Buckling vs. particle desorption in a particle-covered drop subject to compressive surface stresses: a simulation study

Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 14; no. 5; pp. 711 - 724
Main Authors Gu, Chuan, Botto, Lorenzo
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Π s / γ of particle-induced surface pressure and bare surface tension, the ratio a / R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption.
AbstractList Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Πs/γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption.Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Πs/γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption.
Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Π /γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption.
Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Πs/γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption.
Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Π s / γ of particle-induced surface pressure and bare surface tension, the ratio a / R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption.
Author Gu, Chuan
Botto, Lorenzo
Author_xml – sequence: 1
  givenname: Chuan
  surname: Gu
  fullname: Gu, Chuan
  organization: Queen Mary University of London, School of Engineering and Materials Science, London, UK
– sequence: 2
  givenname: Lorenzo
  orcidid: 0000-0002-7727-5155
  surname: Botto
  fullname: Botto, Lorenzo
  organization: Queen Mary University of London, School of Engineering and Materials Science, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29354834$$D View this record in MEDLINE/PubMed
BookMark eNptkU1r3DAQhkVIyGaTXvIDiqCXEnA6suUP9dYs-YKEHtJCb0aWRkVb23IleUP-fbzZZANLTjO87zMvw8yc7PeuR0JOGZwzyMS3RflwD0yw9GKPHLGS86SoeLW_7bM_MzIPYQmQVZwVh2SWiiznVcaPyOPFqP61tv9LV-GcDtJHq1qkGoPzQ7Sup7ancmskyq3Qo6bau4GGsVmiijQ6qlw3eAzBrnCSvZFqqnGtYPg-BQTbja18CQxx1E8n5MDINuCn13pMfl9d_lrcJHc_r28XP-4SxVkZkxK1BFY1BZpcFqoEI7DkhmWgOeZNqkE0UuqyyfOCa96kjcmkmgwDojBSZ8fk6yZ38O7_iCHWnQ0K21b26MZQM1EJwQoANqFfdtClG30_bVenwEBAKoo19fmVGpsOdT1420n_VL-ddALONoDyLgSPZoswqNf_qt__NcGwAysbX84UvbTtRyPPFoeZMA
CitedBy_id crossref_primary_10_1021_acs_langmuir_0c02800
crossref_primary_10_1039_D4SM01342E
crossref_primary_10_1016_j_cocis_2019_02_007
crossref_primary_10_1146_annurev_fluid_030322_015150
crossref_primary_10_1038_s41467_018_06049_9
crossref_primary_10_1016_j_jcis_2020_07_110
crossref_primary_10_1007_s11666_019_00962_1
crossref_primary_10_1007_s11666_024_01905_1
crossref_primary_10_1016_j_cocis_2024_101868
crossref_primary_10_4011_shikizai_94_133
crossref_primary_10_1016_j_jcis_2023_07_159
crossref_primary_10_1017_jfm_2022_545
crossref_primary_10_1021_acsnano_1c00955
crossref_primary_10_1021_acsami_9b05194
crossref_primary_10_1039_D1SM00125F
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119791
crossref_primary_10_1016_j_jcp_2023_112476
crossref_primary_10_1103_PhysRevFluids_6_093601
Cites_doi 10.1021/la060388x
10.1021/la0507378
10.1016/0032-5910(93)85010-7
10.1103/PhysRevE.91.012407
10.1021/la402322g
10.1073/pnas.0902160106
10.1039/C7NR01911D
10.1006/jcis.1996.0517
10.1021/la020300p
10.1021/la0103315
10.1016/j.jcis.2012.07.047
10.1140/epje/i2015-15048-9
10.1016/j.ces.2005.10.035
10.1039/C5SM02374B
10.1016/j.jcp.2006.03.016
10.1021/la060696v
10.1021/acs.langmuir.5b01652
10.1006/jcph.1999.6332
10.1073/pnas.1504776112
10.1016/j.ces.2003.09.037
10.1017/jfm.2016.842
10.1017/CBO9780511536670
10.1016/j.ces.2006.12.089
10.1016/j.jcis.2013.03.047
10.1039/C7SM00097A
10.1126/science.1074868
10.1021/la103874z
10.1039/c2sm25859e
10.1038/nature09620
10.1214/aoms/1177692644
10.1016/S1359-0294(02)00008-0
10.1017/S0022112009992679
10.1017/S0022112004000370
10.1039/C5SM00540J
10.1126/science.1116589
10.1021/la202954c
10.1103/PhysRevLett.99.188301
10.1021/acs.langmuir.5b03480
10.1016/j.cocis.2009.11.001
10.1038/nmat4202
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1039/C7SM01912B
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
EndPage 724
ExternalDocumentID 29354834
10_1039_C7SM01912B
Genre Journal Article
GroupedDBID 0-7
0R~
0UZ
123
1TJ
4.4
53G
705
70~
71~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACPRK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C1A
C6K
CITATION
CS3
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
J3G
J3H
J3I
KZ1
L-8
M4U
N9A
NDZJH
O9-
P2P
R56
R7B
RAOCF
RCLXC
RCNCU
RNS
RPMJG
RSCEA
SKA
SLH
VH6
XJT
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-7eda018b6ef5a6c70f9e74f130d4e5b2d09baad7b5564d4b2bf3ac5b2f096fad3
ISSN 1744-683X
1744-6848
IngestDate Thu Jul 10 17:22:46 EDT 2025
Mon Jun 30 12:05:28 EDT 2025
Thu Apr 03 07:06:36 EDT 2025
Tue Jul 01 03:13:10 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-7eda018b6ef5a6c70f9e74f130d4e5b2d09baad7b5564d4b2bf3ac5b2f096fad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7727-5155
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2018/sm/c7sm01912b
PMID 29354834
PQID 2010902961
PQPubID 2047495
PageCount 14
ParticipantIDs proquest_miscellaneous_1989916001
proquest_journals_2010902961
pubmed_primary_29354834
crossref_primary_10_1039_C7SM01912B
crossref_citationtrail_10_1039_C7SM01912B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Soft matter
PublicationTitleAlternate Soft Matter
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Knoche (C7SM01912B-(cit17)/*[position()=1]) 2013; 29
Ettelaie (C7SM01912B-(cit29)/*[position()=1]) 2015; 11
Stratford (C7SM01912B-(cit7)/*[position()=1]) 2005; 309
Yue (C7SM01912B-(cit32)/*[position()=1]) 2010; 645
Binks (C7SM01912B-(cit3)/*[position()=1]) 2006
Aumaitre (C7SM01912B-(cit37)/*[position()=1]) 2013
Dinsmore (C7SM01912B-(cit4)/*[position()=1]) 2002; 298
Khatavkar (C7SM01912B-(cit33)/*[position()=1]) 2006; 61
Di Renzo (C7SM01912B-(cit25)/*[position()=1]) 2004; 59
Pitois (C7SM01912B-(cit13)/*[position()=1]) 2015; 38
O'brien (C7SM01912B-(cit27)/*[position()=1]) 1996; 183
Hohlfeld (C7SM01912B-(cit43)/*[position()=1]) 2015; 91
Stephenson (C7SM01912B-(cit39)/*[position()=1]) 2005
Binks (C7SM01912B-(cit30)/*[position()=1]) 2001; 17
Vella (C7SM01912B-(cit41)/*[position()=1]) 2009; 106
Beltramo (C7SM01912B-(cit18)/*[position()=1]) 2017
Zhu (C7SM01912B-(cit26)/*[position()=1]) 2007; 62
Ebata (C7SM01912B-(cit42)/*[position()=1]) 2012; 8
Marsaglia (C7SM01912B-(cit36)/*[position()=1]) 1972; 43
Poulichet (C7SM01912B-(cit1)/*[position()=1]) 2015; 31
Jacqmin (C7SM01912B-(cit31)/*[position()=1]) 1999; 155
Pope (C7SM01912B-(cit35)/*[position()=1]) 2001
Cheng (C7SM01912B-(cit20)/*[position()=1]) 2013; 402
Garbin (C7SM01912B-(cit5)/*[position()=1]) 2012; 387
Subramaniam (C7SM01912B-(cit11)/*[position()=1]) 2006; 22
Razavi (C7SM01912B-(cit9)/*[position()=1]) 2015; 31
Yue (C7SM01912B-(cit34)/*[position()=1]) 2006; 219
Binks (C7SM01912B-(cit2)/*[position()=1]) 2002; 7
Xu (C7SM01912B-(cit15)/*[position()=1]) 2005; 21
Prabhudesai (C7SM01912B-(cit44)/*[position()=1]) 2017
Pitois (C7SM01912B-(cit28)/*[position()=1]) 2002; 18
Garbin (C7SM01912B-(cit8)/*[position()=1]) 2011; 28
Abkarian (C7SM01912B-(cit16)/*[position()=1]) 2007; 99
Yue (C7SM01912B-(cit23)/*[position()=1]) 2004; 515
Stoop (C7SM01912B-(cit40)/*[position()=1]) 2015; 14
Poulichet (C7SM01912B-(cit12)/*[position()=1]) 2015; 112
Irvine (C7SM01912B-(cit38)/*[position()=1]) 2010; 468
Datta (C7SM01912B-(cit22)/*[position()=1]) 2010; 26
Taccoen (C7SM01912B-(cit14)/*[position()=1]) 2016; 6
Bordács (C7SM01912B-(cit10)/*[position()=1]) 2006; 22
Gu (C7SM01912B-(cit21)/*[position()=1]) 2016; 12
Dickinson (C7SM01912B-(cit6)/*[position()=1]) 2010; 15
Sicard (C7SM01912B-(cit19)/*[position()=1]) 2017
Vidal (C7SM01912B-(cit45)/*[position()=1]) 2017; 813
Tsuji (C7SM01912B-(cit24)/*[position()=1]) 1993; 77
References_xml – volume: 22
  start-page: 5986
  year: 2006
  ident: C7SM01912B-(cit11)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la060388x
– volume: 21
  start-page: 10016
  year: 2005
  ident: C7SM01912B-(cit15)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0507378
– volume: 77
  start-page: 79
  year: 1993
  ident: C7SM01912B-(cit24)/*[position()=1]
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(93)85010-7
– volume: 91
  start-page: 012407
  year: 2015
  ident: C7SM01912B-(cit43)/*[position()=1]
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.91.012407
– volume: 29
  start-page: 12463
  year: 2013
  ident: C7SM01912B-(cit17)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la402322g
– volume-title: Turbulent flows
  year: 2001
  ident: C7SM01912B-(cit35)/*[position()=1]
– volume: 106
  start-page: 10901
  year: 2009
  ident: C7SM01912B-(cit41)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0902160106
– start-page: 8567
  year: 2017
  ident: C7SM01912B-(cit19)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR01911D
– volume: 183
  start-page: 51
  year: 1996
  ident: C7SM01912B-(cit27)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0517
– volume: 18
  start-page: 9751
  year: 2002
  ident: C7SM01912B-(cit28)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la020300p
– volume: 17
  start-page: 4708
  year: 2001
  ident: C7SM01912B-(cit30)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0103315
– start-page: p1
  year: 2013
  ident: C7SM01912B-(cit37)/*[position()=1]
  publication-title: EPL
– volume: 387
  start-page: 1
  year: 2012
  ident: C7SM01912B-(cit5)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.07.047
– volume: 38
  start-page: 1
  year: 2015
  ident: C7SM01912B-(cit13)/*[position()=1]
  publication-title: Eur. Phys. J. E: Soft Matter Biol. Phys.
  doi: 10.1140/epje/i2015-15048-9
– volume: 61
  start-page: 2364
  year: 2006
  ident: C7SM01912B-(cit33)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2005.10.035
– volume: 12
  start-page: 705
  year: 2016
  ident: C7SM01912B-(cit21)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C5SM02374B
– volume: 219
  start-page: 47
  year: 2006
  ident: C7SM01912B-(cit34)/*[position()=1]
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.03.016
– volume: 22
  start-page: 6944
  year: 2006
  ident: C7SM01912B-(cit10)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la060696v
– volume: 6
  start-page: 011010
  year: 2016
  ident: C7SM01912B-(cit14)/*[position()=1]
  publication-title: Phys. Rev. X
– volume: 31
  start-page: 7764
  year: 2015
  ident: C7SM01912B-(cit9)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b01652
– volume: 155
  start-page: 96
  year: 1999
  ident: C7SM01912B-(cit31)/*[position()=1]
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6332
– volume: 112
  start-page: 5932
  year: 2015
  ident: C7SM01912B-(cit12)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1504776112
– volume: 59
  start-page: 525
  year: 2004
  ident: C7SM01912B-(cit25)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2003.09.037
– volume: 813
  start-page: 152
  year: 2017
  ident: C7SM01912B-(cit45)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.842
– volume-title: Colloidal particles at liquid interfaces
  year: 2006
  ident: C7SM01912B-(cit3)/*[position()=1]
  doi: 10.1017/CBO9780511536670
– volume: 62
  start-page: 3378
  year: 2007
  ident: C7SM01912B-(cit26)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.12.089
– start-page: 201705181
  year: 2017
  ident: C7SM01912B-(cit18)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 402
  start-page: 267
  year: 2013
  ident: C7SM01912B-(cit20)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2013.03.047
– start-page: 3879
  year: 2017
  ident: C7SM01912B-(cit44)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C7SM00097A
– volume: 298
  start-page: 1006
  year: 2002
  ident: C7SM01912B-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1074868
– volume: 26
  start-page: 18612
  year: 2010
  ident: C7SM01912B-(cit22)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la103874z
– volume: 8
  start-page: 9086
  year: 2012
  ident: C7SM01912B-(cit42)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c2sm25859e
– volume: 468
  start-page: 947
  year: 2010
  ident: C7SM01912B-(cit38)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature09620
– volume: 43
  start-page: 645
  year: 1972
  ident: C7SM01912B-(cit36)/*[position()=1]
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177692644
– volume: 7
  start-page: 21
  year: 2002
  ident: C7SM01912B-(cit2)/*[position()=1]
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/S1359-0294(02)00008-0
– volume: 645
  start-page: 279
  year: 2010
  ident: C7SM01912B-(cit32)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009992679
– volume: 515
  start-page: 293
  year: 2004
  ident: C7SM01912B-(cit23)/*[position()=1]
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004000370
– volume: 11
  start-page: 4251
  year: 2015
  ident: C7SM01912B-(cit29)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/C5SM00540J
– volume: 309
  start-page: 2198
  year: 2005
  ident: C7SM01912B-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1116589
– volume: 28
  start-page: 1663
  year: 2011
  ident: C7SM01912B-(cit8)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la202954c
– volume: 99
  start-page: 188301
  year: 2007
  ident: C7SM01912B-(cit16)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.188301
– volume-title: Introduction to circle packing: The theory of discrete analytic functions
  year: 2005
  ident: C7SM01912B-(cit39)/*[position()=1]
– volume: 31
  start-page: 12035
  year: 2015
  ident: C7SM01912B-(cit1)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b03480
– volume: 15
  start-page: 40
  year: 2010
  ident: C7SM01912B-(cit6)/*[position()=1]
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2009.11.001
– volume: 14
  start-page: 337
  year: 2015
  ident: C7SM01912B-(cit40)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4202
SSID ssj0038416
Score 2.3280263
Snippet Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 711
SubjectTerms Adhesion
Adhesive strength
Buckling
Compression
Compressive properties
Curvature
Desorption
Foams
Interfaces
Monolayers
Parameters
Pressure
Simulation
Stability
Stresses
Surface tension
Time compression
Title Buckling vs. particle desorption in a particle-covered drop subject to compressive surface stresses: a simulation study
URI https://www.ncbi.nlm.nih.gov/pubmed/29354834
https://www.proquest.com/docview/2010902961
https://www.proquest.com/docview/1989916001
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMAt6ITEC-J7hYGM4AVVGWni2DVv29QxUDceaKW-Rf6UhmhSNemQ9tdzjuM2gyINXqLKdtwoP-d8Z9-dEXrHXNZyndmIWkUjMtIyEmnKIxVrzSnMR-nQxQ6fX9CzGfkyz-bhoO02uqSWh-p6Z1zJ_1CFMuDqomT_geymUyiA38AXrkAYrrdi3GzMOlv_qjocLNsGA22qcrUMToxiUxEp564JCqZelctBtZZuCcbpns6tvHGHvTJQvLKiSTvbZBWvfDB0dbloj_nq5KP9HgJ8bT1YiLrj5_tp7Xfy19uhd1zWzYFNg0m5MsV12V1tuCEaGSERHfm8mIdmR1mQp6QzbrKOcGRerP4htOPU5TxVrFqAvjlM5HZqCtvxF1_z09lkkk_H8-ldtJeASZD00N7RePp5Eubd1G2g-vBX_0whGW3KP2z7vql-_MWmaHSL6UP0oDUK8JHn9AjdMcVjdK9xzlXVE_QzcMbAGQeceMsZXxZY4N85Y8cZt5xxXeIOZ9xyxoHzR-hgSxk3lJ-i2el4enIWtQdmRIoMWR0xowUwk9TYTFDFYssNIxbUFE1MJhMdcymEZjLLKNFEJtKmQkGFBUPWCp0-Q72iLMw-wpZLlXAmDbecxMSOKBVONYyJzJQmtI_eh_eYqzabvDvU5EfeeDWkPD9h386bd37cR283bZc-h8rOVgcBR95-Y1WeeMdhTod99GZTDRLQbWuJwpTrKndef2DkgL7VR889xs3fwBNnbrn8xS3ufonuuxHv19cOUK9erc0r0Dhr-bodar8AWUCIXQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buckling+vs.+particle+desorption+in+a+particle-covered+drop+subject+to+compressive+surface+stresses%3A+a+simulation+study&rft.jtitle=Soft+matter&rft.au=Gu%2C+Chuan&rft.au=Botto%2C+Lorenzo&rft.date=2018&rft.issn=1744-6848&rft.eissn=1744-6848&rft.volume=14&rft.issue=5&rft.spage=711&rft_id=info:doi/10.1039%2Fc7sm01912b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon