Walled Carotid Bifurcation Phantoms for Imaging Investigations of Vessel Wall Motion and Blood Flow Dynamics

As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not trivial to develop walled carotid phantoms that are compatible for use in integrative imaging of carotid wall motion and flow dynamics. In this...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 63; no. 11; pp. 1852 - 1864
Main Authors Chee, Adrian J. Y., Chung Kit Ho, Yiu, Billy Y. S., Yu, Alfred C. H.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not trivial to develop walled carotid phantoms that are compatible for use in integrative imaging of carotid wall motion and flow dynamics. In this paper, we present a novel phantom design protocol that can enable efficient fabrication of walled carotid bifurcation phantoms with: 1) high acoustic compatibility; 2) artery-like vessel elasticity; and 3) stenotic narrowing feature. Our protocol first involved direct fabrication of the vessel core and an outer mold using computer-aided design tools and 3-D printing technology; these built parts were then used to construct an elastic vessel tube through investment casting of a polyvinyl alcohol containing mixture, and an agar-gelatin tissue mimicking slab was formed around the vessel tube. For demonstration, we applied our protocol to develop a set of healthy and stenosed (25%, 50%, and 75%) carotid bifurcation phantoms. Plane wave imaging experiments were performed on these phantoms using an ultrasound scanner with channel-level configurability. Results show that the wall motion dynamics of our phantoms agreed with pulse wave propagation in an elastic vessel (pulse wave velocity of 4.67 ± 0.71 m/s measured at the common carotid artery), and their flow dynamics matched the expected ones in healthy and stenosed bifurcation (recirculation and flow jet formation observed). Integrative imaging of vessel wall motion and blood flow dynamics in our phantoms was also demonstrated, from which we observed fluid-structure interaction differences between healthy and diseased bifurcation phantoms. These findings show that the walled bifurcation phantoms developed with our new protocol are useful in vascular imaging studies that individually or jointly assess wall motion and flow dynamics.
AbstractList As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not trivial to develop walled carotid phantoms that are compatible for use in integrative imaging of carotid wall motion and flow dynamics. In this paper, we present a novel phantom design protocol that can enable efficient fabrication of walled carotid bifurcation phantoms with: 1) high acoustic compatibility; 2) artery-like vessel elasticity; and 3) stenotic narrowing feature. Our protocol first involved direct fabrication of the vessel core and an outer mold using computer-aided design tools and 3-D printing technology; these built parts were then used to construct an elastic vessel tube through investment casting of a polyvinyl alcohol containing mixture, and an agar-gelatin tissue mimicking slab was formed around the vessel tube. For demonstration, we applied our protocol to develop a set of healthy and stenosed (25%, 50%, and 75%) carotid bifurcation phantoms. Plane wave imaging experiments were performed on these phantoms using an ultrasound scanner with channel-level configurability. Results show that the wall motion dynamics of our phantoms agreed with pulse wave propagation in an elastic vessel (pulse wave velocity of 4.67 ± 0.71 m/s measured at the common carotid artery), and their flow dynamics matched the expected ones in healthy and stenosed bifurcation (recirculation and flow jet formation observed). Integrative imaging of vessel wall motion and blood flow dynamics in our phantoms was also demonstrated, from which we observed fluid-structure interaction differences between healthy and diseased bifurcation phantoms. These findings show that the walled bifurcation phantoms developed with our new protocol are useful in vascular imaging studies that individually or jointly assess wall motion and flow dynamics.
As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not trivial to develop walled carotid phantoms that are compatible for use in integrative imaging of carotid wall motion and flow dynamics. In this paper, we present a novel phantom design protocol that can enable efficient fabrication of walled carotid bifurcation phantoms with: (i) high acoustic compatibility, (ii) artery-like vessel elasticity, and (iii) stenotic narrowing feature. Our protocol first involved direct fabrication of the vessel core and an outer mold using computer-aided design tools and 3-D printing technology; these built parts were then used to construct an elastic vessel tube through investment casting of a polyvinyl alcohol containing mixture, and an agar-gelatin tissue mimicking slab was formed around the vessel tube. For demonstration, we applied our protocol to develop a set of healthy and stenosed (25%, 50%, 75%) carotid bifurcation phantoms. Plane wave imaging experiments were performed on these phantoms using an ultrasound scanner with channel-level configurability. Results show that the wall motion dynamics of our phantoms agreed with pulse wave propagation in an elastic vessel (pulse wave velocity of 4.67±0.71 m/s measured at the common carotid artery), and their flow dynamics matched the expected ones in healthy and stenosed bifurcation (recirculation and flow jet formation observed). Integrative imaging of vessel wall motion and blood flow dynamics in our phantoms was also demonstrated, from which we observed fluid-structure interaction differences between healthy and diseased bifurcation phantoms. These findings show that the walled bifurcation phantoms developed with our new protocol are useful in vascular imaging studies that individually or jointly assess wall motion and flow dynamics.
Author Chung Kit Ho
Yiu, Billy Y. S.
Chee, Adrian J. Y.
Yu, Alfred C. H.
Author_xml – sequence: 1
  givenname: Adrian J. Y.
  surname: Chee
  fullname: Chee, Adrian J. Y.
  email: adrian.chee@hku.hk
  organization: Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China
– sequence: 2
  surname: Chung Kit Ho
  fullname: Chung Kit Ho
  email: kit.ck-ho@hku.hk
  organization: Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China
– sequence: 3
  givenname: Billy Y. S.
  surname: Yiu
  fullname: Yiu, Billy Y. S.
  email: billy.yiu@hku.hk
  organization: Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Hong Kong, China
– sequence: 4
  givenname: Alfred C. H.
  surname: Yu
  fullname: Yu, Alfred C. H.
  email: alfred.yu@uwaterloo.ca
  organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27429436$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAURS1URKeFPwASssSGTYZnx07sJQwMHakIFgMsLcexB1eOXewE1H9P5qNddMHqbc65unr3Ap3FFC1CLwksCQH5bvt9vV4tKZBmSbkkkjVP0IJwyishOT9DCxCCVzUQOEcXpdwAEMYkfYbOacuoZHWzQOGnDsH2eKVzGn2PP3g3ZaNHnyL-9kvHMQ0Fu5TxZtA7H3d4E__YMvrdASk4OfzDlmID3gfhL-lg6jgnhZR6vA7pL_54F_XgTXmOnjodin1xupdou_60XV1V118_b1bvryvDSDtWvHNd1zvWAAfe11Q7yVkjTSsFp9CIllPmGsI74B2rQdCuM1S0lBsJPdj6Er09xt7m9Hua26rBF2ND0NGmqSgiaNNSQYSc0TeP0Js05TiXm6m6JYSCIDP1-kRN3WB7dZv9oPOdun_jDIgjYHIqJVunjB8PHxqz9kERUPvF1GExtV9MnRabVfpIvU__r_TqKHlr7YPQcsIBWP0PGwif4Q
CODEN ITUCER
CitedBy_id crossref_primary_10_1016_j_ultrasmedbio_2019_11_005
crossref_primary_10_1109_TUFFC_2016_2636129
crossref_primary_10_1115_1_4048708
crossref_primary_10_1109_TUFFC_2017_2762860
crossref_primary_10_1007_s13239_019_00448_9
crossref_primary_10_4103_JMU_JMU_164_20
crossref_primary_10_1016_j_cmpb_2022_106855
crossref_primary_10_1088_1361_6560_abd670
crossref_primary_10_4236_ojmi_2017_71004
crossref_primary_10_1088_1361_6560_ab1145
crossref_primary_10_3390_app8020286
crossref_primary_10_1016_j_ultrasmedbio_2017_12_008
crossref_primary_10_1109_TUFFC_2016_2606598
crossref_primary_10_1109_TUFFC_2023_3255791
crossref_primary_10_1002_mp_13437
crossref_primary_10_1002_mp_13558
crossref_primary_10_1109_TUFFC_2018_2856756
crossref_primary_10_1002_cpz1_264
crossref_primary_10_1016_j_jbiomech_2023_111502
crossref_primary_10_1109_TUFFC_2020_2995467
crossref_primary_10_1007_s11664_019_07049_1
crossref_primary_10_3390_app8040637
crossref_primary_10_3390_biomimetics9030135
crossref_primary_10_1007_s13239_021_00546_7
crossref_primary_10_1134_S0021894423020025
crossref_primary_10_1016_j_bprint_2022_e00192
crossref_primary_10_3390_app13010617
crossref_primary_10_1016_j_ultrasmedbio_2021_10_004
crossref_primary_10_1088_1361_6560_abda99
crossref_primary_10_1016_j_ultrasmedbio_2023_06_001
crossref_primary_10_1088_1361_6560_ab7abf
crossref_primary_10_1109_MM_2022_3195516
crossref_primary_10_1002_mp_14714
crossref_primary_10_1152_japplphysiol_00628_2024
crossref_primary_10_1007_s11548_020_02201_3
crossref_primary_10_1038_s41598_024_66777_5
crossref_primary_10_1002_adfm_202110153
crossref_primary_10_1016_j_ultrasmedbio_2022_05_023
crossref_primary_10_1016_j_ultrasmedbio_2023_09_005
crossref_primary_10_1109_TUFFC_2017_2784183
crossref_primary_10_1109_TUFFC_2021_3104342
Cites_doi 10.1109/TUFFC.2008.978
10.1038/ncpcardio0274
10.1148/radiology.134.2.7352242
10.1115/1.1537734
10.1007/978-1-4757-2696-1
10.1016/j.ultrasmedbio.2006.08.004
10.1109/TUFFC.2014.006910
10.1016/S0301-5629(02)00479-9
10.1109/TUFFC.2012.2184
10.1109/TUFFC.2011.1999
10.1002/(SICI)1522-2586(199910)10:4<533::AID-JMRI6>3.3.CO;2-Q
10.1118/1.3006948
10.1016/S0301-5629(97)00277-9
10.1109/TUFFC.2014.006597
10.1109/MM.2011.65
10.1016/j.ultras.2011.09.006
10.1016/j.ultrasmedbio.2007.10.017
10.1016/S1076-6332(96)80297-2
10.1118/1.3065031
10.1016/S0301-5629(00)00277-5
10.1016/j.ultrasmedbio.2004.06.003
10.1161/CIRCULATIONAHA.105.590018
10.1016/j.ultrasmedbio.2013.03.015
10.1016/j.ultrasmedbio.2012.12.016
10.1118/1.3462592
10.1109/TUFFC.2013.2621
10.1161/01.STR.0000206440.48756.f7
10.1016/j.ultrasmedbio.2015.06.012
10.1016/j.ultrasmedbio.2008.01.002
10.1016/j.ultrasmedbio.2011.03.004
10.1007/s00330-009-1457-8
10.1016/j.ultrasmedbio.2006.07.023
10.1016/j.artres.2012.01.004
10.1146/annurev-bioeng-071811-150112
10.1055/s-0028-1109572
10.1016/j.ultrasmedbio.2010.02.005
10.1016/j.ultrasmedbio.2010.04.017
10.1243/09544119JEIM572
10.1118/1.597991
10.1016/j.ultrasmedbio.2014.03.014
10.1016/j.ultrasmedbio.2007.04.020
10.1109/TMI.2011.2165959
10.1016/j.ultrasmedbio.2011.02.012
10.1097/01.mat.0000170629.92765.bb
10.1016/j.jbiomech.2013.09.007
10.1098/rsfs.2011.0024
10.1088/0031-9155/52/20/N02
10.1088/0967-3334/29/2/001
10.1109/TUFFC.2014.6689779
10.1016/j.ultrasmedbio.2006.05.033
10.1007/s10396-012-0400-9
10.1088/0031-9155/49/24/009
10.1002/jmri.23797
10.1146/annurev.fluid.29.1.399
10.1243/09544119JEIM599
10.1088/0031-9155/50/23/013
10.14366/usg.14063
10.1161/01.STR.31.10.2319
10.1016/j.ultrasmedbio.2014.03.009
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SP
7U5
8FD
F28
FR3
L7M
7X8
DOI 10.1109/TUFFC.2016.2591946
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList Solid State and Superconductivity Abstracts

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1525-8955
EndPage 1864
ExternalDocumentID 27429436
10_1109_TUFFC_2016_2591946
7515004
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Research Grants Council of Hong Kong
  grantid: GRF 785113M
– fundername: Hong Kong Innovation and Technology Fund
  grantid: GHP/025/13SZ
– fundername: Natural Sciences and Engineering Council of Canada
  grantid: RGPIN-2016-04042
  funderid: 10.13039/501100000038
GroupedDBID ---
-~X
.GJ
0R~
186
29I
3EH
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
UKR
VH1
ZXP
ZY4
AAYXX
CITATION
RIG
ABTAH
NPM
PKN
Z5M
7SP
7U5
8FD
F28
FR3
L7M
7X8
ID FETCH-LOGICAL-c417t-5bfbbdf460505d32af95469c798520687524f615b05b43082bbc28725c90d0e3
IEDL.DBID RIE
ISSN 0885-3010
IngestDate Fri Jul 11 11:07:53 EDT 2025
Mon Jun 30 10:22:05 EDT 2025
Wed Feb 19 02:42:03 EST 2025
Tue Jul 01 00:46:19 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Wed Aug 27 03:07:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-5bfbbdf460505d32af95469c798520687524f615b05b43082bbc28725c90d0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8604-0219
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7515004
PMID 27429436
PQID 1837112081
PQPubID 85455
PageCount 13
ParticipantIDs proquest_journals_1837112081
proquest_miscellaneous_1826728189
pubmed_primary_27429436
crossref_citationtrail_10_1109_TUFFC_2016_2591946
ieee_primary_7515004
crossref_primary_10_1109_TUFFC_2016_2591946
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Nov.
2016-11-00
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-Nov.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on ultrasonics, ferroelectrics, and frequency control
PublicationTitleAbbrev T-UFFC
PublicationTitleAlternate IEEE Trans Ultrason Ferroelectr Freq Control
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
nichols (ref1) 2012
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
References_xml – ident: ref12
  doi: 10.1109/TUFFC.2008.978
– ident: ref3
  doi: 10.1038/ncpcardio0274
– ident: ref57
  doi: 10.1148/radiology.134.2.7352242
– ident: ref18
  doi: 10.1115/1.1537734
– ident: ref54
  doi: 10.1007/978-1-4757-2696-1
– ident: ref28
  doi: 10.1016/j.ultrasmedbio.2006.08.004
– ident: ref8
  doi: 10.1109/TUFFC.2014.006910
– ident: ref25
  doi: 10.1016/S0301-5629(02)00479-9
– ident: ref49
  doi: 10.1109/TUFFC.2012.2184
– ident: ref51
  doi: 10.1109/TUFFC.2011.1999
– ident: ref43
  doi: 10.1002/(SICI)1522-2586(199910)10:4<533::AID-JMRI6>3.3.CO;2-Q
– ident: ref20
  doi: 10.1118/1.3006948
– ident: ref48
  doi: 10.1016/S0301-5629(97)00277-9
– ident: ref59
  doi: 10.1109/TUFFC.2014.006597
– ident: ref50
  doi: 10.1109/MM.2011.65
– ident: ref40
  doi: 10.1016/j.ultras.2011.09.006
– ident: ref15
  doi: 10.1016/j.ultrasmedbio.2007.10.017
– ident: ref45
  doi: 10.1016/S1076-6332(96)80297-2
– ident: ref56
  doi: 10.1118/1.3065031
– ident: ref17
  doi: 10.1016/S0301-5629(00)00277-5
– ident: ref31
  doi: 10.1016/j.ultrasmedbio.2004.06.003
– ident: ref4
  doi: 10.1161/CIRCULATIONAHA.105.590018
– ident: ref32
  doi: 10.1016/j.ultrasmedbio.2013.03.015
– ident: ref30
  doi: 10.1016/j.ultrasmedbio.2012.12.016
– ident: ref21
  doi: 10.1118/1.3462592
– ident: ref13
  doi: 10.1109/TUFFC.2013.2621
– ident: ref44
  doi: 10.1161/01.STR.0000206440.48756.f7
– ident: ref36
  doi: 10.1016/j.ultrasmedbio.2015.06.012
– ident: ref26
  doi: 10.1016/j.ultrasmedbio.2008.01.002
– ident: ref14
  doi: 10.1016/j.ultrasmedbio.2011.03.004
– ident: ref29
  doi: 10.1007/s00330-009-1457-8
– ident: ref11
  doi: 10.1016/j.ultrasmedbio.2006.07.023
– ident: ref58
  doi: 10.1016/j.artres.2012.01.004
– ident: ref42
  doi: 10.1146/annurev-bioeng-071811-150112
– ident: ref9
  doi: 10.1055/s-0028-1109572
– ident: ref33
  doi: 10.1016/j.ultrasmedbio.2010.02.005
– ident: ref27
  doi: 10.1016/j.ultrasmedbio.2010.04.017
– year: 2012
  ident: ref1
  publication-title: McDonald s Blood Flow in Arteries Theoretic Experimental and Clinical Principles
– ident: ref6
  doi: 10.1243/09544119JEIM572
– ident: ref16
  doi: 10.1118/1.597991
– ident: ref10
  doi: 10.1016/j.ultrasmedbio.2014.03.014
– ident: ref46
  doi: 10.1016/j.ultrasmedbio.2007.04.020
– ident: ref22
  doi: 10.1109/TMI.2011.2165959
– ident: ref39
  doi: 10.1016/j.ultrasmedbio.2011.02.012
– ident: ref38
  doi: 10.1097/01.mat.0000170629.92765.bb
– ident: ref34
  doi: 10.1016/j.jbiomech.2013.09.007
– ident: ref5
  doi: 10.1098/rsfs.2011.0024
– ident: ref47
  doi: 10.1088/0031-9155/52/20/N02
– ident: ref19
  doi: 10.1088/0967-3334/29/2/001
– ident: ref41
  doi: 10.1109/TUFFC.2014.6689779
– ident: ref23
  doi: 10.1016/j.ultrasmedbio.2006.05.033
– ident: ref53
  doi: 10.1007/s10396-012-0400-9
– ident: ref37
  doi: 10.1088/0031-9155/49/24/009
– ident: ref60
  doi: 10.1002/jmri.23797
– ident: ref24
  doi: 10.1146/annurev.fluid.29.1.399
– ident: ref52
  doi: 10.1243/09544119JEIM599
– ident: ref55
  doi: 10.1088/0031-9155/50/23/013
– ident: ref35
  doi: 10.14366/usg.14063
– ident: ref2
  doi: 10.1161/01.STR.31.10.2319
– ident: ref7
  doi: 10.1016/j.ultrasmedbio.2014.03.009
SSID ssj0014492
Score 2.3897388
Snippet As a major application domain of vascular ultrasound, the carotid artery has long been the subject of anthropomorphic phantom design. It is nevertheless not...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1852
SubjectTerms Bifurcation
Bifurcations
Blood flow
Blood flow dynamics
Blood vessels
CAD
Carotid arteries
carotid bifurcation phantom
Computer aided design
Dynamics
Fluid-structure interaction
Gelatin
Geometry
Imaging
Imaging phantoms
integrative imaging
Investment casting
Phantoms
Plane waves
Polyvinyl alcohol
Pulse propagation
Solid modeling
Three dimensional printing
Ultrasonic imaging
Ultrasonic scanners
Veins & arteries
vessel wall motion
Wave propagation
Wave velocity
Title Walled Carotid Bifurcation Phantoms for Imaging Investigations of Vessel Wall Motion and Blood Flow Dynamics
URI https://ieeexplore.ieee.org/document/7515004
https://www.ncbi.nlm.nih.gov/pubmed/27429436
https://www.proquest.com/docview/1837112081
https://www.proquest.com/docview/1826728189
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VSkhwoNDy2FKQkbhBtt7ETuIjFKKCtIjDFvUW-RVRsZugbiJEf31nnAcVAsQlihTHdjTj-JuHvwF4qXyuFW6LEUIJEwltRaS4lVEIusVuoRNNfsjlp_T0THw8l-c78Ho6C-O9D8lnfk63IZbvGtuRq-w4w803kH_eQsOtP6s1RQyECAWQcdHQQAs-HpDh6nh1VhQnlMWVzhHso9VOdYsoRKlEYGb-tR-FAit_x5phzyn2YDnOtk81-TbvWjO3V78ROf7v59yHewP4ZG96bXkAO77eh7s3KAn34XZICbXbA1iTj907Rikh7YVjby-q7rJ38LHPX6n28GbLEPKyD5tQ6YjdoOxAVWZNxb4QMfmaUUdsGcoFMV1jT5Qsz4p184O9-1nrDQ73EFbF-9XJaTTUZoisWGRtJE1ljKsoqsqlS2JdKYmWts1ULmOeohUUiwrRkuHSCKLEMcaicRZLq7jjPnkEu3VT-yfAtPEmlQnHC0omz3VstRKWJy7XPnNqBotRQKUdeMupfMa6DPYLV2WQb0nyLQf5zuDV9M73nrXjn60PSDhTy0EuMzga9aAcFva2xD9ghhAVgdQMXkyPcUlSnEXXvumoTZxmxLKFc3_c68_U96h2h38e8yncoZn1hx2PYLe97PwzRD2teR7U_RpCUvkw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1VrRBwKNBSWChgJG6QrZPYSXyEQrSFbsVhi3qLbMcRFbtZ1E2E4Ncz43xQIUBcokhxbEczzrzxjN8AvFAu0wrNYoBQwgRCWxEobmXgg25RGepY0z7k_CyZnYv3F_JiC16NZ2Gccz75zE3p1sfyy7VtaavsKEXj68k_d9Duy7A7rTXGDITwJZBx2dBQIR-OyHB1tDjP82PK40qmCPfRb6fKRRSkVMJzM_-ySL7Eyt_Rprc6-R2YD_Ptkk2-TNvGTO2P36gc__eD7sJuDz_Z605f7sGWq_fg9jVSwj244ZNC7WYflrTL7kpGSSHNZcneXFbtVbfFxz5-purDqw1D0MtOVr7WEbtG2oHKzNYV-0TU5EtGHbG5LxjEdI09Ubo8y5frb-zt91qvcLj7sMjfLY5nQV-dIbAiTJtAmsqYsqK4KpdlHOlKSfS1baoyGfEE_aBIVIiXDJdGECmOMRbds0haxUvu4gPYrte1ewhMG2cSGXO8oGSyTEdWK2F5XGbapaWaQDgIqLA9czkV0FgW3oPhqvDyLUi-RS_fCbwc3_na8Xb8s_U-CWds2ctlAoeDHhT90t4U-A9MEaQilJrA8_ExLkqKtOjarVtqEyUp8Wzh3B90-jP2Pajdoz-P-Qxuzhbz0-L05OzDY7hFs-yOPh7CdnPVuieIgRrz1Kv-T2g2_Hk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Walled+Carotid+Bifurcation+Phantoms+for+Imaging+Investigations+of+Vessel+Wall+Motion+and+Blood+Flow+Dynamics&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Chee%2C+Adrian+J.+Y.&rft.au=Chung+Kit+Ho&rft.au=Yiu%2C+Billy+Y.+S.&rft.au=Yu%2C+Alfred+C.+H.&rft.date=2016-11-01&rft.pub=IEEE&rft.issn=0885-3010&rft.volume=63&rft.issue=11&rft.spage=1852&rft.epage=1864&rft_id=info:doi/10.1109%2FTUFFC.2016.2591946&rft_id=info%3Apmid%2F27429436&rft.externalDocID=7515004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon