Buckling vs. particle desorption in a particle-covered drop subject to compressive surface stresses: a simulation study
Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When...
Saved in:
Published in | Soft matter Vol. 14; no. 5; pp. 711 - 724 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio
Π
s
/
γ
of particle-induced surface pressure and bare surface tension, the ratio
a
/
R
of particle and drop radii, and the parameter
f
characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption. |
---|---|
AbstractList | Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Πs/γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption.Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Πs/γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption. Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Π /γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption. Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Πs/γ of particle-induced surface pressure and bare surface tension, the ratio a/R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption. Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of particles to drops and bubbles is exploited for example to enhance the stability of foams and emulsion and develop new generation materials. When a particle-covered fluid interface is compressed, one can observe either smooth buckling or particle desorption from the interface. The microscopic mechanisms leading to the buckling-to-desorption transition are not fully understood. In this paper we simulate a spherical drop covered by a monolayer of spherical particles. The particle-covered interface is subject to time-dependent compressive surface stresses that mimic the slow deflation of the drop. The buckling-to-desorption transition depends in a non-trivial way on three non-dimensional parameters: the ratio Π s / γ of particle-induced surface pressure and bare surface tension, the ratio a / R of particle and drop radii, and the parameter f characterising the strength of adhesion of each particle to the interface. Based on the insights from the simulations, we propose a configuration diagram describing the effect of these controlling parameters. We find that particle desorption is highly correlated with a mechanical instability that produces small-scale undulations of the monolayer of the order of the particle size that grow when the surface pressure is sufficiently large. We argue that the large local curvature associated with these small undulations can produce large normal forces, enhancing the probability of desorption. |
Author | Gu, Chuan Botto, Lorenzo |
Author_xml | – sequence: 1 givenname: Chuan surname: Gu fullname: Gu, Chuan organization: Queen Mary University of London, School of Engineering and Materials Science, London, UK – sequence: 2 givenname: Lorenzo orcidid: 0000-0002-7727-5155 surname: Botto fullname: Botto, Lorenzo organization: Queen Mary University of London, School of Engineering and Materials Science, London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29354834$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1r3DAQhkVIyGaTXvIDiqCXEnA6suUP9dYs-YKEHtJCb0aWRkVb23IleUP-fbzZZANLTjO87zMvw8yc7PeuR0JOGZwzyMS3RflwD0yw9GKPHLGS86SoeLW_7bM_MzIPYQmQVZwVh2SWiiznVcaPyOPFqP61tv9LV-GcDtJHq1qkGoPzQ7Sup7ancmskyq3Qo6bau4GGsVmiijQ6qlw3eAzBrnCSvZFqqnGtYPg-BQTbja18CQxx1E8n5MDINuCn13pMfl9d_lrcJHc_r28XP-4SxVkZkxK1BFY1BZpcFqoEI7DkhmWgOeZNqkE0UuqyyfOCa96kjcmkmgwDojBSZ8fk6yZ38O7_iCHWnQ0K21b26MZQM1EJwQoANqFfdtClG30_bVenwEBAKoo19fmVGpsOdT1420n_VL-ddALONoDyLgSPZoswqNf_qt__NcGwAysbX84UvbTtRyPPFoeZMA |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_0c02800 crossref_primary_10_1039_D4SM01342E crossref_primary_10_1016_j_cocis_2019_02_007 crossref_primary_10_1146_annurev_fluid_030322_015150 crossref_primary_10_1038_s41467_018_06049_9 crossref_primary_10_1016_j_jcis_2020_07_110 crossref_primary_10_1007_s11666_019_00962_1 crossref_primary_10_1007_s11666_024_01905_1 crossref_primary_10_1016_j_cocis_2024_101868 crossref_primary_10_4011_shikizai_94_133 crossref_primary_10_1016_j_jcis_2023_07_159 crossref_primary_10_1017_jfm_2022_545 crossref_primary_10_1021_acsnano_1c00955 crossref_primary_10_1021_acsami_9b05194 crossref_primary_10_1039_D1SM00125F crossref_primary_10_1016_j_ijheatmasstransfer_2020_119791 crossref_primary_10_1016_j_jcp_2023_112476 crossref_primary_10_1103_PhysRevFluids_6_093601 |
Cites_doi | 10.1021/la060388x 10.1021/la0507378 10.1016/0032-5910(93)85010-7 10.1103/PhysRevE.91.012407 10.1021/la402322g 10.1073/pnas.0902160106 10.1039/C7NR01911D 10.1006/jcis.1996.0517 10.1021/la020300p 10.1021/la0103315 10.1016/j.jcis.2012.07.047 10.1140/epje/i2015-15048-9 10.1016/j.ces.2005.10.035 10.1039/C5SM02374B 10.1016/j.jcp.2006.03.016 10.1021/la060696v 10.1021/acs.langmuir.5b01652 10.1006/jcph.1999.6332 10.1073/pnas.1504776112 10.1016/j.ces.2003.09.037 10.1017/jfm.2016.842 10.1017/CBO9780511536670 10.1016/j.ces.2006.12.089 10.1016/j.jcis.2013.03.047 10.1039/C7SM00097A 10.1126/science.1074868 10.1021/la103874z 10.1039/c2sm25859e 10.1038/nature09620 10.1214/aoms/1177692644 10.1016/S1359-0294(02)00008-0 10.1017/S0022112009992679 10.1017/S0022112004000370 10.1039/C5SM00540J 10.1126/science.1116589 10.1021/la202954c 10.1103/PhysRevLett.99.188301 10.1021/acs.langmuir.5b03480 10.1016/j.cocis.2009.11.001 10.1038/nmat4202 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1039/C7SM01912B |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1744-6848 |
EndPage | 724 |
ExternalDocumentID | 29354834 10_1039_C7SM01912B |
Genre | Journal Article |
GroupedDBID | 0-7 0R~ 0UZ 123 1TJ 4.4 53G 705 70~ 71~ 7~J AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACPRK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AVWKF AZFZN BBWZM BLAPV BSQNT C1A C6K CITATION CS3 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N J3G J3H J3I KZ1 L-8 M4U N9A NDZJH O9- P2P R56 R7B RAOCF RCLXC RCNCU RNS RPMJG RSCEA SKA SLH VH6 XJT NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c417t-7eda018b6ef5a6c70f9e74f130d4e5b2d09baad7b5564d4b2bf3ac5b2f096fad3 |
ISSN | 1744-683X 1744-6848 |
IngestDate | Thu Jul 10 17:22:46 EDT 2025 Mon Jun 30 12:05:28 EDT 2025 Thu Apr 03 07:06:36 EDT 2025 Tue Jul 01 03:13:10 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-7eda018b6ef5a6c70f9e74f130d4e5b2d09baad7b5564d4b2bf3ac5b2f096fad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7727-5155 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2018/sm/c7sm01912b |
PMID | 29354834 |
PQID | 2010902961 |
PQPubID | 2047495 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1989916001 proquest_journals_2010902961 pubmed_primary_29354834 crossref_primary_10_1039_C7SM01912B crossref_citationtrail_10_1039_C7SM01912B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Soft matter |
PublicationTitleAlternate | Soft Matter |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Knoche (C7SM01912B-(cit17)/*[position()=1]) 2013; 29 Ettelaie (C7SM01912B-(cit29)/*[position()=1]) 2015; 11 Stratford (C7SM01912B-(cit7)/*[position()=1]) 2005; 309 Yue (C7SM01912B-(cit32)/*[position()=1]) 2010; 645 Binks (C7SM01912B-(cit3)/*[position()=1]) 2006 Aumaitre (C7SM01912B-(cit37)/*[position()=1]) 2013 Dinsmore (C7SM01912B-(cit4)/*[position()=1]) 2002; 298 Khatavkar (C7SM01912B-(cit33)/*[position()=1]) 2006; 61 Di Renzo (C7SM01912B-(cit25)/*[position()=1]) 2004; 59 Pitois (C7SM01912B-(cit13)/*[position()=1]) 2015; 38 O'brien (C7SM01912B-(cit27)/*[position()=1]) 1996; 183 Hohlfeld (C7SM01912B-(cit43)/*[position()=1]) 2015; 91 Stephenson (C7SM01912B-(cit39)/*[position()=1]) 2005 Binks (C7SM01912B-(cit30)/*[position()=1]) 2001; 17 Vella (C7SM01912B-(cit41)/*[position()=1]) 2009; 106 Beltramo (C7SM01912B-(cit18)/*[position()=1]) 2017 Zhu (C7SM01912B-(cit26)/*[position()=1]) 2007; 62 Ebata (C7SM01912B-(cit42)/*[position()=1]) 2012; 8 Marsaglia (C7SM01912B-(cit36)/*[position()=1]) 1972; 43 Poulichet (C7SM01912B-(cit1)/*[position()=1]) 2015; 31 Jacqmin (C7SM01912B-(cit31)/*[position()=1]) 1999; 155 Pope (C7SM01912B-(cit35)/*[position()=1]) 2001 Cheng (C7SM01912B-(cit20)/*[position()=1]) 2013; 402 Garbin (C7SM01912B-(cit5)/*[position()=1]) 2012; 387 Subramaniam (C7SM01912B-(cit11)/*[position()=1]) 2006; 22 Razavi (C7SM01912B-(cit9)/*[position()=1]) 2015; 31 Yue (C7SM01912B-(cit34)/*[position()=1]) 2006; 219 Binks (C7SM01912B-(cit2)/*[position()=1]) 2002; 7 Xu (C7SM01912B-(cit15)/*[position()=1]) 2005; 21 Prabhudesai (C7SM01912B-(cit44)/*[position()=1]) 2017 Pitois (C7SM01912B-(cit28)/*[position()=1]) 2002; 18 Garbin (C7SM01912B-(cit8)/*[position()=1]) 2011; 28 Abkarian (C7SM01912B-(cit16)/*[position()=1]) 2007; 99 Yue (C7SM01912B-(cit23)/*[position()=1]) 2004; 515 Stoop (C7SM01912B-(cit40)/*[position()=1]) 2015; 14 Poulichet (C7SM01912B-(cit12)/*[position()=1]) 2015; 112 Irvine (C7SM01912B-(cit38)/*[position()=1]) 2010; 468 Datta (C7SM01912B-(cit22)/*[position()=1]) 2010; 26 Taccoen (C7SM01912B-(cit14)/*[position()=1]) 2016; 6 Bordács (C7SM01912B-(cit10)/*[position()=1]) 2006; 22 Gu (C7SM01912B-(cit21)/*[position()=1]) 2016; 12 Dickinson (C7SM01912B-(cit6)/*[position()=1]) 2010; 15 Sicard (C7SM01912B-(cit19)/*[position()=1]) 2017 Vidal (C7SM01912B-(cit45)/*[position()=1]) 2017; 813 Tsuji (C7SM01912B-(cit24)/*[position()=1]) 1993; 77 |
References_xml | – volume: 22 start-page: 5986 year: 2006 ident: C7SM01912B-(cit11)/*[position()=1] publication-title: Langmuir doi: 10.1021/la060388x – volume: 21 start-page: 10016 year: 2005 ident: C7SM01912B-(cit15)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0507378 – volume: 77 start-page: 79 year: 1993 ident: C7SM01912B-(cit24)/*[position()=1] publication-title: Powder Technol. doi: 10.1016/0032-5910(93)85010-7 – volume: 91 start-page: 012407 year: 2015 ident: C7SM01912B-(cit43)/*[position()=1] publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.91.012407 – volume: 29 start-page: 12463 year: 2013 ident: C7SM01912B-(cit17)/*[position()=1] publication-title: Langmuir doi: 10.1021/la402322g – volume-title: Turbulent flows year: 2001 ident: C7SM01912B-(cit35)/*[position()=1] – volume: 106 start-page: 10901 year: 2009 ident: C7SM01912B-(cit41)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0902160106 – start-page: 8567 year: 2017 ident: C7SM01912B-(cit19)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR01911D – volume: 183 start-page: 51 year: 1996 ident: C7SM01912B-(cit27)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0517 – volume: 18 start-page: 9751 year: 2002 ident: C7SM01912B-(cit28)/*[position()=1] publication-title: Langmuir doi: 10.1021/la020300p – volume: 17 start-page: 4708 year: 2001 ident: C7SM01912B-(cit30)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0103315 – start-page: p1 year: 2013 ident: C7SM01912B-(cit37)/*[position()=1] publication-title: EPL – volume: 387 start-page: 1 year: 2012 ident: C7SM01912B-(cit5)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.07.047 – volume: 38 start-page: 1 year: 2015 ident: C7SM01912B-(cit13)/*[position()=1] publication-title: Eur. Phys. J. E: Soft Matter Biol. Phys. doi: 10.1140/epje/i2015-15048-9 – volume: 61 start-page: 2364 year: 2006 ident: C7SM01912B-(cit33)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2005.10.035 – volume: 12 start-page: 705 year: 2016 ident: C7SM01912B-(cit21)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C5SM02374B – volume: 219 start-page: 47 year: 2006 ident: C7SM01912B-(cit34)/*[position()=1] publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.03.016 – volume: 22 start-page: 6944 year: 2006 ident: C7SM01912B-(cit10)/*[position()=1] publication-title: Langmuir doi: 10.1021/la060696v – volume: 6 start-page: 011010 year: 2016 ident: C7SM01912B-(cit14)/*[position()=1] publication-title: Phys. Rev. X – volume: 31 start-page: 7764 year: 2015 ident: C7SM01912B-(cit9)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.5b01652 – volume: 155 start-page: 96 year: 1999 ident: C7SM01912B-(cit31)/*[position()=1] publication-title: J. Comput. Phys. doi: 10.1006/jcph.1999.6332 – volume: 112 start-page: 5932 year: 2015 ident: C7SM01912B-(cit12)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1504776112 – volume: 59 start-page: 525 year: 2004 ident: C7SM01912B-(cit25)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2003.09.037 – volume: 813 start-page: 152 year: 2017 ident: C7SM01912B-(cit45)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.842 – volume-title: Colloidal particles at liquid interfaces year: 2006 ident: C7SM01912B-(cit3)/*[position()=1] doi: 10.1017/CBO9780511536670 – volume: 62 start-page: 3378 year: 2007 ident: C7SM01912B-(cit26)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.12.089 – start-page: 201705181 year: 2017 ident: C7SM01912B-(cit18)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 402 start-page: 267 year: 2013 ident: C7SM01912B-(cit20)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2013.03.047 – start-page: 3879 year: 2017 ident: C7SM01912B-(cit44)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C7SM00097A – volume: 298 start-page: 1006 year: 2002 ident: C7SM01912B-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1074868 – volume: 26 start-page: 18612 year: 2010 ident: C7SM01912B-(cit22)/*[position()=1] publication-title: Langmuir doi: 10.1021/la103874z – volume: 8 start-page: 9086 year: 2012 ident: C7SM01912B-(cit42)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c2sm25859e – volume: 468 start-page: 947 year: 2010 ident: C7SM01912B-(cit38)/*[position()=1] publication-title: Nature doi: 10.1038/nature09620 – volume: 43 start-page: 645 year: 1972 ident: C7SM01912B-(cit36)/*[position()=1] publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177692644 – volume: 7 start-page: 21 year: 2002 ident: C7SM01912B-(cit2)/*[position()=1] publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/S1359-0294(02)00008-0 – volume: 645 start-page: 279 year: 2010 ident: C7SM01912B-(cit32)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/S0022112009992679 – volume: 515 start-page: 293 year: 2004 ident: C7SM01912B-(cit23)/*[position()=1] publication-title: J. Fluid Mech. doi: 10.1017/S0022112004000370 – volume: 11 start-page: 4251 year: 2015 ident: C7SM01912B-(cit29)/*[position()=1] publication-title: Soft Matter doi: 10.1039/C5SM00540J – volume: 309 start-page: 2198 year: 2005 ident: C7SM01912B-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.1116589 – volume: 28 start-page: 1663 year: 2011 ident: C7SM01912B-(cit8)/*[position()=1] publication-title: Langmuir doi: 10.1021/la202954c – volume: 99 start-page: 188301 year: 2007 ident: C7SM01912B-(cit16)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.188301 – volume-title: Introduction to circle packing: The theory of discrete analytic functions year: 2005 ident: C7SM01912B-(cit39)/*[position()=1] – volume: 31 start-page: 12035 year: 2015 ident: C7SM01912B-(cit1)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.5b03480 – volume: 15 start-page: 40 year: 2010 ident: C7SM01912B-(cit6)/*[position()=1] publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2009.11.001 – volume: 14 start-page: 337 year: 2015 ident: C7SM01912B-(cit40)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4202 |
SSID | ssj0038416 |
Score | 2.3280263 |
Snippet | Predicting the behaviour of particle-covered fluid interfaces under compression has implications in several fields. The surface-tension driven adhesion of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 711 |
SubjectTerms | Adhesion Adhesive strength Buckling Compression Compressive properties Curvature Desorption Foams Interfaces Monolayers Parameters Pressure Simulation Stability Stresses Surface tension Time compression |
Title | Buckling vs. particle desorption in a particle-covered drop subject to compressive surface stresses: a simulation study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29354834 https://www.proquest.com/docview/2010902961 https://www.proquest.com/docview/1989916001 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMAt6ITEC-J7hYGM4AVVGWni2DVv29QxUDceaKW-Rf6UhmhSNemQ9tdzjuM2gyINXqLKdtwoP-d8Z9-dEXrHXNZyndmIWkUjMtIyEmnKIxVrzSnMR-nQxQ6fX9CzGfkyz-bhoO02uqSWh-p6Z1zJ_1CFMuDqomT_geymUyiA38AXrkAYrrdi3GzMOlv_qjocLNsGA22qcrUMToxiUxEp564JCqZelctBtZZuCcbpns6tvHGHvTJQvLKiSTvbZBWvfDB0dbloj_nq5KP9HgJ8bT1YiLrj5_tp7Xfy19uhd1zWzYFNg0m5MsV12V1tuCEaGSERHfm8mIdmR1mQp6QzbrKOcGRerP4htOPU5TxVrFqAvjlM5HZqCtvxF1_z09lkkk_H8-ldtJeASZD00N7RePp5Eubd1G2g-vBX_0whGW3KP2z7vql-_MWmaHSL6UP0oDUK8JHn9AjdMcVjdK9xzlXVE_QzcMbAGQeceMsZXxZY4N85Y8cZt5xxXeIOZ9xyxoHzR-hgSxk3lJ-i2el4enIWtQdmRIoMWR0xowUwk9TYTFDFYssNIxbUFE1MJhMdcymEZjLLKNFEJtKmQkGFBUPWCp0-Q72iLMw-wpZLlXAmDbecxMSOKBVONYyJzJQmtI_eh_eYqzabvDvU5EfeeDWkPD9h386bd37cR283bZc-h8rOVgcBR95-Y1WeeMdhTod99GZTDRLQbWuJwpTrKndef2DkgL7VR889xs3fwBNnbrn8xS3ufonuuxHv19cOUK9erc0r0Dhr-bodar8AWUCIXQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buckling+vs.+particle+desorption+in+a+particle-covered+drop+subject+to+compressive+surface+stresses%3A+a+simulation+study&rft.jtitle=Soft+matter&rft.au=Gu%2C+Chuan&rft.au=Botto%2C+Lorenzo&rft.date=2018&rft.issn=1744-6848&rft.eissn=1744-6848&rft.volume=14&rft.issue=5&rft.spage=711&rft_id=info:doi/10.1039%2Fc7sm01912b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-683X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-683X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-683X&client=summon |