_2021_734525
crossref_primary_10_3934_ipi_2021074
crossref_primary_10_1080_03772063_2024_2310137
crossref_primary_10_1109_TBCAS_2019_2927132
crossref_primary_10_3390_bios12060384
crossref_primary_10_1109_JSSC_2022_3199492
crossref_primary_10_3390_jlpea12030041
crossref_primary_10_1088_2633_1357_ab9724
crossref_primary_10_1109_ACCESS_2020_2996500
crossref_primary_10_1109_TBCAS_2019_2925713
crossref_primary_10_1109_JBHI_2021_3130374
crossref_primary_10_1109_OJCAS_2021_3075302
crossref_primary_10_35366_113828
crossref_primary_10_1126_scirobotics_abm7187
crossref_primary_10_3390_chips1020008
crossref_primary_10_1109_TBCAS_2020_2967785
crossref_primary_10_1109_TCSI_2024_3425613
crossref_primary_10_1109_TBCAS_2020_3025218
crossref_primary_10_1109_TBCAS_2022_3171163
crossref_primary_10_3390_s23052536
crossref_primary_10_3390_s24155043
crossref_primary_10_1109_LRA_2021_3060400
crossref_primary_10_1109_TBCAS_2024_3370571
crossref_primary_10_1109_TMRB_2021_3125321
crossref_primary_10_1109_JSEN_2021_3130982
crossref_primary_10_1109_TCSII_2021_3092069
crossref_primary_10_3390_s21206863
crossref_primary_10_3389_fnbot_2021_659311
crossref_primary_10_1089_soro_2022_0065
crossref_primary_10_1109_TMECH_2020_3039017
crossref_primary_10_1038_s41598_023_49347_z
crossref_primary_10_3390_s22010152
crossref_primary_10_3390_electronics10010015
crossref_primary_10_1109_TSMC_2024_3369071
crossref_primary_10_3390_s20174883
crossref_primary_10_1109_TIM_2024_3420372
crossref_primary_10_1016_j_mechatronics_2023_103039
crossref_primary_10_1016_j_heliyon_2023_e15195
crossref_primary_10_1089_soro_2021_0209
crossref_primary_10_3390_s24051379
crossref_primary_10_1109_TCSII_2021_3078633
crossref_primary_10_1002_aisy_202400483
crossref_primary_10_1109_ACCESS_2023_3319742
crossref_primary_10_1016_j_aeue_2025_155701
crossref_primary_10_1088_2516_1091_acac57
crossref_primary_10_3390_s23041868
crossref_primary_10_1016_j_jvcir_2022_103461
crossref_primary_10_1109_JSEN_2022_3193718
crossref_primary_10_3390_s20247279
crossref_primary_10_1109_TNSRE_2025_3538609
crossref_primary_10_1109_TCSII_2020_3006430
Cites_doi 10.1109/JSEN.2013.2251628
10.1109/TNSRE.2013.2279737
10.1109/IEMBS.2011.6090909
10.1109/10.310086
10.3390/s17091999
10.1016/j.ergon.2017.02.004
10.1109/TBCAS.2013.2285481
10.1109/TNSRE.2011.2108667
10.1109/ISCAS.2018.8351296
10.1109/TBCAS.2013.2285567
10.1088/0967-3334/20/4/201
10.1109/TBME.2010.2052618
10.1145/2807442.2807480
10.1088/0143-0815/13/A/002
10.1109/NEUREL.2006.341203
10.1088/1741-2560/12/4/046005
10.1109/IROS.2007.4399301
10.1016/j.jneumeth.2014.07.016
10.1109/TNSRE.2012.2196711
10.1088/0967-3334/37/6/785
10.1109/TBCAS.2018.2810182
10.1109/TMECH.2014.2360119
10.3389/fnbot.2016.00009
10.1088/0967-3334/30/10/001
10.1109/FG.2015.7163132
10.1145/2984511.2984574
10.1109/ESSCIRC.2017.8094567
10.1007/s00422-008-0278-1
10.1109/IEMBS.2009.5332520
10.1007/s11517-012-1024-3
10.1109/TBCAS.2015.2476555
10.1093/acprof:oso/9780195058239.001.0001
10.1109/TBME.2008.919734
10.1109/TNSRE.2009.2023282
10.1007/s10462-012-9356-9
10.1109/TCSI.2010.2078850
10.1088/0967-3334/36/6/1337
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
DOI 10.1109/TBCAS.2018.2878395
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 1333
ExternalDocumentID 30371386
10_1109_TBCAS_2018_2878395
8510921
Genre orig-research
Journal Article
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QO
7SP
7TB
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c417t-7f0c3a24810d55398ae57004ac722e2804456555cbcd3a640e6a4dec5facd76c3
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Fri Jul 11 08:23:18 EDT 2025
Mon Jun 30 08:18:43 EDT 2025
Wed Feb 19 02:36:33 EST 2025
Thu Apr 24 22:55:09 EDT 2025
Tue Jul 01 03:26:33 EDT 2025
Wed Aug 27 02:59:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-7f0c3a24810d55398ae57004ac722e2804456555cbcd3a640e6a4dec5facd76c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2818-7327
0000-0001-5514-021X
0000-0001-9575-8831
0000-0001-8863-6385
0000-0003-0623-963X
PMID 30371386
PQID 2162805932
PQPubID 85510
PageCount 12
ParticipantIDs proquest_journals_2162805932
ieee_primary_8510921
pubmed_primary_30371386
crossref_citationtrail_10_1109_TBCAS_2018_2878395
crossref_primary_10_1109_TBCAS_2018_2878395
proquest_miscellaneous_2126903091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref16
ref19
ref18
ref24
ref23
ref26
labs (ref6) 2018
ref25
ref20
ref22
ref21
russo (ref38) 2017; 17
ref28
ref27
ref29
ref8
ref7
ref9
li (ref15) 0
ref4
ref3
ref5
References_xml – start-page: 4243
  year: 0
  ident: ref15
  article-title: Performance of electromyography recorded using textile electrodes in classifying arm movements
  publication-title: Proc IEEE Eng Med Biol Conf
– ident: ref32
  doi: 10.1109/JSEN.2013.2251628
– ident: ref35
  doi: 10.1109/TNSRE.2013.2279737
– ident: ref18
  doi: 10.1109/IEMBS.2011.6090909
– ident: ref31
  doi: 10.1109/10.310086
– volume: 17
  start-page: 1999
  year: 2017
  ident: ref38
  article-title: A quantitative evaluation of drive pattern selection for optimizing EIT-based stretchable sensors
  publication-title: SENSORS
  doi: 10.3390/s17091999
– ident: ref1
  doi: 10.1016/j.ergon.2017.02.004
– ident: ref28
  doi: 10.1109/TBCAS.2013.2285481
– ident: ref10
  doi: 10.1109/TNSRE.2011.2108667
– ident: ref26
  doi: 10.1109/ISCAS.2018.8351296
– year: 2018
  ident: ref6
  article-title: Myo: A wearable gesture control and motion control device
– ident: ref12
  doi: 10.1109/TBCAS.2013.2285567
– ident: ref36
  doi: 10.1088/0967-3334/20/4/201
– ident: ref21
  doi: 10.1109/TBME.2010.2052618
– ident: ref24
  doi: 10.1145/2807442.2807480
– ident: ref23
  doi: 10.1088/0143-0815/13/A/002
– ident: ref8
  doi: 10.1109/NEUREL.2006.341203
– ident: ref33
  doi: 10.1088/1741-2560/12/4/046005
– ident: ref7
  doi: 10.1109/IROS.2007.4399301
– ident: ref20
  doi: 10.1016/j.jneumeth.2014.07.016
– ident: ref5
  doi: 10.1109/TNSRE.2012.2196711
– ident: ref39
  doi: 10.1088/0967-3334/37/6/785
– ident: ref4
  doi: 10.1109/TBCAS.2018.2810182
– ident: ref11
  doi: 10.1109/TMECH.2014.2360119
– ident: ref17
  doi: 10.3389/fnbot.2016.00009
– ident: ref27
  doi: 10.1088/0967-3334/30/10/001
– ident: ref3
  doi: 10.1109/FG.2015.7163132
– ident: ref25
  doi: 10.1145/2984511.2984574
– ident: ref29
  doi: 10.1109/ESSCIRC.2017.8094567
– ident: ref19
  doi: 10.1007/s00422-008-0278-1
– ident: ref14
  doi: 10.1109/IEMBS.2009.5332520
– ident: ref9
  doi: 10.1007/s11517-012-1024-3
– ident: ref13
  doi: 10.1109/TBCAS.2015.2476555
– ident: ref37
  doi: 10.1093/acprof:oso/9780195058239.001.0001
– ident: ref16
  doi: 10.1109/TBME.2008.919734
– ident: ref34
  doi: 10.1109/TNSRE.2009.2023282
– ident: ref2
  doi: 10.1007/s10462-012-9356-9
– ident: ref30
  doi: 10.1109/TCSI.2010.2078850
– ident: ref22
  doi: 10.1088/0967-3334/36/6/1337
SSID ssj0056292
Score 2.4576051
Snippet This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance...
This paper presents a human–machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1322
SubjectTerms Acidity
Analog circuits
Application specific integrated circuits
Artificial neural networks
Current driver
Current measurement
Electrical impedance
electrical impedance tomography
Electrodes
Forearm
Hand
hand prosthesis control
human–machine interface
Impedance
Instrumentation
instrumentation amplifier
Integrated circuits
Muscles
Neural networks
Power supplies
Prostheses
Prosthetics
Real time operation
Sodium channels
Switching theory
Tomography
Voltage measurement
Title A Human-Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control
URI https://ieeexplore.ieee.org/document/8510921
https://www.ncbi.nlm.nih.gov/pubmed/30371386
https://www.proquest.com/docview/2162805932
https://www.proquest.com/docview/2126903091
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3KgtJSyBSpX4tZmcfxInOOyAm0rbYXURULiEDn2rKgKWdTdvfTX43EeahGteosUx7E9Y_vzeOYbgBOnzXzuvE8USp4oWYV1MC98UnhvuPdhiiHZIadfs8mV-nKtrzfgUx8Lg4jR-QyH9Bjv8v3CrclUdhrQAS8oanwzHNyaWK1u1Q3beEyATHiEeLx1FyDDi9PZ2Xj0jby4zDCcDwIi0H9sQjGryt8BZtxoLl7CtGti41_yY7heVUP36wl74__2YRd2WsTJRo2KvIINrF_D9m88hHtwM2LRmJ9Mo2slsmgnnFuHLLoUsPOYLIfkyT4HnO1JVdhscd_yXbOAfNnE1p5dUhDJLS6_L9m4cYJ_A1cX57PxJGmzLiROpfkqyefcSSuUSbnXWhbGYuTAty4XAoXhikCg1q5yXtpMccys8uh0aJXPMyf3Yate1HgAzAufWeGsqYxQmktbBXyVC1dZXaVOiwGknRhK11KSU2aMuzIeTXhRRtGVJLqyFd0APvbfPDSEHP8svUci6Eu2oz-Ao07aZTtnl6VIs9A7HRRoAB_612G20RWKrXGxpjIiK-hWKlTxttGSvm5J7IfSZO-e_-chvKCWNa4wR7C1-rnG4wBoVtX7qMmPBpDwJw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V7aFwAEp5LC3USNwgW8ePxDkuq1bb0q2Q2EqVOESOPSuqQrbq7l766-txHgIEiFukOI7tGdufxzPfALxz2sznzvtEoeSJklVYB_PCJ4X3hnsfphiSHXJ6nk0u1OmlvtyAD30sDCJG5zMc0mO8y_cLtyZT2WFAB7ygqPEtTcG4TbRWt-6GjTymQCZEQkzeuguR4cXh7ON49IX8uMwwnBACJtC_bEMxr8rfIWbcao4fw7RrZONhcj1cr6qhu_uNv_F_e_EEHrWYk40aJdmBDayfwsOfmAh34euIRXN-Mo3OlciipXBuHbLoVMCOYrockig7CUjbk7Kw2eJHy3jNAvZlE1t79pnCSL7h8mrJxo0b_DO4OD6ajSdJm3chcSrNV0k-505aoUzKvdayMBYjC751uRAoDFcEA7V2lfPSZopjZpVHp0OrfJ45-Rw260WNL4F54TMrnDWVEUpzaauAsHLhKqur1GkxgLQTQ-laUnLKjfG9jIcTXpRRdCWJrmxFN4D3_Tc3DSXHP0vvkgj6ku3oD2C_k3bZztplKdIs9E4HBRrA2_51mG90iWJrXKypjMgKupcKVbxotKSvWxL_oTTZqz__8wC2J7PpWXl2cv5pDx5QKxvHmH3YXN2u8XWAN6vqTdTqe7Fj828
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Human%E2%80%93Machine+Interface+Using+Electrical+Impedance+Tomography+for+Hand+Prosthesis+Control&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Wu%2C+Yu&rft.au=Jiang%2C+Dai&rft.au=Liu%2C+Xiao&rft.au=Bayford%2C+Richard&rft.date=2018-12-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=12&rft.issue=6&rft.spage=1322&rft.epage=1333&rft_id=info:doi/10.1109%2FTBCAS.2018.2878395&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBCAS_2018_2878395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon