Online Gain Tuning Using Neural Networks: A Comparative Study

This paper addresses the problem of adapting a control system to unseen conditions, specifically to the problem of trajectory tracking in off-road conditions. Three different approaches are considered and compared for this comparative study: The first approach is a classical reinforcement learning m...

Full description

Saved in:
Bibliographic Details
Published inAgriEngineering Vol. 4; no. 4; pp. 1200 - 1211
Main Authors Hill, Ashley, Laneurit, Jean, Lenain, Roland, Lucet, Eric
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper addresses the problem of adapting a control system to unseen conditions, specifically to the problem of trajectory tracking in off-road conditions. Three different approaches are considered and compared for this comparative study: The first approach is a classical reinforcement learning method to define the steering control of the system. The second strategy uses an end-to-end reinforcement learning method, allowing for the training of a policy for the steering of the robot. The third strategy uses a hybrid gain tuning method, allowing for the adaptation of the settling distance with respect to the robot’s capabilities according to the perception, in order to optimize the robot’s behavior with respect to an objective function. The three methods are described and compared to the results obtained using constant parameters in order to identify their respective strengths and weaknesses. They have been implemented and tested in real conditions on an off-road mobile robot with variable terrain and trajectories. The hybrid method allowing for an overall reduction of 53.2% when compared with a predictive control law. A thorough analysis of the methods are then performed, and further insights are obtained in the context of gain tuning for steering controllers in dynamic environments. The performance and transferability of these methods are demonstrated, as well as their robustness to changes in the terrain properties. As a result, tracking errors are reduced while preserving the stability and the explainability of the control architecture.
AbstractList This paper addresses the problem of adapting a control system to unseen conditions, specifically to the problem of trajectory tracking in off-road conditions. Three different approaches are considered and compared for this comparative study: The first approach is a classical reinforcement learning method to define the steering control of the system. The second strategy uses an end-to-end reinforcement learning method, allowing for the training of a policy for the steering of the robot. The third strategy uses a hybrid gain tuning method, allowing for the adaptation of the settling distance with respect to the robot’s capabilities according to the perception, in order to optimize the robot’s behavior with respect to an objective function. The three methods are described and compared to the results obtained using constant parameters in order to identify their respective strengths and weaknesses. They have been implemented and tested in real conditions on an off-road mobile robot with variable terrain and trajectories. The hybrid method allowing for an overall reduction of 53.2% when compared with a predictive control law. A thorough analysis of the methods are then performed, and further insights are obtained in the context of gain tuning for steering controllers in dynamic environments. The performance and transferability of these methods are demonstrated, as well as their robustness to changes in the terrain properties. As a result, tracking errors are reduced while preserving the stability and the explainability of the control architecture.
Author Laneurit, Jean
Lenain, Roland
Lucet, Eric
Hill, Ashley
Author_xml – sequence: 1
  givenname: Ashley
  surname: Hill
  fullname: Hill, Ashley
– sequence: 2
  givenname: Jean
  surname: Laneurit
  fullname: Laneurit, Jean
– sequence: 3
  givenname: Roland
  surname: Lenain
  fullname: Lenain, Roland
– sequence: 4
  givenname: Eric
  surname: Lucet
  fullname: Lucet, Eric
BackLink https://hal.inrae.fr/hal-04072570$$DView record in HAL
BookMark eNptkU1Lw0AQhhdRsNb-BQl48lDd7HcED6VoWyj2YHteJsm0pqa7dZNU-u9NrYiCl5nh5Z1nmJkLcuq8Q0KuYnrLeULvYBUKdKvCIYbCrQQVlGp5QjpMMdHXgrLTX_U56VXVmlLKJBUySTrkYebKtjkaQeGieeNaRrSoDvEZmwBlm-oPH96q-2gQDf1mCwHqYofRS93k-0tytoSywt537pLF0-N8OO5PZ6PJcDDtZyLWdV9RZgQCE1lsMEk1YgbLXCfIc0GVBKqBpZlGxkxsUjRJKkUsUEiuJEfBeJdMjtzcw9puQ7GBsLceCvsl-LCyEOoiK9HmPE-WqUi1VkpoY0zOFZcgMkwVIFMt6-bIeoXyD2o8mNqD1p5QM6npLm6910fvNvj3Bqvarn0TXLuqZVq2AwxNDkR1dGXBV1XA5Q82pvbwJfv_l_gns7yI4A
Cites_doi 10.1080/01691864.2017.1280414
10.3390/computers11070104
10.1016/0893-6080(90)90005-6
10.1016/j.compag.2021.106418
10.3166/ejc.13.419-439
10.3390/agriengineering4010006
10.1109/ICRA.2017.7989509
10.1038/d41586-022-00304-2
10.5220/0009888501880194
10.5220/0010266203880398
10.5244/C.31.11
10.1109/ICICISYS.2009.5358289
10.1016/j.compag.2018.12.046
10.1109/ECAI.2016.7861175
10.1038/nature14539
10.1038/nature16961
10.1002/rob.21644
10.1049/cth2.12211
10.1109/IVS.2017.7995816
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
HCIFZ
M0K
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOA
DOI 10.3390/agriengineering4040075
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Agricultural Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2624-7402
EndPage 1211
ExternalDocumentID oai_doaj_org_article_d3d9fb4b776647888d3635a4ceb6ae26
oai_HAL_hal_04072570v1
10_3390_agriengineering4040075
GroupedDBID 7X2
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
M0K
MODMG
M~E
OK1
PIMPY
3V.
8FE
8FH
8FK
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
ID FETCH-LOGICAL-c417t-60284ea24c18e9b7eecafd79e3d4065a07a2bc7e22818be89b5414e453653e423
IEDL.DBID BENPR
ISSN 2624-7402
IngestDate Tue Oct 22 15:01:12 EDT 2024
Sat Sep 28 06:48:04 EDT 2024
Thu Oct 10 19:03:26 EDT 2024
Thu Sep 26 20:42:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords optimal control
mobile robotic control
path following
mobile robotic control path following reinforcement learning optimal control
reinforcement learning
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-60284ea24c18e9b7eecafd79e3d4065a07a2bc7e22818be89b5414e453653e423
ORCID 0000-0002-1127-5646
0000-0003-0348-8673
OpenAccessLink https://www.proquest.com/docview/2756648096?pq-origsite=%requestingapplication%
PQID 2756648096
PQPubID 5046921
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_d3d9fb4b776647888d3635a4ceb6ae26
hal_primary_oai_HAL_hal_04072570v1
proquest_journals_2756648096
crossref_primary_10_3390_agriengineering4040075
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle AgriEngineering
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lenain (ref_6) 2007; 13
Welch (ref_32) 1947; 34
Lenain (ref_17) 2017; 31
ref_14
ref_13
Welch (ref_27) 1995; 8
ref_33
ref_10
ref_30
Silver (ref_5) 2016; 529
ref_19
ref_18
ref_16
ref_15
LeCun (ref_20) 2015; 521
Hornik (ref_31) 1990; 3
Ball (ref_3) 2016; 33
ref_25
ref_24
Xu (ref_12) 2022; 16
ref_23
ref_22
ref_21
Su (ref_4) 2021; 190
ref_1
Blok (ref_2) 2019; 157
ref_29
ref_28
Jiang (ref_8) 2008; 222
ref_9
Gerdes (ref_26) 2022; 602
Abioye (ref_11) 2022; 4
ref_7
References_xml – ident: ref_28
– volume: 31
  start-page: 453
  year: 2017
  ident: ref_17
  article-title: Robust sideslip angles observer for accurate off-road path tracking control
  publication-title: Adv. Robot.
  doi: 10.1080/01691864.2017.1280414
  contributor:
    fullname: Lenain
– volume: 222
  start-page: 733
  year: 2008
  ident: ref_8
  article-title: Support vector machine-based two-wheeled mobile robot motion control in a noisy environment
  publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng.
  contributor:
    fullname: Jiang
– ident: ref_30
– ident: ref_13
  doi: 10.3390/computers11070104
– volume: 34
  start-page: 28
  year: 1947
  ident: ref_32
  article-title: The generalization of ‘student’s’ problem when several different population varlances are involved
  publication-title: Biometrika
  contributor:
    fullname: Welch
– volume: 3
  start-page: 551
  year: 1990
  ident: ref_31
  article-title: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(90)90005-6
  contributor:
    fullname: Hornik
– ident: ref_16
– volume: 190
  start-page: 106418
  year: 2021
  ident: ref_4
  article-title: Data augmentation for deep learning based semantic segmentation and crop-weed classification in agricultural robotics
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106418
  contributor:
    fullname: Su
– ident: ref_14
– volume: 13
  start-page: 419
  year: 2007
  ident: ref_6
  article-title: Adaptive and predictive path tracking control for off-road mobile robots
  publication-title: Eur. J. Control
  doi: 10.3166/ejc.13.419-439
  contributor:
    fullname: Lenain
– volume: 4
  start-page: 70
  year: 2022
  ident: ref_11
  article-title: Precision Irrigation Management Using Machine Learning and Digital Farming Solutions
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering4010006
  contributor:
    fullname: Abioye
– ident: ref_18
  doi: 10.1109/ICRA.2017.7989509
– ident: ref_23
– ident: ref_21
– volume: 602
  start-page: 213
  year: 2022
  ident: ref_26
  article-title: Neural networks overtake humans in Gran Turismo racing game
  publication-title: Nature
  doi: 10.1038/d41586-022-00304-2
  contributor:
    fullname: Gerdes
– ident: ref_33
  doi: 10.5220/0009888501880194
– ident: ref_1
  doi: 10.5220/0010266203880398
– ident: ref_24
  doi: 10.5244/C.31.11
– ident: ref_7
  doi: 10.1109/ICICISYS.2009.5358289
– ident: ref_25
– ident: ref_29
– ident: ref_10
– volume: 8
  start-page: 127
  year: 1995
  ident: ref_27
  article-title: An introduction to the Kalman filter
  publication-title: Proc. Siggraph Course
  contributor:
    fullname: Welch
– volume: 157
  start-page: 261
  year: 2019
  ident: ref_2
  article-title: Robot navigation in orchards with localization based on Particle filter and Kalman filter
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.12.046
  contributor:
    fullname: Blok
– ident: ref_9
  doi: 10.1109/ECAI.2016.7861175
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_20
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: LeCun
– volume: 529
  start-page: 484
  year: 2016
  ident: ref_5
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
  contributor:
    fullname: Silver
– volume: 33
  start-page: 1107
  year: 2016
  ident: ref_3
  article-title: Vision-based obstacle detection and navigation for an agricultural robot
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21644
  contributor:
    fullname: Ball
– volume: 16
  start-page: 112
  year: 2022
  ident: ref_12
  article-title: Hierarchical speed control for autonomous electric vehicle through deep reinforcement learning and robust control
  publication-title: IET Control. Theory Appl.
  doi: 10.1049/cth2.12211
  contributor:
    fullname: Xu
– ident: ref_19
– ident: ref_22
– ident: ref_15
  doi: 10.1109/IVS.2017.7995816
SSID ssj0002504599
Score 2.2571385
Snippet This paper addresses the problem of adapting a control system to unseen conditions, specifically to the problem of trajectory tracking in off-road conditions....
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 1200
SubjectTerms Agricultural sciences
Algorithms
Comparative studies
Control systems
Control theory
Deep learning
Experiments
Kinematics
Life Sciences
Machine learning
Methods
mobile robotic control
Neural networks
Objective function
optimal control
Parameter identification
path following
Predictive control
Reinforcement
reinforcement learning
Robotics
Robots
Sciences and technics of agriculture
Sensors
Steering
Terrain
Tracking errors
Tuning
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7KQH8SdWpwTxWtY2aZIKHuZwDpGdNtit5Ffnacp-CP73vtd0c4rgxWto0_Bekvde-eYTQm4gBNoK4i7sfk7HXDMWKytQAZBUBTeZc0FtMRSDMX-a5JOtq75QExbwwMFwHcdcURlupBR4LFIpxyBGam69EdpnAbadFFvFFO7BCObKiyIcCWZQ13f0FLnBG8Qfx8mL4sKtaFRD-yHGvKAk8sfOXIeb_gHZb_JE2g3jOyQ7fnZE9rrTecPK8MfkLmBC6SMU93S0wh8ctFYAUCRuwMvDIPFe3NIu7X1RvilqBz9OyLj_MOoN4uY2hNjyVC5jAZkA9zrjNlW-MNJ7qysnC88cBOVcJ1JnxkqfId_JeFUYvOHb85yJnHnImk5Ja_Y682eEpsrKSjFYuyblueMaMycoSx23wsIHItJZW6V8C9CLEooFtGP5ux0jco_G2zyN0Oq6AVxZNq4s_3JlRK7B9N_6GHSfS2xLkOOWy-Q9jUh77ZmyWW6LEhn2gisox87_YyAXZDfDUw61aqVNWsv5yl9C7rE0V_U0-wQ37tYC
  priority: 102
  providerName: Directory of Open Access Journals
Title Online Gain Tuning Using Neural Networks: A Comparative Study
URI https://www.proquest.com/docview/2756648096
https://hal.inrae.fr/hal-04072570
https://doaj.org/article/d3d9fb4b776647888d3635a4ceb6ae26
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9tAEB3RcGkPqFCqplC0Qr1asb3rXRsJVQaFRhWNKpRIuVn75XBKaBKQuPDbmbE3SUEVFx_8Kc3uzrwZv30D8B1DoK0x7qL3czoSmvMot5IYAHFdCJM617IthnIwFr8m2SQU3JaBVrn2iY2jdnNLNfIeyZRLkSPi_nH3N6KuUfR3NbTQeAe7KWYKaQd2L_rDPzebKgsJdGVF0W4N5pjf9_SU9IM3Un-CJjGRDP-JSo14P8aaW6JGvvLQTdi5-gh7AS-ysh3gfdjxswP4UE4XQTPDf4LzVi6U_cQkn43uqdDBGiYAI-UNfHjYUr2XZ6xkl1u1b0YcwsdDGF_1R5eDKHRFiKxI1CqSiAiE16mwSe4Lo7y3unaq8NxhcM50rHRqrPIp6TwZnxeGOn17kXGZcY_o6TN0ZvOZ_wIsya2qc45r2CQic0ITgsL01AkrLX6gC721Vaq7VvyiwqSB7Fj9345duCDjbe4m8ermxHwxrcJaqBx3RW2EUUrSTtc8dxxhjxbWG6l9KrtwiqZ_8Y5BeV3RuZj03DIVPyRdOF6PTBWW3bLaTpKvb18-gvcp7WNoeCnH0Fkt7v03RBcrcxKm0EmTnePx91P_Gdrj0NY
link.rule.ids 230,315,783,787,867,888,2109,21402,27938,27939,33758,43819,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB5ROFAOVXmJAC0r1KuV2LvetZGqKiBoaNMIoSBxW-3L4ZRAEpD498zYm0BR1ev6Jc3OzsvffAPwDV2gq9DvovXzJhGG86RwkhAAnaoUNvO-QVsMZO9G_LrNb2PBbRZhlQubWBtqP3FUI28TTbkUBUbcP-4fEpoaRX9X4wiND7BGVFWo1Wun54Or62WVhQi68rJsWoM55vdtMyL-4CXVnyAlJpDhG69Uk_ejr7kjaOQ7C127nYvP8CnGi6zbbPAmrITxFmx0R9PImRG24XtDF8p-YpLPho9U6GA1EoAR8wY-PGig3rMT1mVnr2zfjDCEzztwc3E-POslcSpC4kSq5onEiEAEkwmXFqG0KgRnKq_KwD0659x0lMmsUyEjnicbitLSpO8gci5zHjB62oXV8WQc9oClhVNVwfEM21TkXhiKoDA99cJJhx9oQXshFX3fkF9oTBpIjvrfcmzBKQlveTeRV9cLk-lIx7OgPfdlZYVVSlKna1F4jmGPES5YaUImW3CMov_rHb1uX9Nah_jcctV5SltwuNgZHY_dTL8qyf7_Lx_Bem_4p6_7l4PfB_Axo56GGqNyCKvz6WP4gpHG3H6N6vQCFQrRqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxtBEB_aCNI-iFqL8aMu0tcjudu93TtBJFrTaCWIKPi27NelT4kmUfC_d-ZuE1spfd37gtnZmd_s_fY3AN8xBboK8y5GP28SYThPCieJAdCtSmEz7xu2xVAO7sTlfX4f-U-zSKtcxMQ6UPuJoz3yDsmUS1Eg4u5UkRZx_aN_8vCYUAcp-tMa22l8hBUl0KtasHJ6Pry-We64kFhXXpbNMWGOtX7HjEhLeCn7J8ihiXD4R4aqhfwx7_wmmuS7aF2noP46rEXsyHrNZG_AhzDehM-90TTqZ4QvcNxIh7KfWPCz2yfa9GA1K4CRCgc-PGxo37Mj1mNnb8rfjPiEL1tw1z-_PRsksUNC4kSq5olEdCCCyYRLi1BaFYIzlVdl4B4TdW66ymTWqZCR5pMNRWmp63cQOZc5D4ikvkJrPBmHbWBp4VRVcFzPNhW5F4bQFJaqXjjp8ANt6Cysoh8aIQyNBQTZUf_bjm04JeMt7yYh63pgMh3puC60576srLBKSTr1WhSeIwQywgUrTchkGw7R9H-9Y9C70jTWJW23XHWf0zbsLWZGxyU4028Os_P_ywewip6kry6Gv3bhU0bHG2q6yh605tOnsI-gY26_RW96BcZM1d4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Gain+Tuning+Using+Neural+Networks%3A+A+Comparative+Study&rft.jtitle=AgriEngineering&rft.au=Hill%2C+Ashley&rft.au=Laneurit%2C+Jean&rft.au=Lenain%2C+Roland&rft.au=Lucet%2C+Eric&rft.date=2022-12-01&rft.pub=MDPI&rft.issn=2624-7402&rft.eissn=2624-7402&rft.volume=4&rft.issue=4&rft.spage=1200&rft.epage=1211&rft_id=info:doi/10.3390%2Fagriengineering4040075&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04072570v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon