Structural response of fire-exposed laminated glass beams under sustained loads; exploratory experiments and FE-Simulations

This paper investigates the structural response of laminated glass beams under combined fire-exposure and sustained in-plane loading. This is done by means of experimental testing and Finite Element (FE) numerical modelling. Firstly, small-scale (1 m long) laminated glass beams are tested under ther...

Full description

Saved in:
Bibliographic Details
Published inFire safety journal Vol. 123; p. 103353
Main Authors Louter, Christian, Bedon, Chiara, Kozłowski, Marcin, Nussbaumer, Alain
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier Ltd 01.07.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0379-7112
1873-7226
DOI10.1016/j.firesaf.2021.103353

Cover

Abstract This paper investigates the structural response of laminated glass beams under combined fire-exposure and sustained in-plane loading. This is done by means of experimental testing and Finite Element (FE) numerical modelling. Firstly, small-scale (1 m long) laminated glass beams are tested under thermal exposure and in-plane loading on a small fire resistance test furnace. From the test results it can be seen that laminated glass beams are able to sustain an imposed in-plane load for a time of 34–51 min before failing according to the limiting rate of deflection as defined in EN 1363–1:2012. It should be noted, however, that the observed failure times are strictly related to the boundary conditions applied in the test, i.e. the magnitude of mechanical loads (in this study a relatively small load of P = 1.15 kN was applied) and the presence of an inherent top zone protection, which may have positively affected the results. Secondly, additional FE thermo-mechanical simulations are performed to further investigate the mechanical response of the laminated glass beams under thermal exposure, with a focus on the effects of the top zone protection and the load magnitude on the performance of the examined laminated glass beams. From the FE study it can be seen that reducing the top zone protection (from 40 mm to 0 mm) results in a reduction in failure time from 45 min to 20 min, while increasing the load with a factor 5 (taking 30 mm top zone protection as a reference) results in a reduction of failure time from 32 to 18 min.
AbstractList This paper investigates the structural response of laminated glass beams under combined fire-exposure and sustained in-plane loading. This is done by means of experimental testing and Finite Element (FE) numerical modelling. Firstly, small-scale (1 m long) laminated glass beams are tested under thermal exposure and in-plane loading on a small fire resistance test furnace. From the test results it can be seen that laminated glass beams are able to sustain an imposed in-plane load for a time of 34–51 min before failing according to the limiting rate of deflection as defined in EN 1363–1:2012. It should be noted, however, that the observed failure times are strictly related to the boundary conditions applied in the test, i.e. the magnitude of mechanical loads (in this study a relatively small load of P = 1.15 kN was applied) and the presence of an inherent top zone protection, which may have positively affected the results. Secondly, additional FE thermo-mechanical simulations are performed to further investigate the mechanical response of the laminated glass beams under thermal exposure, with a focus on the effects of the top zone protection and the load magnitude on the performance of the examined laminated glass beams. From the FE study it can be seen that reducing the top zone protection (from 40 mm to 0 mm) results in a reduction in failure time from 45 min to 20 min, while increasing the load with a factor 5 (taking 30 mm top zone protection as a reference) results in a reduction of failure time from 32 to 18 min.
This paper investigates the structural response of laminated glass beams under combined fire-exposure and sustained in-plane loading. This is done by means of experimental testing and Finite Element (FE) numerical modelling. Firstly, small-scale (1 m long) laminated glass beams are tested under thermal exposure and in-plane loading on a small fire resistance test furnace. From the test results it can be seen that laminated glass beams are able to sustain an imposed in-plane load for a time of 34–51 min before failing according to the limiting rate of deflection as defined in EN 1363–1:2012. It should be noted, however, that the observed failure times are strictly related to the boundary conditions applied in the test, i.e. the magnitude of mechanical loads (in this study a relatively small load of P = 1.15 kN was applied) and the presence of an inherent top zone protection, which may have positively affected the results. Secondly, additional FE thermo-mechanical simulations are performed to further investigate the mechanical response of the laminated glass beams under thermal exposure, with a focus on the effects of the top zone protection and the load magnitude on the performance of the examined laminated glass beams. From the FE study it can be seen that reducing the top zone protection (from 40 mm to 0 mm) results in a reduction in failure time from 45 min to 20 min, while increasing the load with a factor 5 (taking 30 mm top zone protection as a reference) results in a reduction of failure time from 32 to 18 min.
ArticleNumber 103353
Author Kozłowski, Marcin
Louter, Christian
Nussbaumer, Alain
Bedon, Chiara
Author_xml – sequence: 1
  givenname: Christian
  surname: Louter
  fullname: Louter, Christian
  email: christian.louter@tu-dresden.de
  organization: Institute of Building Construction, Faculty of Civil Engineering, Technische Universität Dresden, Germany
– sequence: 2
  givenname: Chiara
  surname: Bedon
  fullname: Bedon, Chiara
  organization: DIA – Department of Engineering and Architecture, University of Trieste, Trieste, Italy
– sequence: 3
  givenname: Marcin
  surname: Kozłowski
  fullname: Kozłowski, Marcin
  organization: Department of Structural Engineering, Faculty of Civil Engineering, Silesian University of Technology, Gliwice, Poland
– sequence: 4
  givenname: Alain
  surname: Nussbaumer
  fullname: Nussbaumer, Alain
  organization: Resilient Steel Structures Laboratory (RESSLab), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
BookMark eNqFkUtr3DAUhUVJoZO0P6Eg6KYbT_SwrTFZlBKSNhDoIu1a3JGvigZbmurKpaF_vnInq2yy0kV859zHOWdnMUVk7L0UWylkf3nY-pCRwG-VULL-ad3pV2wjd0Y3Rqn-jG2ENkNjpFRv2DnRQQhphBg27O9DyYsrS4aJV49jioQ8eb46NvjnmAhHPsEcIpRa_ZyAiO8RZuJLHDFzWqhAiCuVYKQrXkVTylBSflxrzGHGWIhDHPntTfMQ5mWCEmqjt-y1h4nw3dN7wX7c3ny__trcf_tyd_35vnGtNKUxTu0UGERtwIPuhO-8VKDUgNK00Lmh33u576Vr-1b7TmjVyx200hk5DHKnL9jHk-8xp18LUrFzIIfTBBHTQlZ13Qr2pq_oh2foIS051ukq1Q5CD8asht2JcjkRZfT2WLeE_GilsGsk9mCfIrFrJPYUSdVdPdO5UP7fomQI04vqTyc11lv9DpgtuYDR4VhhV-yYwgsO_wD0iq5L
CitedBy_id crossref_primary_10_1016_j_firesaf_2024_104158
crossref_primary_10_1108_JSFE_01_2023_0003
crossref_primary_10_1016_j_jobe_2022_105672
crossref_primary_10_1016_j_jobe_2025_112132
crossref_primary_10_3390_fire6030114
crossref_primary_10_1016_j_euromechsol_2023_105000
crossref_primary_10_1016_j_tws_2023_110812
crossref_primary_10_1108_JSFE_05_2022_0021
crossref_primary_10_1016_j_compstruct_2021_114517
crossref_primary_10_3390_fire5040124
crossref_primary_10_3390_ma14247658
crossref_primary_10_3390_buildings13040939
Cites_doi 10.1111/j.1151-2916.1998.tb02649.x
10.1016/j.proeng.2013.08.116
10.1111/j.1151-2916.1966.tb13179.x
10.1016/j.buildenv.2012.01.009
10.1007/978-3-319-93728-1_52
10.1016/j.conbuildmat.2016.09.139
10.3844/sgamrsp.2020.24.40
10.1080/10407790.2011.540953
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jul 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2021
DBID AAYXX
CITATION
7T2
7TB
8FD
C1K
FR3
KR7
7S9
L.6
DOI 10.1016/j.firesaf.2021.103353
DatabaseName CrossRef
Health and Safety Science Abstracts (Full archive)
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Health & Safety Science Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7226
ExternalDocumentID 10_1016_j_firesaf_2021_103353
S0379711221000941
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TAE
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
~V8
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
7T2
7TB
8FD
C1K
EFKBS
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-c417t-7c282a7ee37afa350f5f12a229e174a5c96bf1b61c4643f5032618a41c7199183
IEDL.DBID AIKHN
ISSN 0379-7112
IngestDate Thu Sep 04 17:45:34 EDT 2025
Wed Aug 13 04:53:28 EDT 2025
Tue Jul 01 03:06:50 EDT 2025
Thu Apr 24 23:08:00 EDT 2025
Fri Feb 23 02:44:11 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords FE thermo-mechanical simulations
Beams
Structural glass
Fire
Fire resistance experiments
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-7c282a7ee37afa350f5f12a229e174a5c96bf1b61c4643f5032618a41c7199183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/179676
PQID 2549039778
PQPubID 2045475
ParticipantIDs proquest_miscellaneous_2551991676
proquest_journals_2549039778
crossref_primary_10_1016_j_firesaf_2021_103353
crossref_citationtrail_10_1016_j_firesaf_2021_103353
elsevier_sciencedirect_doi_10_1016_j_firesaf_2021_103353
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Fire safety journal
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Veer, Voorden, Rijgersberg, Zuidema (bib5) 2001
Bedon (bib2) 2017
Sjöström, Kozłowski, Honfi, Lange, Albrektsson, Lenk, Eriksson (bib7) 2020; 4
(bib4) 2016
Krampe, Reich, Weller (bib11) 2013
Bokel, Veer, Luisinga (bib6) 2013
Debuyser, Sjöström, Lange, Honfi, Sonck, Belis (bib19) 2017; 130
Kothe (bib14) 2013
Wang, Wang, Fan, Sun (bib28) 2013; 62
Dembele, Rosario, Wen (bib26) 2012; 54
Quinn Brewster (bib25) 1992
Kozłowski, Lenk, Dorn, Honfi, Sjöström (bib8) 2018; 6
(bib17) 1999
(bib10) 2019
Hietaniemi (bib29) 2005
Sehgal, Ito (bib12) 1998; 81
Louter, Nussbaumer (bib9) 2016
(bib18) July 2020
Dembele, Rosario, Wang, Warren, Wen (bib27) 2010; 58
Kerper, Scuderi (bib30) 1966; 49
Belis, Louter, Nielsen, Schneider (bib1) 2019
Simulia (bib20) 2019
(bib22) 2016
EOTA (bib13) 2012
(bib21) 2017
Husted, Westerman (bib23) 2005
(bib16) 2012
(bib3) 2011
Kuraray (bib15) 2019
Bedon, Louter (bib24) 2018; vol. 6
Wang (10.1016/j.firesaf.2021.103353_bib28) 2013; 62
Krampe (10.1016/j.firesaf.2021.103353_bib11) 2013
Veer (10.1016/j.firesaf.2021.103353_bib5) 2001
Bedon (10.1016/j.firesaf.2021.103353_bib2) 2017
Kozłowski (10.1016/j.firesaf.2021.103353_bib8) 2018; 6
(10.1016/j.firesaf.2021.103353_bib4) 2016
Bedon (10.1016/j.firesaf.2021.103353_bib24) 2018; vol. 6
(10.1016/j.firesaf.2021.103353_bib17) 1999
Bokel (10.1016/j.firesaf.2021.103353_bib6) 2013
Louter (10.1016/j.firesaf.2021.103353_bib9) 2016
(10.1016/j.firesaf.2021.103353_bib16) 2012
Sjöström (10.1016/j.firesaf.2021.103353_bib7) 2020; 4
(10.1016/j.firesaf.2021.103353_bib21) 2017
Simulia (10.1016/j.firesaf.2021.103353_bib20) 2019
Kerper (10.1016/j.firesaf.2021.103353_bib30) 1966; 49
Belis (10.1016/j.firesaf.2021.103353_bib1) 2019
Kothe (10.1016/j.firesaf.2021.103353_bib14) 2013
(10.1016/j.firesaf.2021.103353_bib22) 2016
Husted (10.1016/j.firesaf.2021.103353_bib23) 2005
Sehgal (10.1016/j.firesaf.2021.103353_bib12) 1998; 81
Dembele (10.1016/j.firesaf.2021.103353_bib27) 2010; 58
Dembele (10.1016/j.firesaf.2021.103353_bib26) 2012; 54
Hietaniemi (10.1016/j.firesaf.2021.103353_bib29) 2005
EOTA (10.1016/j.firesaf.2021.103353_bib13) 2012
(10.1016/j.firesaf.2021.103353_bib10) 2019
Kuraray (10.1016/j.firesaf.2021.103353_bib15)
Quinn Brewster (10.1016/j.firesaf.2021.103353_bib25) 1992
Debuyser (10.1016/j.firesaf.2021.103353_bib19) 2017; 130
References_xml – volume: 6
  start-page: 229
  year: 2018
  end-page: 240
  ident: bib8
  article-title: Structural considerations on timber-glass composites at fire scenarios
  publication-title: Challenging Glass Conference Proceedings
– volume: 81
  year: 1998
  ident: bib12
  article-title: A new low-brittleness glass in the soda–lime–silica glass family
  publication-title: J. Am. Ceram. Soc.
– start-page: 392
  year: 2001
  end-page: 396
  ident: bib5
  article-title: Using transparent intumescent coatings to increase the fire resistance of glass and glass laminates
  publication-title: Proceedings of Glass Processing Days 2013
– year: 2012
  ident: bib16
  publication-title: EN 1363-1:2012, Fire Resistance Tests – Part 1: General Requirements
– year: 2019
  ident: bib10
  article-title: Glass in Building - Determination of the Lateral Load Resistance of Glass Panes by Calculation
– year: 2017
  ident: bib21
  article-title: Thermal Performance of Windows, Doors and Shutters — Calculation of Thermal Transmittance — Part 2: Numerical Method for Frames
– start-page: 362
  year: 2013
  end-page: 363
  ident: bib6
  article-title: Fire resistance of glass
  publication-title: Proceedings of Glass Processing Days 2003
– year: 2005
  ident: bib29
  article-title: Probabilistic Simulation of Glass Fracture and Fallout in Fire
– year: 2013
  ident: bib14
  article-title: Alterungsverhalten von polymeren Zwischenschichtmaterialien im Bauwesen/Ageing Behaviour of Polymeric Interlayer Materials in Civil Engineering, PhD Dissertation, 2013
– volume: 130
  start-page: 212
  year: 2017
  end-page: 229
  ident: bib19
  article-title: Behaviour of monolithic and laminated glass exposed to radiant heating
  publication-title: Construct. Build. Mater.
– volume: 62
  start-page: 702
  year: 2013
  end-page: 709
  ident: bib28
  article-title: Simulating the thermal response of glass under various shading conditions in a fire
  publication-title: Procedia Engineering
– volume: 4
  start-page: 24
  year: 2020
  end-page: 40
  ident: bib7
  article-title: Fire resistance testing of a timber-glass composite beam
  publication-title: International Journal of Structural Glass and Advanced Materials Research
– start-page: 18
  year: 2017
  ident: bib2
  article-title: Structural glass systems under fire: overview of design issues, experimental research, and developments
  publication-title: Adv. Civ. Eng.
– volume: vol. 6
  start-page: 513
  year: 2018
  end-page: 524
  ident: bib24
  article-title: Thermo-mechanical numerical modelling of structural glass under fire - preliminary considerations and comparisons
  publication-title: Challenging Glass Conference Proceedings
– year: 1999
  ident: bib17
  article-title: Fire Resistance Tests – Elements of Buildings Construction, Part-1 General Requirements
– year: 2011
  ident: bib3
  article-title: Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC Text with EEA relevance
– year: 2005
  ident: bib23
  article-title: Building Component Exposure Feature in Argos - 1D Heat Transfer Module in Argos
– year: 1992
  ident: bib25
  article-title: Thermal Radiative Transfer and Properties
– volume: 58
  start-page: 419
  year: 2010
  end-page: 439
  ident: bib27
  article-title: Thermal and stress analysis of glazing in fires and glass fracture modeling with a probabilistic approach
  publication-title: Numer. Heat Tran., Part B: Fundamentals
– year: July 2020
  ident: bib18
  article-title: Promat, datasheet PROMATECT®-H
– year: 2019
  ident: bib15
  article-title: Trosifol architectural glazing – product portfolio
– year: 2016
  ident: bib22
  article-title: Numerical Simulation in Terms of Fire Safe Use of Bio-Based Building Products
– year: 2012
  ident: bib13
  article-title: ETAG002 Guideline for European Technical Approval for Structural Sealant Glazing Kits (SSGK) Part 1: Supported and Unsupported Systems
– volume: 49
  start-page: 613
  year: 1966
  end-page: 618
  ident: bib30
  article-title: Mechanical properties of chemically strengthened glasses at high temperatures
  publication-title: J. Am. Ceram. Soc.
– volume: 54
  start-page: 61
  year: 2012
  end-page: 70
  ident: bib26
  article-title: Thermal breakage of window glass in room fires conditions – analysis of some important parameters
  publication-title: Build. Environ.
– year: 2019
  ident: bib1
  article-title: Architectural glass
  publication-title: Springer Handbook of Glass
– year: 2013
  ident: bib11
  article-title: Glasbau-Praxis – Band 1: Grundlagen Konstruktion und Bemessung
– start-page: 143
  year: 2016
  end-page: 150
  ident: bib9
  article-title: Fire testing of structural glass beams: initial experimental results
  publication-title: GlassCon Global Proceedings Book
– year: 2019
  ident: bib20
  article-title: ABAQUS v.6.14 Computer Software and Online Documentation
– year: 2016
  ident: bib4
  article-title: Fire Classification of Construction Products and Building Elements. Classification Using Data from Fire Resistance Tests, Excluding Ventilation Services
– year: 2016
  ident: 10.1016/j.firesaf.2021.103353_bib22
– year: 2013
  ident: 10.1016/j.firesaf.2021.103353_bib11
– volume: 81
  issue: 9
  year: 1998
  ident: 10.1016/j.firesaf.2021.103353_bib12
  article-title: A new low-brittleness glass in the soda–lime–silica glass family
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1998.tb02649.x
– year: 1999
  ident: 10.1016/j.firesaf.2021.103353_bib17
– volume: 62
  start-page: 702
  year: 2013
  ident: 10.1016/j.firesaf.2021.103353_bib28
  article-title: Simulating the thermal response of glass under various shading conditions in a fire
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2013.08.116
– start-page: 392
  year: 2001
  ident: 10.1016/j.firesaf.2021.103353_bib5
  article-title: Using transparent intumescent coatings to increase the fire resistance of glass and glass laminates
– year: 2019
  ident: 10.1016/j.firesaf.2021.103353_bib20
– year: 2017
  ident: 10.1016/j.firesaf.2021.103353_bib21
– start-page: 362
  year: 2013
  ident: 10.1016/j.firesaf.2021.103353_bib6
  article-title: Fire resistance of glass
– start-page: 143
  year: 2016
  ident: 10.1016/j.firesaf.2021.103353_bib9
  article-title: Fire testing of structural glass beams: initial experimental results
– volume: 49
  start-page: 613
  issue: 11
  year: 1966
  ident: 10.1016/j.firesaf.2021.103353_bib30
  article-title: Mechanical properties of chemically strengthened glasses at high temperatures
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1966.tb13179.x
– year: 2012
  ident: 10.1016/j.firesaf.2021.103353_bib13
– volume: 54
  start-page: 61
  year: 2012
  ident: 10.1016/j.firesaf.2021.103353_bib26
  article-title: Thermal breakage of window glass in room fires conditions – analysis of some important parameters
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.01.009
– year: 2019
  ident: 10.1016/j.firesaf.2021.103353_bib1
  article-title: Architectural glass
  doi: 10.1007/978-3-319-93728-1_52
– year: 2016
  ident: 10.1016/j.firesaf.2021.103353_bib4
– year: 2013
  ident: 10.1016/j.firesaf.2021.103353_bib14
– year: 2012
  ident: 10.1016/j.firesaf.2021.103353_bib16
– volume: 6
  start-page: 229
  year: 2018
  ident: 10.1016/j.firesaf.2021.103353_bib8
  article-title: Structural considerations on timber-glass composites at fire scenarios
  publication-title: Challenging Glass Conference Proceedings
– volume: 130
  start-page: 212
  year: 2017
  ident: 10.1016/j.firesaf.2021.103353_bib19
  article-title: Behaviour of monolithic and laminated glass exposed to radiant heating
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.09.139
– year: 2005
  ident: 10.1016/j.firesaf.2021.103353_bib29
– year: 2005
  ident: 10.1016/j.firesaf.2021.103353_bib23
– volume: 4
  start-page: 24
  issue: 1
  year: 2020
  ident: 10.1016/j.firesaf.2021.103353_bib7
  article-title: Fire resistance testing of a timber-glass composite beam
  publication-title: International Journal of Structural Glass and Advanced Materials Research
  doi: 10.3844/sgamrsp.2020.24.40
– start-page: 18
  year: 2017
  ident: 10.1016/j.firesaf.2021.103353_bib2
  article-title: Structural glass systems under fire: overview of design issues, experimental research, and developments
  publication-title: Adv. Civ. Eng.
– ident: 10.1016/j.firesaf.2021.103353_bib15
– volume: vol. 6
  start-page: 513
  year: 2018
  ident: 10.1016/j.firesaf.2021.103353_bib24
  article-title: Thermo-mechanical numerical modelling of structural glass under fire - preliminary considerations and comparisons
– year: 1992
  ident: 10.1016/j.firesaf.2021.103353_bib25
– volume: 58
  start-page: 419
  issue: 6
  year: 2010
  ident: 10.1016/j.firesaf.2021.103353_bib27
  article-title: Thermal and stress analysis of glazing in fires and glass fracture modeling with a probabilistic approach
  publication-title: Numer. Heat Tran., Part B: Fundamentals
  doi: 10.1080/10407790.2011.540953
– year: 2019
  ident: 10.1016/j.firesaf.2021.103353_bib10
SSID ssj0017009
ssib019627205
Score 2.3617647
Snippet This paper investigates the structural response of laminated glass beams under combined fire-exposure and sustained in-plane loading. This is done by means of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103353
SubjectTerms Beams
Boundary conditions
Exposure
Failure times
FE thermo-mechanical simulations
finite element analysis
Finite element method
Fire
Fire resistance
Fire resistance experiments
fire safety
furnaces
Glass
Load
Mechanical analysis
Reduction
Safety glass
Structural glass
Structural response
Title Structural response of fire-exposed laminated glass beams under sustained loads; exploratory experiments and FE-Simulations
URI https://dx.doi.org/10.1016/j.firesaf.2021.103353
https://www.proquest.com/docview/2549039778
https://www.proquest.com/docview/2551991676
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzSU9hLRN6DYPVOhVu5YtWRY5hZBl29JctoHchGxLsCGxlziBQiC_PSNZ3qSBEujRsgYZzWge1jczAN_QyCWc1zV1KhGUq5RR41CWFdoHazJWivBr4Nd5Pr_gPy7F5QacDrkwHlYZdX-v04O2jiPTuJvT1XI5XSSZVBLdhZQFfByGQJtppnIxgs2T7z_n5-vLBJn0SA-cTz3BcyLP9GricJXO-GKeKfMZ6JnI_mWiXinrYIFmO7AdXUdy0n_dB9iwzUd4_6Kg4Cd4WIRysL6UBrnt0a-WtI745an9s2o7WxOUgWWDLmZNgutMSmtuOuKTyW5J1-dT-VmtqbtjYgNGL1zFk-duAB0xTU1mZ3SxvIn9v7pduJid_T6d09hegVacyTsqKwy3jLQ2k8aZTCROOJaaNFUWwxQjKpWXjpU5qzhy1CHTMNoqDGeV9HipItuDUdM29jMQHMawqlY5LwXnaVlaJ0IPJMatKoQZAx92VFex9rhvgXGtB5DZlY6M0J4RumfEGCZrslVffOMtgmJgl_5LijQaiLdIDwb26niMO-2j58S7yMUYvq5f4wH0tyqmse29nyP8duQy__L_q-_Dln_qccAHMEJhsYfo7dyVR_Bu8siOokw_AZcQ_vg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iD-c9HHqnuOdXDu41u02bNC0-ibisd-rLKvgW0jaBFW0XqyAI_u3OpOnqCSLcazIhJTOZj-Y3M4T8BiMXCVFVzOWRZCKPOTMOZDkH-2BNwgvpfw2cnaeTS_HnSl4tkaM-FwZhlUH3dzrda-swMgqnOZrPZqNplKhcgbsQc4-PgxBoRchEIa5v-LzAeWD9Oe8DAzVD8tc0ntH10MEercFSnjHH_PNEJh8ZqHeq2tuf8Rr5FhxHeth92zpZsvV38vVNOcEf5Gnqi8FiIQ1612FfLW0cxe2ZfZw3ra0oSMCsBgezot5xpoU1ty3FVLI72nbZVEjVmKo9oNYj9PxDPH3tBdBSU1d0fMyms9vQ_avdIJfj44ujCQvNFVgpuLpnqoRgyyhrE2WcSWTkpOOxiePcQpBiZJmnheNFyksB_HTAMoi1MiN4qRAtlSWbZLluartFKAxDUFXlqSikEHFRWCd9ByQubJ5JMyCiP1Fdhsrj2ADjRvcQs2sdGKGREbpjxIAMF8vmXemNzxZkPbv0PzKkwTx8tnSnZ68Ol7jVGDtH6CBnA_JrMQ3XD99UTG2bB6SReBypSn_-_-775Mvk4uxUn56c_90mqzjTIYJ3yDIIjt0Fv-e-2PNy_QLC3__D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+response+of+fire-exposed+laminated+glass+beams+under+sustained+loads%3B+exploratory+experiments+and+FE-Simulations&rft.jtitle=Fire+safety+journal&rft.au=Louter%2C+Christian&rft.au=Bedon%2C+Chiara&rft.au=Koz%C5%82owski%2C+Marcin&rft.au=Nussbaumer%2C+Alain&rft.date=2021-07-01&rft.issn=0379-7112&rft.volume=123&rft.spage=103353&rft_id=info:doi/10.1016%2Fj.firesaf.2021.103353&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_firesaf_2021_103353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0379-7112&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0379-7112&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0379-7112&client=summon