Online Gain Tuning Using Neural Networks: A Comparative Study
This paper addresses the problem of adapting a control system to unseen conditions, specifically to the problem of trajectory tracking in off-road conditions. Three different approaches are considered and compared for this comparative study: The first approach is a classical reinforcement learning m...
Saved in:
Published in | AgriEngineering Vol. 4; no. 4; pp. 1200 - 1211 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper addresses the problem of adapting a control system to unseen conditions, specifically to the problem of trajectory tracking in off-road conditions. Three different approaches are considered and compared for this comparative study: The first approach is a classical reinforcement learning method to define the steering control of the system. The second strategy uses an end-to-end reinforcement learning method, allowing for the training of a policy for the steering of the robot. The third strategy uses a hybrid gain tuning method, allowing for the adaptation of the settling distance with respect to the robot’s capabilities according to the perception, in order to optimize the robot’s behavior with respect to an objective function. The three methods are described and compared to the results obtained using constant parameters in order to identify their respective strengths and weaknesses. They have been implemented and tested in real conditions on an off-road mobile robot with variable terrain and trajectories. The hybrid method allowing for an overall reduction of 53.2% when compared with a predictive control law. A thorough analysis of the methods are then performed, and further insights are obtained in the context of gain tuning for steering controllers in dynamic environments. The performance and transferability of these methods are demonstrated, as well as their robustness to changes in the terrain properties. As a result, tracking errors are reduced while preserving the stability and the explainability of the control architecture. |
---|---|
AbstractList | This paper addresses the problem of adapting a control system to unseen conditions, specifically to the problem of trajectory tracking in off-road conditions. Three different approaches are considered and compared for this comparative study: The first approach is a classical reinforcement learning method to define the steering control of the system. The second strategy uses an end-to-end reinforcement learning method, allowing for the training of a policy for the steering of the robot. The third strategy uses a hybrid gain tuning method, allowing for the adaptation of the settling distance with respect to the robot’s capabilities according to the perception, in order to optimize the robot’s behavior with respect to an objective function. The three methods are described and compared to the results obtained using constant parameters in order to identify their respective strengths and weaknesses. They have been implemented and tested in real conditions on an off-road mobile robot with variable terrain and trajectories. The hybrid method allowing for an overall reduction of 53.2% when compared with a predictive control law. A thorough analysis of the methods are then performed, and further insights are obtained in the context of gain tuning for steering controllers in dynamic environments. The performance and transferability of these methods are demonstrated, as well as their robustness to changes in the terrain properties. As a result, tracking errors are reduced while preserving the stability and the explainability of the control architecture. |
Author | Laneurit, Jean Lenain, Roland Lucet, Eric Hill, Ashley |
