Nanoscale chemical imaging of solid–liquid interfaces using tip-enhanced Raman spectroscopy
Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date nanoscale resolution chemical imaging in a liquid environment has not been possible, in part due to the lack of robust TERS probes that are stable...
Saved in:
Published in | Nanoscale Vol. 10; no. 4; pp. 1815 - 1824 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date nanoscale resolution chemical imaging in a liquid environment has not been possible, in part due to the lack of robust TERS probes that are stable when immersed in a liquid. In this work, we have addressed this challenge by developing plasmonically-active TERS probes with a multilayer metal coating structure that can be successfully used within a liquid environment. Using these novel TERS probes, we have compared the plasmonic enhancement of TERS signals in air and water environments for both gap mode and non-gap mode configurations and show that in both cases the plasmonic enhancement decreases in water. To better understand the signal attenuation in water, we have performed numerical simulations that revealed a negative correlation between the electric field enhancement at the TERS probe-apex and the refractive index of the surrounding medium. Finally, using these robust probes we demonstrate TERS imaging with nanoscale spatial resolution in a water environment for the first time by employing single-wall carbon nanotubes as a model sample. Our findings are expected to broaden the scope of TERS to a range of scientific disciplines in which nanostructured solid–liquid interfaces play a key role. |
---|---|
AbstractList | Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date nanoscale resolution chemical imaging in a liquid environment has not been possible, in part due to the lack of robust TERS probes that are stable when immersed in a liquid. In this work, we have addressed this challenge by developing plasmonically-active TERS probes with a multilayer metal coating structure that can be successfully used within a liquid environment. Using these novel TERS probes, we have compared the plasmonic enhancement of TERS signals in air and water environments for both gap mode and non-gap mode configurations and show that in both cases the plasmonic enhancement decreases in water. To better understand the signal attenuation in water, we have performed numerical simulations that revealed a negative correlation between the electric field enhancement at the TERS probe-apex and the refractive index of the surrounding medium. Finally, using these robust probes we demonstrate TERS imaging with nanoscale spatial resolution in a water environment for the first time by employing single-wall carbon nanotubes as a model sample. Our findings are expected to broaden the scope of TERS to a range of scientific disciplines in which nanostructured solid-liquid interfaces play a key role.Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date nanoscale resolution chemical imaging in a liquid environment has not been possible, in part due to the lack of robust TERS probes that are stable when immersed in a liquid. In this work, we have addressed this challenge by developing plasmonically-active TERS probes with a multilayer metal coating structure that can be successfully used within a liquid environment. Using these novel TERS probes, we have compared the plasmonic enhancement of TERS signals in air and water environments for both gap mode and non-gap mode configurations and show that in both cases the plasmonic enhancement decreases in water. To better understand the signal attenuation in water, we have performed numerical simulations that revealed a negative correlation between the electric field enhancement at the TERS probe-apex and the refractive index of the surrounding medium. Finally, using these robust probes we demonstrate TERS imaging with nanoscale spatial resolution in a water environment for the first time by employing single-wall carbon nanotubes as a model sample. Our findings are expected to broaden the scope of TERS to a range of scientific disciplines in which nanostructured solid-liquid interfaces play a key role. Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date nanoscale resolution chemical imaging in a liquid environment has not been possible, in part due to the lack of robust TERS probes that are stable when immersed in a liquid. In this work, we have addressed this challenge by developing plasmonically-active TERS probes with a multilayer metal coating structure that can be successfully used within a liquid environment. Using these novel TERS probes, we have compared the plasmonic enhancement of TERS signals in air and water environments for both gap mode and non-gap mode configurations and show that in both cases the plasmonic enhancement decreases in water. To better understand the signal attenuation in water, we have performed numerical simulations that revealed a negative correlation between the electric field enhancement at the TERS probe-apex and the refractive index of the surrounding medium. Finally, using these robust probes we demonstrate TERS imaging with nanoscale spatial resolution in a water environment for the first time by employing single-wall carbon nanotubes as a model sample. Our findings are expected to broaden the scope of TERS to a range of scientific disciplines in which nanostructured solid–liquid interfaces play a key role. |
Author | Kumar, Naresh Weckhuysen, Bert M. Su, Weitao Veselý, Martin Pollard, Andrew J. Wain, Andrew J. |
Author_xml | – sequence: 1 givenname: Naresh orcidid: 0000-0001-8953-5420 surname: Kumar fullname: Kumar, Naresh organization: National Physical Laboratory, Teddington, UK, Faculty of Science, Debye Institute for Nanomaterials Science – sequence: 2 givenname: Weitao orcidid: 0000-0002-7831-1955 surname: Su fullname: Su, Weitao organization: College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018 Hangzhou, China – sequence: 3 givenname: Martin surname: Veselý fullname: Veselý, Martin organization: Faculty of Science, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands – sequence: 4 givenname: Bert M. orcidid: 0000-0001-5245-1426 surname: Weckhuysen fullname: Weckhuysen, Bert M. organization: Faculty of Science, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands – sequence: 5 givenname: Andrew J. orcidid: 0000-0002-6841-2592 surname: Pollard fullname: Pollard, Andrew J. organization: National Physical Laboratory, Teddington, UK – sequence: 6 givenname: Andrew J. orcidid: 0000-0002-8666-6158 surname: Wain fullname: Wain, Andrew J. organization: National Physical Laboratory, Teddington, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29308817$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0d1KwzAUB_AgE_ehNz6AFLwRoZqPNmkvZTgVxoShl1LSJN0y2qRr2ovd-Q6-oU9ixuaE4VXOxe8cTv5nCHrGGgXAJYJ3CJL0fsxmc5jgmE1OwADDCIaEMNw71DTqg6FzKwhpSig5A32cEpgkiA3Ax4wb6wQvVSCWqtK-CnTFF9osAlsEzpZafn9-lXrdaRlo06qm4EK5oHNb0uo6VGbJjVAymPOKm8DVSrSNn2nrzTk4LXjp1MX-HYH3yePb-Dmcvj69jB-moYgQa0OKk7wgBcypLDCmKE9ihDgWURQxxGLFsGRMER5zKmLMKImKmBDMJE5zIpEkI3Czm1s3dt0p12aVdkKVJTfKdi5DaZLGMYKUeHp9RFe2a4zfLsMQ-VQootirq73q8krJrG58KM0m-w3Og9sdEP6rrlHFgSCYba-S_V3FY3iEhW55q61pG67L_1p-AJS6jio |
CitedBy_id | crossref_primary_10_1021_acsnano_4c06192 crossref_primary_10_1146_annurev_physchem_061020_053442 crossref_primary_10_1039_D2CY01348G crossref_primary_10_1021_acs_jpclett_8b02496 crossref_primary_10_1039_C9NA00322C crossref_primary_10_1021_acs_analchem_3c00410 crossref_primary_10_1088_1361_6528_ab90b6 crossref_primary_10_1007_s00706_021_02808_5 crossref_primary_10_1002_ppsc_202100022 crossref_primary_10_1021_acsami_9b22144 crossref_primary_10_1021_acs_jpclett_9b00203 crossref_primary_10_1002_jrs_6421 crossref_primary_10_3390_s20174784 crossref_primary_10_1021_acs_analchem_8b05115 crossref_primary_10_1021_acs_jpclett_4c02309 crossref_primary_10_1063_1_5049823 crossref_primary_10_1016_j_surfrep_2022_100576 crossref_primary_10_1021_acs_jpclett_8b01635 crossref_primary_10_1021_acs_jpclett_9b00935 crossref_primary_10_3390_nano11020376 crossref_primary_10_1515_nanoph_2019_0027 crossref_primary_10_1021_acs_jpcc_0c07579 crossref_primary_10_1021_acs_jpcc_4c01610 crossref_primary_10_1016_j_elecom_2019_106557 crossref_primary_10_1021_acs_jpcc_0c05396 crossref_primary_10_1021_acs_nanolett_3c00689 crossref_primary_10_1038_s43586_023_00263_6 crossref_primary_10_1002_smll_201907418 crossref_primary_10_1021_acs_analchem_3c02601 crossref_primary_10_1016_j_surfin_2021_101655 crossref_primary_10_1088_1361_6528_aca90f crossref_primary_10_1021_acs_nanolett_0c01291 crossref_primary_10_1021_acsanm_2c01274 crossref_primary_10_1002_ange_202210288 crossref_primary_10_1038_s41596_019_0132_z crossref_primary_10_1021_acsami_3c17115 crossref_primary_10_1039_D1AY01636A crossref_primary_10_1038_s41467_018_05307_0 crossref_primary_10_1039_D0CY00555J crossref_primary_10_1021_acs_jpcc_1c05353 crossref_primary_10_1016_j_bbagen_2025_130771 crossref_primary_10_2142_biophysico_bppb_v20_0011 crossref_primary_10_1002_anie_202210288 crossref_primary_10_1021_acs_jpclett_0c01413 crossref_primary_10_1021_acs_jpcc_8b10829 crossref_primary_10_1021_acsanm_0c01188 crossref_primary_10_1002_jrs_6044 crossref_primary_10_1021_acs_jpcc_9b00867 crossref_primary_10_1021_acsnano_9b03980 crossref_primary_10_1039_C8FD00142A crossref_primary_10_1038_s41467_019_10618_x crossref_primary_10_1039_D0NR05107A crossref_primary_10_1021_acsnano_4c07198 crossref_primary_10_1021_jacs_3c01626 crossref_primary_10_1039_D2NR05127C crossref_primary_10_1039_D2NR00274D crossref_primary_10_1021_acs_jpcb_8b10987 crossref_primary_10_1021_acs_jpcc_4c05236 crossref_primary_10_1021_acs_jpclett_0c01006 crossref_primary_10_1021_acs_jpcc_9b00513 crossref_primary_10_1016_j_apsusc_2018_02_155 crossref_primary_10_1021_acs_jpcc_2c03881 crossref_primary_10_1177_0003702820932229 |
Cites_doi | 10.1038/nphoton.2009.74 10.1021/nl5041786 10.1021/jp077457g 10.1063/1.126546 10.1039/C6CC10226C 10.1021/nl0340475 10.1039/C4NR07441F 10.1016/S0009-2614(99)01451-7 10.1021/acs.chemrev.6b00552 10.1038/srep00647 10.1021/jp026731y 10.1002/anie.200801605 10.1039/c3sc51231b 10.1021/acs.nanolett.5b04177 10.1039/C6CC01990K 10.1063/1.4978261 10.1021/jz501239z 10.1016/0040-6090(90)90027-B 10.1021/acs.chemrev.6b00821 10.1021/acs.nanolett.6b04868 10.1007/s00216-009-3378-4 10.1038/nrmicro905 10.1021/acs.chemrev.6b00343 10.1038/nature12151 10.1038/nnano.2012.131 10.1016/0040-6090(73)90096-5 10.1016/S0030-4018(00)00894-4 10.1039/C5NR07378B 10.1038/nnano.2009.190 10.1116/1.3368499 10.1021/jp054227y 10.1038/nchem.1478 10.1063/1.3056155 10.1366/0003702924124321 10.1021/acs.langmuir.7b01338 10.1039/C7CS00209B 10.1021/acs.analchem.6b01080 10.1039/C5NR04664E 10.1002/jrs.2387 10.1038/nnano.2016.241 10.1063/1.4869184 10.1039/C6NR09057E 10.1002/smll.200801101 10.1039/C6CP02596J 10.1146/annurev.pc.44.100193.002331 10.1021/acs.analchem.5b03588 10.1021/nl104163m 10.1103/PhysRevLett.111.216101 10.2116/analsci.29.865 10.1140/epjti/s40485-015-0019-5 10.1021/la00082a011 10.1021/acs.analchem.7b01542 10.1002/9783527618620 10.1021/jacs.5b08143 10.1002/anie.201105217 10.1103/PhysRevLett.90.095503 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/C7NR08257F |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 1824 |
ExternalDocumentID | 29308817 10_1039_C7NR08257F |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c417t-628bf3f0b6df2261b8511a2c4447175e72d77e3a5a6c527634f53327d29b3d1d3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 01:43:36 EDT 2025 Mon Jun 30 03:52:25 EDT 2025 Thu Apr 03 07:11:18 EDT 2025 Tue Jul 01 00:33:55 EDT 2025 Thu Apr 24 23:05:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-628bf3f0b6df2261b8511a2c4447175e72d77e3a5a6c527634f53327d29b3d1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7831-1955 0000-0002-8666-6158 0000-0002-6841-2592 0000-0001-8953-5420 0000-0001-5245-1426 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2018/nr/c7nr08257f |
PMID | 29308817 |
PQID | 2010886162 |
PQPubID | 2047485 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1989551063 proquest_journals_2010886162 pubmed_primary_29308817 crossref_primary_10_1039_C7NR08257F crossref_citationtrail_10_1039_C7NR08257F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 20180101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Sun (C7NR08257F-(cit27)/*[position()=1]) 2012; 2 Kumar (C7NR08257F-(cit43)/*[position()=1]) 2014; 104 Verma (C7NR08257F-(cit7)/*[position()=1]) 2017; 117 Lucia (C7NR08257F-(cit19)/*[position()=1]) 2017; 110 Pozzi (C7NR08257F-(cit29)/*[position()=1]) 2016; 117 Nyquist (C7NR08257F-(cit42)/*[position()=1]) 1992; 46 Zhong (C7NR08257F-(cit15)/*[position()=1]) 2017; 12 Kurouski (C7NR08257F-(cit36)/*[position()=1]) 2015; 15 Martín Sabanés (C7NR08257F-(cit33)/*[position()=1]) 2016; 88 Sobocinski (C7NR08257F-(cit47)/*[position()=1]) 1988; 4 Yano (C7NR08257F-(cit58)/*[position()=1]) 2009; 3 George (C7NR08257F-(cit41)/*[position()=1]) 1990; 189 Kalbacova (C7NR08257F-(cit45)/*[position()=1]) 2014; 1 Touzalin (C7NR08257F-(cit38)/*[position()=1]) 2017; 89 Hartschuh (C7NR08257F-(cit54)/*[position()=1]) 2003; 90 Buurmans (C7NR08257F-(cit1)/*[position()=1]) 2012; 4 Bohren (C7NR08257F-(cit50)/*[position()=1]) 2006 Roy (C7NR08257F-(cit57)/*[position()=1]) 2009; 105 Yeo (C7NR08257F-(cit16)/*[position()=1]) 2009; 5 Kumar (C7NR08257F-(cit17)/*[position()=1]) 2017; 53 Zrimsek (C7NR08257F-(cit26)/*[position()=1]) 2016; 117 Mock (C7NR08257F-(cit51)/*[position()=1]) 2003; 3 Hartschuh (C7NR08257F-(cit8)/*[position()=1]) 2008; 47 Hayazawa (C7NR08257F-(cit10)/*[position()=1]) 2000; 183 Pozzi (C7NR08257F-(cit28)/*[position()=1]) 2014; 5 Berweger (C7NR08257F-(cit49)/*[position()=1]) 2010; 396 Mattox (C7NR08257F-(cit40)/*[position()=1]) 1973; 18 Zhang (C7NR08257F-(cit25)/*[position()=1]) 2013; 498 Su (C7NR08257F-(cit21)/*[position()=1]) 2016; 52 Mignuzzi (C7NR08257F-(cit20)/*[position()=1]) 2015; 7 Okuno (C7NR08257F-(cit23)/*[position()=1]) 2013; 111 Schmid (C7NR08257F-(cit30)/*[position()=1]) 2009; 40 van Schrojenstein Lantman (C7NR08257F-(cit13)/*[position()=1]) 2012; 7 Roy (C7NR08257F-(cit56)/*[position()=1]) 2010; 28 Scherger (C7NR08257F-(cit32)/*[position()=1]) 2017; 33 Zhang (C7NR08257F-(cit46)/*[position()=1]) 2008; 112 Weckhuysen (C7NR08257F-(cit2)/*[position()=1]) 2004 Zeng (C7NR08257F-(cit35)/*[position()=1]) 2015; 137 Anderson (C7NR08257F-(cit11)/*[position()=1]) 2000; 76 Kumar (C7NR08257F-(cit14)/*[position()=1]) 2015; 7 Benz (C7NR08257F-(cit44)/*[position()=1]) 2014; 15 Dufrêne (C7NR08257F-(cit4)/*[position()=1]) 2004; 2 Mattei (C7NR08257F-(cit39)/*[position()=1]) 2016; 17 Weber-Bargioni (C7NR08257F-(cit55)/*[position()=1]) 2011; 11 Deckert-Gaudig (C7NR08257F-(cit5)/*[position()=1]) 2017; 46 Kumar (C7NR08257F-(cit6)/*[position()=1]) 2015; 2 Wang (C7NR08257F-(cit37)/*[position()=1]) 2015; 88 Stockle (C7NR08257F-(cit9)/*[position()=1]) 2000; 318 Su (C7NR08257F-(cit22)/*[position()=1]) 2016; 8 Weaver (C7NR08257F-(cit3)/*[position()=1]) 1993; 44 Berweger (C7NR08257F-(cit18)/*[position()=1]) 2009; 4 Liu (C7NR08257F-(cit48)/*[position()=1]) 2013; 4 Boehmler (C7NR08257F-(cit24)/*[position()=1]) 2011; 50 Nakata (C7NR08257F-(cit31)/*[position()=1]) 2013; 29 Kumar (C7NR08257F-(cit12)/*[position()=1]) 2017; 9 Touzalin (C7NR08257F-(cit34)/*[position()=1]) 2016; 18 Kelly (C7NR08257F-(cit53)/*[position()=1]) 2003; 107 Miller (C7NR08257F-(cit52)/*[position()=1]) 2005; 109 |
References_xml | – volume: 3 start-page: 473 year: 2009 ident: C7NR08257F-(cit58)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.74 – volume-title: In-situ spectroscopy of catalysts year: 2004 ident: C7NR08257F-(cit2)/*[position()=1] – volume: 15 start-page: 669 year: 2014 ident: C7NR08257F-(cit44)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5041786 – volume: 112 start-page: 2104 year: 2008 ident: C7NR08257F-(cit46)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp077457g – volume: 76 start-page: 3130 year: 2000 ident: C7NR08257F-(cit11)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.126546 – volume: 53 start-page: 2451 year: 2017 ident: C7NR08257F-(cit17)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC10226C – volume: 3 start-page: 485 year: 2003 ident: C7NR08257F-(cit51)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl0340475 – volume: 7 start-page: 7133 year: 2015 ident: C7NR08257F-(cit14)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR07441F – volume: 318 start-page: 131 year: 2000 ident: C7NR08257F-(cit9)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01451-7 – volume: 117 start-page: 7583 year: 2016 ident: C7NR08257F-(cit26)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00552 – volume: 2 start-page: 647 year: 2012 ident: C7NR08257F-(cit27)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep00647 – volume: 107 start-page: 668 year: 2003 ident: C7NR08257F-(cit53)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp026731y – volume: 47 start-page: 8178 year: 2008 ident: C7NR08257F-(cit8)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200801605 – volume: 4 start-page: 3490 year: 2013 ident: C7NR08257F-(cit48)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c3sc51231b – volume: 15 start-page: 7956 year: 2015 ident: C7NR08257F-(cit36)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04177 – volume: 52 start-page: 8227 year: 2016 ident: C7NR08257F-(cit21)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC01990K – volume: 110 start-page: 103105 year: 2017 ident: C7NR08257F-(cit19)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4978261 – volume: 5 start-page: 2657 year: 2014 ident: C7NR08257F-(cit28)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501239z – volume: 189 start-page: 59 year: 1990 ident: C7NR08257F-(cit41)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/0040-6090(90)90027-B – volume: 117 start-page: 6447 year: 2017 ident: C7NR08257F-(cit7)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00821 – volume: 17 start-page: 590 year: 2016 ident: C7NR08257F-(cit39)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04868 – volume: 396 start-page: 1613 year: 2010 ident: C7NR08257F-(cit49)/*[position()=1] publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-009-3378-4 – volume: 2 start-page: 451 year: 2004 ident: C7NR08257F-(cit4)/*[position()=1] publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro905 – volume: 117 start-page: 4961 year: 2016 ident: C7NR08257F-(cit29)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00343 – volume: 498 start-page: 82 year: 2013 ident: C7NR08257F-(cit25)/*[position()=1] publication-title: Nature doi: 10.1038/nature12151 – volume: 7 start-page: 583 year: 2012 ident: C7NR08257F-(cit13)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.131 – volume: 18 start-page: 173 year: 1973 ident: C7NR08257F-(cit40)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/0040-6090(73)90096-5 – volume: 183 start-page: 333 year: 2000 ident: C7NR08257F-(cit10)/*[position()=1] publication-title: Opt. Commun. doi: 10.1016/S0030-4018(00)00894-4 – volume: 8 start-page: 10564 year: 2016 ident: C7NR08257F-(cit22)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR07378B – volume: 4 start-page: 496 year: 2009 ident: C7NR08257F-(cit18)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.190 – volume: 28 start-page: 472 year: 2010 ident: C7NR08257F-(cit56)/*[position()=1] publication-title: J. Vac. Sci. Technol., A doi: 10.1116/1.3368499 – volume: 109 start-page: 21556 year: 2005 ident: C7NR08257F-(cit52)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp054227y – volume: 4 start-page: 873 year: 2012 ident: C7NR08257F-(cit1)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1478 – volume: 105 start-page: 013530 year: 2009 ident: C7NR08257F-(cit57)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.3056155 – volume: 46 start-page: 981 year: 1992 ident: C7NR08257F-(cit42)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702924124321 – volume: 33 start-page: 7818 year: 2017 ident: C7NR08257F-(cit32)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.7b01338 – volume: 46 start-page: 4077 year: 2017 ident: C7NR08257F-(cit5)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00209B – volume: 88 start-page: 7108 year: 2016 ident: C7NR08257F-(cit33)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b01080 – volume: 7 start-page: 19413 year: 2015 ident: C7NR08257F-(cit20)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR04664E – volume: 40 start-page: 1392 year: 2009 ident: C7NR08257F-(cit30)/*[position()=1] publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2387 – volume: 12 start-page: 132 year: 2017 ident: C7NR08257F-(cit15)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.241 – volume: 104 start-page: 123106 year: 2014 ident: C7NR08257F-(cit43)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4869184 – volume: 9 start-page: 2723 year: 2017 ident: C7NR08257F-(cit12)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR09057E – volume: 5 start-page: 952 year: 2009 ident: C7NR08257F-(cit16)/*[position()=1] publication-title: Small doi: 10.1002/smll.200801101 – volume: 18 start-page: 15510 year: 2016 ident: C7NR08257F-(cit34)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP02596J – volume: 44 start-page: 459 year: 1993 ident: C7NR08257F-(cit3)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.44.100193.002331 – volume: 88 start-page: 915 year: 2015 ident: C7NR08257F-(cit37)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b03588 – volume: 11 start-page: 1201 year: 2011 ident: C7NR08257F-(cit55)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl104163m – volume: 111 start-page: 216101 year: 2013 ident: C7NR08257F-(cit23)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.216101 – volume: 29 start-page: 865 year: 2013 ident: C7NR08257F-(cit31)/*[position()=1] publication-title: Anal. Sci. doi: 10.2116/analsci.29.865 – volume: 1 start-page: 12 year: 2014 ident: C7NR08257F-(cit45)/*[position()=1] publication-title: Nanospectroscopy – volume: 2 start-page: 9 year: 2015 ident: C7NR08257F-(cit6)/*[position()=1] publication-title: EPJ Tech. Instrum. doi: 10.1140/epjti/s40485-015-0019-5 – volume: 4 start-page: 836 year: 1988 ident: C7NR08257F-(cit47)/*[position()=1] publication-title: Langmuir doi: 10.1021/la00082a011 – volume: 89 start-page: 8974 year: 2017 ident: C7NR08257F-(cit38)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01542 – volume-title: Fundamentals of atmospheric radiation: an introduction with 400 problems year: 2006 ident: C7NR08257F-(cit50)/*[position()=1] doi: 10.1002/9783527618620 – volume: 137 start-page: 11928 year: 2015 ident: C7NR08257F-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08143 – volume: 50 start-page: 11536 year: 2011 ident: C7NR08257F-(cit24)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201105217 – volume: 90 start-page: 095503 year: 2003 ident: C7NR08257F-(cit54)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.095503 |
SSID | ssj0069363 |
Score | 2.4958308 |
Snippet | Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for non-destructive and label-free surface molecular mapping at the nanoscale. However, to date... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1815 |
SubjectTerms | Computer simulation Free surfaces Imaging Mathematical models Metal coatings Nanotubes Raman spectroscopy Refractivity Robustness (mathematics) Single wall carbon nanotubes Spatial resolution Spectrum analysis |
Title | Nanoscale chemical imaging of solid–liquid interfaces using tip-enhanced Raman spectroscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29308817 https://www.proquest.com/docview/2010886162 https://www.proquest.com/docview/1989551063 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagvcABsXegICO4oCowXuIkx06hVCB6KC1U4hDFS9SIaTLMJAf49Tw7diaFVgIuUWQ7sfS-5Pnz24zQCwMUQcNCHcUZlxFXXEeZFiQSXBVTLVlJUpvg_PFQHJzw96fxaTiW3WeXtPKV-nlpXsn_oAptgKvNkv0HZIeXQgPcA75wBYTh-lcYg2psViBks6NC3n917o8dKndg7kpH8-p7V2lXFmJZuvirzpkH2moRmfqsDwA4Kqwp32Vd2uqWzeKCs3eYZu338XHZhzZ7aTAof-pcxJ6p2qIJbZ_NysytN372xqcGhVrfzh2kvp11P7wRaGaWrTfOejMESUdmCOPUFbWxiYz1B_H8oZinzNY1VUm9tHvSpBwPAqEuzh1EwD1A6_XJnL-VwQ5d19EmhR0BqLTN3Q-zd1_CsisyJlioP8uy1-upbL1n__BF8nHFjsIxi-Pb6JbfEuDdHt876Jqp76Kbo0KR99DXAQIckMYeadyUeIw0XiONHdJ4jDR2SOMx0vfRyf7b472DyB-LESlOkjYSNJUlK6dS6BLIM5GWNBdUcQ5EI4lNQnWSGFbEhVAxhfWDl8DpaaJpJpkmmj1AG3VTmy2ExVTSVGQafmTCjeCSxZlSGZGGxkzFZIJeBnnlyteMt0eXzHMXu8CyfC85PHJi3p-g58PYRV8p5dJR20Hsuf-TVrmNyEhTQQSdoGdDN-g567wqatN0q9zG9gG7B0Y9QQ97uIZpAryPrux5jG6sP9pttNEuO_ME2GQrn_rv6BcYpXXR |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+chemical+imaging+of+solid-liquid+interfaces+using+tip-enhanced+Raman+spectroscopy&rft.jtitle=Nanoscale&rft.au=Kumar%2C+Naresh&rft.au=Su%2C+Weitao&rft.au=Vesel%C3%BD%2C+Martin&rft.au=Weckhuysen%2C+Bert+M&rft.date=2018-01-01&rft.eissn=2040-3372&rft_id=info:doi/10.1039%2Fc7nr08257f&rft_id=info%3Apmid%2F29308817&rft.externalDocID=29308817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |