Structural response of fire-exposed laminated glass beams under sustained loads; exploratory experiments and FE-Simulations
This paper investigates the structural response of laminated glass beams under combined fire-exposure and sustained in-plane loading. This is done by means of experimental testing and Finite Element (FE) numerical modelling. Firstly, small-scale (1 m long) laminated glass beams are tested under ther...
Saved in:
Published in | Fire safety journal Vol. 123; p. 103353 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier Ltd
01.07.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0379-7112 1873-7226 |
DOI | 10.1016/j.firesaf.2021.103353 |
Cover
Abstract | This paper investigates the structural response of laminated glass beams under combined fire-exposure and sustained in-plane loading. This is done by means of experimental testing and Finite Element (FE) numerical modelling. Firstly, small-scale (1 m long) laminated glass beams are tested under thermal exposure and in-plane loading on a small fire resistance test furnace. From the test results it can be seen that laminated glass beams are able to sustain an imposed in-plane load for a time of 34–51 min before failing according to the limiting rate of deflection as defined in EN 1363–1:2012. It should be noted, however, that the observed failure times are strictly related to the boundary conditions applied in the test, i.e. the magnitude of mechanical loads (in this study a relatively small load of P = 1.15 kN was applied) and the presence of an inherent top zone protection, which may have positively affected the results. Secondly, additional FE thermo-mechanical simulations are performed to further investigate the mechanical response of the laminated glass beams under thermal exposure, with a focus on the effects of the top zone protection and the load magnitude on the performance of the examined laminated glass beams. From the FE study it can be seen that reducing the top zone protection (from 40 mm to 0 mm) results in a reduction in failure time from 45 min to 20 min, while increasing the load with a factor 5 (taking 30 mm top zone protection as a reference) results in a reduction of failure time from 32 to 18 min. |
---|---|
AbstractList | This paper investigates the structural response of laminated glass beams under combined fire-exposure and sustained in-plane loading. This is done by means of experimental testing and Finite Element (FE) numerical modelling. Firstly, small-scale (1 m long) laminated glass beams are tested under thermal exposure and in-plane loading on a small fire resistance test furnace. From the test results it can be seen that laminated glass beams are able to sustain an imposed in-plane load for a time of 34–51 min before failing according to the limiting rate of deflection as defined in EN 1363–1:2012. It should be noted, however, that the observed failure times are strictly related to the boundary conditions applied in the test, i.e. the magnitude of mechanical loads (in this study a relatively small load of P = 1.15 kN was applied) and the presence of an inherent top zone protection, which may have positively affected the results. Secondly, additional FE thermo-mechanical simulations are performed to further investigate the mechanical response of the laminated glass beams under thermal exposure, with a focus on the effects of the top zone protection and the load magnitude on the performance of the examined laminated glass beams. From the FE study it can be seen that reducing the top zone protection (from 40 mm to 0 mm) results in a reduction in failure time from 45 min to 20 min, while increasing the load with a factor 5 (taking 30 mm top zone protection as a reference) results in a reduction of failure time from 32 to 18 min. This paper investigates the structural response of laminated glass beams under combined fire-exposure and sustained in-plane loading. This is done by means of experimental testing and Finite Element (FE) numerical modelling. Firstly, small-scale (1 m long) laminated glass beams are tested under thermal exposure and in-plane loading on a small fire resistance test furnace. From the test results it can be seen that laminated glass beams are able to sustain an imposed in-plane load for a time of 34–51 min before failing according to the limiting rate of deflection as defined in EN 1363–1:2012. It should be noted, however, that the observed failure times are strictly related to the boundary conditions applied in the test, i.e. the magnitude of mechanical loads (in this study a relatively small load of P = 1.15 kN was applied) and the presence of an inherent top zone protection, which may have positively affected the results. Secondly, additional FE thermo-mechanical simulations are performed to further investigate the mechanical response of the laminated glass beams under thermal exposure, with a focus on the effects of the top zone protection and the load magnitude on the performance of the examined laminated glass beams. From the FE study it can be seen that reducing the top zone protection (from 40 mm to 0 mm) results in a reduction in failure time from 45 min to 20 min, while increasing the load with a factor 5 (taking 30 mm top zone protection as a reference) results in a reduction of failure time from 32 to 18 min. |
ArticleNumber | 103353 |
Author | Kozłowski, Marcin Louter, Christian Nussbaumer, Alain Bedon, Chiara |
Author_xml | – sequence: 1 givenname: Christian surname: Louter fullname: Louter, Christian email: christian.louter@tu-dresden.de organization: Institute of Building Construction, Faculty of Civil Engineering, Technische Universität Dresden, Germany – sequence: 2 givenname: Chiara surname: Bedon fullname: Bedon, Chiara organization: DIA – Department of Engineering and Architecture, University of Trieste, Trieste, Italy – sequence: 3 givenname: Marcin surname: Kozłowski fullname: Kozłowski, Marcin organization: Department of Structural Engineering, Faculty of Civil Engineering, Silesian University of Technology, Gliwice, Poland – sequence: 4 givenname: Alain surname: Nussbaumer fullname: Nussbaumer, Alain organization: Resilient Steel Structures Laboratory (RESSLab), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland |
BookMark | eNqFkUtr3DAUhUVJoZO0P6Eg6KYbT_SwrTFZlBKSNhDoIu1a3JGvigZbmurKpaF_vnInq2yy0kV859zHOWdnMUVk7L0UWylkf3nY-pCRwG-VULL-ad3pV2wjd0Y3Rqn-jG2ENkNjpFRv2DnRQQhphBg27O9DyYsrS4aJV49jioQ8eb46NvjnmAhHPsEcIpRa_ZyAiO8RZuJLHDFzWqhAiCuVYKQrXkVTylBSflxrzGHGWIhDHPntTfMQ5mWCEmqjt-y1h4nw3dN7wX7c3ny__trcf_tyd_35vnGtNKUxTu0UGERtwIPuhO-8VKDUgNK00Lmh33u576Vr-1b7TmjVyx200hk5DHKnL9jHk-8xp18LUrFzIIfTBBHTQlZ13Qr2pq_oh2foIS051ukq1Q5CD8asht2JcjkRZfT2WLeE_GilsGsk9mCfIrFrJPYUSdVdPdO5UP7fomQI04vqTyc11lv9DpgtuYDR4VhhV-yYwgsO_wD0iq5L |
CitedBy_id | crossref_primary_10_1016_j_firesaf_2024_104158 crossref_primary_10_1108_JSFE_01_2023_0003 crossref_primary_10_1016_j_jobe_2022_105672 crossref_primary_10_1016_j_jobe_2025_112132 crossref_primary_10_3390_fire6030114 crossref_primary_10_1016_j_euromechsol_2023_105000 crossref_primary_10_1016_j_tws_2023_110812 crossref_primary_10_1108_JSFE_05_2022_0021 crossref_primary_10_1016_j_compstruct_2021_114517 crossref_primary_10_3390_fire5040124 crossref_primary_10_3390_ma14247658 crossref_primary_10_3390_buildings13040939 |
Cites_doi | 10.1111/j.1151-2916.1998.tb02649.x 10.1016/j.proeng.2013.08.116 10.1111/j.1151-2916.1966.tb13179.x 10.1016/j.buildenv.2012.01.009 10.1007/978-3-319-93728-1_52 10.1016/j.conbuildmat.2016.09.139 10.3844/sgamrsp.2020.24.40 10.1080/10407790.2011.540953 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jul 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jul 2021 |
DBID | AAYXX CITATION 7T2 7TB 8FD C1K FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.firesaf.2021.103353 |
DatabaseName | CrossRef Health and Safety Science Abstracts (Full archive) Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Health & Safety Science Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7226 |
ExternalDocumentID | 10_1016_j_firesaf_2021_103353 S0379711221000941 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACNNM ACPRK ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TAE UHS UNMZH WUQ XPP ZMT ZY4 ~G- ~V8 AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION 7T2 7TB 8FD C1K EFKBS FR3 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c417t-7c282a7ee37afa350f5f12a229e174a5c96bf1b61c4643f5032618a41c7199183 |
IEDL.DBID | AIKHN |
ISSN | 0379-7112 |
IngestDate | Thu Sep 04 17:45:34 EDT 2025 Wed Aug 13 04:53:28 EDT 2025 Tue Jul 01 03:06:50 EDT 2025 Thu Apr 24 23:08:00 EDT 2025 Fri Feb 23 02:44:11 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | FE thermo-mechanical simulations Beams Structural glass Fire Fire resistance experiments |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-7c282a7ee37afa350f5f12a229e174a5c96bf1b61c4643f5032618a41c7199183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/179676 |
PQID | 2549039778 |
PQPubID | 2045475 |
ParticipantIDs | proquest_miscellaneous_2551991676 proquest_journals_2549039778 crossref_primary_10_1016_j_firesaf_2021_103353 crossref_citationtrail_10_1016_j_firesaf_2021_103353 elsevier_sciencedirect_doi_10_1016_j_firesaf_2021_103353 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Fire safety journal |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Veer, Voorden, Rijgersberg, Zuidema (bib5) 2001 Bedon (bib2) 2017 Sjöström, Kozłowski, Honfi, Lange, Albrektsson, Lenk, Eriksson (bib7) 2020; 4 (bib4) 2016 Krampe, Reich, Weller (bib11) 2013 Bokel, Veer, Luisinga (bib6) 2013 Debuyser, Sjöström, Lange, Honfi, Sonck, Belis (bib19) 2017; 130 Kothe (bib14) 2013 Wang, Wang, Fan, Sun (bib28) 2013; 62 Dembele, Rosario, Wen (bib26) 2012; 54 Quinn Brewster (bib25) 1992 Kozłowski, Lenk, Dorn, Honfi, Sjöström (bib8) 2018; 6 (bib17) 1999 (bib10) 2019 Hietaniemi (bib29) 2005 Sehgal, Ito (bib12) 1998; 81 Louter, Nussbaumer (bib9) 2016 (bib18) July 2020 Dembele, Rosario, Wang, Warren, Wen (bib27) 2010; 58 Kerper, Scuderi (bib30) 1966; 49 Belis, Louter, Nielsen, Schneider (bib1) 2019 Simulia (bib20) 2019 (bib22) 2016 EOTA (bib13) 2012 (bib21) 2017 Husted, Westerman (bib23) 2005 (bib16) 2012 (bib3) 2011 Kuraray (bib15) 2019 Bedon, Louter (bib24) 2018; vol. 6 Wang (10.1016/j.firesaf.2021.103353_bib28) 2013; 62 Krampe (10.1016/j.firesaf.2021.103353_bib11) 2013 Veer (10.1016/j.firesaf.2021.103353_bib5) 2001 Bedon (10.1016/j.firesaf.2021.103353_bib2) 2017 Kozłowski (10.1016/j.firesaf.2021.103353_bib8) 2018; 6 (10.1016/j.firesaf.2021.103353_bib4) 2016 Bedon (10.1016/j.firesaf.2021.103353_bib24) 2018; vol. 6 (10.1016/j.firesaf.2021.103353_bib17) 1999 Bokel (10.1016/j.firesaf.2021.103353_bib6) 2013 Louter (10.1016/j.firesaf.2021.103353_bib9) 2016 (10.1016/j.firesaf.2021.103353_bib16) 2012 Sjöström (10.1016/j.firesaf.2021.103353_bib7) 2020; 4 (10.1016/j.firesaf.2021.103353_bib21) 2017 Simulia (10.1016/j.firesaf.2021.103353_bib20) 2019 Kerper (10.1016/j.firesaf.2021.103353_bib30) 1966; 49 Belis (10.1016/j.firesaf.2021.103353_bib1) 2019 Kothe (10.1016/j.firesaf.2021.103353_bib14) 2013 (10.1016/j.firesaf.2021.103353_bib22) 2016 Husted (10.1016/j.firesaf.2021.103353_bib23) 2005 Sehgal (10.1016/j.firesaf.2021.103353_bib12) 1998; 81 Dembele (10.1016/j.firesaf.2021.103353_bib27) 2010; 58 Dembele (10.1016/j.firesaf.2021.103353_bib26) 2012; 54 Hietaniemi (10.1016/j.firesaf.2021.103353_bib29) 2005 EOTA (10.1016/j.firesaf.2021.103353_bib13) 2012 (10.1016/j.firesaf.2021.103353_bib10) 2019 Kuraray (10.1016/j.firesaf.2021.103353_bib15) Quinn Brewster (10.1016/j.firesaf.2021.103353_bib25) 1992 Debuyser (10.1016/j.firesaf.2021.103353_bib19) 2017; 130 |
References_xml | – volume: 6 start-page: 229 year: 2018 end-page: 240 ident: bib8 article-title: Structural considerations on timber-glass composites at fire scenarios publication-title: Challenging Glass Conference Proceedings – volume: 81 year: 1998 ident: bib12 article-title: A new low-brittleness glass in the soda–lime–silica glass family publication-title: J. Am. Ceram. Soc. – start-page: 392 year: 2001 end-page: 396 ident: bib5 article-title: Using transparent intumescent coatings to increase the fire resistance of glass and glass laminates publication-title: Proceedings of Glass Processing Days 2013 – year: 2012 ident: bib16 publication-title: EN 1363-1:2012, Fire Resistance Tests – Part 1: General Requirements – year: 2019 ident: bib10 article-title: Glass in Building - Determination of the Lateral Load Resistance of Glass Panes by Calculation – year: 2017 ident: bib21 article-title: Thermal Performance of Windows, Doors and Shutters — Calculation of Thermal Transmittance — Part 2: Numerical Method for Frames – start-page: 362 year: 2013 end-page: 363 ident: bib6 article-title: Fire resistance of glass publication-title: Proceedings of Glass Processing Days 2003 – year: 2005 ident: bib29 article-title: Probabilistic Simulation of Glass Fracture and Fallout in Fire – year: 2013 ident: bib14 article-title: Alterungsverhalten von polymeren Zwischenschichtmaterialien im Bauwesen/Ageing Behaviour of Polymeric Interlayer Materials in Civil Engineering, PhD Dissertation, 2013 – volume: 130 start-page: 212 year: 2017 end-page: 229 ident: bib19 article-title: Behaviour of monolithic and laminated glass exposed to radiant heating publication-title: Construct. Build. Mater. – volume: 62 start-page: 702 year: 2013 end-page: 709 ident: bib28 article-title: Simulating the thermal response of glass under various shading conditions in a fire publication-title: Procedia Engineering – volume: 4 start-page: 24 year: 2020 end-page: 40 ident: bib7 article-title: Fire resistance testing of a timber-glass composite beam publication-title: International Journal of Structural Glass and Advanced Materials Research – start-page: 18 year: 2017 ident: bib2 article-title: Structural glass systems under fire: overview of design issues, experimental research, and developments publication-title: Adv. Civ. Eng. – volume: vol. 6 start-page: 513 year: 2018 end-page: 524 ident: bib24 article-title: Thermo-mechanical numerical modelling of structural glass under fire - preliminary considerations and comparisons publication-title: Challenging Glass Conference Proceedings – year: 1999 ident: bib17 article-title: Fire Resistance Tests – Elements of Buildings Construction, Part-1 General Requirements – year: 2011 ident: bib3 article-title: Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC Text with EEA relevance – year: 2005 ident: bib23 article-title: Building Component Exposure Feature in Argos - 1D Heat Transfer Module in Argos – year: 1992 ident: bib25 article-title: Thermal Radiative Transfer and Properties – volume: 58 start-page: 419 year: 2010 end-page: 439 ident: bib27 article-title: Thermal and stress analysis of glazing in fires and glass fracture modeling with a probabilistic approach publication-title: Numer. Heat Tran., Part B: Fundamentals – year: July 2020 ident: bib18 article-title: Promat, datasheet PROMATECT®-H – year: 2019 ident: bib15 article-title: Trosifol architectural glazing – product portfolio – year: 2016 ident: bib22 article-title: Numerical Simulation in Terms of Fire Safe Use of Bio-Based Building Products – year: 2012 ident: bib13 article-title: ETAG002 Guideline for European Technical Approval for Structural Sealant Glazing Kits (SSGK) Part 1: Supported and Unsupported Systems – volume: 49 start-page: 613 year: 1966 end-page: 618 ident: bib30 article-title: Mechanical properties of chemically strengthened glasses at high temperatures publication-title: J. Am. Ceram. Soc. – volume: 54 start-page: 61 year: 2012 end-page: 70 ident: bib26 article-title: Thermal breakage of window glass in room fires conditions – analysis of some important parameters publication-title: Build. Environ. – year: 2019 ident: bib1 article-title: Architectural glass publication-title: Springer Handbook of Glass – year: 2013 ident: bib11 article-title: Glasbau-Praxis – Band 1: Grundlagen Konstruktion und Bemessung – start-page: 143 year: 2016 end-page: 150 ident: bib9 article-title: Fire testing of structural glass beams: initial experimental results publication-title: GlassCon Global Proceedings Book – year: 2019 ident: bib20 article-title: ABAQUS v.6.14 Computer Software and Online Documentation – year: 2016 ident: bib4 article-title: Fire Classification of Construction Products and Building Elements. Classification Using Data from Fire Resistance Tests, Excluding Ventilation Services – year: 2016 ident: 10.1016/j.firesaf.2021.103353_bib22 – year: 2013 ident: 10.1016/j.firesaf.2021.103353_bib11 – volume: 81 issue: 9 year: 1998 ident: 10.1016/j.firesaf.2021.103353_bib12 article-title: A new low-brittleness glass in the soda–lime–silica glass family publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1998.tb02649.x – year: 1999 ident: 10.1016/j.firesaf.2021.103353_bib17 – volume: 62 start-page: 702 year: 2013 ident: 10.1016/j.firesaf.2021.103353_bib28 article-title: Simulating the thermal response of glass under various shading conditions in a fire publication-title: Procedia Engineering doi: 10.1016/j.proeng.2013.08.116 – start-page: 392 year: 2001 ident: 10.1016/j.firesaf.2021.103353_bib5 article-title: Using transparent intumescent coatings to increase the fire resistance of glass and glass laminates – year: 2019 ident: 10.1016/j.firesaf.2021.103353_bib20 – year: 2017 ident: 10.1016/j.firesaf.2021.103353_bib21 – start-page: 362 year: 2013 ident: 10.1016/j.firesaf.2021.103353_bib6 article-title: Fire resistance of glass – start-page: 143 year: 2016 ident: 10.1016/j.firesaf.2021.103353_bib9 article-title: Fire testing of structural glass beams: initial experimental results – volume: 49 start-page: 613 issue: 11 year: 1966 ident: 10.1016/j.firesaf.2021.103353_bib30 article-title: Mechanical properties of chemically strengthened glasses at high temperatures publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1966.tb13179.x – year: 2012 ident: 10.1016/j.firesaf.2021.103353_bib13 – volume: 54 start-page: 61 year: 2012 ident: 10.1016/j.firesaf.2021.103353_bib26 article-title: Thermal breakage of window glass in room fires conditions – analysis of some important parameters publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.01.009 – year: 2019 ident: 10.1016/j.firesaf.2021.103353_bib1 article-title: Architectural glass doi: 10.1007/978-3-319-93728-1_52 – year: 2016 ident: 10.1016/j.firesaf.2021.103353_bib4 – year: 2013 ident: 10.1016/j.firesaf.2021.103353_bib14 – year: 2012 ident: 10.1016/j.firesaf.2021.103353_bib16 – volume: 6 start-page: 229 year: 2018 ident: 10.1016/j.firesaf.2021.103353_bib8 article-title: Structural considerations on timber-glass composites at fire scenarios publication-title: Challenging Glass Conference Proceedings – volume: 130 start-page: 212 year: 2017 ident: 10.1016/j.firesaf.2021.103353_bib19 article-title: Behaviour of monolithic and laminated glass exposed to radiant heating publication-title: Construct. Build. Mater. doi: 10.1016/j.conbuildmat.2016.09.139 – year: 2005 ident: 10.1016/j.firesaf.2021.103353_bib29 – year: 2005 ident: 10.1016/j.firesaf.2021.103353_bib23 – volume: 4 start-page: 24 issue: 1 year: 2020 ident: 10.1016/j.firesaf.2021.103353_bib7 article-title: Fire resistance testing of a timber-glass composite beam publication-title: International Journal of Structural Glass and Advanced Materials Research doi: 10.3844/sgamrsp.2020.24.40 – start-page: 18 year: 2017 ident: 10.1016/j.firesaf.2021.103353_bib2 article-title: Structural glass systems under fire: overview of design issues, experimental research, and developments publication-title: Adv. Civ. Eng. – ident: 10.1016/j.firesaf.2021.103353_bib15 – volume: vol. 6 start-page: 513 year: 2018 ident: 10.1016/j.firesaf.2021.103353_bib24 article-title: Thermo-mechanical numerical modelling of structural glass under fire - preliminary considerations and comparisons – year: 1992 ident: 10.1016/j.firesaf.2021.103353_bib25 – volume: 58 start-page: 419 issue: 6 year: 2010 ident: 10.1016/j.firesaf.2021.103353_bib27 article-title: Thermal and stress analysis of glazing in fires and glass fracture modeling with a probabilistic approach publication-title: Numer. Heat Tran., Part B: Fundamentals doi: 10.1080/10407790.2011.540953 – year: 2019 ident: 10.1016/j.firesaf.2021.103353_bib10 |
SSID | ssj0017009 ssib019627205 |
Score | 2.3617647 |
Snippet | This paper investigates the structural response of laminated glass beams under combined fire-exposure and sustained in-plane loading. This is done by means of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103353 |
SubjectTerms | Beams Boundary conditions Exposure Failure times FE thermo-mechanical simulations finite element analysis Finite element method Fire Fire resistance Fire resistance experiments fire safety furnaces Glass Load Mechanical analysis Reduction Safety glass Structural glass Structural response |
Title | Structural response of fire-exposed laminated glass beams under sustained loads; exploratory experiments and FE-Simulations |
URI | https://dx.doi.org/10.1016/j.firesaf.2021.103353 https://www.proquest.com/docview/2549039778 https://www.proquest.com/docview/2551991676 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzSU9hLRN6DYPVOhVu5YtWRY5hZBl29JctoHchGxLsCGxlziBQiC_PSNZ3qSBEujRsgYZzWge1jczAN_QyCWc1zV1KhGUq5RR41CWFdoHazJWivBr4Nd5Pr_gPy7F5QacDrkwHlYZdX-v04O2jiPTuJvT1XI5XSSZVBLdhZQFfByGQJtppnIxgs2T7z_n5-vLBJn0SA-cTz3BcyLP9GricJXO-GKeKfMZ6JnI_mWiXinrYIFmO7AdXUdy0n_dB9iwzUd4_6Kg4Cd4WIRysL6UBrnt0a-WtI745an9s2o7WxOUgWWDLmZNgutMSmtuOuKTyW5J1-dT-VmtqbtjYgNGL1zFk-duAB0xTU1mZ3SxvIn9v7pduJid_T6d09hegVacyTsqKwy3jLQ2k8aZTCROOJaaNFUWwxQjKpWXjpU5qzhy1CHTMNoqDGeV9HipItuDUdM29jMQHMawqlY5LwXnaVlaJ0IPJMatKoQZAx92VFex9rhvgXGtB5DZlY6M0J4RumfEGCZrslVffOMtgmJgl_5LijQaiLdIDwb26niMO-2j58S7yMUYvq5f4wH0tyqmse29nyP8duQy__L_q-_Dln_qccAHMEJhsYfo7dyVR_Bu8siOokw_AZcQ_vg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iD-c9HHqnuOdXDu41u02bNC0-ibisd-rLKvgW0jaBFW0XqyAI_u3OpOnqCSLcazIhJTOZj-Y3M4T8BiMXCVFVzOWRZCKPOTMOZDkH-2BNwgvpfw2cnaeTS_HnSl4tkaM-FwZhlUH3dzrda-swMgqnOZrPZqNplKhcgbsQc4-PgxBoRchEIa5v-LzAeWD9Oe8DAzVD8tc0ntH10MEercFSnjHH_PNEJh8ZqHeq2tuf8Rr5FhxHeth92zpZsvV38vVNOcEf5Gnqi8FiIQ1612FfLW0cxe2ZfZw3ra0oSMCsBgezot5xpoU1ty3FVLI72nbZVEjVmKo9oNYj9PxDPH3tBdBSU1d0fMyms9vQ_avdIJfj44ujCQvNFVgpuLpnqoRgyyhrE2WcSWTkpOOxiePcQpBiZJmnheNFyksB_HTAMoi1MiN4qRAtlSWbZLluartFKAxDUFXlqSikEHFRWCd9ByQubJ5JMyCiP1Fdhsrj2ADjRvcQs2sdGKGREbpjxIAMF8vmXemNzxZkPbv0PzKkwTx8tnSnZ68Ol7jVGDtH6CBnA_JrMQ3XD99UTG2bB6SReBypSn_-_-775Mvk4uxUn56c_90mqzjTIYJ3yDIIjt0Fv-e-2PNy_QLC3__D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+response+of+fire-exposed+laminated+glass+beams+under+sustained+loads%3B+exploratory+experiments+and+FE-Simulations&rft.jtitle=Fire+safety+journal&rft.au=Louter%2C+Christian&rft.au=Bedon%2C+Chiara&rft.au=Koz%C5%82owski%2C+Marcin&rft.au=Nussbaumer%2C+Alain&rft.date=2021-07-01&rft.issn=0379-7112&rft.volume=123&rft.spage=103353&rft_id=info:doi/10.1016%2Fj.firesaf.2021.103353&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_firesaf_2021_103353 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0379-7112&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0379-7112&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0379-7112&client=summon |