Author_xml | – sequence: 1 givenname: Ashley surname: Hill fullname: Hill, Ashley – sequence: 2 givenname: Jean surname: Laneurit fullname: Laneurit, Jean – sequence: 3 givenname: Roland surname: Lenain fullname: Lenain, Roland – sequence: 4 givenname: Eric surname: Lucet fullname: Lucet, Eric |
BackLink | https://hal.inrae.fr/hal-04072570$$DView record in HAL |
BookMark | eNptkU1Lw0AQhhdRsNb-BQl48lDd7HcED6VoWyj2YHteJsm0pqa7dZNU-u9NrYiCl5nh5Z1nmJkLcuq8Q0KuYnrLeULvYBUKdKvCIYbCrQQVlGp5QjpMMdHXgrLTX_U56VXVmlLKJBUySTrkYebKtjkaQeGieeNaRrSoDvEZmwBlm-oPH96q-2gQDf1mCwHqYofRS93k-0tytoSywt537pLF0-N8OO5PZ6PJcDDtZyLWdV9RZgQCE1lsMEk1YgbLXCfIc0GVBKqBpZlGxkxsUjRJKkUsUEiuJEfBeJdMjtzcw9puQ7GBsLceCvsl-LCyEOoiK9HmPE-WqUi1VkpoY0zOFZcgMkwVIFMt6-bIeoXyD2o8mNqD1p5QM6npLm6910fvNvj3Bqvarn0TXLuqZVq2AwxNDkR1dGXBV1XA5Q82pvbwJfv_l_gns7yI4A |
Cites_doi | 10.1080/01691864.2017.1280414 10.3390/computers11070104 10.1016/0893-6080(90)90005-6 10.1016/j.compag.2021.106418 10.3166/ejc.13.419-439 10.3390/agriengineering4010006 10.1109/ICRA.2017.7989509 10.1038/d41586-022-00304-2 10.5220/0009888501880194 10.5220/0010266203880398 10.5244/C.31.11 10.1109/ICICISYS.2009.5358289 10.1016/j.compag.2018.12.046 10.1109/ECAI.2016.7861175 10.1038/nature14539 10.1038/nature16961 10.1002/rob.21644 10.1049/cth2.12211 10.1109/IVS.2017.7995816 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO HCIFZ M0K PIMPY PQEST PQQKQ PQUKI PRINS 1XC VOOES DOA |
DOI | 10.3390/agriengineering4040075 |
DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Agricultural Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2624-7402 |
EndPage | 1211 |
ExternalDocumentID | oai_doaj_org_article_d3d9fb4b776647888d3635a4ceb6ae26 oai_HAL_hal_04072570v1 10_3390_agriengineering4040075 |
GroupedDBID | 7X2 AADQD AAFWJ AAHBH AAYXX ABDBF AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC M0K MODMG M~E OK1 PIMPY 3V. 8FE 8FH 8FK ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS 1XC VOOES |
ID | FETCH-LOGICAL-c417t-60284ea24c18e9b7eecafd79e3d4065a07a2bc7e22818be89b5414e453653e423 |
IEDL.DBID | BENPR |
ISSN | 2624-7402 |
IngestDate | Tue Oct 22 15:01:12 EDT 2024 Sat Sep 28 06:48:04 EDT 2024 Thu Oct 10 19:03:26 EDT 2024 Thu Sep 26 20:42:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | optimal control mobile robotic control path following mobile robotic control path following reinforcement learning optimal control reinforcement learning |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-60284ea24c18e9b7eecafd79e3d4065a07a2bc7e22818be89b5414e453653e423 |
ORCID | 0000-0002-1127-5646 0000-0003-0348-8673 |
OpenAccessLink | https://www.proquest.com/docview/2756648096?pq-origsite=%requestingapplication% |
PQID | 2756648096 |
PQPubID | 5046921 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d3d9fb4b776647888d3635a4ceb6ae26 hal_primary_oai_HAL_hal_04072570v1 proquest_journals_2756648096 crossref_primary_10_3390_agriengineering4040075 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | AgriEngineering |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lenain (ref_6) 2007; 13 Welch (ref_32) 1947; 34 Lenain (ref_17) 2017; 31 ref_14 ref_13 Welch (ref_27) 1995; 8 ref_33 ref_10 ref_30 Silver (ref_5) 2016; 529 ref_19 ref_18 ref_16 ref_15 LeCun (ref_20) 2015; 521 Hornik (ref_31) 1990; 3 Ball (ref_3) 2016; 33 ref_25 ref_24 Xu (ref_12) 2022; 16 ref_23 ref_22 ref_21 Su (ref_4) 2021; 190 ref_1 Blok (ref_2) 2019; 157 ref_29 ref_28 Jiang (ref_8) 2008; 222 ref_9 Gerdes (ref_26) 2022; 602 Abioye (ref_11) 2022; 4 ref_7 |
References_xml | – ident: ref_28 – volume: 31 start-page: 453 year: 2017 ident: ref_17 article-title: Robust sideslip angles observer for accurate off-road path tracking control publication-title: Adv. Robot. doi: 10.1080/01691864.2017.1280414 contributor: fullname: Lenain – volume: 222 start-page: 733 year: 2008 ident: ref_8 article-title: Support vector machine-based two-wheeled mobile robot motion control in a noisy environment publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. contributor: fullname: Jiang – ident: ref_30 – ident: ref_13 doi: 10.3390/computers11070104 – volume: 34 start-page: 28 year: 1947 ident: ref_32 article-title: The generalization of ‘student’s’ problem when several different population varlances are involved publication-title: Biometrika contributor: fullname: Welch – volume: 3 start-page: 551 year: 1990 ident: ref_31 article-title: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks publication-title: Neural Netw. doi: 10.1016/0893-6080(90)90005-6 contributor: fullname: Hornik – ident: ref_16 – volume: 190 start-page: 106418 year: 2021 ident: ref_4 article-title: Data augmentation for deep learning based semantic segmentation and crop-weed classification in agricultural robotics publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106418 contributor: fullname: Su – ident: ref_14 – volume: 13 start-page: 419 year: 2007 ident: ref_6 article-title: Adaptive and predictive path tracking control for off-road mobile robots publication-title: Eur. J. Control doi: 10.3166/ejc.13.419-439 contributor: fullname: Lenain – volume: 4 start-page: 70 year: 2022 ident: ref_11 article-title: Precision Irrigation Management Using Machine Learning and Digital Farming Solutions publication-title: AgriEngineering doi: 10.3390/agriengineering4010006 contributor: fullname: Abioye – ident: ref_18 doi: 10.1109/ICRA.2017.7989509 – ident: ref_23 – ident: ref_21 – volume: 602 start-page: 213 year: 2022 ident: ref_26 article-title: Neural networks overtake humans in Gran Turismo racing game publication-title: Nature doi: 10.1038/d41586-022-00304-2 contributor: fullname: Gerdes – ident: ref_33 doi: 10.5220/0009888501880194 – ident: ref_1 doi: 10.5220/0010266203880398 – ident: ref_24 doi: 10.5244/C.31.11 – ident: ref_7 doi: 10.1109/ICICISYS.2009.5358289 – ident: ref_25 – ident: ref_29 – ident: ref_10 – volume: 8 start-page: 127 year: 1995 ident: ref_27 article-title: An introduction to the Kalman filter publication-title: Proc. Siggraph Course contributor: fullname: Welch – volume: 157 start-page: 261 year: 2019 ident: ref_2 article-title: Robot navigation in orchards with localization based on Particle filter and Kalman filter publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.12.046 contributor: fullname: Blok – ident: ref_9 doi: 10.1109/ECAI.2016.7861175 – volume: 521 start-page: 436 year: 2015 ident: ref_20 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: LeCun – volume: 529 start-page: 484 year: 2016 ident: ref_5 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 contributor: fullname: Silver – volume: 33 start-page: 1107 year: 2016 ident: ref_3 article-title: Vision-based obstacle detection and navigation for an agricultural robot publication-title: J. Field Robot. doi: 10.1002/rob.21644 contributor: fullname: Ball – volume: 16 start-page: 112 year: 2022 ident: ref_12 article-title: Hierarchical speed control for autonomous electric vehicle through deep reinforcement learning and robust control publication-title: IET Control. Theory Appl. doi: 10.1049/cth2.12211 contributor: fullname: Xu – ident: ref_19 – ident: ref_22 – ident: ref_15 doi: 10.1109/IVS.2017.7995816 |
SSID | ssj0002504599 |
Score | 2.2571385 |
Snippet | This paper addresses the problem of adapting a control system to unseen conditions, specifically to the problem of trajectory tracking in off-road conditions.... |
SourceID | doaj hal proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 1200 |
SubjectTerms | Agricultural sciences Algorithms Comparative studies Control systems Control theory Deep learning Experiments Kinematics Life Sciences Machine learning Methods mobile robotic control Neural networks Objective function optimal control Parameter identification path following Predictive control Reinforcement reinforcement learning Robotics Robots Sciences and technics of agriculture Sensors Steering Terrain Tracking errors Tuning Velocity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7KQH8SdWpwTxWtY2aZIKHuZwDpGdNtit5Ffnacp-CP73vtd0c4rgxWto0_Bekvde-eYTQm4gBNoK4i7sfk7HXDMWKytQAZBUBTeZc0FtMRSDMX-a5JOtq75QExbwwMFwHcdcURlupBR4LFIpxyBGam69EdpnAbadFFvFFO7BCObKiyIcCWZQ13f0FLnBG8Qfx8mL4sKtaFRD-yHGvKAk8sfOXIeb_gHZb_JE2g3jOyQ7fnZE9rrTecPK8MfkLmBC6SMU93S0wh8ctFYAUCRuwMvDIPFe3NIu7X1RvilqBz9OyLj_MOoN4uY2hNjyVC5jAZkA9zrjNlW-MNJ7qysnC88cBOVcJ1JnxkqfId_JeFUYvOHb85yJnHnImk5Ja_Y682eEpsrKSjFYuyblueMaMycoSx23wsIHItJZW6V8C9CLEooFtGP5ux0jco_G2zyN0Oq6AVxZNq4s_3JlRK7B9N_6GHSfS2xLkOOWy-Q9jUh77ZmyWW6LEhn2gisox87_YyAXZDfDUw61aqVNWsv5yl9C7rE0V_U0-wQ37tYC priority: 102 providerName: Directory of Open Access Journals |
Title | Online Gain Tuning Using Neural Networks: A Comparative Study |
URI | https://www.proquest.com/docview/2756648096 https://hal.inrae.fr/hal-04072570 https://doaj.org/article/d3d9fb4b776647888d3635a4ceb6ae26 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9tAEB3RcGkPqFCqplC0Qr1asb3rXRsJVQaFRhWNKpRIuVn75XBKaBKQuPDbmbE3SUEVFx_8Kc3uzrwZv30D8B1DoK0x7qL3czoSmvMot5IYAHFdCJM617IthnIwFr8m2SQU3JaBVrn2iY2jdnNLNfIeyZRLkSPi_nH3N6KuUfR3NbTQeAe7KWYKaQd2L_rDPzebKgsJdGVF0W4N5pjf9_SU9IM3Un-CJjGRDP-JSo14P8aaW6JGvvLQTdi5-gh7AS-ysh3gfdjxswP4UE4XQTPDf4LzVi6U_cQkn43uqdDBGiYAI-UNfHjYUr2XZ6xkl1u1b0YcwsdDGF_1R5eDKHRFiKxI1CqSiAiE16mwSe4Lo7y3unaq8NxhcM50rHRqrPIp6TwZnxeGOn17kXGZcY_o6TN0ZvOZ_wIsya2qc45r2CQic0ITgsL01AkrLX6gC721Vaq7VvyiwqSB7Fj9345duCDjbe4m8ermxHwxrcJaqBx3RW2EUUrSTtc8dxxhjxbWG6l9KrtwiqZ_8Y5BeV3RuZj03DIVPyRdOF6PTBWW3bLaTpKvb18-gvcp7WNoeCnH0Fkt7v03RBcrcxKm0EmTnePx91P_Gdrj0NY |
link.rule.ids | 230,315,783,787,867,888,2109,21402,27938,27939,33758,43819,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5ROFAOVXmJAC0r1KuV2LvetZGqKiBoaNMIoSBxW-3L4ZRAEpD498zYm0BR1ev6Jc3OzsvffAPwDV2gq9DvovXzJhGG86RwkhAAnaoUNvO-QVsMZO9G_LrNb2PBbRZhlQubWBtqP3FUI28TTbkUBUbcP-4fEpoaRX9X4wiND7BGVFWo1Wun54Or62WVhQi68rJsWoM55vdtMyL-4CXVnyAlJpDhG69Uk_ejr7kjaOQ7C127nYvP8CnGi6zbbPAmrITxFmx0R9PImRG24XtDF8p-YpLPho9U6GA1EoAR8wY-PGig3rMT1mVnr2zfjDCEzztwc3E-POslcSpC4kSq5onEiEAEkwmXFqG0KgRnKq_KwD0659x0lMmsUyEjnicbitLSpO8gci5zHjB62oXV8WQc9oClhVNVwfEM21TkXhiKoDA99cJJhx9oQXshFX3fkF9oTBpIjvrfcmzBKQlveTeRV9cLk-lIx7OgPfdlZYVVSlKna1F4jmGPES5YaUImW3CMov_rHb1uX9Nah_jcctV5SltwuNgZHY_dTL8qyf7_Lx_Bem_4p6_7l4PfB_Axo56GGqNyCKvz6WP4gpHG3H6N6vQCFQrRqg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxtBEB_aCNI-iFqL8aMu0tcjudu93TtBJFrTaCWIKPi27NelT4kmUfC_d-ZuE1spfd37gtnZmd_s_fY3AN8xBboK8y5GP28SYThPCieJAdCtSmEz7xu2xVAO7sTlfX4f-U-zSKtcxMQ6UPuJoz3yDsmUS1Eg4u5UkRZx_aN_8vCYUAcp-tMa22l8hBUl0KtasHJ6Pry-We64kFhXXpbNMWGOtX7HjEhLeCn7J8ihiXD4R4aqhfwx7_wmmuS7aF2noP46rEXsyHrNZG_AhzDehM-90TTqZ4QvcNxIh7KfWPCz2yfa9GA1K4CRCgc-PGxo37Mj1mNnb8rfjPiEL1tw1z-_PRsksUNC4kSq5olEdCCCyYRLi1BaFYIzlVdl4B4TdW66ymTWqZCR5pMNRWmp63cQOZc5D4ikvkJrPBmHbWBp4VRVcFzPNhW5F4bQFJaqXjjp8ANt6Cysoh8aIQyNBQTZUf_bjm04JeMt7yYh63pgMh3puC60576srLBKSTr1WhSeIwQywgUrTchkGw7R9H-9Y9C70jTWJW23XHWf0zbsLWZGxyU4028Os_P_ywewip6kry6Gv3bhU0bHG2q6yh605tOnsI-gY26_RW96BcZM1d4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Gain+Tuning+Using+Neural+Networks%3A+A+Comparative+Study&rft.jtitle=AgriEngineering&rft.au=Hill%2C+Ashley&rft.au=Laneurit%2C+Jean&rft.au=Lenain%2C+Roland&rft.au=Lucet%2C+Eric&rft.date=2022-12-01&rft.pub=MDPI&rft.issn=2624-7402&rft.eissn=2624-7402&rft.volume=4&rft.issue=4&rft.spage=1200&rft.epage=1211&rft_id=info:doi/10.3390%2Fagriengineering4040075&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04072570v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon |