Nanoscale chemical imaging of solid–liquid interfaces using tip-enhanced Raman spectroscopy

Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date nanoscale resolution chemical imaging in a liquid environment has not been possible, in part due to the lack of robust TERS probes that are stable...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 10; no. 4; pp. 1815 - 1824
Main Authors Kumar, Naresh, Su, Weitao, Veselý, Martin, Weckhuysen, Bert M., Pollard, Andrew J., Wain, Andrew J.
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date nanoscale resolution chemical imaging in a liquid environment has not been possible, in part due to the lack of robust TERS probes that are stable when immersed in a liquid. In this work, we have addressed this challenge by developing plasmonically-active TERS probes with a multilayer metal coating structure that can be successfully used within a liquid environment. Using these novel TERS probes, we have compared the plasmonic enhancement of TERS signals in air and water environments for both gap mode and non-gap mode configurations and show that in both cases the plasmonic enhancement decreases in water. To better understand the signal attenuation in water, we have performed numerical simulations that revealed a negative correlation between the electric field enhancement at the TERS probe-apex and the refractive index of the surrounding medium. Finally, using these robust probes we demonstrate TERS imaging with nanoscale spatial resolution in a water environment for the first time by employing single-wall carbon nanotubes as a model sample. Our findings are expected to broaden the scope of TERS to a range of scientific disciplines in which nanostructured solid–liquid interfaces play a key role.
AbstractList Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date nanoscale resolution chemical imaging in a liquid environment has not been possible, in part due to the lack of robust TERS probes that are stable when immersed in a liquid. In this work, we have addressed this challenge by developing plasmonically-active TERS probes with a multilayer metal coating structure that can be successfully used within a liquid environment. Using these novel TERS probes, we have compared the plasmonic enhancement of TERS signals in air and water environments for both gap mode and non-gap mode configurations and show that in both cases the plasmonic enhancement decreases in water. To better understand the signal attenuation in water, we have performed numerical simulations that revealed a negative correlation between the electric field enhancement at the TERS probe-apex and the refractive index of the surrounding medium. Finally, using these robust probes we demonstrate TERS imaging with nanoscale spatial resolution in a water environment for the first time by employing single-wall carbon nanotubes as a model sample. Our findings are expected to broaden the scope of TERS to a range of scientific disciplines in which nanostructured solid-liquid interfaces play a key role.Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date nanoscale resolution chemical imaging in a liquid environment has not been possible, in part due to the lack of robust TERS probes that are stable when immersed in a liquid. In this work, we have addressed this challenge by developing plasmonically-active TERS probes with a multilayer metal coating structure that can be successfully used within a liquid environment. Using these novel TERS probes, we have compared the plasmonic enhancement of TERS signals in air and water environments for both gap mode and non-gap mode configurations and show that in both cases the plasmonic enhancement decreases in water. To better understand the signal attenuation in water, we have performed numerical simulations that revealed a negative correlation between the electric field enhancement at the TERS probe-apex and the refractive index of the surrounding medium. Finally, using these robust probes we demonstrate TERS imaging with nanoscale spatial resolution in a water environment for the first time by employing single-wall carbon nanotubes as a model sample. Our findings are expected to broaden the scope of TERS to a range of scientific disciplines in which nanostructured solid-liquid interfaces play a key role.
Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date nanoscale resolution chemical imaging in a liquid environment has not been possible, in part due to the lack of robust TERS probes that are stable when immersed in a liquid. In this work, we have addressed this challenge by developing plasmonically-active TERS probes with a multilayer metal coating structure that can be successfully used within a liquid environment. Using these novel TERS probes, we have compared the plasmonic enhancement of TERS signals in air and water environments for both gap mode and non-gap mode configurations and show that in both cases the plasmonic enhancement decreases in water. To better understand the signal attenuation in water, we have performed numerical simulations that revealed a negative correlation between the electric field enhancement at the TERS probe-apex and the refractive index of the surrounding medium. Finally, using these robust probes we demonstrate TERS imaging with nanoscale spatial resolution in a water environment for the first time by employing single-wall carbon nanotubes as a model sample. Our findings are expected to broaden the scope of TERS to a range of scientific disciplines in which nanostructured solid–liquid interfaces play a key role.
Author Kumar, Naresh
Weckhuysen, Bert M.
Su, Weitao
Veselý, Martin
Pollard, Andrew J.
Wain, Andrew J.
Author_xml – sequence: 1
  givenname: Naresh
  orcidid: 0000-0001-8953-5420
  surname: Kumar
  fullname: Kumar, Naresh
  organization: National Physical Laboratory, Teddington, UK, Faculty of Science, Debye Institute for Nanomaterials Science
– sequence: 2
  givenname: Weitao
  orcidid: 0000-0002-7831-1955
  surname: Su
  fullname: Su, Weitao
  organization: College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018 Hangzhou, China
– sequence: 3
  givenname: Martin
  surname: Veselý
  fullname: Veselý, Martin
  organization: Faculty of Science, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
– sequence: 4
  givenname: Bert M.
  orcidid: 0000-0001-5245-1426
  surname: Weckhuysen
  fullname: Weckhuysen, Bert M.
  organization: Faculty of Science, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
– sequence: 5
  givenname: Andrew J.
  orcidid: 0000-0002-6841-2592
  surname: Pollard
  fullname: Pollard, Andrew J.
  organization: National Physical Laboratory, Teddington, UK
– sequence: 6
  givenname: Andrew J.
  orcidid: 0000-0002-8666-6158
  surname: Wain
  fullname: Wain, Andrew J.
  organization: National Physical Laboratory, Teddington, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29308817$$D View this record in MEDLINE/PubMed
BookMark eNpt0d1KwzAUB_AgE_ehNz6AFLwRoZqPNmkvZTgVxoShl1LSJN0y2qRr2ovd-Q6-oU9ixuaE4VXOxe8cTv5nCHrGGgXAJYJ3CJL0fsxmc5jgmE1OwADDCIaEMNw71DTqg6FzKwhpSig5A32cEpgkiA3Ax4wb6wQvVSCWqtK-CnTFF9osAlsEzpZafn9-lXrdaRlo06qm4EK5oHNb0uo6VGbJjVAymPOKm8DVSrSNn2nrzTk4LXjp1MX-HYH3yePb-Dmcvj69jB-moYgQa0OKk7wgBcypLDCmKE9ihDgWURQxxGLFsGRMER5zKmLMKImKmBDMJE5zIpEkI3Czm1s3dt0p12aVdkKVJTfKdi5DaZLGMYKUeHp9RFe2a4zfLsMQ-VQootirq73q8krJrG58KM0m-w3Og9sdEP6rrlHFgSCYba-S_V3FY3iEhW55q61pG67L_1p-AJS6jio
CitedBy_id crossref_primary_10_1021_acsnano_4c06192
crossref_primary_10_1146_annurev_physchem_061020_053442
crossref_primary_10_1039_D2CY01348G
crossref_primary_10_1021_acs_jpclett_8b02496
crossref_primary_10_1039_C9NA00322C
crossref_primary_10_1021_acs_analchem_3c00410
crossref_primary_10_1088_1361_6528_ab90b6
crossref_primary_10_1007_s00706_021_02808_5
crossref_primary_10_1002_ppsc_202100022
crossref_primary_10_1021_acsami_9b22144
crossref_primary_10_1021_acs_jpclett_9b00203
crossref_primary_10_1002_jrs_6421
crossref_primary_10_3390_s20174784
crossref_primary_10_1021_acs_analchem_8b05115
crossref_primary_10_1021_acs_jpclett_4c02309
crossref_primary_10_1063_1_5049823
crossref_primary_10_1016_j_surfrep_2022_100576
crossref_primary_10_1021_acs_jpclett_8b01635
crossref_primary_10_1021_acs_jpclett_9b00935
crossref_primary_10_3390_nano11020376
crossref_primary_10_1515_nanoph_2019_0027
crossref_primary_10_1021_acs_jpcc_0c07579
crossref_primary_10_1021_acs_jpcc_4c01610
crossref_primary_10_1016_j_elecom_2019_106557
crossref_primary_10_1021_acs_jpcc_0c05396
crossref_primary_10_1021_acs_nanolett_3c00689
crossref_primary_10_1038_s43586_023_00263_6
crossref_primary_10_1002_smll_201907418
crossref_primary_10_1021_acs_analchem_3c02601
crossref_primary_10_1016_j_surfin_2021_101655
crossref_primary_10_1088_1361_6528_aca90f
crossref_primary_10_1021_acs_nanolett_0c01291
crossref_primary_10_1021_acsanm_2c01274
crossref_primary_10_1002_ange_202210288
crossref_primary_10_1038_s41596_019_0132_z
crossref_primary_10_1021_acsami_3c17115
crossref_primary_10_1039_D1AY01636A
crossref_primary_10_1038_s41467_018_05307_0
crossref_primary_10_1039_D0CY00555J
crossref_primary_10_1021_acs_jpcc_1c05353
crossref_primary_10_1016_j_bbagen_2025_130771
crossref_primary_10_2142_biophysico_bppb_v20_0011
crossref_primary_10_1002_anie_202210288
crossref_primary_10_1021_acs_jpclett_0c01413
crossref_primary_10_1021_acs_jpcc_8b10829
crossref_primary_10_1021_acsanm_0c01188
crossref_primary_10_1002_jrs_6044
crossref_primary_10_1021_acs_jpcc_9b00867
crossref_primary_10_1021_acsnano_9b03980
crossref_primary_10_1039_C8FD00142A
crossref_primary_10_1038_s41467_019_10618_x
crossref_primary_10_1039_D0NR05107A
crossref_primary_10_1021_acsnano_4c07198
crossref_primary_10_1021_jacs_3c01626
crossref_primary_10_1039_D2NR05127C
crossref_primary_10_1039_D2NR00274D
crossref_primary_10_1021_acs_jpcb_8b10987
crossref_primary_10_1021_acs_jpcc_4c05236
crossref_primary_10_1021_acs_jpclett_0c01006
crossref_primary_10_1021_acs_jpcc_9b00513
crossref_primary_10_1016_j_apsusc_2018_02_155
crossref_primary_10_1021_acs_jpcc_2c03881
crossref_primary_10_1177_0003702820932229
Cites_doi 10.1038/nphoton.2009.74
10.1021/nl5041786
10.1021/jp077457g
10.1063/1.126546
10.1039/C6CC10226C
10.1021/nl0340475
10.1039/C4NR07441F
10.1016/S0009-2614(99)01451-7
10.1021/acs.chemrev.6b00552
10.1038/srep00647
10.1021/jp026731y
10.1002/anie.200801605
10.1039/c3sc51231b
10.1021/acs.nanolett.5b04177
10.1039/C6CC01990K
10.1063/1.4978261
10.1021/jz501239z
10.1016/0040-6090(90)90027-B
10.1021/acs.chemrev.6b00821
10.1021/acs.nanolett.6b04868
10.1007/s00216-009-3378-4
10.1038/nrmicro905
10.1021/acs.chemrev.6b00343
10.1038/nature12151
10.1038/nnano.2012.131
10.1016/0040-6090(73)90096-5
10.1016/S0030-4018(00)00894-4
10.1039/C5NR07378B
10.1038/nnano.2009.190
10.1116/1.3368499
10.1021/jp054227y
10.1038/nchem.1478
10.1063/1.3056155
10.1366/0003702924124321
10.1021/acs.langmuir.7b01338
10.1039/C7CS00209B
10.1021/acs.analchem.6b01080
10.1039/C5NR04664E
10.1002/jrs.2387
10.1038/nnano.2016.241
10.1063/1.4869184
10.1039/C6NR09057E
10.1002/smll.200801101
10.1039/C6CP02596J
10.1146/annurev.pc.44.100193.002331
10.1021/acs.analchem.5b03588
10.1021/nl104163m
10.1103/PhysRevLett.111.216101
10.2116/analsci.29.865
10.1140/epjti/s40485-015-0019-5
10.1021/la00082a011
10.1021/acs.analchem.7b01542
10.1002/9783527618620
10.1021/jacs.5b08143
10.1002/anie.201105217
10.1103/PhysRevLett.90.095503
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/C7NR08257F
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 1824
ExternalDocumentID 29308817
10_1039_C7NR08257F
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c417t-628bf3f0b6df2261b8511a2c4447175e72d77e3a5a6c527634f53327d29b3d1d3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 01:43:36 EDT 2025
Mon Jun 30 03:52:25 EDT 2025
Thu Apr 03 07:11:18 EDT 2025
Tue Jul 01 00:33:55 EDT 2025
Thu Apr 24 23:05:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-628bf3f0b6df2261b8511a2c4447175e72d77e3a5a6c527634f53327d29b3d1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7831-1955
0000-0002-8666-6158
0000-0002-6841-2592
0000-0001-8953-5420
0000-0001-5245-1426
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2018/nr/c7nr08257f
PMID 29308817
PQID 2010886162
PQPubID 2047485
PageCount 10
ParticipantIDs proquest_miscellaneous_1989551063
proquest_journals_2010886162
pubmed_primary_29308817
crossref_primary_10_1039_C7NR08257F
crossref_citationtrail_10_1039_C7NR08257F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 20180101
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sun (C7NR08257F-(cit27)/*[position()=1]) 2012; 2
Kumar (C7NR08257F-(cit43)/*[position()=1]) 2014; 104
Verma (C7NR08257F-(cit7)/*[position()=1]) 2017; 117
Lucia (C7NR08257F-(cit19)/*[position()=1]) 2017; 110
Pozzi (C7NR08257F-(cit29)/*[position()=1]) 2016; 117
Nyquist (C7NR08257F-(cit42)/*[position()=1]) 1992; 46
Zhong (C7NR08257F-(cit15)/*[position()=1]) 2017; 12
Kurouski (C7NR08257F-(cit36)/*[position()=1]) 2015; 15
Martín Sabanés (C7NR08257F-(cit33)/*[position()=1]) 2016; 88
Sobocinski (C7NR08257F-(cit47)/*[position()=1]) 1988; 4
Yano (C7NR08257F-(cit58)/*[position()=1]) 2009; 3
George (C7NR08257F-(cit41)/*[position()=1]) 1990; 189
Kalbacova (C7NR08257F-(cit45)/*[position()=1]) 2014; 1
Touzalin (C7NR08257F-(cit38)/*[position()=1]) 2017; 89
Hartschuh (C7NR08257F-(cit54)/*[position()=1]) 2003; 90
Buurmans (C7NR08257F-(cit1)/*[position()=1]) 2012; 4
Bohren (C7NR08257F-(cit50)/*[position()=1]) 2006
Roy (C7NR08257F-(cit57)/*[position()=1]) 2009; 105
Yeo (C7NR08257F-(cit16)/*[position()=1]) 2009; 5
Kumar (C7NR08257F-(cit17)/*[position()=1]) 2017; 53
Zrimsek (C7NR08257F-(cit26)/*[position()=1]) 2016; 117
Mock (C7NR08257F-(cit51)/*[position()=1]) 2003; 3
Hartschuh (C7NR08257F-(cit8)/*[position()=1]) 2008; 47
Hayazawa (C7NR08257F-(cit10)/*[position()=1]) 2000; 183
Pozzi (C7NR08257F-(cit28)/*[position()=1]) 2014; 5
Berweger (C7NR08257F-(cit49)/*[position()=1]) 2010; 396
Mattox (C7NR08257F-(cit40)/*[position()=1]) 1973; 18
Zhang (C7NR08257F-(cit25)/*[position()=1]) 2013; 498
Su (C7NR08257F-(cit21)/*[position()=1]) 2016; 52
Mignuzzi (C7NR08257F-(cit20)/*[position()=1]) 2015; 7
Okuno (C7NR08257F-(cit23)/*[position()=1]) 2013; 111
Schmid (C7NR08257F-(cit30)/*[position()=1]) 2009; 40
van Schrojenstein Lantman (C7NR08257F-(cit13)/*[position()=1]) 2012; 7
Roy (C7NR08257F-(cit56)/*[position()=1]) 2010; 28
Scherger (C7NR08257F-(cit32)/*[position()=1]) 2017; 33
Zhang (C7NR08257F-(cit46)/*[position()=1]) 2008; 112
Weckhuysen (C7NR08257F-(cit2)/*[position()=1]) 2004
Zeng (C7NR08257F-(cit35)/*[position()=1]) 2015; 137
Anderson (C7NR08257F-(cit11)/*[position()=1]) 2000; 76
Kumar (C7NR08257F-(cit14)/*[position()=1]) 2015; 7
Benz (C7NR08257F-(cit44)/*[position()=1]) 2014; 15
Dufrêne (C7NR08257F-(cit4)/*[position()=1]) 2004; 2
Mattei (C7NR08257F-(cit39)/*[position()=1]) 2016; 17
Weber-Bargioni (C7NR08257F-(cit55)/*[position()=1]) 2011; 11
Deckert-Gaudig (C7NR08257F-(cit5)/*[position()=1]) 2017; 46
Kumar (C7NR08257F-(cit6)/*[position()=1]) 2015; 2
Wang (C7NR08257F-(cit37)/*[position()=1]) 2015; 88
Stockle (C7NR08257F-(cit9)/*[position()=1]) 2000; 318
Su (C7NR08257F-(cit22)/*[position()=1]) 2016; 8
Weaver (C7NR08257F-(cit3)/*[position()=1]) 1993; 44
Berweger (C7NR08257F-(cit18)/*[position()=1]) 2009; 4
Liu (C7NR08257F-(cit48)/*[position()=1]) 2013; 4
Boehmler (C7NR08257F-(cit24)/*[position()=1]) 2011; 50
Nakata (C7NR08257F-(cit31)/*[position()=1]) 2013; 29
Kumar (C7NR08257F-(cit12)/*[position()=1]) 2017; 9
Touzalin (C7NR08257F-(cit34)/*[position()=1]) 2016; 18
Kelly (C7NR08257F-(cit53)/*[position()=1]) 2003; 107
Miller (C7NR08257F-(cit52)/*[position()=1]) 2005; 109
References_xml – volume: 3
  start-page: 473
  year: 2009
  ident: C7NR08257F-(cit58)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.74
– volume-title: In-situ spectroscopy of catalysts
  year: 2004
  ident: C7NR08257F-(cit2)/*[position()=1]
– volume: 15
  start-page: 669
  year: 2014
  ident: C7NR08257F-(cit44)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5041786
– volume: 112
  start-page: 2104
  year: 2008
  ident: C7NR08257F-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp077457g
– volume: 76
  start-page: 3130
  year: 2000
  ident: C7NR08257F-(cit11)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126546
– volume: 53
  start-page: 2451
  year: 2017
  ident: C7NR08257F-(cit17)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC10226C
– volume: 3
  start-page: 485
  year: 2003
  ident: C7NR08257F-(cit51)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl0340475
– volume: 7
  start-page: 7133
  year: 2015
  ident: C7NR08257F-(cit14)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR07441F
– volume: 318
  start-page: 131
  year: 2000
  ident: C7NR08257F-(cit9)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)01451-7
– volume: 117
  start-page: 7583
  year: 2016
  ident: C7NR08257F-(cit26)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00552
– volume: 2
  start-page: 647
  year: 2012
  ident: C7NR08257F-(cit27)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep00647
– volume: 107
  start-page: 668
  year: 2003
  ident: C7NR08257F-(cit53)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp026731y
– volume: 47
  start-page: 8178
  year: 2008
  ident: C7NR08257F-(cit8)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801605
– volume: 4
  start-page: 3490
  year: 2013
  ident: C7NR08257F-(cit48)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc51231b
– volume: 15
  start-page: 7956
  year: 2015
  ident: C7NR08257F-(cit36)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04177
– volume: 52
  start-page: 8227
  year: 2016
  ident: C7NR08257F-(cit21)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC01990K
– volume: 110
  start-page: 103105
  year: 2017
  ident: C7NR08257F-(cit19)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4978261
– volume: 5
  start-page: 2657
  year: 2014
  ident: C7NR08257F-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501239z
– volume: 189
  start-page: 59
  year: 1990
  ident: C7NR08257F-(cit41)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(90)90027-B
– volume: 117
  start-page: 6447
  year: 2017
  ident: C7NR08257F-(cit7)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00821
– volume: 17
  start-page: 590
  year: 2016
  ident: C7NR08257F-(cit39)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04868
– volume: 396
  start-page: 1613
  year: 2010
  ident: C7NR08257F-(cit49)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-009-3378-4
– volume: 2
  start-page: 451
  year: 2004
  ident: C7NR08257F-(cit4)/*[position()=1]
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro905
– volume: 117
  start-page: 4961
  year: 2016
  ident: C7NR08257F-(cit29)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00343
– volume: 498
  start-page: 82
  year: 2013
  ident: C7NR08257F-(cit25)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12151
– volume: 7
  start-page: 583
  year: 2012
  ident: C7NR08257F-(cit13)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.131
– volume: 18
  start-page: 173
  year: 1973
  ident: C7NR08257F-(cit40)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(73)90096-5
– volume: 183
  start-page: 333
  year: 2000
  ident: C7NR08257F-(cit10)/*[position()=1]
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(00)00894-4
– volume: 8
  start-page: 10564
  year: 2016
  ident: C7NR08257F-(cit22)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR07378B
– volume: 4
  start-page: 496
  year: 2009
  ident: C7NR08257F-(cit18)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.190
– volume: 28
  start-page: 472
  year: 2010
  ident: C7NR08257F-(cit56)/*[position()=1]
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/1.3368499
– volume: 109
  start-page: 21556
  year: 2005
  ident: C7NR08257F-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp054227y
– volume: 4
  start-page: 873
  year: 2012
  ident: C7NR08257F-(cit1)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1478
– volume: 105
  start-page: 013530
  year: 2009
  ident: C7NR08257F-(cit57)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3056155
– volume: 46
  start-page: 981
  year: 1992
  ident: C7NR08257F-(cit42)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702924124321
– volume: 33
  start-page: 7818
  year: 2017
  ident: C7NR08257F-(cit32)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b01338
– volume: 46
  start-page: 4077
  year: 2017
  ident: C7NR08257F-(cit5)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00209B
– volume: 88
  start-page: 7108
  year: 2016
  ident: C7NR08257F-(cit33)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b01080
– volume: 7
  start-page: 19413
  year: 2015
  ident: C7NR08257F-(cit20)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR04664E
– volume: 40
  start-page: 1392
  year: 2009
  ident: C7NR08257F-(cit30)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2387
– volume: 12
  start-page: 132
  year: 2017
  ident: C7NR08257F-(cit15)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.241
– volume: 104
  start-page: 123106
  year: 2014
  ident: C7NR08257F-(cit43)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4869184
– volume: 9
  start-page: 2723
  year: 2017
  ident: C7NR08257F-(cit12)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR09057E
– volume: 5
  start-page: 952
  year: 2009
  ident: C7NR08257F-(cit16)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.200801101
– volume: 18
  start-page: 15510
  year: 2016
  ident: C7NR08257F-(cit34)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP02596J
– volume: 44
  start-page: 459
  year: 1993
  ident: C7NR08257F-(cit3)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.44.100193.002331
– volume: 88
  start-page: 915
  year: 2015
  ident: C7NR08257F-(cit37)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b03588
– volume: 11
  start-page: 1201
  year: 2011
  ident: C7NR08257F-(cit55)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl104163m
– volume: 111
  start-page: 216101
  year: 2013
  ident: C7NR08257F-(cit23)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.216101
– volume: 29
  start-page: 865
  year: 2013
  ident: C7NR08257F-(cit31)/*[position()=1]
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.29.865
– volume: 1
  start-page: 12
  year: 2014
  ident: C7NR08257F-(cit45)/*[position()=1]
  publication-title: Nanospectroscopy
– volume: 2
  start-page: 9
  year: 2015
  ident: C7NR08257F-(cit6)/*[position()=1]
  publication-title: EPJ Tech. Instrum.
  doi: 10.1140/epjti/s40485-015-0019-5
– volume: 4
  start-page: 836
  year: 1988
  ident: C7NR08257F-(cit47)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la00082a011
– volume: 89
  start-page: 8974
  year: 2017
  ident: C7NR08257F-(cit38)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b01542
– volume-title: Fundamentals of atmospheric radiation: an introduction with 400 problems
  year: 2006
  ident: C7NR08257F-(cit50)/*[position()=1]
  doi: 10.1002/9783527618620
– volume: 137
  start-page: 11928
  year: 2015
  ident: C7NR08257F-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08143
– volume: 50
  start-page: 11536
  year: 2011
  ident: C7NR08257F-(cit24)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201105217
– volume: 90
  start-page: 095503
  year: 2003
  ident: C7NR08257F-(cit54)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.095503
SSID ssj0069363
Score 2.4958308
Snippet Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1815
SubjectTerms Computer simulation
Free surfaces
Imaging
Mathematical models
Metal coatings
Nanotubes
Raman spectroscopy
Refractivity
Robustness (mathematics)
Single wall carbon nanotubes
Spatial resolution
Spectrum analysis
Title Nanoscale chemical imaging of solid–liquid interfaces using tip-enhanced Raman spectroscopy
URI https://www.ncbi.nlm.nih.gov/pubmed/29308817
https://www.proquest.com/docview/2010886162
https://www.proquest.com/docview/1989551063
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagvcABsXegICO4oCowXuIkx06hVCB6KC1U4hDFS9SIaTLMJAf49Tw7diaFVgIuUWQ7sfS-5Pnz24zQCwMUQcNCHcUZlxFXXEeZFiQSXBVTLVlJUpvg_PFQHJzw96fxaTiW3WeXtPKV-nlpXsn_oAptgKvNkv0HZIeXQgPcA75wBYTh-lcYg2psViBks6NC3n917o8dKndg7kpH8-p7V2lXFmJZuvirzpkH2moRmfqsDwA4Kqwp32Vd2uqWzeKCs3eYZu338XHZhzZ7aTAof-pcxJ6p2qIJbZ_NysytN372xqcGhVrfzh2kvp11P7wRaGaWrTfOejMESUdmCOPUFbWxiYz1B_H8oZinzNY1VUm9tHvSpBwPAqEuzh1EwD1A6_XJnL-VwQ5d19EmhR0BqLTN3Q-zd1_CsisyJlioP8uy1-upbL1n__BF8nHFjsIxi-Pb6JbfEuDdHt876Jqp76Kbo0KR99DXAQIckMYeadyUeIw0XiONHdJ4jDR2SOMx0vfRyf7b472DyB-LESlOkjYSNJUlK6dS6BLIM5GWNBdUcQ5EI4lNQnWSGFbEhVAxhfWDl8DpaaJpJpkmmj1AG3VTmy2ExVTSVGQafmTCjeCSxZlSGZGGxkzFZIJeBnnlyteMt0eXzHMXu8CyfC85PHJi3p-g58PYRV8p5dJR20Hsuf-TVrmNyEhTQQSdoGdDN-g567wqatN0q9zG9gG7B0Y9QQ97uIZpAryPrux5jG6sP9pttNEuO_ME2GQrn_rv6BcYpXXR
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+chemical+imaging+of+solid-liquid+interfaces+using+tip-enhanced+Raman+spectroscopy&rft.jtitle=Nanoscale&rft.au=Kumar%2C+Naresh&rft.au=Su%2C+Weitao&rft.au=Vesel%C3%BD%2C+Martin&rft.au=Weckhuysen%2C+Bert+M&rft.date=2018-01-01&rft.eissn=2040-3372&rft_id=info:doi/10.1039%2Fc7nr08257f&rft_id=info%3Apmid%2F29308817&rft.externalDocID=29308817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon