New Generation Deep Learning for Video Object Detection: A Survey

Video object detection, a basic task in the computer vision field, is rapidly evolving and widely used. In recent years, deep learning methods have rapidly become widespread in the field of video object detection, achieving excellent results compared with those of traditional methods. However, the p...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 8; pp. 3195 - 3215
Main Authors Jiao, Licheng, Zhang, Ruohan, Liu, Fang, Yang, Shuyuan, Hou, Biao, Li, Lingling, Tang, Xu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Video object detection, a basic task in the computer vision field, is rapidly evolving and widely used. In recent years, deep learning methods have rapidly become widespread in the field of video object detection, achieving excellent results compared with those of traditional methods. However, the presence of duplicate information and abundant spatiotemporal information in video data poses a serious challenge to video object detection. Therefore, in recent years, many scholars have investigated deep learning detection algorithms in the context of video data and have achieved remarkable results. Considering the wide range of applications, a comprehensive review of the research related to video object detection is both a necessary and challenging task. This survey attempts to link and systematize the latest cutting-edge research on video object detection with the goal of classifying and analyzing video detection algorithms based on specific representative models. The differences and connections between video object detection and similar tasks are systematically demonstrated, and the evaluation metrics and video detection performance of nearly 40 models on two data sets are presented. Finally, the various applications and challenges facing video object detection are discussed.
AbstractList Video object detection, a basic task in the computer vision field, is rapidly evolving and widely used. In recent years, deep learning methods have rapidly become widespread in the field of video object detection, achieving excellent results compared with those of traditional methods. However, the presence of duplicate information and abundant spatiotemporal information in video data poses a serious challenge to video object detection. Therefore, in recent years, many scholars have investigated deep learning detection algorithms in the context of video data and have achieved remarkable results. Considering the wide range of applications, a comprehensive review of the research related to video object detection is both a necessary and challenging task. This survey attempts to link and systematize the latest cutting-edge research on video object detection with the goal of classifying and analyzing video detection algorithms based on specific representative models. The differences and connections between video object detection and similar tasks are systematically demonstrated, and the evaluation metrics and video detection performance of nearly 40 models on two data sets are presented. Finally, the various applications and challenges facing video object detection are discussed.
Video object detection, a basic task in the computer vision field, is rapidly evolving and widely used. In recent years, deep learning methods have rapidly become widespread in the field of video object detection, achieving excellent results compared with those of traditional methods. However, the presence of duplicate information and abundant spatiotemporal information in video data poses a serious challenge to video object detection. Therefore, in recent years, many scholars have investigated deep learning detection algorithms in the context of video data and have achieved remarkable results. Considering the wide range of applications, a comprehensive review of the research related to video object detection is both a necessary and challenging task. This survey attempts to link and systematize the latest cutting-edge research on video object detection with the goal of classifying and analyzing video detection algorithms based on specific representative models. The differences and connections between video object detection and similar tasks are systematically demonstrated, and the evaluation metrics and video detection performance of nearly 40 models on two data sets are presented. Finally, the various applications and challenges facing video object detection are discussed.Video object detection, a basic task in the computer vision field, is rapidly evolving and widely used. In recent years, deep learning methods have rapidly become widespread in the field of video object detection, achieving excellent results compared with those of traditional methods. However, the presence of duplicate information and abundant spatiotemporal information in video data poses a serious challenge to video object detection. Therefore, in recent years, many scholars have investigated deep learning detection algorithms in the context of video data and have achieved remarkable results. Considering the wide range of applications, a comprehensive review of the research related to video object detection is both a necessary and challenging task. This survey attempts to link and systematize the latest cutting-edge research on video object detection with the goal of classifying and analyzing video detection algorithms based on specific representative models. The differences and connections between video object detection and similar tasks are systematically demonstrated, and the evaluation metrics and video detection performance of nearly 40 models on two data sets are presented. Finally, the various applications and challenges facing video object detection are discussed.
Author Tang, Xu
Jiao, Licheng
Hou, Biao
Yang, Shuyuan
Zhang, Ruohan
Liu, Fang
Li, Lingling
Author_xml – sequence: 1
  givenname: Licheng
  orcidid: 0000-0003-3354-9617
  surname: Jiao
  fullname: Jiao, Licheng
  email: lchjiao@mail.xidian.edu.cn
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 2
  givenname: Ruohan
  orcidid: 0000-0002-7597-7700
  surname: Zhang
  fullname: Zhang, Ruohan
  email: ruohan950427@gmail.com
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 3
  givenname: Fang
  orcidid: 0000-0002-5669-9354
  surname: Liu
  fullname: Liu, Fang
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 4
  givenname: Shuyuan
  orcidid: 0000-0002-4796-5737
  surname: Yang
  fullname: Yang, Shuyuan
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 5
  givenname: Biao
  surname: Hou
  fullname: Hou, Biao
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 6
  givenname: Lingling
  orcidid: 0000-0002-6130-2518
  surname: Li
  fullname: Li, Lingling
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 7
  givenname: Xu
  surname: Tang
  fullname: Tang, Xu
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33534715$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPAjEUhRujEUT-gCZmEjduwL47dUdQ0YTAAjTumtK5Y4bADHZmNPx7y0MWLLybc5N-p23OuUCneZEDQlcEdwnB-n46Gg0nXYop6TIsGOX6BDUpkbRDWRyfHnb10UDtspzjMBILyfU5ajAmGFdENFFvBD_RAHLwtsqKPHoEWEVDsD7P8s8oLXz0niVQROPZHFwVjqsgAXyIetGk9t-wvkRnqV2U0N5rC709P037L53hePDa7w07jhNVdRQTnFs1S0RMUocdYM1Bc6GIZClVjksrLXZMJLNEAdEJSSVljDqusaVgWQvd7e5d-eKrhrIyy6x0sFjYHIq6NJTHkkvGOQ_o7RE6L2qfh98ZKrUSUnNGA3Wzp-rZEhKz8tnS-rX5CycAdAc4X5Slh_SAEGw2JZhtCWZTgtmXEEzxkcll1Tbbytts8b_1emfNAODwlmYhpED8AhD2kQw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TMM_2023_3236212
crossref_primary_10_1117_1_JEI_33_4_043054
crossref_primary_10_1007_s11554_024_01490_0
crossref_primary_10_1109_ACCESS_2023_3329068
crossref_primary_10_3390_s24010005
crossref_primary_10_11834_jig_220660
crossref_primary_10_1109_TGRS_2023_3272552
crossref_primary_10_1109_TGRS_2022_3140856
crossref_primary_10_1109_TCSVT_2024_3421988
crossref_primary_10_1007_s00521_023_08956_5
crossref_primary_10_1007_s11042_023_17949_4
crossref_primary_10_1016_j_neunet_2024_107109
crossref_primary_10_1109_TNNLS_2023_3336774
crossref_primary_10_1016_j_neucom_2024_128102
crossref_primary_10_1016_j_neucom_2024_127973
crossref_primary_10_1109_LGRS_2024_3389042
crossref_primary_10_1109_TAES_2023_3342797
crossref_primary_10_3390_bioengineering10040404
crossref_primary_10_1109_TGRS_2023_3326613
crossref_primary_10_1088_1361_6501_ad4c86
crossref_primary_10_1109_ACCESS_2022_3226564
crossref_primary_10_1109_TNNLS_2023_3310985
crossref_primary_10_1109_TMM_2024_3386339
crossref_primary_10_1109_TCSVT_2023_3322470
crossref_primary_10_1007_s00521_023_08544_7
crossref_primary_10_3934_mbe_2023282
crossref_primary_10_3390_app14114757
crossref_primary_10_1007_s12559_024_10272_6
crossref_primary_10_1109_JIOT_2023_3329221
crossref_primary_10_1007_s44267_023_00019_6
crossref_primary_10_1109_TNNLS_2023_3264587
crossref_primary_10_1016_j_neucom_2024_128637
crossref_primary_10_1109_TCSVT_2024_3439692
crossref_primary_10_1109_TNNLS_2022_3182715
crossref_primary_10_1186_s13634_024_01139_x
crossref_primary_10_1016_j_procs_2024_10_078
crossref_primary_10_56714_bjrs_50_1_5
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_3389_fncom_2025_1452203
crossref_primary_10_1109_TCYB_2022_3209978
crossref_primary_10_3390_electronics13101813
crossref_primary_10_1109_TGRS_2022_3228776
crossref_primary_10_1109_TGRS_2023_3243055
crossref_primary_10_1109_TCSVT_2024_3402242
crossref_primary_10_3390_s23104859
crossref_primary_10_1109_TNNLS_2023_3270579
crossref_primary_10_1109_TNNLS_2023_3331778
crossref_primary_10_1109_TPAMI_2024_3409824
crossref_primary_10_1109_JSTARS_2023_3316302
crossref_primary_10_1109_JSYST_2023_3270495
crossref_primary_10_3389_fninf_2023_1144301
crossref_primary_10_1007_s00371_023_03242_w
crossref_primary_10_1109_TGRS_2023_3237606
crossref_primary_10_1109_TEVC_2023_3264641
crossref_primary_10_1109_TNNLS_2022_3174873
crossref_primary_10_1109_TGRS_2022_3179379
crossref_primary_10_1016_j_knosys_2025_113237
crossref_primary_10_1016_j_cmpb_2024_108109
crossref_primary_10_1142_S0218126624502268
crossref_primary_10_3389_fpls_2023_1257212
crossref_primary_10_1109_TAI_2024_3454566
crossref_primary_10_1016_j_asoc_2025_112837
crossref_primary_10_1007_s00530_022_00926_6
crossref_primary_10_1109_TPAMI_2022_3225573
crossref_primary_10_3390_s22218583
crossref_primary_10_1109_TETCI_2024_3518613
crossref_primary_10_14358_PERS_22_00101R2
crossref_primary_10_1016_j_knosys_2024_111816
crossref_primary_10_1016_j_measurement_2022_112371
crossref_primary_10_1109_TMM_2024_3395844
crossref_primary_10_32604_iasc_2023_029799
crossref_primary_10_1016_j_autcon_2024_105494
crossref_primary_10_3390_agriculture14010057
crossref_primary_10_3390_s23063195
crossref_primary_10_1016_j_neuroimage_2025_121113
crossref_primary_10_1109_TNNLS_2023_3286890
crossref_primary_10_1109_TNNLS_2023_3331004
crossref_primary_10_1109_TITS_2024_3491784
crossref_primary_10_1109_TPAMI_2024_3449994
crossref_primary_10_1109_TGRS_2022_3215177
crossref_primary_10_1007_s10115_025_02375_9
crossref_primary_10_1109_TNNLS_2023_3314031
crossref_primary_10_1109_TCYB_2022_3213537
crossref_primary_10_1007_s10462_023_10630_0
crossref_primary_10_3389_fmars_2024_1411717
crossref_primary_10_1016_j_procs_2024_10_095
crossref_primary_10_1109_ACCESS_2021_3108398
crossref_primary_10_34133_research_0467
crossref_primary_10_1109_TGRS_2022_3220755
crossref_primary_10_3390_app15010109
crossref_primary_10_1016_j_iot_2025_101558
crossref_primary_10_3390_math10214125
crossref_primary_10_1080_13682199_2023_2260663
crossref_primary_10_1109_TCYB_2022_3182993
crossref_primary_10_1109_TGRS_2022_3201530
Cites_doi 10.1109/ACCESS.2019.2908016
10.1007/978-3-030-01237-3_30
10.1109/ICCV.2017.212
10.2307/2181436
10.1109/CVPR.2019.00441
10.1145/3065386
10.1109/TIP.2017.2651364
10.1109/WACV.2016.7477702
10.1109/ICCV.2017.322
10.1007/978-3-319-46448-0_2
10.1109/VTCSpring.2018.8417546
10.1162/neco.1997.9.8.1735
10.1109/ICETT.2016.7873685
10.1038/s41598-019-41172-7
10.1109/ICCV.2017.89
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2017.660
10.1109/TCSVT.2020.2981652
10.1038/s41598-019-46970-7
10.1109/ICCV.2017.52
10.1109/CVPR.2017.557
10.1038/s41598-018-30182-6
10.5244/C.30.44
10.1109/TCSVT.2018.2857489
10.1109/CVPR42600.2020.01035
10.1109/CVPR.2008.4587597
10.1109/CVPR.2010.5539960
10.1109/34.1000236
10.1109/CVPR.2017.690
10.1109/CVPR.2018.00378
10.1109/TGRS.2019.2959120
10.1038/nature14539
10.1109/ACCESS.2019.2963363
10.1109/CVPR.2017.789
10.1109/DCAS.2018.8620111
10.1145/1146909.1146953
10.1109/ICCV.2015.169
10.1038/ncomms1399
10.1109/CVPR.2000.854761
10.1109/TIP.2016.2554321
10.1109/ICCV.2019.00712
10.1109/CVPR.2017.441
10.1016/j.cognition.2014.01.006
10.1109/ICCV.2017.257
10.1609/aaai.v33i01.33015321
10.1109/TNNLS.2013.2270314
10.1007/978-3-319-45886-1_3
10.1007/978-3-642-33765-9_50
10.1109/CSITSS.2018.8768743
10.1109/ICCV.2019.00985
10.1109/CVPR.2018.00815
10.1109/ICCV.2015.316
10.1109/MSP.2017.2749125
10.1038/nrgastro.2012.88
10.1109/GLOCOMW.2018.8644440
10.1109/CVPR.2018.00753
10.5220/0007260002260233
10.1109/CVPR.2017.733
10.1109/TCAD.2005.862751
10.1007/978-3-030-01252-6_24
10.1126/scitranslmed.aaa1233
10.1109/WACV.2014.6836013
10.1038/s41598-018-32931-z
10.1007/978-3-319-49409-8_69
10.1109/TNNLS.2018.2876865
10.1109/ICCV.2015.363
10.1109/ICCV.2019.00351
10.1109/ICCV.2019.00931
10.1109/CVPR.2017.351
10.1007/978-3-030-01240-3_7
10.1109/TCSVT.2017.2736553
10.1109/TIP.2017.2651367
10.1109/MSP.2017.2743118
10.1109/CVPR.2017.531
10.1109/CVPR.2016.95
10.1109/ACCESS.2019.2939201
10.1109/ICCV.2017.214
10.1109/IGARSS.2019.8898173
10.1109/ASPDAC.2008.4483962
10.3724/SP.J.1001.2009.00271
10.1109/ICASE.2017.8374287
10.1109/DSAA.2016.20
10.1109/CVPR.2018.00596
10.1126/scirobotics.aaw0863
10.1109/TPAMI.2015.2497689
10.1109/CVPR.2017.101
10.1109/ICCV.2017.330
10.1109/TPAMI.2014.2345390
10.1109/CVPR.2016.91
10.1109/CVPR.2016.90
10.1109/ICDMW.2019.00034
10.1109/IGARSS.2019.8900412
10.1007/s11263-015-0816-y
10.1007/978-3-319-48881-3_56
10.1007/978-3-030-01261-8_33
10.1109/ACCESS.2019.2956508
10.1109/CVPR.2014.81
10.1126/sciadv.aar4004
10.1109/TIP.2018.2861366
10.1007/978-3-030-01258-8_21
10.1109/ICCV.2019.00401
10.1109/ICCV.2017.324
10.4028/www.scientific.net/AMM.596.374
10.1115/1.3662552
10.1109/CVPR.2018.00286
10.1038/s41598-019-53091-8
10.1109/CCAA.2018.8777708
10.1109/DATE.2008.4484830
10.1109/CVPR.2017.549
10.1109/CVPR.2017.106
10.1109/CVPR.2017.243
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3053249
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3215
ExternalDocumentID 33534715
10_1109_TNNLS_2021_3053249
9345705
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Key Research and Development Program in Shaanxi Province of China
  grantid: 2019ZDLGY03-06
  funderid: 10.13039/501100015401
– fundername: CAAI-Huawei MindSpore Open Fund
– fundername: National Science Basic Research Plan in Shaanxi Province of China
  grantid: 2019JQ-659
– fundername: Foundation for Innovative Research Groups of the National Natural Science Foundation of China
  grantid: 61621005
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: U1701267; 62006177; 61871310; 61902298; 61573267; 61906150
  funderid: 10.13039/501100001809
– fundername: Fund for Foreign Scholars in University Research and Teaching Program’s 111 Project
  grantid: B07048
– fundername: ST Innovation Project from the Chinese Ministry of Education
– fundername: State Key Program of National Natural Science of China
  grantid: 61836009
  funderid: 10.13039/501100001809
– fundername: Major Research Plan of the National Natural Science Foundation of China
  grantid: 91438201; 91438103; 61801124
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-73544a7bd581fc0ce094e9457163f27c46a6a0c35dbd7e19d1f62332c490a2ea3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 16:25:14 EDT 2025
Mon Jun 30 03:08:41 EDT 2025
Mon Jul 21 06:08:01 EDT 2025
Tue Jul 01 00:27:37 EDT 2025
Thu Apr 24 22:52:56 EDT 2025
Wed Aug 27 02:23:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-73544a7bd581fc0ce094e9457163f27c46a6a0c35dbd7e19d1f62332c490a2ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3354-9617
0000-0002-5669-9354
0000-0002-7597-7700
0000-0002-4796-5737
0000-0002-6130-2518
PMID 33534715
PQID 2697569432
PQPubID 85436
PageCount 21
ParticipantIDs pubmed_primary_33534715
ieee_primary_9345705
proquest_journals_2697569432
proquest_miscellaneous_2486463444
crossref_primary_10_1109_TNNLS_2021_3053249
crossref_citationtrail_10_1109_TNNLS_2021_3053249
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref54
Bojarski (ref114) 2016; 103
Li (ref53) 2018
Purkait (ref51) 2017
Mao-Guo (ref103) 2009; 20
ref50
ref46
ref45
ref48
Jiao (ref3) 1993
ref47
Han (ref13) 2016
ref42
ref41
ref44
Dai (ref52)
ref8
Patraucean (ref83) 2015
ref7
ref9
ref6
ref5
ref100
Zhu (ref133) 2018
ref101
ref40
ref35
ref37
ref31
ref30
ref33
ref32
Xingjian (ref84); 2015
ref39
ref38
Shipmon (ref106) 2017
Fu (ref49) 2017
ref24
ref23
ref26
ref25
Liu (ref34) 2019
ref20
ref22
ref21
Redmon (ref12) 2018
ref28
ref29
Jiao (ref1) 2016; 39
Chin (ref36) 2019
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
Bucy (ref69) 1969; 17
ref93
Mao (ref27) 2018
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref86
Tang (ref92)
ref137
ref85
ref138
ref88
Davoudi (ref119) 2018; 9
ref135
ref87
ref136
ref82
ref81
Simonyan (ref43) 2014
Mojtaba Marvasti-Zadeh (ref66) 2019
ref80
ref79
ref108
ref78
ref109
Wang (ref55)
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
Jiao (ref2) 1990
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref67
Jiao (ref4) 2017
ref117
ref118
ref115
ref63
ref116
ref113
ref65
Hetang (ref18) 2017
Shrivastava (ref64) 2016
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref107
  doi: 10.1109/ACCESS.2019.2908016
– ident: ref23
  doi: 10.1007/978-3-030-01237-3_30
– ident: ref50
  doi: 10.1109/ICCV.2017.212
– year: 2016
  ident: ref64
  article-title: Beyond skip connections: Top-down modulation for object detection
  publication-title: arXiv:1612.06851
– ident: ref79
  doi: 10.2307/2181436
– ident: ref78
  doi: 10.1109/CVPR.2019.00441
– ident: ref6
  doi: 10.1145/3065386
– ident: ref101
  doi: 10.1109/TIP.2017.2651364
– ident: ref135
  doi: 10.1109/WACV.2016.7477702
– ident: ref47
  doi: 10.1109/ICCV.2017.322
– ident: ref48
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref111
  doi: 10.1109/VTCSpring.2018.8417546
– ident: ref82
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref126
  doi: 10.1109/ICETT.2016.7873685
– ident: ref124
  doi: 10.1038/s41598-019-41172-7
– ident: ref132
  doi: 10.1109/ICCV.2017.89
– year: 2018
  ident: ref133
  article-title: Towards high performance video object detection for mobiles
  publication-title: arXiv:1804.05830
– ident: ref9
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref63
  doi: 10.1109/CVPR.2017.660
– ident: ref97
  doi: 10.1109/TCSVT.2020.2981652
– ident: ref117
  doi: 10.1038/s41598-019-46970-7
– ident: ref17
  doi: 10.1109/ICCV.2017.52
– ident: ref60
  doi: 10.1109/CVPR.2017.557
– ident: ref122
  doi: 10.1038/s41598-018-30182-6
– ident: ref137
  doi: 10.5244/C.30.44
– ident: ref38
  doi: 10.1109/TCSVT.2018.2857489
– ident: ref20
  doi: 10.1109/CVPR42600.2020.01035
– ident: ref138
  doi: 10.1109/CVPR.2008.4587597
– ident: ref71
  doi: 10.1109/CVPR.2010.5539960
– ident: ref68
  doi: 10.1109/34.1000236
– ident: ref11
  doi: 10.1109/CVPR.2017.690
– year: 2019
  ident: ref34
  article-title: Looking fast and slow: Memory-guided mobile video object detection
  publication-title: arXiv:1903.10172
– ident: ref91
  doi: 10.1109/CVPR.2018.00378
– ident: ref98
  doi: 10.1109/TGRS.2019.2959120
– volume: 39
  start-page: 1697
  issue: 8
  year: 2016
  ident: ref1
  article-title: Seventy years of neural networks: Review and prospect
  publication-title: Chin. J. Comput.
– ident: ref42
  doi: 10.1038/nature14539
– year: 2019
  ident: ref66
  article-title: Deep learning for visual tracking: A comprehensive survey
  publication-title: arXiv:1912.00535
– volume: 2015
  start-page: 802
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref84
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
– year: 2016
  ident: ref13
  article-title: Seq-NMS for video object detection
  publication-title: arXiv:1602.08465
– ident: ref100
  doi: 10.1109/ACCESS.2019.2963363
– ident: ref129
  doi: 10.1109/CVPR.2017.789
– ident: ref105
  doi: 10.1109/DCAS.2018.8620111
– ident: ref89
  doi: 10.1145/1146909.1146953
– year: 2018
  ident: ref12
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv:1804.02767
– ident: ref8
  doi: 10.1109/ICCV.2015.169
– ident: ref123
  doi: 10.1038/ncomms1399
– ident: ref67
  doi: 10.1109/CVPR.2000.854761
– ident: ref40
  doi: 10.1109/TIP.2016.2554321
– ident: ref35
  doi: 10.1109/ICCV.2019.00712
– ident: ref16
  doi: 10.1109/CVPR.2017.441
– ident: ref85
  doi: 10.1016/j.cognition.2014.01.006
– ident: ref21
  doi: 10.1109/ICCV.2017.257
– ident: ref33
  doi: 10.1609/aaai.v33i01.33015321
– ident: ref104
  doi: 10.1109/TNNLS.2013.2270314
– ident: ref127
  doi: 10.1007/978-3-319-45886-1_3
– ident: ref72
  doi: 10.1007/978-3-642-33765-9_50
– ident: ref41
  doi: 10.1109/CSITSS.2018.8768743
– ident: ref25
  doi: 10.1109/ICCV.2019.00985
– ident: ref32
  doi: 10.1109/CVPR.2018.00815
– ident: ref80
  doi: 10.1109/ICCV.2015.316
– ident: ref46
  doi: 10.1109/MSP.2017.2749125
– ident: ref116
  doi: 10.1038/nrgastro.2012.88
– year: 2017
  ident: ref51
  article-title: SPP-net: Deep absolute pose regression with synthetic views
  publication-title: arXiv:1712.03452
– ident: ref110
  doi: 10.1109/GLOCOMW.2018.8644440
– ident: ref81
  doi: 10.1109/CVPR.2018.00753
– ident: ref94
  doi: 10.5220/0007260002260233
– ident: ref74
  doi: 10.1109/CVPR.2017.733
– ident: ref88
  doi: 10.1109/TCAD.2005.862751
– ident: ref56
  doi: 10.1007/978-3-030-01252-6_24
– ident: ref118
  doi: 10.1126/scitranslmed.aaa1233
– ident: ref134
  doi: 10.1109/WACV.2014.6836013
– ident: ref121
  doi: 10.1038/s41598-018-32931-z
– ident: ref31
  doi: 10.1007/978-3-319-49409-8_69
– ident: ref45
  doi: 10.1109/TNNLS.2018.2876865
– ident: ref136
  doi: 10.1109/ICCV.2015.363
– ident: ref30
  doi: 10.1109/ICCV.2019.00351
– ident: ref93
  doi: 10.1109/ICCV.2019.00931
– ident: ref65
  doi: 10.1109/CVPR.2017.351
– ident: ref77
  doi: 10.1007/978-3-030-01240-3_7
– ident: ref15
  doi: 10.1109/TCSVT.2017.2736553
– volume-title: Neural Network Computing
  year: 1993
  ident: ref3
– volume-title: Neural Network System Theory
  year: 1990
  ident: ref2
– ident: ref131
  doi: 10.1109/TIP.2017.2651367
– ident: ref115
  doi: 10.1109/MSP.2017.2743118
– ident: ref75
  doi: 10.1109/CVPR.2017.531
– ident: ref14
  doi: 10.1109/CVPR.2016.95
– volume-title: Deep Learning, Recognition and Optimization
  year: 2017
  ident: ref4
– ident: ref5
  doi: 10.1109/ACCESS.2019.2939201
– ident: ref61
  doi: 10.1109/ICCV.2017.214
– ident: ref109
  doi: 10.1109/IGARSS.2019.8898173
– ident: ref87
  doi: 10.1109/ASPDAC.2008.4483962
– volume: 20
  start-page: 271
  issue: 2
  year: 2009
  ident: ref103
  article-title: Evolutionary multi-objective optimization algorithms
  publication-title: Softw. J.
  doi: 10.3724/SP.J.1001.2009.00271
– ident: ref39
  doi: 10.1109/ICASE.2017.8374287
– ident: ref113
  doi: 10.1109/DSAA.2016.20
– year: 2015
  ident: ref83
  article-title: Spatio-temporal video autoencoder with differentiable memory
  publication-title: arXiv:1511.06309
– ident: ref24
  doi: 10.1109/CVPR.2018.00596
– ident: ref112
  doi: 10.1126/scirobotics.aaw0863
– ident: ref96
  doi: 10.1109/TPAMI.2015.2497689
– year: 2018
  ident: ref53
  article-title: DetNet: A backbone network for object detection
  publication-title: arXiv:1804.06215
– ident: ref22
  doi: 10.1109/CVPR.2017.101
– ident: ref26
  doi: 10.1109/ICCV.2017.330
– ident: ref73
  doi: 10.1109/TPAMI.2014.2345390
– ident: ref10
  doi: 10.1109/CVPR.2016.91
– ident: ref57
  doi: 10.1109/CVPR.2016.90
– year: 2017
  ident: ref49
  article-title: DSSD: Deconvolutional single shot detector
  publication-title: arXiv:1701.06659
– ident: ref99
  doi: 10.1109/ICDMW.2019.00034
– year: 2018
  ident: ref27
  article-title: CaTDet: Cascaded tracked detector for efficient object detection from video
  publication-title: arXiv:1810.00434
– year: 2017
  ident: ref106
  article-title: Time series anomaly detection; detection of anomalous drops with limited features and sparse examples in noisy highly periodic data
  publication-title: arXiv:1708.03665
– ident: ref108
  doi: 10.1109/IGARSS.2019.8900412
– ident: ref128
  doi: 10.1007/s11263-015-0816-y
– ident: ref76
  doi: 10.1007/978-3-319-48881-3_56
– ident: ref19
  doi: 10.1007/978-3-030-01261-8_33
– ident: ref44
  doi: 10.1109/ACCESS.2019.2956508
– ident: ref7
  doi: 10.1109/CVPR.2014.81
– ident: ref125
  doi: 10.1126/sciadv.aar4004
– year: 2017
  ident: ref18
  article-title: Impression network for video object detection
  publication-title: arXiv:1712.05896
– volume: 9
  start-page: 8020
  volume-title: Sci. Rep.
  year: 2018
  ident: ref119
  article-title: The intelligent ICU pilot study: Using artificial intelligence technology for autonomous patient monitoring
– ident: ref102
  doi: 10.1109/TIP.2018.2861366
– ident: ref28
  doi: 10.1007/978-3-030-01258-8_21
– ident: ref29
  doi: 10.1109/ICCV.2019.00401
– ident: ref59
  doi: 10.1109/ICCV.2017.324
– start-page: 379
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref52
  article-title: R-FCN: Object detection via region-based fully convolutional networks
– year: 2014
  ident: ref43
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref95
  doi: 10.4028/www.scientific.net/AMM.596.374
– volume: 17
  start-page: 80
  year: 1969
  ident: ref69
  article-title: Bayes theorem and digital realizations for non-linear filters
  publication-title: J. Astron. Sci.
– ident: ref70
  doi: 10.1115/1.3662552
– year: 2019
  ident: ref36
  article-title: AdaScale: Towards real-time video object detection using adaptive scaling
  publication-title: arXiv:1902.02910
– ident: ref90
  doi: 10.1109/CVPR.2018.00286
– volume: 103
  year: 2016
  ident: ref114
  article-title: End to end learning for self-driving cars
  publication-title: arXiv:1604.07316
– ident: ref120
  doi: 10.1038/s41598-019-53091-8
– ident: ref37
  doi: 10.1109/CCAA.2018.8777708
– start-page: 1963
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref55
  article-title: Pelee: A real-time object detection system on mobile devices
– ident: ref86
  doi: 10.1109/DATE.2008.4484830
– ident: ref130
  doi: 10.1109/ICCV.2019.00931
– start-page: 638
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref92
  article-title: Shifting weights: Adapting object detectors from image to video
– ident: ref54
  doi: 10.1109/CVPR.2017.549
– ident: ref62
  doi: 10.1109/CVPR.2017.106
– ident: ref58
  doi: 10.1109/CVPR.2017.243
SSID ssj0000605649
Score 2.6914952
Snippet Video object detection, a basic task in the computer vision field, is rapidly evolving and widely used. In recent years, deep learning methods have rapidly...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3195
SubjectTerms Algorithms
Computer vision
Convolution
Deep learning
Detection algorithms
Feature extraction
Learning
Learning systems
Machine learning
Meteorological satellites
neural networks
Object detection
Object recognition
pipeline processing
Surveys
Task analysis
Telematics
Video data
video signal processing
Title New Generation Deep Learning for Video Object Detection: A Survey
URI https://ieeexplore.ieee.org/document/9345705
https://www.ncbi.nlm.nih.gov/pubmed/33534715
https://www.proquest.com/docview/2697569432
https://www.proquest.com/docview/2486463444
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT1xooTwCBRmJG2Sb2GN7zW0FVBWiy6Et2lvkx7hCoGzVJkjw67GdhwQCxC2SncT2jO1v7JlvCHkRYoFX4MqIzm0yUERpAX2pwYADHwLjKd75dC1PLuD9Rmx2yKs5FgYRs_MZLtJjvsv3W9eno7IjzUGoRFh6KxpuQ6zWfJ5SRVwuM9pltWQl42ozxchU-uh8vf5wFq1BVi94yoUAiS2Uc8Hj2ix-2ZJyjpW_w8287RzvkdOpwYO3yZdF39mF-_Ebl-P_9mif3BnxJ10NCnOX7GB7j-xNuR3oONUPyCqufnTgpE6io28Rr-hIxnpJI9Klnz573NKPNh3kxOIu-3S1r-mKnvXX3_D7fXJx_O78zUk5plsoHdSqKxUXAEZZL5Z1cJXDaPmhju2LkC0w5UAaaSrHhbdeYa19HSJ24syBrgxDwx-Q3Xbb4iNCvfSVFV57Z0K0iCoTeOB2CV6gAW9kQeppxBs3cpGnlBhfm2yTVLrJAmuSwJpRYAV5Ob9zNTBx_LP2QRrtueY40AU5nATbjJP1pmFSKyE1cFaQ53NxnGbp7sS0uO1jHVhKkBwACvJwUIj525MePf7zP5-Q2yzFTGSvwUOy2133-DQimc4-yyr8Ewxi61g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcoALBcojUMBIcELZJvbYWSNxWFGqLd0uh27R3lLHdlBVlK3aBFR-C3-F_4btPCQQcKvELZIdR_F8Hn9jzwPgRekaTIY6duy88AYKjwu0JpaoUKMpS8p8vPPBXEyP8P2SL9fg-xALY60Nzmd25B_DXb5Z6cYflW1LhjxLehfKfXv51RloF2_2dpw0X1K6-27xdhp3NQRijWlWxxnjiCorDB-npU60deaMlW4Yx0NKmmkUSqhEM24Kk9lUmrR0hIBRjTJR1Crmxr0G1x3P4LSNDhtOcBJnCYjAr2kqaExZtuyjchK5vZjPZ4fO_qTpiPnqC-jzkzLGmdsN-C-bYKjq8neCGza63Q340U9R699yOmrqYqS__ZY98n-dw9twq2PYZNIuiTuwZqu7sNFXryCdMtuEidPvpM267cFJdqw9I1262U_EcXny8cTYFflQ-KMq11wHr7XqNZmQw-b8i728B0dX8iP3Yb1aVfYhECNMUnAjjVals_kSVbKSFWM03Co0SkSQ9hLOdZdt3Rf9-JwHqyuReQBI7gGSdwCJ4NXwzlmba-SfvTe9dIeenWAj2OqBlHfq6CKnQmZcSGQ0gudDs1Mk_nZIVXbVuD44FigYIkbwoAXgMHaP20d__uYzuDFdHMzy2d58_zHcpD5CJPhIbsF6fd7YJ4631cXTsHwIHF811n4Cb0JH5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Generation+Deep+Learning+for+Video+Object+Detection%3A+A+Survey&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Jiao%2C+Licheng&rft.au=Zhang%2C+Ruohan&rft.au=Liu%2C+Fang&rft.au=Yang%2C+Shuyuan&rft.date=2022-08-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=33&rft.issue=8&rft.spage=3195&rft_id=info:doi/10.1109%2FTNNLS.2021.3053249&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon