LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p

Abstract Background and aims Long non-coding RNA (lncRNA) MEG3 has proven to be an important regulator involved in the pathogenesis and development of various human diseases. However, the functional involvement of MEG3 in postmenopausal osteoporosis (PMOP) and its mechanism is still unclear. Methods...

Full description

Saved in:
Bibliographic Details
Published inBiomedicine & pharmacotherapy Vol. 89; pp. 1178 - 1186
Main Authors Wang, Qiujun, Li, Ying, Zhang, Yuanxia, Ma, Lan, Lin, Lin, Meng, Jia, Jiang, Lihong, Wang, Liping, Zhou, Ping, Zhang, Yina
Format Journal Article
LanguageEnglish
Published France Elsevier Masson SAS 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Background and aims Long non-coding RNA (lncRNA) MEG3 has proven to be an important regulator involved in the pathogenesis and development of various human diseases. However, the functional involvement of MEG3 in postmenopausal osteoporosis (PMOP) and its mechanism is still unclear. Methods Bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured from mouse pathologic models and patients with PMOP, respectively. The expression of MEG3 and miR-133a-3p in BMSCs was detected using qRT-PCR. The recombinant expression vector was constructed and transfected into BMSCs to regulate the endogenous expression of MEG3 and miR-133a-3p. The mineralized nodules formation, alkaline phosphatase (ALP) activity and Runx2, OCN, OPN expressions were used as specific markers for the differentiation of osteoblasts. Results The expressions of MEG3 and miR-133a-3p in BMSCs from PMOP were increased, and there was a positive correlation between MEG3 and miR-133a-3p expression in BMSCs. In the differentiation process from BMSCs to osteoblasts, the expressions of MEG3 and miR-133a-3p were markedly decreased, and MEG3 overexpression reversed the osteogenic induction-mediated downregulation of miR-133a-3p, which was accompanied by significant decline in SLC39A1 expression. Furthermore, miR-133a-3p silencing or upregulation eliminated the effects of MEG3 on the osteogenic differentiation of BMSCs through direct binding. Conclusions The research indicated that MEG3 regulated the expression of miR-133a-3p, and inhibited the osteogenic differentiation of BMSCs induced PMOP.
AbstractList Long non-coding RNA (lncRNA) MEG3 has proven to be an important regulator involved in the pathogenesis and development of various human diseases. However, the functional involvement of MEG3 in postmenopausal osteoporosis (PMOP) and its mechanism is still unclear. Bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured from mouse pathologic models and patients with PMOP, respectively. The expression of MEG3 and miR-133a-3p in BMSCs was detected using qRT-PCR. The recombinant expression vector was constructed and transfected into BMSCs to regulate the endogenous expression of MEG3 and miR-133a-3p. The mineralized nodules formation, alkaline phosphatase (ALP) activity and Runx2, OCN, OPN expressions were used as specific markers for the differentiation of osteoblasts. The expressions of MEG3 and miR-133a-3p in BMSCs from PMOP were increased, and there was a positive correlation between MEG3 and miR-133a-3p expression in BMSCs. In the differentiation process from BMSCs to osteoblasts, the expressions of MEG3 and miR-133a-3p were markedly decreased, and MEG3 overexpression reversed the osteogenic induction-mediated downregulation of miR-133a-3p, which was accompanied by significant decline in SLC39A1 expression. Furthermore, miR-133a-3p silencing or upregulation eliminated the effects of MEG3 on the osteogenic differentiation of BMSCs through direct binding. The research indicated that MEG3 regulated the expression of miR-133a-3p, and inhibited the osteogenic differentiation of BMSCs induced PMOP.
BACKGROUND AND AIMSLong non-coding RNA (lncRNA) MEG3 has proven to be an important regulator involved in the pathogenesis and development of various human diseases. However, the functional involvement of MEG3 in postmenopausal osteoporosis (PMOP) and its mechanism is still unclear.METHODSBone marrow mesenchymal stem cells (BMSCs) were isolated and cultured from mouse pathologic models and patients with PMOP, respectively. The expression of MEG3 and miR-133a-3p in BMSCs was detected using qRT-PCR. The recombinant expression vector was constructed and transfected into BMSCs to regulate the endogenous expression of MEG3 and miR-133a-3p. The mineralized nodules formation, alkaline phosphatase (ALP) activity and Runx2, OCN, OPN expressions were used as specific markers for the differentiation of osteoblasts.RESULTSThe expressions of MEG3 and miR-133a-3p in BMSCs from PMOP were increased, and there was a positive correlation between MEG3 and miR-133a-3p expression in BMSCs. In the differentiation process from BMSCs to osteoblasts, the expressions of MEG3 and miR-133a-3p were markedly decreased, and MEG3 overexpression reversed the osteogenic induction-mediated downregulation of miR-133a-3p, which was accompanied by significant decline in SLC39A1 expression. Furthermore, miR-133a-3p silencing or upregulation eliminated the effects of MEG3 on the osteogenic differentiation of BMSCs through direct binding.CONCLUSIONSThe research indicated that MEG3 regulated the expression of miR-133a-3p, and inhibited the osteogenic differentiation of BMSCs induced PMOP.
Abstract Background and aims Long non-coding RNA (lncRNA) MEG3 has proven to be an important regulator involved in the pathogenesis and development of various human diseases. However, the functional involvement of MEG3 in postmenopausal osteoporosis (PMOP) and its mechanism is still unclear. Methods Bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured from mouse pathologic models and patients with PMOP, respectively. The expression of MEG3 and miR-133a-3p in BMSCs was detected using qRT-PCR. The recombinant expression vector was constructed and transfected into BMSCs to regulate the endogenous expression of MEG3 and miR-133a-3p. The mineralized nodules formation, alkaline phosphatase (ALP) activity and Runx2, OCN, OPN expressions were used as specific markers for the differentiation of osteoblasts. Results The expressions of MEG3 and miR-133a-3p in BMSCs from PMOP were increased, and there was a positive correlation between MEG3 and miR-133a-3p expression in BMSCs. In the differentiation process from BMSCs to osteoblasts, the expressions of MEG3 and miR-133a-3p were markedly decreased, and MEG3 overexpression reversed the osteogenic induction-mediated downregulation of miR-133a-3p, which was accompanied by significant decline in SLC39A1 expression. Furthermore, miR-133a-3p silencing or upregulation eliminated the effects of MEG3 on the osteogenic differentiation of BMSCs through direct binding. Conclusions The research indicated that MEG3 regulated the expression of miR-133a-3p, and inhibited the osteogenic differentiation of BMSCs induced PMOP.
Author Ma, Lan
Zhou, Ping
Li, Ying
Jiang, Lihong
Wang, Liping
Zhang, Yina
Lin, Lin
Meng, Jia
Wang, Qiujun
Zhang, Yuanxia
Author_xml – sequence: 1
  fullname: Wang, Qiujun
– sequence: 2
  fullname: Li, Ying
– sequence: 3
  fullname: Zhang, Yuanxia
– sequence: 4
  fullname: Ma, Lan
– sequence: 5
  fullname: Lin, Lin
– sequence: 6
  fullname: Meng, Jia
– sequence: 7
  fullname: Jiang, Lihong
– sequence: 8
  fullname: Wang, Liping
– sequence: 9
  fullname: Zhou, Ping
– sequence: 10
  fullname: Zhang, Yina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28320084$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAUtFAR3Rb-AUI-ckl4tvN5Qaqq0iItIBU4W7bzsuslsYOdgPZf8JPrsIUDF04-eGbevJl3Qc6cd0jISwY5A1a9OeTa-mmvcg6szoHn0MITsmFtCVkFUJ-RDdSlyITg_JxcxHgAgLISzTNyzhvBAZpiQ35tnbn_eEU_3NwKat3eajtjR32c0e_QWUM72_cY0M1WzdY76nuqkxM6qhD8TzpiRGf2x1ENNJFGanAYIu2DH-mUZEZ0flJLTN-_RScffLSR6iOdVdjhbN2OjvY-Y0KoTEzPydNeDRFfPL6X5Ou7my_Xd9n20-3766ttZgpWz1nZFkazRpUcoUSOnKMoet1UoBV2RVtUjHGlAXSDrNWsVm1bFIw3hvdcV7W4JK9PulPw3xeMsxxtXL0rh36JkjV1W1WsYSxBixPUJOsxYC-nYNP6R8lArl3Igzx1IdcuJHCZuki0V48TFj1i95f0J_wEeHsCYNrzh8Ugo7EpTOxsQDPLztv_TfhXwAw2daaGb3jEePBLcClDyWRMBPl5vYf1HFgleF1AIx4AlG-0fw
CitedBy_id crossref_primary_10_1007_s00774_021_01205_6
crossref_primary_10_1016_j_bbrc_2018_09_033
crossref_primary_10_1155_2018_8273648
crossref_primary_10_1615_CritRevEukaryotGeneExpr_2023050337
crossref_primary_10_3390_biomedicines8100387
crossref_primary_10_1007_s00424_020_02372_7
crossref_primary_10_3389_fcell_2020_619301
crossref_primary_10_7717_peerj_8909
crossref_primary_10_3892_etm_2021_10993
crossref_primary_10_4252_wjsc_v11_i3_167
crossref_primary_10_1007_s11033_024_09652_w
crossref_primary_10_1038_s41420_023_01422_0
crossref_primary_10_3892_ijmm_2018_3575
crossref_primary_10_2174_1574888X15666200501235735
crossref_primary_10_1002_jcp_28060
crossref_primary_10_1155_2021_7890674
crossref_primary_10_1093_jb_mvaa011
crossref_primary_10_1166_jbt_2022_3201
crossref_primary_10_1302_2046_3758_82_BJR_2018_0074_R1
crossref_primary_10_1186_s13287_019_1309_7
crossref_primary_10_1007_s12015_023_10562_w
crossref_primary_10_1002_jcp_27248
crossref_primary_10_1016_j_cellsig_2022_110353
crossref_primary_10_1302_2046_3758_122_BJR_2022_0206_R1
crossref_primary_10_1007_s13577_023_00888_5
crossref_primary_10_1158_1078_0432_CCR_18_0472
crossref_primary_10_1186_s40659_020_00309_z
crossref_primary_10_1016_j_ncrna_2022_11_003
crossref_primary_10_3892_etm_2021_10505
crossref_primary_10_1186_s13018_024_04889_4
crossref_primary_10_1016_j_biopha_2018_11_089
crossref_primary_10_1016_j_prp_2022_153985
crossref_primary_10_18632_aging_102264
crossref_primary_10_1186_s13018_019_1430_4
crossref_primary_10_1097_MD_0000000000031859
crossref_primary_10_1016_j_heliyon_2023_e23675
crossref_primary_10_1002_jcp_27815
crossref_primary_10_1002_jgm_3372
crossref_primary_10_1186_s13287_018_0935_9
crossref_primary_10_1002_wrna_1695
crossref_primary_10_1128_MCB_00362_19
crossref_primary_10_1002_jcb_26459
crossref_primary_10_1007_s12038_020_0024_y
crossref_primary_10_1155_2018_2342860
crossref_primary_10_1016_j_gendis_2023_02_008
crossref_primary_10_1186_s13578_022_00782_x
crossref_primary_10_1016_j_biopha_2019_108912
crossref_primary_10_3390_jcm11020395
crossref_primary_10_1016_j_bone_2019_02_013
crossref_primary_10_1186_s13578_018_0208_4
crossref_primary_10_3389_fendo_2018_00587
crossref_primary_10_3389_fendo_2022_846154
crossref_primary_10_1186_s13018_023_04203_8
crossref_primary_10_1007_s11626_020_00530_w
crossref_primary_10_2174_1381612826666200707130246
crossref_primary_10_1111_jcmm_14645
crossref_primary_10_15212_bioi_2021_0025
crossref_primary_10_3389_fgene_2020_584118
crossref_primary_10_1186_s13018_021_02757_z
crossref_primary_10_3892_mmr_2021_12350
crossref_primary_10_3390_ph14111133
crossref_primary_10_18632_aging_203466
crossref_primary_10_3389_fcell_2021_711005
crossref_primary_10_1002_jgm_3363
crossref_primary_10_1038_s41417_020_00264_7
crossref_primary_10_1007_s11033_021_07013_5
crossref_primary_10_1186_s10020_020_00219_6
crossref_primary_10_1089_dna_2021_0206
crossref_primary_10_1002_jcla_23916
crossref_primary_10_1007_s11033_023_08466_6
crossref_primary_10_1016_j_prp_2024_155186
crossref_primary_10_1155_2023_3563663
crossref_primary_10_1007_s10495_022_01804_2
crossref_primary_10_18632_aging_203630
crossref_primary_10_1038_s41413_019_0048_9
crossref_primary_10_1016_j_bone_2020_115617
crossref_primary_10_1177_20417314231175364
crossref_primary_10_3389_fcell_2022_903278
crossref_primary_10_3389_fgene_2023_1153585
crossref_primary_10_3892_etm_2018_6681
crossref_primary_10_1016_j_mce_2019_110534
crossref_primary_10_1155_2017_6374504
crossref_primary_10_3892_etm_2019_8278
crossref_primary_10_1002_jcp_26424
crossref_primary_10_1007_s00774_021_01249_8
crossref_primary_10_1039_D3AN01531A
crossref_primary_10_1016_j_prp_2023_155036
crossref_primary_10_2147_CIA_S235197
crossref_primary_10_3390_biomedicines9040443
crossref_primary_10_1007_s12015_018_9801_5
crossref_primary_10_2147_CIA_S271689
crossref_primary_10_1007_s11033_022_07136_3
crossref_primary_10_1166_jbt_2023_3241
crossref_primary_10_1111_jcmm_13892
crossref_primary_10_1016_j_slast_2024_100122
crossref_primary_10_1186_s12891_020_03458_0
crossref_primary_10_1016_j_mce_2021_111490
crossref_primary_10_1002_biof_1715
crossref_primary_10_1128_mcb_00541_20
crossref_primary_10_1016_j_diff_2020_10_002
crossref_primary_10_1186_s13287_021_02278_w
crossref_primary_10_1002_jbm_b_34620
crossref_primary_10_1016_j_ijbiomac_2023_127824
crossref_primary_10_1021_acsami_3c00898
crossref_primary_10_1080_0886022X_2020_1758722
crossref_primary_10_1186_s12881_020_0948_y
crossref_primary_10_3390_ijms241612770
crossref_primary_10_3892_ijmm_2020_4455
crossref_primary_10_1038_s12276_020_0475_0
crossref_primary_10_1152_ajpcell_00364_2021
crossref_primary_10_1007_s00018_019_03162_w
crossref_primary_10_1016_j_vesic_2024_100042
crossref_primary_10_1038_s41368_020_0077_7
crossref_primary_10_1111_jcmm_16096
crossref_primary_10_3892_etm_2018_7033
crossref_primary_10_1002_jgm_3216
crossref_primary_10_3389_fcell_2021_807419
crossref_primary_10_1097_MD_0000000000023965
crossref_primary_10_1111_cid_12553
crossref_primary_10_1007_s00439_019_01969_y
crossref_primary_10_3389_fgene_2021_776984
crossref_primary_10_1002_agm2_12030
crossref_primary_10_1042_BST20200005
crossref_primary_10_3390_ijms21144886
crossref_primary_10_1038_s41419_019_2148_2
crossref_primary_10_1016_j_bbrc_2018_07_160
crossref_primary_10_1111_jre_12910
crossref_primary_10_1016_j_acthis_2023_151998
crossref_primary_10_18632_aging_203267
crossref_primary_10_3389_fbioe_2020_594247
crossref_primary_10_3389_fcell_2021_646032
crossref_primary_10_4274_tod_galenos_2022_80148
crossref_primary_10_1007_s10528_023_10564_w
crossref_primary_10_3390_cells12212559
crossref_primary_10_1002_jcb_26907
crossref_primary_10_1038_s41598_023_29546_4
crossref_primary_10_1155_2021_8833527
crossref_primary_10_1155_2021_5512370
crossref_primary_10_3892_mmr_2021_12428
crossref_primary_10_3892_etm_2018_6921
crossref_primary_10_1016_j_archoralbio_2020_104838
crossref_primary_10_1007_s10495_021_01685_x
crossref_primary_10_3390_ijms22105348
crossref_primary_10_1002_mnfr_202200451
crossref_primary_10_3389_fimmu_2022_1005665
crossref_primary_10_3390_ijms21155534
crossref_primary_10_1080_15384101_2020_1863043
crossref_primary_10_1166_jbt_2022_3030
crossref_primary_10_1016_j_biopha_2021_112050
crossref_primary_10_1166_jbt_2022_2989
crossref_primary_10_3892_br_2020_1305
crossref_primary_10_1002_jcp_26589
crossref_primary_10_1089_dna_2020_5391
crossref_primary_10_2174_1574888X15666191227113742
crossref_primary_10_1016_j_lfs_2018_07_024
Cites_doi 10.1159/000445621
10.1007/s11010-014-2021-7
10.1186/1471-2407-14-495
10.1073/pnas.0804438105
10.1002/jbmr.2909
10.1038/cr.2012.164
10.1186/s12906-015-0777-2
10.1074/jbc.M116.750950
10.1080/14656566.2016.1176147
10.1056/NEJMcp1513724
10.12659/MSM.894323
10.1007/s00198-013-2494-3
10.1038/nrdp.2016.69
10.1002/stem.1989
10.1016/j.eururo.2011.01.044
10.1371/journal.pone.0034641
10.1002/1097-4644(20001215)79:4<557::AID-JCB40>3.0.CO;2-H
10.1159/000443074
10.3109/10409238.2012.738643
10.1902/jop.2002.73.3.298
ContentType Journal Article
Copyright Elsevier Masson SAS
2017 Elsevier Masson SAS
Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Copyright_xml – notice: Elsevier Masson SAS
– notice: 2017 Elsevier Masson SAS
– notice: Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.biopha.2017.02.090
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1950-6007
EndPage 1186
ExternalDocumentID 10_1016_j_biopha_2017_02_090
28320084
S0753332216327408
1_s2_0_S0753332216327408
Genre Journal Article
GroupedDBID -
02
0R
0SF
1
1-
1B1
1P
1RT
1~.
1~5
23N
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P
9JM
AABNK
AACTN
AAEDT
AAFWJ
AAIAV
AAIKJ
AAKOC
AALMO
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
ABBQC
ABFLS
ABFNM
ABLVK
ABMAC
ABMZM
ABPIF
ABPTK
ABXDB
ABYKQ
ABZDS
ACDAQ
ACIUM
ACRLP
ADALY
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEVXI
AFCTW
AFKWA
AFPKN
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AJUYK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FO
G-
G-2
G-Q
GBLVA
GJ
GROUPED_DOAJ
HMT
HVGLF
HZ
IHE
IPNFZ
J1W
K
KOM
LCYCR
M
M34
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OD
OGGZJ
OK1
OO0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEM
SES
SEW
SPT
SSH
SSP
SSZ
T5K
VH1
WUQ
Z5R
---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1P~
8P~
AAEDW
ADMUD
AXJTR
EFLBG
FYGXN
HZ~
OD~
~02
~G-
AAXKI
ADVLN
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c417t-594cb18a52e05e2e22e34fb860baed4946112ab00b8e19b17a9944128c2f2b673
IEDL.DBID .~1
ISSN 0753-3322
IngestDate Fri Aug 16 09:18:37 EDT 2024
Thu Sep 26 18:24:18 EDT 2024
Sat Sep 28 08:50:35 EDT 2024
Fri Feb 23 02:40:07 EST 2024
Thu Aug 18 17:14:15 EDT 2022
IsPeerReviewed true
IsScholarly true
Keywords miR-133a-3p
LncRNA MEG3
Bone marrow mesenchymal stem cells (BMSCs)
Osteogenic differentiation
Postmenopausal osteoporosis (PMOP)
Language English
License Copyright © 2017 Elsevier Masson SAS. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-594cb18a52e05e2e22e34fb860baed4946112ab00b8e19b17a9944128c2f2b673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28320084
PQID 1879661811
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1879661811
crossref_primary_10_1016_j_biopha_2017_02_090
pubmed_primary_28320084
elsevier_sciencedirect_doi_10_1016_j_biopha_2017_02_090
elsevier_clinicalkeyesjournals_1_s2_0_S0753332216327408
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle Biomedicine & pharmacotherapy
PublicationTitleAlternate Biomed Pharmacother
PublicationYear 2017
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References You, Pan, Chen, Gu, Chen (bib0045) 2016; 39
Zhang, Zhou, Huang, Liu, Fukuda, Ma, Lu, Bai, Watabe, Mo (bib0100) 2012; 23
Liao, Wang, Li, Jiang (bib0080) 2016; 8
Li, Hassan, Volinia, van Wijnen, Stein, Croce, Lian, Stein (bib0085) 2008; 105
Christenson, Jiang, Kagan, Schnatz (bib0020) 2012; 64
Lehner, Kunz, Saehr, Fellenberg (bib0060) 2014; 14
Hao, Li, Tian, Wu (bib0095) 2016; 38
Wang, Li, Moore, Peng, Fang, Lappe, Recker, Xiao (bib0120) 2012; 7
Pilgram, Hildebolt, Dotson, Cohen, Hauser, Kardaris, Civitelli (bib0025) 2002; 73
Lindtner, Tiaden, Genelin, Ebner, Manzl, Klawitter, Sitte, von Rechenberg, Blauth, Richards (bib0115) 2014; 25
Fan, Yang, Meng, Lin, Wei, Fan, Hu, Liu, Chen, Zhang (bib0035) 2014; 392
Eastell, O'Neill, Hofbauer, Langdahl, Reid, Gold, Cummings (bib0105) 2016; 2
Catto, Alcaraz, Bjartell, De Vere White, Evans, Fussel, Hamdy, Kallioniemi, Mengual, Schlomm (bib0075) 2011; 59
Rodriguez, Montecinos, Rios, Reyes, Martinez (bib0030) 2000; 79
Finnegan, Pasquinelli (bib0070) 2013; 48
Lv, Sun, Yu, Zhang (bib0055) 2016
Gambacciani, Levancini (bib0015) 2014; 13
Shuai, Shen, Zhu, Zhou (bib0110) 2015; 15
Kalyanaraman, Ramdani, Joshua, Schall, Boss, Cory, Sah, Casteel, Pilz (bib0040) 2017; 32
Gennari, Rotatori, Bianciardi, Nuti, Merlotti (bib0005) 2016; 17
Terashima, Tange, Ishimura, Suzuki (bib0050) 2016; 292
Zhuang, Ge, Yang, Huang, Zhuang, Chen, Zhang, Fu, Qu, Li (bib0065) 2015; 33
Lv, Sun, Zhang (bib0090) 2015; 21
Black, Rosen (bib0010) 2016; 374
Wang (10.1016/j.biopha.2017.02.090_bib0120) 2012; 7
Catto (10.1016/j.biopha.2017.02.090_bib0075) 2011; 59
Lv (10.1016/j.biopha.2017.02.090_bib0090) 2015; 21
Lv (10.1016/j.biopha.2017.02.090_bib0055) 2016
Fan (10.1016/j.biopha.2017.02.090_bib0035) 2014; 392
Zhang (10.1016/j.biopha.2017.02.090_bib0100) 2012; 23
Black (10.1016/j.biopha.2017.02.090_bib0010) 2016; 374
Pilgram (10.1016/j.biopha.2017.02.090_bib0025) 2002; 73
Zhuang (10.1016/j.biopha.2017.02.090_bib0065) 2015; 33
You (10.1016/j.biopha.2017.02.090_bib0045) 2016; 39
Terashima (10.1016/j.biopha.2017.02.090_bib0050) 2016; 292
Liao (10.1016/j.biopha.2017.02.090_bib0080) 2016; 8
Eastell (10.1016/j.biopha.2017.02.090_bib0105) 2016; 2
Gennari (10.1016/j.biopha.2017.02.090_bib0005) 2016; 17
Gambacciani (10.1016/j.biopha.2017.02.090_bib0015) 2014; 13
Shuai (10.1016/j.biopha.2017.02.090_bib0110) 2015; 15
Kalyanaraman (10.1016/j.biopha.2017.02.090_bib0040) 2017; 32
Lehner (10.1016/j.biopha.2017.02.090_bib0060) 2014; 14
Rodriguez (10.1016/j.biopha.2017.02.090_bib0030) 2000; 79
Hao (10.1016/j.biopha.2017.02.090_bib0095) 2016; 38
Finnegan (10.1016/j.biopha.2017.02.090_bib0070) 2013; 48
Li (10.1016/j.biopha.2017.02.090_bib0085) 2008; 105
Christenson (10.1016/j.biopha.2017.02.090_bib0020) 2012; 64
Lindtner (10.1016/j.biopha.2017.02.090_bib0115) 2014; 25
References_xml – volume: 79
  start-page: 557
  year: 2000
  end-page: 565
  ident: bib0030
  article-title: Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation
  publication-title: J. Cell. Biochem.
  contributor:
    fullname: Martinez
– volume: 15
  start-page: 250
  year: 2015
  ident: bib0110
  article-title: Effect of Qing’e formula on the in vitro differentiation of bone marrow-derived mesenchymal stem cells from proximal femurs of postmenopausal osteoporotic mice
  publication-title: BMC Complement. Altern. Med.
  contributor:
    fullname: Zhou
– volume: 59
  start-page: 671
  year: 2011
  end-page: 681
  ident: bib0075
  article-title: MicroRNA in prostate, bladder, and kidney cancer: a systematic review
  publication-title: Eur. Urol.
  contributor:
    fullname: Schlomm
– volume: 73
  start-page: 298
  year: 2002
  end-page: 301
  ident: bib0025
  article-title: Relationships between clinical attachment level and spine and hip bone mineral density: data from healthy postmenopausal women
  publication-title: J. Periodontol.
  contributor:
    fullname: Civitelli
– volume: 25
  start-page: 1151
  year: 2014
  end-page: 1161
  ident: bib0115
  article-title: Osteoanabolic effect of alendronate and zoledronate on bone marrow stromal cells (BMSCs) isolated from aged female osteoporotic patients and its implications for their mode of action in the treatment of age-related bone loss
  publication-title: Osteoporos. Int.
  contributor:
    fullname: Richards
– start-page: 1
  year: 2016
  end-page: 9
  ident: bib0055
  article-title: The long non-coding RNA maternally expressed gene 3 activates p53 and is downregulated in esophageal squamous cell cancer
  publication-title: Tumour Biol.
  contributor:
    fullname: Zhang
– volume: 105
  start-page: 13906
  year: 2008
  end-page: 13911
  ident: bib0085
  article-title: A microRNA signature for a BMP2-induced osteoblast lineage commitment program
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  contributor:
    fullname: Stein
– volume: 374
  start-page: 254
  year: 2016
  end-page: 262
  ident: bib0010
  article-title: Clinical practice. Postmenopausal osteoporosis
  publication-title: N. Engl. J. Med.
  contributor:
    fullname: Rosen
– volume: 64
  start-page: 181
  year: 2012
  end-page: 194
  ident: bib0020
  article-title: Osteoporosis management in post-menopausal women
  publication-title: Minerva Ginecol.
  contributor:
    fullname: Schnatz
– volume: 7
  start-page: e34641
  year: 2012
  ident: bib0120
  article-title: MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis
  publication-title: PLoS One
  contributor:
    fullname: Xiao
– volume: 32
  year: 2017
  ident: bib0040
  article-title: A novel, direct no donor regulates osteoblast and osteoclast functions and increases bone mass in ovariectomized mice
  publication-title: J. Bone Miner. Res.
  contributor:
    fullname: Pilz
– volume: 14
  start-page: 495
  year: 2014
  ident: bib0060
  article-title: Epigenetic silencing of genes and microRNAs within the imprinted Dlk1-Dio3 region at human chromosome 14.32 in giant cell tumor of bone
  publication-title: BMC Cancer
  contributor:
    fullname: Fellenberg
– volume: 21
  start-page: 1527
  year: 2015
  end-page: 1534
  ident: bib0090
  article-title: MiR-133 is involved in estrogen deficiency-induced osteoporosis through modulating osteogenic differentiation of mesenchymal stem cells
  publication-title: Med. Sci. Monit.
  contributor:
    fullname: Zhang
– volume: 38
  start-page: 1267
  year: 2016
  end-page: 1287
  ident: bib0095
  article-title: Changes in the MicroRNA profile of the mandible of ovariectomized mice
  publication-title: Cell. Physiol. Biochem.
  contributor:
    fullname: Wu
– volume: 392
  start-page: 85
  year: 2014
  end-page: 93
  ident: bib0035
  article-title: Estrogen improves the proliferation and differentiation of hBMSCs derived from postmenopausal osteoporosis through notch signaling pathway
  publication-title: Mol. Cell. Biochem.
  contributor:
    fullname: Zhang
– volume: 13
  start-page: 213
  year: 2014
  end-page: 220
  ident: bib0015
  article-title: Hormone replacement therapy and the prevention of postmenopausal osteoporosis
  publication-title: Prz. Menopauzalny
  contributor:
    fullname: Levancini
– volume: 33
  start-page: 1985
  year: 2015
  end-page: 1997
  ident: bib0065
  article-title: Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription
  publication-title: Stem Cells (Dayton, Ohio)
  contributor:
    fullname: Li
– volume: 292
  start-page: 82
  year: 2016
  end-page: 99
  ident: bib0050
  article-title: MEG3 long noncoding RNA contributes to the epigenetic regulation of epithelial-mesenchymal transition in lung cancer cell lines
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Suzuki
– volume: 39
  start-page: 253
  year: 2016
  end-page: 265
  ident: bib0045
  article-title: MiR-27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis
  publication-title: Cell. Physiol. Biochem.
  contributor:
    fullname: Chen
– volume: 48
  start-page: 51
  year: 2013
  end-page: 68
  ident: bib0070
  article-title: MicroRNA biogenesis: regulating the regulators
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  contributor:
    fullname: Pasquinelli
– volume: 2
  start-page: 16069
  year: 2016
  ident: bib0105
  article-title: Postmenopausal osteoporosis
  publication-title: Nat. Rev. Dis. Primers
  contributor:
    fullname: Cummings
– volume: 23
  start-page: 340
  year: 2012
  ident: bib0100
  article-title: The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage
  publication-title: Cell Res.
  contributor:
    fullname: Mo
– volume: 17
  start-page: 1141
  year: 2016
  end-page: 1152
  ident: bib0005
  article-title: Treatment needs and current options for postmenopausal osteoporosis
  publication-title: Expert Opin. Pharmacother.
  contributor:
    fullname: Merlotti
– volume: 8
  start-page: 3666
  year: 2016
  end-page: 3682
  ident: bib0080
  article-title: miRNAs in acute myeloid leukemia
  publication-title: Oncotarget
  contributor:
    fullname: Jiang
– volume: 39
  start-page: 253
  issue: 1
  year: 2016
  ident: 10.1016/j.biopha.2017.02.090_bib0045
  article-title: MiR-27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000445621
  contributor:
    fullname: You
– volume: 392
  start-page: 85
  issue: 1–2
  year: 2014
  ident: 10.1016/j.biopha.2017.02.090_bib0035
  article-title: Estrogen improves the proliferation and differentiation of hBMSCs derived from postmenopausal osteoporosis through notch signaling pathway
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-014-2021-7
  contributor:
    fullname: Fan
– volume: 64
  start-page: 181
  issue: 3
  year: 2012
  ident: 10.1016/j.biopha.2017.02.090_bib0020
  article-title: Osteoporosis management in post-menopausal women
  publication-title: Minerva Ginecol.
  contributor:
    fullname: Christenson
– volume: 14
  start-page: 495
  year: 2014
  ident: 10.1016/j.biopha.2017.02.090_bib0060
  article-title: Epigenetic silencing of genes and microRNAs within the imprinted Dlk1-Dio3 region at human chromosome 14.32 in giant cell tumor of bone
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-14-495
  contributor:
    fullname: Lehner
– volume: 105
  start-page: 13906
  issue: 37
  year: 2008
  ident: 10.1016/j.biopha.2017.02.090_bib0085
  article-title: A microRNA signature for a BMP2-induced osteoblast lineage commitment program
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0804438105
  contributor:
    fullname: Li
– volume: 13
  start-page: 213
  issue: 4
  year: 2014
  ident: 10.1016/j.biopha.2017.02.090_bib0015
  article-title: Hormone replacement therapy and the prevention of postmenopausal osteoporosis
  publication-title: Prz. Menopauzalny
  contributor:
    fullname: Gambacciani
– volume: 32
  year: 2017
  ident: 10.1016/j.biopha.2017.02.090_bib0040
  article-title: A novel, direct no donor regulates osteoblast and osteoclast functions and increases bone mass in ovariectomized mice
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2909
  contributor:
    fullname: Kalyanaraman
– volume: 23
  start-page: 340
  issue: 3
  year: 2012
  ident: 10.1016/j.biopha.2017.02.090_bib0100
  article-title: The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage
  publication-title: Cell Res.
  doi: 10.1038/cr.2012.164
  contributor:
    fullname: Zhang
– volume: 15
  start-page: 250
  year: 2015
  ident: 10.1016/j.biopha.2017.02.090_bib0110
  article-title: Effect of Qing’e formula on the in vitro differentiation of bone marrow-derived mesenchymal stem cells from proximal femurs of postmenopausal osteoporotic mice
  publication-title: BMC Complement. Altern. Med.
  doi: 10.1186/s12906-015-0777-2
  contributor:
    fullname: Shuai
– volume: 292
  start-page: 82
  issue: 1
  year: 2016
  ident: 10.1016/j.biopha.2017.02.090_bib0050
  article-title: MEG3 long noncoding RNA contributes to the epigenetic regulation of epithelial-mesenchymal transition in lung cancer cell lines
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.750950
  contributor:
    fullname: Terashima
– volume: 17
  start-page: 1141
  issue: 8
  year: 2016
  ident: 10.1016/j.biopha.2017.02.090_bib0005
  article-title: Treatment needs and current options for postmenopausal osteoporosis
  publication-title: Expert Opin. Pharmacother.
  doi: 10.1080/14656566.2016.1176147
  contributor:
    fullname: Gennari
– volume: 374
  start-page: 254
  issue: 3
  year: 2016
  ident: 10.1016/j.biopha.2017.02.090_bib0010
  article-title: Clinical practice. Postmenopausal osteoporosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMcp1513724
  contributor:
    fullname: Black
– volume: 8
  start-page: 3666
  issue: 2 (Jan 10)
  year: 2016
  ident: 10.1016/j.biopha.2017.02.090_bib0080
  article-title: miRNAs in acute myeloid leukemia
  publication-title: Oncotarget
  contributor:
    fullname: Liao
– volume: 21
  start-page: 1527
  year: 2015
  ident: 10.1016/j.biopha.2017.02.090_bib0090
  article-title: MiR-133 is involved in estrogen deficiency-induced osteoporosis through modulating osteogenic differentiation of mesenchymal stem cells
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.894323
  contributor:
    fullname: Lv
– volume: 25
  start-page: 1151
  issue: 3
  year: 2014
  ident: 10.1016/j.biopha.2017.02.090_bib0115
  article-title: Osteoanabolic effect of alendronate and zoledronate on bone marrow stromal cells (BMSCs) isolated from aged female osteoporotic patients and its implications for their mode of action in the treatment of age-related bone loss
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-013-2494-3
  contributor:
    fullname: Lindtner
– start-page: 1
  year: 2016
  ident: 10.1016/j.biopha.2017.02.090_bib0055
  article-title: The long non-coding RNA maternally expressed gene 3 activates p53 and is downregulated in esophageal squamous cell cancer
  publication-title: Tumour Biol.
  contributor:
    fullname: Lv
– volume: 2
  start-page: 16069
  year: 2016
  ident: 10.1016/j.biopha.2017.02.090_bib0105
  article-title: Postmenopausal osteoporosis
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/nrdp.2016.69
  contributor:
    fullname: Eastell
– volume: 33
  start-page: 1985
  issue: 6
  year: 2015
  ident: 10.1016/j.biopha.2017.02.090_bib0065
  article-title: Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription
  publication-title: Stem Cells (Dayton, Ohio)
  doi: 10.1002/stem.1989
  contributor:
    fullname: Zhuang
– volume: 59
  start-page: 671
  issue: 5
  year: 2011
  ident: 10.1016/j.biopha.2017.02.090_bib0075
  article-title: MicroRNA in prostate, bladder, and kidney cancer: a systematic review
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2011.01.044
  contributor:
    fullname: Catto
– volume: 7
  start-page: e34641
  issue: 4
  year: 2012
  ident: 10.1016/j.biopha.2017.02.090_bib0120
  article-title: MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0034641
  contributor:
    fullname: Wang
– volume: 79
  start-page: 557
  issue: 4
  year: 2000
  ident: 10.1016/j.biopha.2017.02.090_bib0030
  article-title: Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation
  publication-title: J. Cell. Biochem.
  doi: 10.1002/1097-4644(20001215)79:4<557::AID-JCB40>3.0.CO;2-H
  contributor:
    fullname: Rodriguez
– volume: 38
  start-page: 1267
  issue: 4
  year: 2016
  ident: 10.1016/j.biopha.2017.02.090_bib0095
  article-title: Changes in the MicroRNA profile of the mandible of ovariectomized mice
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000443074
  contributor:
    fullname: Hao
– volume: 48
  start-page: 51
  issue: 1
  year: 2013
  ident: 10.1016/j.biopha.2017.02.090_bib0070
  article-title: MicroRNA biogenesis: regulating the regulators
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2012.738643
  contributor:
    fullname: Finnegan
– volume: 73
  start-page: 298
  issue: 3
  year: 2002
  ident: 10.1016/j.biopha.2017.02.090_bib0025
  article-title: Relationships between clinical attachment level and spine and hip bone mineral density: data from healthy postmenopausal women
  publication-title: J. Periodontol.
  doi: 10.1902/jop.2002.73.3.298
  contributor:
    fullname: Pilgram
SSID ssj0005638
Score 2.5936654
Snippet Abstract Background and aims Long non-coding RNA (lncRNA) MEG3 has proven to be an important regulator involved in the pathogenesis and development of various...
Long non-coding RNA (lncRNA) MEG3 has proven to be an important regulator involved in the pathogenesis and development of various human diseases. However, the...
BACKGROUND AND AIMSLong non-coding RNA (lncRNA) MEG3 has proven to be an important regulator involved in the pathogenesis and development of various human...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1178
SubjectTerms Animals
Bone Marrow Cells - physiology
Bone marrow mesenchymal stem cells (BMSCs)
Cation Transport Proteins - genetics
Cell Differentiation - genetics
Cells, Cultured
Down-Regulation - genetics
Female
Humans
Internal Medicine
LncRNA MEG3
Medical Education
Mesenchymal Stromal Cells - physiology
Mice
Mice, Inbred BALB C
MicroRNAs - genetics
miR-133a-3p
Osteoblasts - physiology
Osteogenesis - genetics
Osteogenic differentiation
Osteoporosis, Postmenopausal - drug therapy
Osteoporosis, Postmenopausal - genetics
Postmenopausal osteoporosis (PMOP)
RNA, Long Noncoding - genetics
Title LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0753332216327408
https://dx.doi.org/10.1016/j.biopha.2017.02.090
https://www.ncbi.nlm.nih.gov/pubmed/28320084
https://search.proquest.com/docview/1879661811
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuCMprKVSDhHqq2Y3jOMlxVbUsj11VpZV6s2yvowZpk4jsHvbS38BPZsZJaBEgJI5JnNjJvD4rM98w9hbFahWGHrS0RHEZq5znzqdcSVcUhRfeFFSNPF-o2aX8eJVc7bDjoRaG0ip739_59OCt-zPj_muOm7Icf8FgF8eoj4gocGsVCn4lBiPU6Xc3d9I8VOhmTYM5jR7K50KOly1rImXCIJgG5k7yzH8OT3-DnyEMnT5iD3v8CNNuiY_Zjq_22P15_4d8jx2edVzU2yO4uC2tao_gEM5uWaq3T9j3z5U7X0xhfvI-hrK6Li2BT6CajxqVqnQw9E5Zd9KDugBbVx5WgbcRVlS35K63K1wOsUED_QNogepVoMHHEA15YzYtXg4PRaBft2ULdgtd-jkGTViV5xz3r4bHzVN2eXpycTzjfXsG7mSUrnmSS2ejzCTCTxKUqhA-loXN1MQav5S5VIjlDJq1zXyU2yg1eY7gS2ROFMKqNH7Gditc9gsGkY8LT0TxqVMysdYgMlm6pZgkSUEE_yPGB6nopmPh0EN62lfdSVGTFPVEaJTiiKWD6PRQYYo-0be9gbY60i2O1L8p0d07f9FDjSHmH3O-GXREo4nSNzeVrzc4V5biphKhVDRizzvl-fkW1CmKehq8_O9599kDOuqSMF-x3fW3jX-NQGltD4IlHLB70w-fZosfoIoTRQ
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTgJeEIxbuR4ktKdZbRzHTh6raaNjbTWNTtqbFbuOFqQmEWkf-i_4yZyTCwUBQuI1cWwn5_ZZOec7jH1AsVqFoQctLVJchirhifOaK-myLPPCpxlVI88XanojP91GtwfstK-FobTKzve3Pr3x1t2VUfc1R1Wejz5jsAtD1EdEFHi0ooLfQxnpQA7Y4eTicrrYZ3qopqE1jef0QF9B16R52bwkXiaMg7oh7yTn_OcI9TcE2kSi80fsYQchYdLu8jE78MURuzfvfpIfseOrlo56dwLLfXVVfQLHcLUnqt49Yd9mhbteTGB-9jGEvLjLLeFPoLKPEvUqd9C3T9m0AoQyA1sWHtYNdSOsqXTJ3e3WuB0ihAb6DVADlaxAhdMQE3mVbmu83UyKWL-s8xrsDtoMdIybsM6vOR5hUx5WT9nN-dnydMq7Dg3cyUBveJRIZ4M4jYQfRyhYIXwoMxursU39SiZSIZxL0bJt7IPEBjpNEsRfInYiE1bp8BkbFLjtFwwCH2aeuOK1UzKyNkVwsnIrMY6ijDj-h4z3UjFVS8Rh-gy1L6aVoiEpmrEwKMUh073oTF9kim7R152N1iYwNY40v-nRz0_-oooGo8w_1nzf64hBK6Vvnha-3OJascZzJaKpYMiet8rz4y2oWRS1NXj53-u-Y_eny_nMzC4Wl6_YA7rT5mS-ZoPN161_g7hpY992dvEdDvsV-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LncRNA+MEG3+inhibited+osteogenic+differentiation+of+bone+marrow+mesenchymal+stem+cells+from+postmenopausal+osteoporosis+by+targeting+miR-133a-3p&rft.jtitle=Biomedicine+%26+pharmacotherapy&rft.au=Wang%2C+Qiujun&rft.au=Li%2C+Ying&rft.au=Zhang%2C+Yuanxia&rft.au=Ma%2C+Lan&rft.date=2017-05-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0753-3322&rft.eissn=1950-6007&rft.volume=89&rft.spage=1178&rft.epage=1186&rft_id=info:doi/10.1016%2Fj.biopha.2017.02.090&rft.externalDocID=S0753332216327408
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F07533322%2Fcov200h.gif