Cost-Sensitive Learning of Deep Feature Representations From Imbalanced Data
Class imbalance is a common problem in the case of real-world object detection and classification tasks. Data of some classes are abundant, making them an overrepresented majority, and data of other classes are scarce, making them an underrepresented minority. This imbalance makes it challenging for...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 29; no. 8; pp. 3573 - 3587 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Class imbalance is a common problem in the case of real-world object detection and classification tasks. Data of some classes are abundant, making them an overrepresented majority, and data of other classes are scarce, making them an underrepresented minority. This imbalance makes it challenging for a classifier to appropriately learn the discriminating boundaries of the majority and minority classes. In this paper, we propose a cost-sensitive (CoSen) deep neural network, which can automatically learn robust feature representations for both the majority and minority classes. During training, our learning procedure jointly optimizes the class-dependent costs and the neural network parameters. The proposed approach is applicable to both binary and multiclass problems without any modification. Moreover, as opposed to data-level approaches, we do not alter the original data distribution, which results in a lower computational cost during the training process. We report the results of our experiments on six major image classification data sets and show that the proposed approach significantly outperforms the baseline algorithms. Comparisons with popular data sampling techniques and CoSen classifiers demonstrate the superior performance of our proposed method. |
---|---|
AbstractList | Class imbalance is a common problem in the case of real-world object detection and classification tasks. Data of some classes are abundant, making them an overrepresented majority, and data of other classes are scarce, making them an underrepresented minority. This imbalance makes it challenging for a classifier to appropriately learn the discriminating boundaries of the majority and minority classes. In this paper, we propose a cost-sensitive (CoSen) deep neural network, which can automatically learn robust feature representations for both the majority and minority classes. During training, our learning procedure jointly optimizes the class-dependent costs and the neural network parameters. The proposed approach is applicable to both binary and multiclass problems without any modification. Moreover, as opposed to data-level approaches, we do not alter the original data distribution, which results in a lower computational cost during the training process. We report the results of our experiments on six major image classification data sets and show that the proposed approach significantly outperforms the baseline algorithms. Comparisons with popular data sampling techniques and CoSen classifiers demonstrate the superior performance of our proposed method.Class imbalance is a common problem in the case of real-world object detection and classification tasks. Data of some classes are abundant, making them an overrepresented majority, and data of other classes are scarce, making them an underrepresented minority. This imbalance makes it challenging for a classifier to appropriately learn the discriminating boundaries of the majority and minority classes. In this paper, we propose a cost-sensitive (CoSen) deep neural network, which can automatically learn robust feature representations for both the majority and minority classes. During training, our learning procedure jointly optimizes the class-dependent costs and the neural network parameters. The proposed approach is applicable to both binary and multiclass problems without any modification. Moreover, as opposed to data-level approaches, we do not alter the original data distribution, which results in a lower computational cost during the training process. We report the results of our experiments on six major image classification data sets and show that the proposed approach significantly outperforms the baseline algorithms. Comparisons with popular data sampling techniques and CoSen classifiers demonstrate the superior performance of our proposed method. Class imbalance is a common problem in the case of real-world object detection and classification tasks. Data of some classes are abundant, making them an overrepresented majority, and data of other classes are scarce, making them an underrepresented minority. This imbalance makes it challenging for a classifier to appropriately learn the discriminating boundaries of the majority and minority classes. In this paper, we propose a cost-sensitive (CoSen) deep neural network, which can automatically learn robust feature representations for both the majority and minority classes. During training, our learning procedure jointly optimizes the class-dependent costs and the neural network parameters. The proposed approach is applicable to both binary and multiclass problems without any modification. Moreover, as opposed to data-level approaches, we do not alter the original data distribution, which results in a lower computational cost during the training process. We report the results of our experiments on six major image classification data sets and show that the proposed approach significantly outperforms the baseline algorithms. Comparisons with popular data sampling techniques and CoSen classifiers demonstrate the superior performance of our proposed method. |
Author | Hayat, Munawar Khan, Salman H. Togneri, Roberto Bennamoun, Mohammed Sohel, Ferdous A. |
Author_xml | – sequence: 1 givenname: Salman H. orcidid: 0000-0002-9502-1749 surname: Khan fullname: Khan, Salman H. email: salman.khan@data61.csiro.au organization: Data61, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia – sequence: 2 givenname: Munawar surname: Hayat fullname: Hayat, Munawar email: munawar.hayat@canberra.edu.au organization: Human-Centered Technology Research Centre, University of Canberra, Canberra, ACT, Australia – sequence: 3 givenname: Mohammed surname: Bennamoun fullname: Bennamoun, Mohammed email: mohammed.bennamoun@uwa.edu.au organization: School of Computer Science and Software Engineering, The University of Western Australia, Crawley, WA, Australia – sequence: 4 givenname: Ferdous A. orcidid: 0000-0003-1557-4907 surname: Sohel fullname: Sohel, Ferdous A. email: f.sohel@murdoch.edu.au organization: School of Engineering and Information Technology, Murdoch University, Perth, WA, Australia – sequence: 5 givenname: Roberto orcidid: 0000-0002-3778-4633 surname: Togneri fullname: Togneri, Roberto email: roberto.togneri@uwa.edu.au organization: School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, WA, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28829320$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFqGzEQhkVJqJPUL9BCWegll3WkkXYlHYsTt4ElgcaB3IR2PS4KXsmVtIG-fTax64MPncsMw_fPDPOfkxMfPBLymdEZY1RfLe_umocZUCZnIDkIBR_IGbAaSuBKnRxq-TQh05Se6Rg1rWqhP5IJKAWaAz0jzTykXD6gTy67FywatNE7_7sI6-IacVss0OYhYvELtxET-myzCz4Vixj64rZv7cb6DlfFtc32Ezld203C6T5fkMfFzXL-s2zuf9zOvzdlJ5jMZdVx3TJJuZZW1EhpyyyvBaq2rnAtKtBKSyYUr3BsqpbzVYsWlbYM6apj_IJc7uZuY_gzYMqmd6nDzXgKhiEZpjkDwammI_rtCH0OQ_TjdQaoFKoCCvVIfd1TQ9vjymyj6238a_79aQRgB3QxpBRxfUAYNW9-mHc_zJsfZu_HKFJHos7t3pejdZv_S7_spA4RD7sUZVBJzV8BmSuVuA |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_ijdrr_2024_104971 crossref_primary_10_1109_JSEN_2021_3059860 crossref_primary_10_1016_j_future_2019_05_080 crossref_primary_10_1007_s13042_019_00941_6 crossref_primary_10_1145_3594669 crossref_primary_10_3390_s20092448 crossref_primary_10_1016_j_neucom_2023_01_093 crossref_primary_10_1111_exsy_12680 crossref_primary_10_1111_jpim_12676 crossref_primary_10_1109_TBDATA_2024_3352978 crossref_primary_10_1109_TNNLS_2022_3154204 crossref_primary_10_1016_j_neucom_2019_05_013 crossref_primary_10_1109_TGRS_2023_3241366 crossref_primary_10_3390_s19020387 crossref_primary_10_1016_j_imu_2021_100690 crossref_primary_10_1021_acsestwater_1c00037 crossref_primary_10_1016_j_knosys_2022_109535 crossref_primary_10_1109_TIV_2022_3145035 crossref_primary_10_1016_j_joi_2020_101126 crossref_primary_10_1109_JBHI_2022_3162748 crossref_primary_10_1080_01431161_2023_2285742 crossref_primary_10_1016_j_asoc_2025_112864 crossref_primary_10_1007_s11554_019_00849_y crossref_primary_10_3390_s24041230 crossref_primary_10_1515_phys_2019_0103 crossref_primary_10_1007_s00170_019_04090_6 crossref_primary_10_1109_JSEN_2022_3222535 crossref_primary_10_1111_odi_14474 crossref_primary_10_1109_TEVC_2022_3203862 crossref_primary_10_1109_TAI_2022_3160658 crossref_primary_10_3390_sym16121656 crossref_primary_10_1016_j_dsp_2024_104861 crossref_primary_10_1016_j_jss_2023_111650 crossref_primary_10_1016_j_eswa_2022_118129 crossref_primary_10_1007_s11802_024_5472_9 crossref_primary_10_1016_j_inffus_2022_12_014 crossref_primary_10_1109_ACCESS_2022_3204395 crossref_primary_10_1016_j_media_2024_103281 crossref_primary_10_3390_rs16081398 crossref_primary_10_1016_j_ipm_2020_102388 crossref_primary_10_1016_j_jmsy_2023_10_014 crossref_primary_10_1016_j_neucom_2024_128042 crossref_primary_10_1007_s11263_023_01971_y crossref_primary_10_1016_j_aej_2022_07_062 crossref_primary_10_1071_CP21626 crossref_primary_10_1109_TSM_2020_3010984 crossref_primary_10_1007_s11063_021_10483_0 crossref_primary_10_3390_math10142486 crossref_primary_10_1109_TAI_2023_3275133 crossref_primary_10_1109_TETCI_2023_3327355 crossref_primary_10_1145_3579050 crossref_primary_10_3390_math13030368 crossref_primary_10_1016_j_ijmedinf_2024_105666 crossref_primary_10_1016_j_neucom_2023_01_063 crossref_primary_10_1007_s11227_022_05037_7 crossref_primary_10_1016_j_solener_2021_05_095 crossref_primary_10_1016_j_apacoust_2020_107740 crossref_primary_10_9758_cpn_2022_20_4_609 crossref_primary_10_1016_j_chaos_2021_111110 crossref_primary_10_1016_j_compag_2021_106067 crossref_primary_10_1016_j_jag_2021_102510 crossref_primary_10_3390_app122211662 crossref_primary_10_3390_electronics10212700 crossref_primary_10_1016_j_eswa_2023_120303 crossref_primary_10_1016_j_neucom_2025_129830 crossref_primary_10_1109_JIOT_2024_3404808 crossref_primary_10_1016_j_engappai_2022_105080 crossref_primary_10_1049_cit2_12311 crossref_primary_10_1109_TPAMI_2021_3069908 crossref_primary_10_1016_j_neucom_2020_01_101 crossref_primary_10_1109_TCYB_2021_3059631 crossref_primary_10_1016_j_jnca_2020_102766 crossref_primary_10_3390_rs12203301 crossref_primary_10_1007_s10489_022_03200_4 crossref_primary_10_1109_TKDE_2019_2905559 crossref_primary_10_1080_00207543_2021_1891318 crossref_primary_10_1088_1361_6501_adb872 crossref_primary_10_1007_s11042_024_19303_8 crossref_primary_10_1007_s11424_021_1038_8 crossref_primary_10_1016_j_engappai_2023_107639 crossref_primary_10_1039_D4DD00244J crossref_primary_10_1016_j_knosys_2023_110831 crossref_primary_10_1016_j_neucom_2023_126735 crossref_primary_10_1016_j_isatra_2019_11_020 crossref_primary_10_1109_ACCESS_2018_2879221 crossref_primary_10_1109_TNNLS_2021_3051721 crossref_primary_10_1049_iet_gtd_2019_1562 crossref_primary_10_1016_j_neucom_2021_04_010 crossref_primary_10_1016_j_neunet_2021_07_003 crossref_primary_10_1109_TCSS_2023_3302651 crossref_primary_10_7717_peerj_cs_1975 crossref_primary_10_1016_j_image_2023_117074 crossref_primary_10_1109_TDSC_2022_3183170 crossref_primary_10_1016_j_eswa_2023_120760 crossref_primary_10_1016_j_ins_2023_119541 crossref_primary_10_1109_TMM_2023_3295090 crossref_primary_10_1186_s13677_022_00361_y crossref_primary_10_1007_s10115_024_02279_0 crossref_primary_10_1016_j_cie_2023_109410 crossref_primary_10_1109_TNNLS_2023_3284430 crossref_primary_10_1016_j_media_2019_04_009 crossref_primary_10_1109_JBHI_2023_3325540 crossref_primary_10_1088_1361_6501_ad24b5 crossref_primary_10_1109_JBHI_2023_3279824 crossref_primary_10_1109_TIE_2020_3003622 crossref_primary_10_1016_j_ins_2019_02_062 crossref_primary_10_1049_stg2_12044 crossref_primary_10_1016_j_measurement_2023_113014 crossref_primary_10_1109_TASE_2019_2936645 crossref_primary_10_1016_j_knosys_2022_108296 crossref_primary_10_1088_1742_6596_1916_1_012031 crossref_primary_10_1155_2022_8733632 crossref_primary_10_1080_24725854_2021_2018528 crossref_primary_10_1109_TCSVT_2023_3311142 crossref_primary_10_3390_molecules27207085 crossref_primary_10_1109_TNNLS_2019_2913673 crossref_primary_10_1016_j_neunet_2024_106134 crossref_primary_10_1109_TIM_2021_3063755 crossref_primary_10_1186_s13007_020_00620_6 crossref_primary_10_1007_s11263_021_01434_2 crossref_primary_10_1109_TNNLS_2019_2948881 crossref_primary_10_1002_tee_22715 crossref_primary_10_3390_app10020505 crossref_primary_10_1016_j_patcog_2022_109158 crossref_primary_10_1007_s13042_022_01575_x crossref_primary_10_1016_j_patrec_2023_05_035 crossref_primary_10_1109_TPAMI_2020_3041332 crossref_primary_10_1109_TNNLS_2024_3383672 crossref_primary_10_1109_TPAMI_2022_3196044 crossref_primary_10_1016_j_patcog_2020_107417 crossref_primary_10_1109_ACCESS_2021_3100057 crossref_primary_10_1007_s13042_022_01662_z crossref_primary_10_1109_TIP_2021_3049955 crossref_primary_10_1002_cyto_a_24829 crossref_primary_10_1109_TNNLS_2023_3286484 crossref_primary_10_1016_j_neucom_2022_03_042 crossref_primary_10_1109_TCYB_2019_2913572 crossref_primary_10_1109_TNSE_2021_3100322 crossref_primary_10_1016_j_ins_2023_118935 crossref_primary_10_1016_j_ins_2019_09_032 crossref_primary_10_1016_j_future_2022_01_026 crossref_primary_10_3390_ijgi13100364 crossref_primary_10_1049_ipr2_12109 crossref_primary_10_1109_TETCI_2023_3251400 crossref_primary_10_1007_s10916_023_01938_z crossref_primary_10_1088_1742_6596_2816_1_012020 crossref_primary_10_1007_s00521_023_09180_x crossref_primary_10_1109_TNNLS_2022_3231917 crossref_primary_10_1109_ACCESS_2020_3033531 crossref_primary_10_1109_TIP_2023_3270103 crossref_primary_10_1109_TAFFC_2024_3405584 crossref_primary_10_1016_j_knosys_2021_106742 crossref_primary_10_1016_j_aej_2024_10_084 crossref_primary_10_1016_j_ins_2024_121280 crossref_primary_10_1109_LGRS_2021_3083262 crossref_primary_10_1016_j_atech_2022_100091 crossref_primary_10_1088_1742_6596_1267_1_012012 crossref_primary_10_1016_j_eswa_2024_126176 crossref_primary_10_3389_fpls_2025_1552553 crossref_primary_10_1007_s11063_020_10366_w crossref_primary_10_3233_IDA_215735 crossref_primary_10_1109_TCSVT_2024_3487867 crossref_primary_10_3390_app9224829 crossref_primary_10_1016_j_knosys_2020_106631 crossref_primary_10_1109_ACCESS_2022_3233411 crossref_primary_10_1109_TIP_2019_2940533 crossref_primary_10_1109_ACCESS_2023_3341755 crossref_primary_10_1109_TNNLS_2022_3175068 crossref_primary_10_3390_s20205786 crossref_primary_10_1016_j_jmsy_2022_06_011 crossref_primary_10_1016_j_bbe_2019_05_008 crossref_primary_10_3390_rs14143295 crossref_primary_10_1109_TSMC_2022_3151394 crossref_primary_10_1109_TNNLS_2018_2876865 crossref_primary_10_1109_ACCESS_2021_3104340 crossref_primary_10_1016_j_newast_2020_101561 crossref_primary_10_1109_ACCESS_2023_3308998 crossref_primary_10_1016_j_rse_2021_112603 crossref_primary_10_3389_fgene_2019_00351 crossref_primary_10_1007_s13042_021_01321_9 crossref_primary_10_1109_JSTARS_2020_2995703 crossref_primary_10_1016_j_compbiomed_2022_105339 crossref_primary_10_1016_j_aei_2019_100935 crossref_primary_10_1016_j_neunet_2018_09_009 crossref_primary_10_1016_j_patrec_2019_07_006 crossref_primary_10_1080_07038992_2021_1910499 crossref_primary_10_3390_s23052610 crossref_primary_10_1007_s11042_022_13424_8 crossref_primary_10_1016_j_inffus_2023_101845 crossref_primary_10_1109_TNNLS_2021_3071122 crossref_primary_10_3390_app131810182 crossref_primary_10_1109_ACCESS_2019_2924060 crossref_primary_10_1155_2022_7839840 crossref_primary_10_1109_TNNLS_2020_3047335 crossref_primary_10_1109_TNNLS_2023_3269907 crossref_primary_10_1109_TGRS_2021_3071559 crossref_primary_10_1007_s10278_022_00618_7 crossref_primary_10_3390_pr10101938 crossref_primary_10_1007_s13278_022_00952_2 crossref_primary_10_1109_TCYB_2020_3016972 crossref_primary_10_23919_CHAIN_2024_100006 crossref_primary_10_1007_s00521_023_08363_w crossref_primary_10_1016_j_dsp_2021_103212 crossref_primary_10_1109_ACCESS_2023_3260723 crossref_primary_10_1007_s12206_023_0501_y crossref_primary_10_1109_TCSVT_2024_3383962 crossref_primary_10_1016_j_envpol_2021_118153 crossref_primary_10_1007_s11227_022_04965_8 crossref_primary_10_1016_j_knosys_2021_106925 crossref_primary_10_1109_ACCESS_2025_3531662 crossref_primary_10_1109_TCDS_2022_3175360 crossref_primary_10_3390_bioengineering10040420 crossref_primary_10_1016_j_eswax_2019_100003 crossref_primary_10_1109_JSEN_2021_3057076 crossref_primary_10_1016_j_asoc_2020_106989 crossref_primary_10_1007_s10489_020_02089_1 crossref_primary_10_1108_GS_03_2021_0041 crossref_primary_10_1016_j_artmed_2024_102801 crossref_primary_10_1016_j_bspc_2023_104962 crossref_primary_10_1016_j_eswa_2021_115673 crossref_primary_10_1186_s12911_019_0899_4 crossref_primary_10_1016_j_neucom_2023_126577 crossref_primary_10_1109_TVT_2021_3080678 crossref_primary_10_1109_ACCESS_2020_2975630 crossref_primary_10_18267_j_aip_254 crossref_primary_10_1007_s10209_024_01123_0 crossref_primary_10_1016_j_surfin_2024_104334 crossref_primary_10_3390_bioengineering9080350 crossref_primary_10_1007_s41060_024_00625_7 crossref_primary_10_1109_TNSM_2021_3112283 crossref_primary_10_1109_TAI_2024_3478191 crossref_primary_10_1007_s00521_020_05256_0 crossref_primary_10_3390_s22114075 crossref_primary_10_1109_TSM_2020_2994357 crossref_primary_10_1186_s12859_019_3269_4 crossref_primary_10_3390_app10041276 crossref_primary_10_1016_j_neucom_2021_07_040 crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_1016_j_infsof_2021_106742 crossref_primary_10_1080_01431161_2019_1582113 crossref_primary_10_1049_cvi2_12027 crossref_primary_10_1016_j_cviu_2022_103582 crossref_primary_10_1016_j_eswa_2024_125906 crossref_primary_10_3390_agriculture12020259 crossref_primary_10_1109_TCYB_2020_3001158 crossref_primary_10_1016_j_isprsjprs_2024_08_018 crossref_primary_10_1002_int_22678 crossref_primary_10_1016_j_knosys_2021_107649 crossref_primary_10_1109_TNNLS_2019_2917524 crossref_primary_10_3390_app11083331 crossref_primary_10_1016_j_iswa_2023_200316 crossref_primary_10_1002_qre_2983 crossref_primary_10_1109_ACCESS_2020_2991237 crossref_primary_10_1109_ACCESS_2023_3294099 crossref_primary_10_1186_s40537_019_0225_0 crossref_primary_10_1016_j_neucom_2020_12_122 crossref_primary_10_1109_JBHI_2020_3006145 crossref_primary_10_1038_s41598_018_28244_w crossref_primary_10_1109_TAI_2024_3401102 crossref_primary_10_1109_ACCESS_2019_2933165 crossref_primary_10_3390_en15218059 crossref_primary_10_1186_s40537_019_0192_5 crossref_primary_10_1007_s13042_022_01677_6 crossref_primary_10_1051_0004_6361_202142751 crossref_primary_10_1016_j_neunet_2023_01_015 crossref_primary_10_1016_j_engappai_2023_106911 crossref_primary_10_1007_s00138_023_01480_5 crossref_primary_10_35378_gujs_854725 crossref_primary_10_1007_s10845_019_01522_8 crossref_primary_10_1109_TKDE_2021_3061428 crossref_primary_10_1016_j_eswa_2019_04_005 crossref_primary_10_2139_ssrn_4115383 crossref_primary_10_1016_j_dss_2022_113765 crossref_primary_10_1016_j_neunet_2021_04_013 crossref_primary_10_1016_j_procir_2020_04_106 crossref_primary_10_1155_2022_4343645 crossref_primary_10_1016_j_ins_2024_120351 crossref_primary_10_1016_j_neucom_2024_128853 crossref_primary_10_1109_TNNLS_2021_3136503 crossref_primary_10_1002_cjce_24610 crossref_primary_10_5861_ijrse_2021_648 crossref_primary_10_1016_j_knosys_2024_111500 crossref_primary_10_1016_j_neucom_2022_02_077 crossref_primary_10_3390_app10155293 crossref_primary_10_1287_ijoc_2023_1274 crossref_primary_10_1049_ipr2_12410 crossref_primary_10_1007_s00521_020_05529_8 crossref_primary_10_1186_s13059_022_02739_2 crossref_primary_10_1016_j_knosys_2020_106598 crossref_primary_10_1016_j_eswa_2021_115067 crossref_primary_10_1109_TKDE_2020_2974949 crossref_primary_10_1109_TGRS_2022_3177853 crossref_primary_10_1016_j_pacfin_2023_101948 crossref_primary_10_1109_TGRS_2024_3390764 crossref_primary_10_1109_TNNLS_2021_3110885 crossref_primary_10_1109_TPAMI_2019_2929166 crossref_primary_10_1016_j_engappai_2022_105621 crossref_primary_10_1016_j_eswa_2023_121084 crossref_primary_10_1016_j_infsof_2021_106662 crossref_primary_10_1007_s10489_022_04187_8 crossref_primary_10_1109_JSEN_2024_3466895 crossref_primary_10_1016_j_knosys_2020_106223 crossref_primary_10_1109_TNNLS_2019_2927647 crossref_primary_10_1109_TIM_2022_3227995 crossref_primary_10_1016_j_patcog_2022_108947 crossref_primary_10_1109_ACCESS_2021_3109989 crossref_primary_10_1007_s10994_021_06012_8 crossref_primary_10_1016_j_eswa_2021_116459 crossref_primary_10_1080_00224065_2024_2394604 crossref_primary_10_1007_s00500_021_06532_4 crossref_primary_10_3390_e24070871 crossref_primary_10_1109_ACCESS_2021_3052680 crossref_primary_10_1109_TCYB_2022_3163811 crossref_primary_10_1016_j_patrec_2020_02_007 crossref_primary_10_1007_s10618_024_01008_z crossref_primary_10_1016_j_cie_2022_108936 crossref_primary_10_1016_j_apenergy_2022_120573 crossref_primary_10_3390_math10060934 crossref_primary_10_1016_j_patcog_2020_107382 crossref_primary_10_1109_TNNLS_2021_3106484 crossref_primary_10_1016_j_engappai_2020_103878 crossref_primary_10_1186_s12911_019_0929_2 crossref_primary_10_1016_j_engappai_2024_109345 crossref_primary_10_1016_j_ins_2022_11_108 crossref_primary_10_1109_ACCESS_2023_3239889 crossref_primary_10_1007_s10845_022_02067_z crossref_primary_10_1038_s41598_024_73428_2 crossref_primary_10_1016_j_ins_2021_09_059 crossref_primary_10_1109_JSEN_2022_3211021 crossref_primary_10_1142_S2196888821500135 crossref_primary_10_1007_s42421_023_00067_w crossref_primary_10_3103_S1060992X21010100 crossref_primary_10_1007_s11263_024_02104_9 crossref_primary_10_1007_s11227_022_04851_3 crossref_primary_10_1587_transinf_2021HCK0001 crossref_primary_10_1007_s10845_021_01907_8 crossref_primary_10_1109_ACCESS_2022_3161510 crossref_primary_10_1007_s10044_020_00890_9 crossref_primary_10_1016_j_ins_2021_11_058 crossref_primary_10_1007_s42979_024_03570_1 crossref_primary_10_1016_j_knosys_2020_106368 crossref_primary_10_1109_TNNLS_2021_3052243 crossref_primary_10_1007_s00521_021_06066_8 crossref_primary_10_1016_j_tust_2022_104399 crossref_primary_10_3389_fgene_2020_608512 crossref_primary_10_1109_TGRS_2021_3068447 crossref_primary_10_3233_IDA_184354 crossref_primary_10_1109_TCSVT_2021_3122110 crossref_primary_10_1155_2021_5577636 crossref_primary_10_1142_S2196888821500147 crossref_primary_10_1016_j_neucom_2024_128530 crossref_primary_10_1007_s10462_020_09820_x crossref_primary_10_1088_2057_1976_ac7ad9 crossref_primary_10_1109_ACCESS_2020_2985097 crossref_primary_10_1016_j_cie_2024_110674 crossref_primary_10_1007_s10489_019_01624_z crossref_primary_10_1016_j_neucom_2019_12_057 crossref_primary_10_1007_s10479_025_06528_5 crossref_primary_10_1109_TNNLS_2019_2920887 crossref_primary_10_1109_TCYB_2022_3173356 crossref_primary_10_1016_j_neunet_2024_106932 crossref_primary_10_1109_TCSS_2020_2970805 crossref_primary_10_1186_s40708_018_0080_3 crossref_primary_10_1155_2019_6943234 crossref_primary_10_1007_s12652_023_04610_z crossref_primary_10_1007_s40123_023_00841_7 crossref_primary_10_1016_j_rse_2024_114274 crossref_primary_10_1109_ACCESS_2020_2964281 crossref_primary_10_1109_TNNLS_2019_2929575 crossref_primary_10_1016_j_compag_2023_108043 crossref_primary_10_1109_TCYB_2021_3126756 crossref_primary_10_3390_computers11050073 crossref_primary_10_1016_j_ins_2019_10_017 crossref_primary_10_1016_j_eswa_2023_122088 crossref_primary_10_3390_electronics14020280 crossref_primary_10_1016_j_jclepro_2020_122864 crossref_primary_10_1016_j_ijepes_2021_107574 crossref_primary_10_1016_j_knosys_2022_108966 crossref_primary_10_1371_journal_pone_0274522 crossref_primary_10_1016_j_ins_2020_05_141 crossref_primary_10_1109_ACCESS_2020_3007801 crossref_primary_10_1007_s11063_021_10679_4 crossref_primary_10_1109_TCYB_2021_3103885 crossref_primary_10_3390_s20020447 crossref_primary_10_1109_ACCESS_2021_3072623 crossref_primary_10_1093_jcde_qwae075 crossref_primary_10_1007_s00530_024_01317_9 crossref_primary_10_1016_j_patcog_2021_108114 crossref_primary_10_1007_s10462_023_10652_8 crossref_primary_10_1109_ACCESS_2024_3442569 crossref_primary_10_3390_sym13010004 crossref_primary_10_1088_1361_6501_abea3f crossref_primary_10_1007_s13198_023_01897_1 crossref_primary_10_1007_s11227_022_04509_0 crossref_primary_10_1109_TCSVT_2023_3321733 crossref_primary_10_3390_electronics11091510 crossref_primary_10_1016_j_compbiomed_2022_106092 crossref_primary_10_1109_TPAMI_2019_2914680 crossref_primary_10_1016_j_cie_2021_107630 crossref_primary_10_1016_j_eswa_2023_122192 crossref_primary_10_1007_s11263_024_02081_z crossref_primary_10_1109_ACCESS_2020_3047019 crossref_primary_10_1142_S0219519422400528 crossref_primary_10_1109_TCSVT_2022_3161427 crossref_primary_10_1109_JBHI_2024_3376428 crossref_primary_10_1007_s10994_022_06268_8 crossref_primary_10_1109_TNNLS_2021_3105104 crossref_primary_10_3390_s20174810 crossref_primary_10_1007_s13042_022_01746_w crossref_primary_10_1007_s13042_023_02048_5 crossref_primary_10_1016_j_patcog_2021_108467 crossref_primary_10_1016_j_aei_2020_101131 crossref_primary_10_1109_TGRS_2022_3211847 crossref_primary_10_1016_j_knosys_2022_108816 crossref_primary_10_1109_TIP_2023_3321461 crossref_primary_10_1109_ACCESS_2020_3016653 crossref_primary_10_1109_TCSS_2020_3017818 crossref_primary_10_1145_3689627 crossref_primary_10_1016_j_asoc_2021_107783 crossref_primary_10_1145_3584360 crossref_primary_10_1007_s11227_025_06920_9 crossref_primary_10_1145_3502287 crossref_primary_10_1016_j_eswa_2024_124229 crossref_primary_10_1109_TII_2022_3190034 crossref_primary_10_1109_TNNLS_2023_3321753 crossref_primary_10_1145_3467477 crossref_primary_10_2196_16678 crossref_primary_10_1007_s40747_023_01225_x crossref_primary_10_1016_j_neucom_2024_129318 crossref_primary_10_1049_cit2_12032 crossref_primary_10_1109_TKDE_2019_2951556 crossref_primary_10_1109_TNNLS_2021_3106306 crossref_primary_10_3390_rs16183494 crossref_primary_10_1007_s42979_020_00211_1 crossref_primary_10_1007_s42979_024_02678_8 crossref_primary_10_1016_j_eswa_2024_125794 crossref_primary_10_1016_j_eswa_2024_123495 crossref_primary_10_3390_s22062293 crossref_primary_10_1038_s41598_023_42689_8 crossref_primary_10_1145_3630256 crossref_primary_10_1016_j_cose_2022_102861 crossref_primary_10_1109_ACCESS_2019_2953085 crossref_primary_10_1007_s11432_021_3319_4 crossref_primary_10_3390_jsan10040072 crossref_primary_10_2139_ssrn_4666141 crossref_primary_10_1016_j_ins_2023_01_147 crossref_primary_10_1007_s11063_021_10534_6 crossref_primary_10_1016_j_asoc_2022_108855 crossref_primary_10_1016_j_ins_2023_02_064 crossref_primary_10_1016_j_engappai_2024_108523 crossref_primary_10_1016_j_neucom_2021_06_012 crossref_primary_10_1097_RCT_0000000000001497 crossref_primary_10_3390_diagnostics11081393 crossref_primary_10_1097_MAT_0000000000002299 crossref_primary_10_1016_j_compag_2022_107091 crossref_primary_10_1109_TPAMI_2023_3275585 crossref_primary_10_1016_j_patrec_2020_05_020 crossref_primary_10_1016_j_psep_2024_10_043 crossref_primary_10_1049_iet_ipr_2019_0255 crossref_primary_10_1186_s12911_022_02075_2 crossref_primary_10_1109_JIOT_2023_3342638 crossref_primary_10_3390_s22010310 crossref_primary_10_1049_ipr2_12942 crossref_primary_10_1016_j_cmpb_2022_106628 crossref_primary_10_3390_pr9091678 crossref_primary_10_1371_journal_pone_0252612 crossref_primary_10_1016_j_patcog_2022_108564 crossref_primary_10_1038_s41540_024_00415_8 crossref_primary_10_1016_j_neucom_2023_01_023 crossref_primary_10_1016_j_dss_2021_113544 crossref_primary_10_3390_s21175818 crossref_primary_10_48123_rsgis_1410250 crossref_primary_10_1007_s10489_020_01637_z crossref_primary_10_3390_s21196616 crossref_primary_10_1016_j_ress_2023_109832 crossref_primary_10_1109_JSTARS_2024_3424498 crossref_primary_10_1007_s00500_024_09931_5 crossref_primary_10_1007_s00521_022_07167_8 crossref_primary_10_3390_electronics11091322 |
Cites_doi | 10.1145/1961189.1961199 10.1109/TFUZZ.2013.2296091 10.1109/CVPR.2013.124 10.1109/ISBI.2012.6235558 10.1109/CVPR.2012.6247798 10.1109/CVPR.2013.115 10.1109/CVPR.2014.249 10.1109/TKDE.2006.17 10.1109/TGRS.2017.2707528 10.1007/s10115-009-0198-y 10.1109/CVPR.2010.5540018 10.1016/j.asoc.2013.09.014 10.1007/s00521-014-1584-2 10.1007/978-94-007-5389-1_4 10.1109/TPAMI.2015.2462355 10.1007/978-3-319-46182-3_13 10.1109/IJCNN.2016.7727770 10.1007/978-3-319-10584-0_26 10.1155/2013/196256 10.1109/ICCV.2009.5459183 10.1109/CVPRW.2014.131 10.1198/016214505000000907 10.1109/TIP.2016.2567076 10.1007/978-3-642-17534-3_19 10.1145/1007730.1007735 10.1007/978-3-319-10578-9_23 10.1109/CIDM.2011.5949434 10.1109/CVPR.2014.81 10.1007/s10115-011-0465-6 10.5244/C.25.76 10.1613/jair.953 10.1016/j.neucom.2013.05.051 10.1145/1014052.1014056 10.1007/s11263-015-0843-8 10.1007/11538059_91 10.1109/CVPR.2014.476 10.1109/ICIP.2016.7532411 10.1109/TKDE.2005.95 10.1109/TKDE.2008.239 10.1007/978-3-642-15561-1_11 10.1109/TSMCB.2008.2002909 10.1007/978-3-642-01307-2_43 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2017.2732482 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 3587 |
ExternalDocumentID | 28829320 10_1109_TNNLS_2017_2732482 8012579 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: University of Western Australia funderid: 10.13039/501100001801 – fundername: Australian Research Council grantid: DP150100294; DE120102960 funderid: 10.13039/501100000923 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c417t-5c39b170397a46e00b1a364e8b65ef452989714835e4e88b33dbeae89a1e0dc13 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 07:31:25 EDT 2025 Mon Jun 30 03:34:47 EDT 2025 Mon Jul 21 06:07:22 EDT 2025 Tue Jul 01 00:27:25 EDT 2025 Thu Apr 24 23:03:49 EDT 2025 Wed Aug 27 02:05:27 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-5c39b170397a46e00b1a364e8b65ef452989714835e4e88b33dbeae89a1e0dc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9502-1749 0000-0003-1557-4907 0000-0002-3778-4633 |
PMID | 28829320 |
PQID | 2074852026 |
PQPubID | 85436 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1931243090 pubmed_primary_28829320 crossref_primary_10_1109_TNNLS_2017_2732482 crossref_citationtrail_10_1109_TNNLS_2017_2732482 ieee_primary_8012579 proquest_journals_2074852026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref58 ref14 ref55 ref11 ref54 ref10 chen (ref64) 2004 ref19 beijbom (ref38) 2014 srivastava (ref17) 2014; 15 zeiler (ref53) 2014 ref50 chung (ref34) 2015 ref48 espíndola (ref40) 2005; 35 ref42 ref41 donahue (ref52) 2014 nielsen (ref39) 2014; 1 ref49 yang (ref51) 2009 ref8 ref9 ref4 ref3 chang (ref45) 2015 lin (ref5) 2013 ref35 ref37 ref36 garcía (ref18) 2007 huang (ref32) 2004; 2 ref31 lin (ref47) 2014 ref30 chatfield (ref6) 2014 ref2 ref1 krizhevsky (ref16) 2012 lee (ref44) 2016 ref24 ref67 ref23 ref26 ref25 ref20 doersch (ref60) 2013 ref63 ref66 ref22 ref65 ref21 mani (ref62) 2003 kukar (ref33) 1998 ref28 ref27 wu (ref29) 2003 simonyan (ref43) 2014 lee (ref7) 2015 ref61 van der maaten (ref15) 2013 springenberg (ref46) 2014 |
References_xml | – ident: ref66 doi: 10.1145/1961189.1961199 – ident: ref25 doi: 10.1109/TFUZZ.2013.2296091 – ident: ref59 doi: 10.1109/CVPR.2013.124 – ident: ref42 doi: 10.1109/ISBI.2012.6235558 – year: 2004 ident: ref64 article-title: Using random forest to learn imbalanced data – ident: ref8 doi: 10.1109/CVPR.2012.6247798 – ident: ref57 doi: 10.1109/CVPR.2013.115 – start-page: 494 year: 2013 ident: ref60 article-title: Mid-level visual element discovery as discriminative mode seeking publication-title: Proc NIPS – start-page: 1939 year: 2007 ident: ref18 article-title: The class imbalance problem in pattern classification and learning publication-title: Proc Congreso Español Inf – start-page: 1 year: 2003 ident: ref62 article-title: KNN approach to unbalanced data distributions: A case study involving information extraction publication-title: Proc WLID – ident: ref11 doi: 10.1109/CVPR.2014.249 – ident: ref14 doi: 10.1109/TKDE.2006.17 – year: 2014 ident: ref43 publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition – start-page: 1323 year: 2014 ident: ref47 article-title: Stable and efficient representation learning with nonnegativity constraints publication-title: Proc ICML – year: 2015 ident: ref45 publication-title: Batch-normalized Maxout Network in Network – ident: ref4 doi: 10.1109/TGRS.2017.2707528 – ident: ref28 doi: 10.1007/s10115-009-0198-y – year: 2015 ident: ref34 publication-title: Cost-aware pretraining for multiclass cost-sensitive deep learning – ident: ref49 doi: 10.1109/CVPR.2010.5540018 – ident: ref19 doi: 10.1016/j.asoc.2013.09.014 – start-page: 586 year: 2014 ident: ref38 article-title: Guess-averse loss functions for cost-sensitive multiclass boosting publication-title: Proc Int Conf Mach Learn (ICML) – start-page: 49 year: 2003 ident: ref29 article-title: Class-boundary alignment for imbalanced dataset learning publication-title: Proc ICML Workshop – ident: ref26 doi: 10.1007/s00521-014-1584-2 – ident: ref41 doi: 10.1007/978-94-007-5389-1_4 – ident: ref2 doi: 10.1109/TPAMI.2015.2462355 – ident: ref36 doi: 10.1007/978-3-319-46182-3_13 – ident: ref35 doi: 10.1109/IJCNN.2016.7727770 – ident: ref61 doi: 10.1007/978-3-319-10584-0_26 – start-page: 410 year: 2013 ident: ref15 article-title: Learning with marginalized corrupted features publication-title: Proc 30th Int Conf Mach Learn (ICMLll) – year: 2014 ident: ref6 publication-title: Return of the devil in the details Delving deep into convolutional nets – ident: ref12 doi: 10.1155/2013/196256 – ident: ref48 doi: 10.1109/ICCV.2009.5459183 – ident: ref58 doi: 10.1109/CVPRW.2014.131 – ident: ref37 doi: 10.1198/016214505000000907 – year: 2013 ident: ref5 publication-title: Network in Network – ident: ref1 doi: 10.1109/TIP.2016.2567076 – ident: ref24 doi: 10.1007/978-3-642-17534-3_19 – ident: ref23 doi: 10.1145/1007730.1007735 – ident: ref54 doi: 10.1007/978-3-319-10578-9_23 – ident: ref22 doi: 10.1109/CIDM.2011.5949434 – ident: ref31 doi: 10.1109/CVPR.2014.81 – ident: ref13 doi: 10.1007/s10115-011-0465-6 – start-page: 562 year: 2015 ident: ref7 article-title: Deeply-supervised nets publication-title: Proc Artif Intell Statist – start-page: 1097 year: 2012 ident: ref16 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc NIPS – start-page: 818 year: 2014 ident: ref53 article-title: Visualizing and understanding convolutional networks publication-title: Proc ECCV – year: 2014 ident: ref46 article-title: Improving deep neural networks with probabilistic maxout units publication-title: Proc ICLRs – volume: 35 year: 2005 ident: ref40 article-title: On extending F-measure and G-mean metrics to multi-class problems publication-title: Transactions on Information and Communication Technologies – start-page: 464 year: 2016 ident: ref44 article-title: Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree publication-title: Proc 19th Int Conf Artif Intell – ident: ref55 doi: 10.5244/C.25.76 – ident: ref10 doi: 10.1613/jair.953 – ident: ref27 doi: 10.1016/j.neucom.2013.05.051 – ident: ref67 doi: 10.1145/1014052.1014056 – ident: ref3 doi: 10.1007/s11263-015-0843-8 – ident: ref20 doi: 10.1007/11538059_91 – volume: 2 start-page: 2-558 year: 2004 ident: ref32 article-title: Learning classifiers from imbalanced data based on biased minimax probability machine publication-title: Proc CVPR – volume: 1 year: 2014 ident: ref39 publication-title: Neural Networks and Deep Learning – ident: ref56 doi: 10.1109/CVPR.2014.476 – start-page: 647 year: 2014 ident: ref52 article-title: DeCAF: A deep convolutional activation feature for generic visual recognition publication-title: Proc ICML – volume: 15 start-page: 1929 year: 2014 ident: ref17 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref9 doi: 10.1109/ICIP.2016.7532411 – ident: ref30 doi: 10.1109/TKDE.2005.95 – start-page: 1794 year: 2009 ident: ref51 article-title: Linear spatial pyramid matching using sparse coding for image classification publication-title: Proc CVPR – start-page: 445 year: 1998 ident: ref33 article-title: Cost-sensitive learning with neural networks publication-title: Proc ECAI – ident: ref65 doi: 10.1109/TKDE.2008.239 – ident: ref50 doi: 10.1007/978-3-642-15561-1_11 – ident: ref63 doi: 10.1109/TSMCB.2008.2002909 – ident: ref21 doi: 10.1007/978-3-642-01307-2_43 |
SSID | ssj0000605649 |
Score | 2.6982079 |
Snippet | Class imbalance is a common problem in the case of real-world object detection and classification tasks. Data of some classes are abundant, making them an... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3573 |
SubjectTerms | Artificial neural networks Australia Classification Classifiers Computer applications Computer vision Convolutional neural networks (CNNs) cost-sensitive (CoSen) learning data imbalance Data sampling Image classification loss functions Neural networks Object recognition Representations Tag clouds Testing Training Training data |
Title | Cost-Sensitive Learning of Deep Feature Representations From Imbalanced Data |
URI | https://ieeexplore.ieee.org/document/8012579 https://www.ncbi.nlm.nih.gov/pubmed/28829320 https://www.proquest.com/docview/2074852026 https://www.proquest.com/docview/1931243090 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhpeWRUpCRuEG2dpzY8RG1rAoqe6CttLfIdiYcoEm1m1z662s7TiQQoN6ixE4cz3j8jecF8L7Ji6xBrVOJUqR5aYW379JUChQcS9GgCdk-V-LiJv-6LtY78HGOhUHE4HyGC38ZbPl1Zwd_VHbqpWkh1S7sOsVtjNWaz1Oow-UioN2MiSzNuFxPMTJUnV6vVpdX3pFLLtx-neWlr2KTOXTp4Av9bUsKNVb-DTfDtrPch2_TgEdvk5-LoTcLe_9HLsfH_tEBPI34k3waGeYZ7GB7CPtTbQcSl_oRXJ512z698u7tXiCSmIf1B-kaco54Rzx2HDZIvgdX2hjB1G7JctPdki-3xrtMWqzJue71c7hZfr4-u0hj5YXU5kz2aWG5MswJAyV1LpBSwzQXOZZGFOjJq0olnSLFC3Q3S8N5bVBjqTRDWlvGX8Be27X4CkiTGc40mlrUTV6bRlvDda0Zq53IZ0onwKbJr2xMS-6rY_yqgnpCVRVoV3naVZF2CXyY-9yNSTn-2_rIT_zcMs55AicTjau4breun8zLInOKaQLv5sduxXkzim6xG7aVg7wOFHGqaAIvR96Y3z2x1PHfv_kanriRlaMD4Qns9ZsB3zhQ05u3gZsfALgM8DY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BbtQwEB2VcoALBQptoICR4ISyje3ESQ4cUJfVLl32QLfS3oKdTDjQJtUmEYJv4Vf4N2zHiQQCbpW4RYmdOJ7x-I39PAPwogwjVqKUfoyx8MMkF2Z_N_BjgYJjIkpUNtrnSszPw3ebaLMD38ezMIhoyWc4MZd2L7-o884slR0baxrFqaNQnuLXL9pBa14vplqaLxmbvV2fzH2XQ8DPQxq3fpTzVFGt1mksQ4FBoKjkIsREiQhNQ9MkjbVLwCPUNxPFeaFQYpJKikGRU67fewNuapwRsf502LiCE2hPQFh8zahgPuPxZjiVE6TH69VqeWaoY_FEIwQWJiZvDtN4VgOm4JdJ0GZ1-TvAtRPdbA9-DF3U81s-T7pWTfJvv0WP_F_78C7ccQibvOmHxD3Yweo-7A3ZK4gzZvuwPKmb1j8zBH5j8omLNPuJ1CWZIl4Rg467LZIPlizszmhVDZlt60uyuFSGFJpjQaaylQ_g_Fr-6SHsVnWFh0BKpjiVqApRlGGhSpkrLgtJaaEnNZpKD-gg7Cx3gddN_o-LzDpgQZpZXcmMrmROVzx4Nda56sOO_LP0vhH0WNLJ2IOjQacyZ5kaXS8Ok4hp19uD5-NjbVPMRpGssO6aTIN6Dft4kAYeHPS6OL57UOFHf_7mM7g1X79fZsvF6vQx3NatTHq65BHsttsOn2gI16qndiQR-HjdavcThINMbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost-Sensitive+Learning+of+Deep+Feature+Representations+From+Imbalanced+Data&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Khan%2C+Salman+H&rft.au=Hayat%2C+Munawar&rft.au=Bennamoun%2C+Mohammed&rft.au=Sohel%2C+Ferdous+A&rft.date=2018-08-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=29&rft.issue=8&rft.spage=3573&rft_id=info:doi/10.1109%2FTNNLS.2017.2732482&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |