Walled Carotid Bifurcation Phantoms for Imaging Investigations of Vessel Wall Motion and Blood Flow Dynamics
As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not trivial to develop walled carotid phantoms that are compatible for use in integrative imaging of carotid wall motion and flow dynamics. In this...
Saved in:
Published in | IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 63; no. 11; pp. 1852 - 1864 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not trivial to develop walled carotid phantoms that are compatible for use in integrative imaging of carotid wall motion and flow dynamics. In this paper, we present a novel phantom design protocol that can enable efficient fabrication of walled carotid bifurcation phantoms with: 1) high acoustic compatibility; 2) artery-like vessel elasticity; and 3) stenotic narrowing feature. Our protocol first involved direct fabrication of the vessel core and an outer mold using computer-aided design tools and 3-D printing technology; these built parts were then used to construct an elastic vessel tube through investment casting of a polyvinyl alcohol containing mixture, and an agar-gelatin tissue mimicking slab was formed around the vessel tube. For demonstration, we applied our protocol to develop a set of healthy and stenosed (25%, 50%, and 75%) carotid bifurcation phantoms. Plane wave imaging experiments were performed on these phantoms using an ultrasound scanner with channel-level configurability. Results show that the wall motion dynamics of our phantoms agreed with pulse wave propagation in an elastic vessel (pulse wave velocity of 4.67 ± 0.71 m/s measured at the common carotid artery), and their flow dynamics matched the expected ones in healthy and stenosed bifurcation (recirculation and flow jet formation observed). Integrative imaging of vessel wall motion and blood flow dynamics in our phantoms was also demonstrated, from which we observed fluid-structure interaction differences between healthy and diseased bifurcation phantoms. These findings show that the walled bifurcation phantoms developed with our new protocol are useful in vascular imaging studies that individually or jointly assess wall motion and flow dynamics. |
---|---|
AbstractList | As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not trivial to develop walled carotid phantoms that are compatible for use in integrative imaging of carotid wall motion and flow dynamics. In this paper, we present a novel phantom design protocol that can enable efficient fabrication of walled carotid bifurcation phantoms with: 1) high acoustic compatibility; 2) artery-like vessel elasticity; and 3) stenotic narrowing feature. Our protocol first involved direct fabrication of the vessel core and an outer mold using computer-aided design tools and 3-D printing technology; these built parts were then used to construct an elastic vessel tube through investment casting of a polyvinyl alcohol containing mixture, and an agar-gelatin tissue mimicking slab was formed around the vessel tube. For demonstration, we applied our protocol to develop a set of healthy and stenosed (25%, 50%, and 75%) carotid bifurcation phantoms. Plane wave imaging experiments were performed on these phantoms using an ultrasound scanner with channel-level configurability. Results show that the wall motion dynamics of our phantoms agreed with pulse wave propagation in an elastic vessel (pulse wave velocity of 4.67 ± 0.71 m/s measured at the common carotid artery), and their flow dynamics matched the expected ones in healthy and stenosed bifurcation (recirculation and flow jet formation observed). Integrative imaging of vessel wall motion and blood flow dynamics in our phantoms was also demonstrated, from which we observed fluid-structure interaction differences between healthy and diseased bifurcation phantoms. These findings show that the walled bifurcation phantoms developed with our new protocol are useful in vascular imaging studies that individually or jointly assess wall motion and flow dynamics. As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not trivial to develop walled carotid phantoms that are compatible for use in integrative imaging of carotid wall motion and flow dynamics. In this paper, we present a novel phantom design protocol that can enable efficient fabrication of walled carotid bifurcation phantoms with: (i) high acoustic compatibility, (ii) artery-like vessel elasticity, and (iii) stenotic narrowing feature. Our protocol first involved direct fabrication of the vessel core and an outer mold using computer-aided design tools and 3-D printing technology; these built parts were then used to construct an elastic vessel tube through investment casting of a polyvinyl alcohol containing mixture, and an agar-gelatin tissue mimicking slab was formed around the vessel tube. For demonstration, we applied our protocol to develop a set of healthy and stenosed (25%, 50%, 75%) carotid bifurcation phantoms. Plane wave imaging experiments were performed on these phantoms using an ultrasound scanner with channel-level configurability. Results show that the wall motion dynamics of our phantoms agreed with pulse wave propagation in an elastic vessel (pulse wave velocity of 4.67±0.71 m/s measured at the common carotid artery), and their flow dynamics matched the expected ones in healthy and stenosed bifurcation (recirculation and flow jet formation observed). Integrative imaging of vessel wall motion and blood flow dynamics in our phantoms was also demonstrated, from which we observed fluid-structure interaction differences between healthy and diseased bifurcation phantoms. These findings show that the walled bifurcation phantoms developed with our new protocol are useful in vascular imaging studies that individually or jointly assess wall motion and flow dynamics. |
Author | Chung Kit Ho Yiu, Billy Y. S. Chee, Adrian J. Y. Yu, Alfred C. H. |
Author_xml | – sequence: 1 givenname: Adrian J. Y. surname: Chee fullname: Chee, Adrian J. Y. email: adrian.chee@hku.hk organization: Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China – sequence: 2 surname: Chung Kit Ho fullname: Chung Kit Ho email: kit.ck-ho@hku.hk organization: Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China – sequence: 3 givenname: Billy Y. S. surname: Yiu fullname: Yiu, Billy Y. S. email: billy.yiu@hku.hk organization: Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China – sequence: 4 givenname: Alfred C. H. surname: Yu fullname: Yu, Alfred C. H. email: alfred.yu@uwaterloo.ca organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27429436$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAURS1URKeFPwASssSGTYZnx07sJQwMHakIFgMsLcexB1eOXewE1H9P5qNddMHqbc65unr3Ap3FFC1CLwksCQH5bvt9vV4tKZBmSbkkkjVP0IJwyishOT9DCxCCVzUQOEcXpdwAEMYkfYbOacuoZHWzQOGnDsH2eKVzGn2PP3g3ZaNHnyL-9kvHMQ0Fu5TxZtA7H3d4E__YMvrdASk4OfzDlmID3gfhL-lg6jgnhZR6vA7pL_54F_XgTXmOnjodin1xupdou_60XV1V118_b1bvryvDSDtWvHNd1zvWAAfe11Q7yVkjTSsFp9CIllPmGsI74B2rQdCuM1S0lBsJPdj6Er09xt7m9Hua26rBF2ND0NGmqSgiaNNSQYSc0TeP0Js05TiXm6m6JYSCIDP1-kRN3WB7dZv9oPOdun_jDIgjYHIqJVunjB8PHxqz9kERUPvF1GExtV9MnRabVfpIvU__r_TqKHlr7YPQcsIBWP0PGwif4Q |
CODEN | ITUCER |
CitedBy_id | crossref_primary_10_1016_j_ultrasmedbio_2019_11_005 crossref_primary_10_1109_TUFFC_2016_2636129 crossref_primary_10_1115_1_4048708 crossref_primary_10_1109_TUFFC_2017_2762860 crossref_primary_10_1007_s13239_019_00448_9 crossref_primary_10_4103_JMU_JMU_164_20 crossref_primary_10_1016_j_cmpb_2022_106855 crossref_primary_10_1088_1361_6560_abd670 crossref_primary_10_4236_ojmi_2017_71004 crossref_primary_10_1088_1361_6560_ab1145 crossref_primary_10_3390_app8020286 crossref_primary_10_1016_j_ultrasmedbio_2017_12_008 crossref_primary_10_1109_TUFFC_2016_2606598 crossref_primary_10_1109_TUFFC_2023_3255791 crossref_primary_10_1002_mp_13437 crossref_primary_10_1002_mp_13558 crossref_primary_10_1109_TUFFC_2018_2856756 crossref_primary_10_1002_cpz1_264 crossref_primary_10_1016_j_jbiomech_2023_111502 crossref_primary_10_1109_TUFFC_2020_2995467 crossref_primary_10_1007_s11664_019_07049_1 crossref_primary_10_3390_app8040637 crossref_primary_10_3390_biomimetics9030135 crossref_primary_10_1007_s13239_021_00546_7 crossref_primary_10_1134_S0021894423020025 crossref_primary_10_1016_j_bprint_2022_e00192 crossref_primary_10_3390_app13010617 crossref_primary_10_1016_j_ultrasmedbio_2021_10_004 crossref_primary_10_1088_1361_6560_abda99 crossref_primary_10_1016_j_ultrasmedbio_2023_06_001 crossref_primary_10_1088_1361_6560_ab7abf crossref_primary_10_1109_MM_2022_3195516 crossref_primary_10_1002_mp_14714 crossref_primary_10_1152_japplphysiol_00628_2024 crossref_primary_10_1007_s11548_020_02201_3 crossref_primary_10_1038_s41598_024_66777_5 crossref_primary_10_1002_adfm_202110153 crossref_primary_10_1016_j_ultrasmedbio_2022_05_023 crossref_primary_10_1016_j_ultrasmedbio_2023_09_005 crossref_primary_10_1109_TUFFC_2017_2784183 crossref_primary_10_1109_TUFFC_2021_3104342 |
Cites_doi | 10.1109/TUFFC.2008.978 10.1038/ncpcardio0274 10.1148/radiology.134.2.7352242 10.1115/1.1537734 10.1007/978-1-4757-2696-1 10.1016/j.ultrasmedbio.2006.08.004 10.1109/TUFFC.2014.006910 10.1016/S0301-5629(02)00479-9 10.1109/TUFFC.2012.2184 10.1109/TUFFC.2011.1999 10.1002/(SICI)1522-2586(199910)10:4<533::AID-JMRI6>3.3.CO;2-Q 10.1118/1.3006948 10.1016/S0301-5629(97)00277-9 10.1109/TUFFC.2014.006597 10.1109/MM.2011.65 10.1016/j.ultras.2011.09.006 10.1016/j.ultrasmedbio.2007.10.017 10.1016/S1076-6332(96)80297-2 10.1118/1.3065031 10.1016/S0301-5629(00)00277-5 10.1016/j.ultrasmedbio.2004.06.003 10.1161/CIRCULATIONAHA.105.590018 10.1016/j.ultrasmedbio.2013.03.015 10.1016/j.ultrasmedbio.2012.12.016 10.1118/1.3462592 10.1109/TUFFC.2013.2621 10.1161/01.STR.0000206440.48756.f7 10.1016/j.ultrasmedbio.2015.06.012 10.1016/j.ultrasmedbio.2008.01.002 10.1016/j.ultrasmedbio.2011.03.004 10.1007/s00330-009-1457-8 10.1016/j.ultrasmedbio.2006.07.023 10.1016/j.artres.2012.01.004 10.1146/annurev-bioeng-071811-150112 10.1055/s-0028-1109572 10.1016/j.ultrasmedbio.2010.02.005 10.1016/j.ultrasmedbio.2010.04.017 10.1243/09544119JEIM572 10.1118/1.597991 10.1016/j.ultrasmedbio.2014.03.014 10.1016/j.ultrasmedbio.2007.04.020 10.1109/TMI.2011.2165959 10.1016/j.ultrasmedbio.2011.02.012 10.1097/01.mat.0000170629.92765.bb 10.1016/j.jbiomech.2013.09.007 10.1098/rsfs.2011.0024 10.1088/0031-9155/52/20/N02 10.1088/0967-3334/29/2/001 10.1109/TUFFC.2014.6689779 10.1016/j.ultrasmedbio.2006.05.033 10.1007/s10396-012-0400-9 10.1088/0031-9155/49/24/009 10.1002/jmri.23797 10.1146/annurev.fluid.29.1.399 10.1243/09544119JEIM599 10.1088/0031-9155/50/23/013 10.14366/usg.14063 10.1161/01.STR.31.10.2319 10.1016/j.ultrasmedbio.2014.03.009 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SP 7U5 8FD F28 FR3 L7M 7X8 |
DOI | 10.1109/TUFFC.2016.2591946 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1525-8955 |
EndPage | 1864 |
ExternalDocumentID | 27429436 10_1109_TUFFC_2016_2591946 7515004 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Research Grants Council of Hong Kong grantid: GRF 785113M – fundername: Hong Kong Innovation and Technology Fund grantid: GHP/025/13SZ – fundername: Natural Sciences and Engineering Council of Canada grantid: RGPIN-2016-04042 funderid: 10.13039/501100000038 |
GroupedDBID | --- -~X .GJ 0R~ 186 29I 3EH 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ UKR VH1 ZXP ZY4 AAYXX CITATION RIG ABTAH NPM PKN Z5M 7SP 7U5 8FD F28 FR3 L7M 7X8 |
ID | FETCH-LOGICAL-c417t-5bfbbdf460505d32af95469c798520687524f615b05b43082bbc28725c90d0e3 |
IEDL.DBID | RIE |
ISSN | 0885-3010 |
IngestDate | Fri Jul 11 11:07:53 EDT 2025 Mon Jun 30 10:22:05 EDT 2025 Wed Feb 19 02:42:03 EST 2025 Tue Jul 01 00:46:19 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Wed Aug 27 03:07:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-5bfbbdf460505d32af95469c798520687524f615b05b43082bbc28725c90d0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8604-0219 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7515004 |
PMID | 27429436 |
PQID | 1837112081 |
PQPubID | 85455 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1837112081 proquest_miscellaneous_1826728189 pubmed_primary_27429436 crossref_citationtrail_10_1109_TUFFC_2016_2591946 ieee_primary_7515004 crossref_primary_10_1109_TUFFC_2016_2591946 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Nov. 2016-11-00 20161101 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-Nov. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
PublicationTitleAbbrev | T-UFFC |
PublicationTitleAlternate | IEEE Trans Ultrason Ferroelectr Freq Control |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 nichols (ref1) 2012 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 |
References_xml | – ident: ref12 doi: 10.1109/TUFFC.2008.978 – ident: ref3 doi: 10.1038/ncpcardio0274 – ident: ref57 doi: 10.1148/radiology.134.2.7352242 – ident: ref18 doi: 10.1115/1.1537734 – ident: ref54 doi: 10.1007/978-1-4757-2696-1 – ident: ref28 doi: 10.1016/j.ultrasmedbio.2006.08.004 – ident: ref8 doi: 10.1109/TUFFC.2014.006910 – ident: ref25 doi: 10.1016/S0301-5629(02)00479-9 – ident: ref49 doi: 10.1109/TUFFC.2012.2184 – ident: ref51 doi: 10.1109/TUFFC.2011.1999 – ident: ref43 doi: 10.1002/(SICI)1522-2586(199910)10:4<533::AID-JMRI6>3.3.CO;2-Q – ident: ref20 doi: 10.1118/1.3006948 – ident: ref48 doi: 10.1016/S0301-5629(97)00277-9 – ident: ref59 doi: 10.1109/TUFFC.2014.006597 – ident: ref50 doi: 10.1109/MM.2011.65 – ident: ref40 doi: 10.1016/j.ultras.2011.09.006 – ident: ref15 doi: 10.1016/j.ultrasmedbio.2007.10.017 – ident: ref45 doi: 10.1016/S1076-6332(96)80297-2 – ident: ref56 doi: 10.1118/1.3065031 – ident: ref17 doi: 10.1016/S0301-5629(00)00277-5 – ident: ref31 doi: 10.1016/j.ultrasmedbio.2004.06.003 – ident: ref4 doi: 10.1161/CIRCULATIONAHA.105.590018 – ident: ref32 doi: 10.1016/j.ultrasmedbio.2013.03.015 – ident: ref30 doi: 10.1016/j.ultrasmedbio.2012.12.016 – ident: ref21 doi: 10.1118/1.3462592 – ident: ref13 doi: 10.1109/TUFFC.2013.2621 – ident: ref44 doi: 10.1161/01.STR.0000206440.48756.f7 – ident: ref36 doi: 10.1016/j.ultrasmedbio.2015.06.012 – ident: ref26 doi: 10.1016/j.ultrasmedbio.2008.01.002 – ident: ref14 doi: 10.1016/j.ultrasmedbio.2011.03.004 – ident: ref29 doi: 10.1007/s00330-009-1457-8 – ident: ref11 doi: 10.1016/j.ultrasmedbio.2006.07.023 – ident: ref58 doi: 10.1016/j.artres.2012.01.004 – ident: ref42 doi: 10.1146/annurev-bioeng-071811-150112 – ident: ref9 doi: 10.1055/s-0028-1109572 – ident: ref33 doi: 10.1016/j.ultrasmedbio.2010.02.005 – ident: ref27 doi: 10.1016/j.ultrasmedbio.2010.04.017 – year: 2012 ident: ref1 publication-title: McDonald s Blood Flow in Arteries Theoretic Experimental and Clinical Principles – ident: ref6 doi: 10.1243/09544119JEIM572 – ident: ref16 doi: 10.1118/1.597991 – ident: ref10 doi: 10.1016/j.ultrasmedbio.2014.03.014 – ident: ref46 doi: 10.1016/j.ultrasmedbio.2007.04.020 – ident: ref22 doi: 10.1109/TMI.2011.2165959 – ident: ref39 doi: 10.1016/j.ultrasmedbio.2011.02.012 – ident: ref38 doi: 10.1097/01.mat.0000170629.92765.bb – ident: ref34 doi: 10.1016/j.jbiomech.2013.09.007 – ident: ref5 doi: 10.1098/rsfs.2011.0024 – ident: ref47 doi: 10.1088/0031-9155/52/20/N02 – ident: ref19 doi: 10.1088/0967-3334/29/2/001 – ident: ref41 doi: 10.1109/TUFFC.2014.6689779 – ident: ref23 doi: 10.1016/j.ultrasmedbio.2006.05.033 – ident: ref53 doi: 10.1007/s10396-012-0400-9 – ident: ref37 doi: 10.1088/0031-9155/49/24/009 – ident: ref60 doi: 10.1002/jmri.23797 – ident: ref24 doi: 10.1146/annurev.fluid.29.1.399 – ident: ref52 doi: 10.1243/09544119JEIM599 – ident: ref55 doi: 10.1088/0031-9155/50/23/013 – ident: ref35 doi: 10.14366/usg.14063 – ident: ref2 doi: 10.1161/01.STR.31.10.2319 – ident: ref7 doi: 10.1016/j.ultrasmedbio.2014.03.009 |
SSID | ssj0014492 |
Score | 2.3897388 |
Snippet | As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1852 |
SubjectTerms | Bifurcation Bifurcations Blood flow Blood flow dynamics Blood vessels CAD Carotid arteries carotid bifurcation phantom Computer aided design Dynamics Fluid-structure interaction Gelatin Geometry Imaging Imaging phantoms integrative imaging Investment casting Phantoms Plane waves Polyvinyl alcohol Pulse propagation Solid modeling Three dimensional printing Ultrasonic imaging Ultrasonic scanners Veins & arteries vessel wall motion Wave propagation Wave velocity |
Title | Walled Carotid Bifurcation Phantoms for Imaging Investigations of Vessel Wall Motion and Blood Flow Dynamics |
URI | https://ieeexplore.ieee.org/document/7515004 https://www.ncbi.nlm.nih.gov/pubmed/27429436 https://www.proquest.com/docview/1837112081 https://www.proquest.com/docview/1826728189 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VSkhwoNDy2FKQkbhBtt7ETuIjFKKCtIjDFvUW-RVRsZugbiJEf31nnAcVAsQlihTHdjTj-JuHvwF4qXyuFW6LEUIJEwltRaS4lVEIusVuoRNNfsjlp_T0THw8l-c78Ho6C-O9D8lnfk63IZbvGtuRq-w4w803kH_eQsOtP6s1RQyECAWQcdHQQAs-HpDh6nh1VhQnlMWVzhHso9VOdYsoRKlEYGb-tR-FAit_x5phzyn2YDnOtk81-TbvWjO3V78ROf7v59yHewP4ZG96bXkAO77eh7s3KAn34XZICbXbA1iTj907Rikh7YVjby-q7rJ38LHPX6n28GbLEPKyD5tQ6YjdoOxAVWZNxb4QMfmaUUdsGcoFMV1jT5Qsz4p184O9-1nrDQ73EFbF-9XJaTTUZoisWGRtJE1ljKsoqsqlS2JdKYmWts1ULmOeohUUiwrRkuHSCKLEMcaicRZLq7jjPnkEu3VT-yfAtPEmlQnHC0omz3VstRKWJy7XPnNqBotRQKUdeMupfMa6DPYLV2WQb0nyLQf5zuDV9M73nrXjn60PSDhTy0EuMzga9aAcFva2xD9ghhAVgdQMXkyPcUlSnEXXvumoTZxmxLKFc3_c68_U96h2h38e8yncoZn1hx2PYLe97PwzRD2teR7U_RpCUvkw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1VrRBwKNBSWChgJG6QrZPYSXyEQrSFbsVhi3qLbMcRFbtZ1E2E4Ncz43xQIUBcokhxbEczzrzxjN8AvFAu0wrNYoBQwgRCWxEobmXgg25RGepY0z7k_CyZnYv3F_JiC16NZ2Gccz75zE3p1sfyy7VtaavsKEXj68k_d9Duy7A7rTXGDITwJZBx2dBQIR-OyHB1tDjP82PK40qmCPfRb6fKRRSkVMJzM_-ySL7Eyt_Rprc6-R2YD_Ptkk2-TNvGTO2P36gc__eD7sJuDz_Z605f7sGWq_fg9jVSwj244ZNC7WYflrTL7kpGSSHNZcneXFbtVbfFxz5-purDqw1D0MtOVr7WEbtG2oHKzNYV-0TU5EtGHbG5LxjEdI09Ubo8y5frb-zt91qvcLj7sMjfLY5nQV-dIbAiTJtAmsqYsqK4KpdlHOlKSfS1baoyGfEE_aBIVIiXDJdGECmOMRbds0haxUvu4gPYrte1ewhMG2cSGXO8oGSyTEdWK2F5XGbapaWaQDgIqLA9czkV0FgW3oPhqvDyLUi-RS_fCbwc3_na8Xb8s_U-CWds2ctlAoeDHhT90t4U-A9MEaQilJrA8_ExLkqKtOjarVtqEyUp8Wzh3B90-jP2Pajdoz-P-Qxuzhbz0-L05OzDY7hFs-yOPh7CdnPVuieIgRrz1Kv-T2g2_Hk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Walled+Carotid+Bifurcation+Phantoms+for+Imaging+Investigations+of+Vessel+Wall+Motion+and+Blood+Flow+Dynamics&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Chee%2C+Adrian+J.+Y.&rft.au=Chung+Kit+Ho&rft.au=Yiu%2C+Billy+Y.+S.&rft.au=Yu%2C+Alfred+C.+H.&rft.date=2016-11-01&rft.pub=IEEE&rft.issn=0885-3010&rft.volume=63&rft.issue=11&rft.spage=1852&rft.epage=1864&rft_id=info:doi/10.1109%2FTUFFC.2016.2591946&rft_id=info%3Apmid%2F27429436&rft.externalDocID=7515004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon |