A Human-Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control
This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using...
Saved in:
Published in | IEEE transactions on biomedical circuits and systems Vol. 12; no. 6; pp. 1322 - 1333 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-4545 1940-9990 1940-9990 |
DOI | 10.1109/TBCAS.2018.2878395 |
Cover
Loading…
Abstract | This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm 2 ). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 mΩ p-p . |
---|---|
AbstractList | This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm
). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 mΩ
. This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm 2 ). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 mΩ p-p . This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm2). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 mΩp-p.This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm2). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 mΩp-p. This paper presents a human–machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance tomography, a conventional bio-impedance imaging technique, using an array of electrodes contained in a wristband on the user's forearm. Using a high-performance analog front-end application specific integrated circuit (ASIC), the user's forearm inner bio-impedance redistribution is accurately assessed. These bio-signatures are strongly related to hand motions and using artificial neural networks, they can be learned so as to recognize the user's intention in real time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation with a gesture switching enabled sub-grouping method. Experiments with five subjects show that the system can achieve 98.5% accuracy with a grouping of three gestures and an accuracy of 94.4% with two sets of five gestures. The ASIC comprises a current driver with common-mode reduction capability and a current feedback instrumentation amplifier (that occupy an area of 0.07 mm2). The ASIC operates from ±1.65 V power supplies and has a minimum bio-impedance sensitivity of 12.7 Ωp-p. |
Author | Bayford, Richard Demosthenous, Andreas Wu, Yu Liu, Xiao Jiang, Dai |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-2818-7327 surname: Wu fullname: Wu, Yu email: yu.wu.09@ucl.ac.uk organization: Department of Electronic and Electrical Engineering, University College London, London, U.K – sequence: 2 givenname: Dai orcidid: 0000-0001-9575-8831 surname: Jiang fullname: Jiang, Dai email: d.jiang@ucl.ac.uk organization: Department of Electronic and Electrical Engineering, University College London, London, U.K – sequence: 3 givenname: Xiao orcidid: 0000-0001-5514-021X surname: Liu fullname: Liu, Xiao email: xiao@ucl.ac.uk organization: Department of Electronic and Electrical Engineering, University College London, London, U.K – sequence: 4 givenname: Richard orcidid: 0000-0001-8863-6385 surname: Bayford fullname: Bayford, Richard email: r.bayford@ucl.ac.uk organization: Department of Electronic and Electrical Engineering, University College London, London, U.K – sequence: 5 givenname: Andreas orcidid: 0000-0003-0623-963X surname: Demosthenous fullname: Demosthenous, Andreas email: a.demosthenous@ucl.ac.uk organization: Department of Electronic and Electrical Engineering, University College London, London, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30371386$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1URB_wB0BCltiwmXD9mrGXISokUhFIpCsWI9dzp3E1Ywd7ZtF_j0NCF12w8pX8nfs455KchRiQkLcMFoyB-bT9vFr-XHBgesF1o4VRL8gFMxIqYwycHWrBK6mkOieXOT8AqJob_oqcCxANE7q-IL-WdD2PNlTfrNv5gHQTJky9dUhvsw_39HpANyXv7EA34x47G8rXNo7xPtn97pH2MdG1DR39kWKedph9pqsYphSH1-Rlb4eMb07vFbn9cr1draub7183q-VN5SRrpqrpwQnLpWbQKSWMtqgaAGldwzlyDVKqWinl7lwnbC0Bays7dKps2TW1E1fk47HvPsXfM-apHX12OAw2YJxzyxmvDQgwrKAfnqEPcU6hbFeousxSxbJCvT9R892IXbtPfrTpsf1nWwH4EXDl6Jywf0IYtIds2r_ZtIds2lM2RaSfiZyf7OQPZlk__F_67ij1iPg0S6uCcyb-AKD3mos |
CODEN | ITBCCW |
CitedBy_id | crossref_primary_10_1109_TBCAS_2020_3012057 crossref_primary_10_3389_fnbot_2021_734525 crossref_primary_10_3934_ipi_2021074 crossref_primary_10_1080_03772063_2024_2310137 crossref_primary_10_1109_TBCAS_2019_2927132 crossref_primary_10_3390_bios12060384 crossref_primary_10_1109_JSSC_2022_3199492 crossref_primary_10_3390_jlpea12030041 crossref_primary_10_1088_2633_1357_ab9724 crossref_primary_10_1109_ACCESS_2020_2996500 crossref_primary_10_1109_TBCAS_2019_2925713 crossref_primary_10_1109_JBHI_2021_3130374 crossref_primary_10_1109_OJCAS_2021_3075302 crossref_primary_10_35366_113828 crossref_primary_10_1126_scirobotics_abm7187 crossref_primary_10_3390_chips1020008 crossref_primary_10_1109_TBCAS_2020_2967785 crossref_primary_10_1109_TCSI_2024_3425613 crossref_primary_10_1109_TBCAS_2020_3025218 crossref_primary_10_1109_TBCAS_2022_3171163 crossref_primary_10_3390_s23052536 crossref_primary_10_3390_s24155043 crossref_primary_10_1109_LRA_2021_3060400 crossref_primary_10_1109_TBCAS_2024_3370571 crossref_primary_10_1109_TMRB_2021_3125321 crossref_primary_10_1109_JSEN_2021_3130982 crossref_primary_10_1109_TCSII_2021_3092069 crossref_primary_10_3390_s21206863 crossref_primary_10_3389_fnbot_2021_659311 crossref_primary_10_1089_soro_2022_0065 crossref_primary_10_1109_TMECH_2020_3039017 crossref_primary_10_1038_s41598_023_49347_z crossref_primary_10_3390_s22010152 crossref_primary_10_3390_electronics10010015 crossref_primary_10_1109_TSMC_2024_3369071 crossref_primary_10_3390_s20174883 crossref_primary_10_1109_TIM_2024_3420372 crossref_primary_10_1016_j_mechatronics_2023_103039 crossref_primary_10_1016_j_heliyon_2023_e15195 crossref_primary_10_1089_soro_2021_0209 crossref_primary_10_3390_s24051379 crossref_primary_10_1109_TCSII_2021_3078633 crossref_primary_10_1002_aisy_202400483 crossref_primary_10_1109_ACCESS_2023_3319742 crossref_primary_10_1016_j_aeue_2025_155701 crossref_primary_10_1088_2516_1091_acac57 crossref_primary_10_3390_s23041868 crossref_primary_10_1016_j_jvcir_2022_103461 crossref_primary_10_1109_JSEN_2022_3193718 crossref_primary_10_3390_s20247279 crossref_primary_10_1109_TNSRE_2025_3538609 crossref_primary_10_1109_TCSII_2020_3006430 |
Cites_doi | 10.1109/JSEN.2013.2251628 10.1109/TNSRE.2013.2279737 10.1109/IEMBS.2011.6090909 10.1109/10.310086 10.3390/s17091999 10.1016/j.ergon.2017.02.004 10.1109/TBCAS.2013.2285481 10.1109/TNSRE.2011.2108667 10.1109/ISCAS.2018.8351296 10.1109/TBCAS.2013.2285567 10.1088/0967-3334/20/4/201 10.1109/TBME.2010.2052618 10.1145/2807442.2807480 10.1088/0143-0815/13/A/002 10.1109/NEUREL.2006.341203 10.1088/1741-2560/12/4/046005 10.1109/IROS.2007.4399301 10.1016/j.jneumeth.2014.07.016 10.1109/TNSRE.2012.2196711 10.1088/0967-3334/37/6/785 10.1109/TBCAS.2018.2810182 10.1109/TMECH.2014.2360119 10.3389/fnbot.2016.00009 10.1088/0967-3334/30/10/001 10.1109/FG.2015.7163132 10.1145/2984511.2984574 10.1109/ESSCIRC.2017.8094567 10.1007/s00422-008-0278-1 10.1109/IEMBS.2009.5332520 10.1007/s11517-012-1024-3 10.1109/TBCAS.2015.2476555 10.1093/acprof:oso/9780195058239.001.0001 10.1109/TBME.2008.919734 10.1109/TNSRE.2009.2023282 10.1007/s10462-012-9356-9 10.1109/TCSI.2010.2078850 10.1088/0967-3334/36/6/1337 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
DOI | 10.1109/TBCAS.2018.2878395 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Biotechnology Research Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1940-9990 |
EndPage | 1333 |
ExternalDocumentID | 30371386 10_1109_TBCAS_2018_2878395 8510921 |
Genre | orig-research Journal Article |
GroupedDBID | --- 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QO 7SP 7TB 8FD FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c417t-7f0c3a24810d55398ae57004ac722e2804456555cbcd3a640e6a4dec5facd76c3 |
IEDL.DBID | RIE |
ISSN | 1932-4545 1940-9990 |
IngestDate | Fri Jul 11 08:23:18 EDT 2025 Mon Jun 30 08:18:43 EDT 2025 Wed Feb 19 02:36:33 EST 2025 Thu Apr 24 22:55:09 EDT 2025 Tue Jul 01 03:26:33 EDT 2025 Wed Aug 27 02:59:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-7f0c3a24810d55398ae57004ac722e2804456555cbcd3a640e6a4dec5facd76c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2818-7327 0000-0001-5514-021X 0000-0001-9575-8831 0000-0001-8863-6385 0000-0003-0623-963X |
PMID | 30371386 |
PQID | 2162805932 |
PQPubID | 85510 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2162805932 ieee_primary_8510921 pubmed_primary_30371386 crossref_citationtrail_10_1109_TBCAS_2018_2878395 crossref_primary_10_1109_TBCAS_2018_2878395 proquest_miscellaneous_2126903091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical circuits and systems |
PublicationTitleAbbrev | TBCAS |
PublicationTitleAlternate | IEEE Trans Biomed Circuits Syst |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref16 ref19 ref18 ref24 ref23 ref26 labs (ref6) 2018 ref25 ref20 ref22 ref21 russo (ref38) 2017; 17 ref28 ref27 ref29 ref8 ref7 ref9 li (ref15) 0 ref4 ref3 ref5 |
References_xml | – start-page: 4243 year: 0 ident: ref15 article-title: Performance of electromyography recorded using textile electrodes in classifying arm movements publication-title: Proc IEEE Eng Med Biol Conf – ident: ref32 doi: 10.1109/JSEN.2013.2251628 – ident: ref35 doi: 10.1109/TNSRE.2013.2279737 – ident: ref18 doi: 10.1109/IEMBS.2011.6090909 – ident: ref31 doi: 10.1109/10.310086 – volume: 17 start-page: 1999 year: 2017 ident: ref38 article-title: A quantitative evaluation of drive pattern selection for optimizing EIT-based stretchable sensors publication-title: SENSORS doi: 10.3390/s17091999 – ident: ref1 doi: 10.1016/j.ergon.2017.02.004 – ident: ref28 doi: 10.1109/TBCAS.2013.2285481 – ident: ref10 doi: 10.1109/TNSRE.2011.2108667 – ident: ref26 doi: 10.1109/ISCAS.2018.8351296 – year: 2018 ident: ref6 article-title: Myo: A wearable gesture control and motion control device – ident: ref12 doi: 10.1109/TBCAS.2013.2285567 – ident: ref36 doi: 10.1088/0967-3334/20/4/201 – ident: ref21 doi: 10.1109/TBME.2010.2052618 – ident: ref24 doi: 10.1145/2807442.2807480 – ident: ref23 doi: 10.1088/0143-0815/13/A/002 – ident: ref8 doi: 10.1109/NEUREL.2006.341203 – ident: ref33 doi: 10.1088/1741-2560/12/4/046005 – ident: ref7 doi: 10.1109/IROS.2007.4399301 – ident: ref20 doi: 10.1016/j.jneumeth.2014.07.016 – ident: ref5 doi: 10.1109/TNSRE.2012.2196711 – ident: ref39 doi: 10.1088/0967-3334/37/6/785 – ident: ref4 doi: 10.1109/TBCAS.2018.2810182 – ident: ref11 doi: 10.1109/TMECH.2014.2360119 – ident: ref17 doi: 10.3389/fnbot.2016.00009 – ident: ref27 doi: 10.1088/0967-3334/30/10/001 – ident: ref3 doi: 10.1109/FG.2015.7163132 – ident: ref25 doi: 10.1145/2984511.2984574 – ident: ref29 doi: 10.1109/ESSCIRC.2017.8094567 – ident: ref19 doi: 10.1007/s00422-008-0278-1 – ident: ref14 doi: 10.1109/IEMBS.2009.5332520 – ident: ref9 doi: 10.1007/s11517-012-1024-3 – ident: ref13 doi: 10.1109/TBCAS.2015.2476555 – ident: ref37 doi: 10.1093/acprof:oso/9780195058239.001.0001 – ident: ref16 doi: 10.1109/TBME.2008.919734 – ident: ref34 doi: 10.1109/TNSRE.2009.2023282 – ident: ref2 doi: 10.1007/s10462-012-9356-9 – ident: ref30 doi: 10.1109/TCSI.2010.2078850 – ident: ref22 doi: 10.1088/0967-3334/36/6/1337 |
SSID | ssj0056292 |
Score | 2.4576051 |
Snippet | This paper presents a human-machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance... This paper presents a human–machine interface that establishes a link between the user and a hand prosthesis. It successfully uses electrical impedance... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1322 |
SubjectTerms | Acidity Analog circuits Application specific integrated circuits Artificial neural networks Current driver Current measurement Electrical impedance electrical impedance tomography Electrodes Forearm Hand hand prosthesis control human–machine interface Impedance Instrumentation instrumentation amplifier Integrated circuits Muscles Neural networks Power supplies Prostheses Prosthetics Real time operation Sodium channels Switching theory Tomography Voltage measurement |
Title | A Human-Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control |
URI | https://ieeexplore.ieee.org/document/8510921 https://www.ncbi.nlm.nih.gov/pubmed/30371386 https://www.proquest.com/docview/2162805932 https://www.proquest.com/docview/2126903091 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bp3KgtJSyBSpX4tZmcfxInOOyAm0rbYXURULiEDn2rKgKWdTdvfTX43EeahGteosUx7E9Y_vzeOYbgBOnzXzuvE8USp4oWYV1MC98UnhvuPdhiiHZIadfs8mV-nKtrzfgUx8Lg4jR-QyH9Bjv8v3CrclUdhrQAS8oanwzHNyaWK1u1Q3beEyATHiEeLx1FyDDi9PZ2Xj0jby4zDCcDwIi0H9sQjGryt8BZtxoLl7CtGti41_yY7heVUP36wl74__2YRd2WsTJRo2KvIINrF_D9m88hHtwM2LRmJ9Mo2slsmgnnFuHLLoUsPOYLIfkyT4HnO1JVdhscd_yXbOAfNnE1p5dUhDJLS6_L9m4cYJ_A1cX57PxJGmzLiROpfkqyefcSSuUSbnXWhbGYuTAty4XAoXhikCg1q5yXtpMccys8uh0aJXPMyf3Yate1HgAzAufWeGsqYxQmktbBXyVC1dZXaVOiwGknRhK11KSU2aMuzIeTXhRRtGVJLqyFd0APvbfPDSEHP8svUci6Eu2oz-Ao07aZTtnl6VIs9A7HRRoAB_612G20RWKrXGxpjIiK-hWKlTxttGSvm5J7IfSZO-e_-chvKCWNa4wR7C1-rnG4wBoVtX7qMmPBpDwJw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V7aFwAEp5LC3USNwgW8ePxDkuq1bb0q2Q2EqVOESOPSuqQrbq7l766-txHgIEiFukOI7tGdufxzPfALxz2sznzvtEoeSJklVYB_PCJ4X3hnsfphiSHXJ6nk0u1OmlvtyAD30sDCJG5zMc0mO8y_cLtyZT2WFAB7ygqPEtTcG4TbRWt-6GjTymQCZEQkzeuguR4cXh7ON49IX8uMwwnBACJtC_bEMxr8rfIWbcao4fw7RrZONhcj1cr6qhu_uNv_F_e_EEHrWYk40aJdmBDayfwsOfmAh34euIRXN-Mo3OlciipXBuHbLoVMCOYrockig7CUjbk7Kw2eJHy3jNAvZlE1t79pnCSL7h8mrJxo0b_DO4OD6ajSdJm3chcSrNV0k-505aoUzKvdayMBYjC751uRAoDFcEA7V2lfPSZopjZpVHp0OrfJ45-Rw260WNL4F54TMrnDWVEUpzaauAsHLhKqur1GkxgLQTQ-laUnLKjfG9jIcTXpRRdCWJrmxFN4D3_Tc3DSXHP0vvkgj6ku3oD2C_k3bZztplKdIs9E4HBRrA2_51mG90iWJrXKypjMgKupcKVbxotKSvWxL_oTTZqz__8wC2J7PpWXl2cv5pDx5QKxvHmH3YXN2u8XWAN6vqTdTqe7Fj828 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Human%E2%80%93Machine+Interface+Using+Electrical+Impedance+Tomography+for+Hand+Prosthesis+Control&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Wu%2C+Yu&rft.au=Jiang%2C+Dai&rft.au=Liu%2C+Xiao&rft.au=Bayford%2C+Richard&rft.date=2018-12-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=12&rft.issue=6&rft.spage=1322&rft.epage=1333&rft_id=info:doi/10.1109%2FTBCAS.2018.2878395&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBCAS_2018_2878395 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon |