Petz map and Python’s lunch
A bstract We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as precursors under the condition of perfect recovery. When we have the entire boundary system its complexity is related to the volume/action o...
Saved in:
Published in | The journal of high energy physics Vol. 2020; no. 11; pp. 1 - 15 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2020
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as precursors under the condition of perfect recovery. When we have the entire boundary system its complexity is related to the volume/action of the wormhole from the bulk operator to the boundary. When we only have access to part of the system, Python’s lunch appears and its restricted complexity depends exponentially on the size of the subsystem one loses access to. |
---|---|
AbstractList | A
bstract
We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as precursors under the condition of perfect recovery. When we have the entire boundary system its complexity is related to the volume/action of the wormhole from the bulk operator to the boundary. When we only have access to part of the system, Python’s lunch appears and its restricted complexity depends exponentially on the size of the subsystem one loses access to. We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as precursors under the condition of perfect recovery. When we have the entire boundary system its complexity is related to the volume/action of the wormhole from the bulk operator to the boundary. When we only have access to part of the system, Python’s lunch appears and its restricted complexity depends exponentially on the size of the subsystem one loses access to. Abstract We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as precursors under the condition of perfect recovery. When we have the entire boundary system its complexity is related to the volume/action of the wormhole from the bulk operator to the boundary. When we only have access to part of the system, Python’s lunch appears and its restricted complexity depends exponentially on the size of the subsystem one loses access to. |
ArticleNumber | 38 |
Author | Zhao, Ying |
Author_xml | – sequence: 1 givenname: Ying orcidid: 0000-0002-3286-1054 surname: Zhao fullname: Zhao, Ying email: zhaoying@ias.edu organization: Institute for Advanced Study |
BookMark | eNp1kEFLAzEUhINUsK2ePQkFL3pYm5dkN9mjlGorBXvQc8hmk3bLNqnZ7aGe_Bv-PX-JW1dRhJ7eY5hvGKaHOs47g9A54BvAmA8fJuM5wBXBBF9jKo5QFzBJI8F42vnzn6BeVa0whhhS3EUXc1O_DtZqM1AuH8x39dK7j7f3alBunV6eomOrysqcfd8-er4bP40m0ezxfjq6nUWaAa-jmOMEUq0yFRNsch0nhghmdZKzLMlSy4ngKodGpElMSJwL4FoJBsYwQ2NL-2ja5uZereQmFGsVdtKrQn4JPiykCnWhSyOBZBwza41VmgkCKVgtcGYpV5QqCk3WZZu1Cf5la6parvw2uKa-JIxTRnjDNK64dengqyoYK3VRq7rwrg6qKCVguV9VtqvK_aqyWbXhhv-4n7aHCdwSVeN0CxN--xxCPgE_xYg6 |
CitedBy_id | crossref_primary_10_1007_JHEP07_2023_189 crossref_primary_10_1007_JHEP08_2023_071 crossref_primary_10_1007_JHEP11_2020_111 crossref_primary_10_1140_epjc_s10052_022_10382_1 crossref_primary_10_1007_JHEP04_2022_175 crossref_primary_10_1007_JHEP03_2025_095 |
Cites_doi | 10.1103/PhysRevD.74.066009 10.1007/JHEP04(2015)163 10.1103/PhysRevD.89.086010 10.1007/JHEP09(2020)002 10.1103/PhysRevLett.117.021601 10.1007/JHEP09(2013)018 10.1103/PhysRevD.97.126007 10.1007/JHEP07(2017)151 10.1007/JHEP05(2013)014 10.1007/JHEP08(2020)121 10.1002/prop.201500095 10.1007/JHEP06(2013)085 10.1103/PhysRevD.90.126007 10.1007/JHEP01(2020)168 10.1002/prop.201700034 10.1103/PhysRevD.95.045010 10.1007/JHEP06(2016)004 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP11(2020)038 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_12b704ffefac482191fc80bf37a33a31 10_1007_JHEP11_2020_038 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-570619caba520edc56e284fc6d4b6b9f7287ad1e28365225d817ca841ee4e35f3 |
IEDL.DBID | DOA |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:32:43 EDT 2025 Sun Jul 13 04:32:59 EDT 2025 Tue Jul 01 00:58:57 EDT 2025 Thu Apr 24 23:07:24 EDT 2025 Fri Feb 21 02:49:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Black Holes Models of Quantum Gravity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-570619caba520edc56e284fc6d4b6b9f7287ad1e28365225d817ca841ee4e35f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3286-1054 |
OpenAccessLink | https://doaj.org/article/12b704ffefac482191fc80bf37a33a31 |
PQID | 2473427191 |
PQPubID | 2034718 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_12b704ffefac482191fc80bf37a33a31 proquest_journals_2473427191 crossref_citationtrail_10_1007_JHEP11_2020_038 crossref_primary_10_1007_JHEP11_2020_038 springer_journals_10_1007_JHEP11_2020_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | DongXHarlowDWallACReconstruction of bulk operators within the entanglement wedge in gauge-gravity dualityPhys. Rev. Lett.20161172016PhRvL.117b1601D362695910.1103/PhysRevLett.117.021601[arXiv:1601.05416] [INSPIRE] JafferisDLLewkowyczAMaldacenaJSuhSJRelative entropy equals bulk relative entropyJHEP2016060042016JHEP...06..004J353816510.1007/JHEP06(2016)004[arXiv:1512.06431] [INSPIRE] HartmanTMaldacenaJTime evolution of entanglement entropy from black hole interiorsJHEP2013050142013JHEP...05..014H308092710.1007/JHEP05(2013)014[arXiv:1303.1080] [INSPIRE] PeningtonGEntanglement wedge reconstruction and the information paradoxJHEP2020090022020JHEP...09..002P420325710.1007/JHEP09(2020)002[arXiv:1905.08255] [INSPIRE] HarlowDHaydenPQuantum computation vs. firewallsJHEP2013060852013JHEP...06..085H308332510.1007/JHEP06(2013)085[arXiv:1301.4504] [INSPIRE] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE]. L. Susskind, Horizons protect Church-Turing, arXiv:2003.01807 [INSPIRE]. BrownARSusskindLZhaoYQuantum complexity and negative curvaturePhys. Rev. D2017952017PhRvD..95d5010B378390210.1103/PhysRevD.95.045010[arXiv:1608.02612] [INSPIRE] MaldacenaJStanfordDYangZDiving into traversable wormholesFortsch. Phys.2017652017ForPh..6500034M366964410.1002/prop.201700034[arXiv:1704.05333] [INSPIRE] SusskindLEntanglement is not enoughFortsch. Phys.201664492016ForPh..64...49S345836210.1002/prop.201500095[arXiv:1411.0690] [INSPIRE] ChenC-FPeningtonGSaltonGEntanglement wedge reconstruction using the Petz mapJHEP2020011682020JHEP...01..168C408815110.1007/JHEP01(2020)168[arXiv:1902.02844] [INSPIRE] A. Gilyén, S. Lloyd, I. Marvian, Y. Quek and M.M. Wilde, Quantum algorithm for Petz recovery channels and pretty good measurements, arXiv:2006.16924 [INSPIRE]. A. Bouland, B. Fefferman and U. Vazirani, Computational pseudorandomness, the wormhole growth paradox, and constraints on the AdS/CFT duality, arXiv:1910.14646 [INSPIRE]. PapadodimasKRajuSState-dependent bulk-boundary maps and black hole complementarityPhys. Rev. D2014892014PhRvD..89h6010P10.1103/PhysRevD.89.086010[arXiv:1310.6335] [INSPIRE] CotlerJHaydenPPeningtonGSaltonGSwingleBWalterMEntanglement wedge reconstruction via universal recovery channelsPhys. Rev. X20199[arXiv:1704.05839] [INSPIRE] AlmheiriAMarolfDPolchinskiJStanfordDSullyJAn apologia for firewal lsJHEP2013090182013JHEP...09..018A10.1007/JHEP09(2013)018[arXiv:1304.6483] [INSPIRE] StanfordDSusskindLComplexity and shock wave geometriesPhys. Rev. D2014901260072014PhRvD..90l6007S10.1103/PhysRevD.90.126007[arXiv:1406.2678] [INSPIRE] FaulknerTLewkowyczABulk locality from modular flowJHEP2017071512017JHEP...07..151F368664710.1007/JHEP07(2017)151[arXiv:1704.05464] [INSPIRE] ZhaoYUncomplexity and black hole geometryPhys. Rev. D2018971260072018PhRvD..97l6007Z389369510.1103/PhysRevD.97.126007[arXiv:1711.03125] [INSPIRE] B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv:1710.03363 [INSPIRE]. L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys.64 (2016) 24 [Addendum ibid.64 (2016) 44] [arXiv:1403.5695] [INSPIRE]. L. Susskind and Y. Zhao, Switchbacks and the bridge to nowhere, arXiv:1408.2823 [INSPIRE]. AlmheiriADongXHarlowDBulk locality and quantum error correction in AdS/CFTJHEP2015041632015JHEP...04..163A335120610.1007/JHEP04(2015)163[arXiv:1411.7041] [INSPIRE] BrownARGharibyanHPeningtonGSusskindLThe Python’s lunch: geometric obstructions to decoding Hawking radiationJHEP2020081212020JHEP...08..121B417647310.1007/JHEP08(2020)121[arXiv:1912.00228] [INSPIRE] HamiltonAKabatDNLifschytzGLoweDAHolographic representation of local bulk operatorsPhys. Rev. D2006742006PhRvD..74f6009H227640210.1103/PhysRevD.74.066009[hep-th/0606141] [INSPIRE] D Stanford (14154_CR18) 2014; 90 14154_CR19 J Maldacena (14154_CR25) 2017; 65 14154_CR14 14154_CR13 A Almheiri (14154_CR15) 2013; 09 14154_CR2 A Hamilton (14154_CR1) 2006; 74 T Faulkner (14154_CR5) 2017; 07 L Susskind (14154_CR10) 2016; 64 D Harlow (14154_CR12) 2013; 06 K Papadodimas (14154_CR16) 2014; 89 DL Jafferis (14154_CR3) 2016; 06 Y Zhao (14154_CR21) 2018; 97 14154_CR24 J Cotler (14154_CR7) 2019; 9 T Hartman (14154_CR9) 2013; 05 14154_CR23 14154_CR22 A Almheiri (14154_CR6) 2015; 04 AR Brown (14154_CR11) 2020; 08 AR Brown (14154_CR20) 2017; 95 G Penington (14154_CR17) 2020; 09 X Dong (14154_CR4) 2016; 117 C-F Chen (14154_CR8) 2020; 01 |
References_xml | – reference: A. Gilyén, S. Lloyd, I. Marvian, Y. Quek and M.M. Wilde, Quantum algorithm for Petz recovery channels and pretty good measurements, arXiv:2006.16924 [INSPIRE]. – reference: HarlowDHaydenPQuantum computation vs. firewallsJHEP2013060852013JHEP...06..085H308332510.1007/JHEP06(2013)085[arXiv:1301.4504] [INSPIRE] – reference: CotlerJHaydenPPeningtonGSaltonGSwingleBWalterMEntanglement wedge reconstruction via universal recovery channelsPhys. Rev. X20199[arXiv:1704.05839] [INSPIRE] – reference: FaulknerTLewkowyczABulk locality from modular flowJHEP2017071512017JHEP...07..151F368664710.1007/JHEP07(2017)151[arXiv:1704.05464] [INSPIRE] – reference: PeningtonGEntanglement wedge reconstruction and the information paradoxJHEP2020090022020JHEP...09..002P420325710.1007/JHEP09(2020)002[arXiv:1905.08255] [INSPIRE] – reference: BrownARGharibyanHPeningtonGSusskindLThe Python’s lunch: geometric obstructions to decoding Hawking radiationJHEP2020081212020JHEP...08..121B417647310.1007/JHEP08(2020)121[arXiv:1912.00228] [INSPIRE] – reference: AlmheiriADongXHarlowDBulk locality and quantum error correction in AdS/CFTJHEP2015041632015JHEP...04..163A335120610.1007/JHEP04(2015)163[arXiv:1411.7041] [INSPIRE] – reference: HartmanTMaldacenaJTime evolution of entanglement entropy from black hole interiorsJHEP2013050142013JHEP...05..014H308092710.1007/JHEP05(2013)014[arXiv:1303.1080] [INSPIRE] – reference: L. Susskind and Y. Zhao, Switchbacks and the bridge to nowhere, arXiv:1408.2823 [INSPIRE]. – reference: ZhaoYUncomplexity and black hole geometryPhys. Rev. D2018971260072018PhRvD..97l6007Z389369510.1103/PhysRevD.97.126007[arXiv:1711.03125] [INSPIRE] – reference: L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys.64 (2016) 24 [Addendum ibid.64 (2016) 44] [arXiv:1403.5695] [INSPIRE]. – reference: G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE]. – reference: AlmheiriAMarolfDPolchinskiJStanfordDSullyJAn apologia for firewal lsJHEP2013090182013JHEP...09..018A10.1007/JHEP09(2013)018[arXiv:1304.6483] [INSPIRE] – reference: StanfordDSusskindLComplexity and shock wave geometriesPhys. Rev. D2014901260072014PhRvD..90l6007S10.1103/PhysRevD.90.126007[arXiv:1406.2678] [INSPIRE] – reference: PapadodimasKRajuSState-dependent bulk-boundary maps and black hole complementarityPhys. Rev. D2014892014PhRvD..89h6010P10.1103/PhysRevD.89.086010[arXiv:1310.6335] [INSPIRE] – reference: A. Bouland, B. Fefferman and U. Vazirani, Computational pseudorandomness, the wormhole growth paradox, and constraints on the AdS/CFT duality, arXiv:1910.14646 [INSPIRE]. – reference: MaldacenaJStanfordDYangZDiving into traversable wormholesFortsch. Phys.2017652017ForPh..6500034M366964410.1002/prop.201700034[arXiv:1704.05333] [INSPIRE] – reference: L. Susskind, Horizons protect Church-Turing, arXiv:2003.01807 [INSPIRE]. – reference: JafferisDLLewkowyczAMaldacenaJSuhSJRelative entropy equals bulk relative entropyJHEP2016060042016JHEP...06..004J353816510.1007/JHEP06(2016)004[arXiv:1512.06431] [INSPIRE] – reference: DongXHarlowDWallACReconstruction of bulk operators within the entanglement wedge in gauge-gravity dualityPhys. Rev. Lett.20161172016PhRvL.117b1601D362695910.1103/PhysRevLett.117.021601[arXiv:1601.05416] [INSPIRE] – reference: BrownARSusskindLZhaoYQuantum complexity and negative curvaturePhys. Rev. D2017952017PhRvD..95d5010B378390210.1103/PhysRevD.95.045010[arXiv:1608.02612] [INSPIRE] – reference: B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv:1710.03363 [INSPIRE]. – reference: HamiltonAKabatDNLifschytzGLoweDAHolographic representation of local bulk operatorsPhys. Rev. D2006742006PhRvD..74f6009H227640210.1103/PhysRevD.74.066009[hep-th/0606141] [INSPIRE] – reference: SusskindLEntanglement is not enoughFortsch. Phys.201664492016ForPh..64...49S345836210.1002/prop.201500095[arXiv:1411.0690] [INSPIRE] – reference: ChenC-FPeningtonGSaltonGEntanglement wedge reconstruction using the Petz mapJHEP2020011682020JHEP...01..168C408815110.1007/JHEP01(2020)168[arXiv:1902.02844] [INSPIRE] – volume: 74 year: 2006 ident: 14154_CR1 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.066009 – volume: 04 start-page: 163 year: 2015 ident: 14154_CR6 publication-title: JHEP doi: 10.1007/JHEP04(2015)163 – volume: 89 year: 2014 ident: 14154_CR16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.086010 – volume: 09 start-page: 002 year: 2020 ident: 14154_CR17 publication-title: JHEP doi: 10.1007/JHEP09(2020)002 – volume: 117 year: 2016 ident: 14154_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.021601 – ident: 14154_CR22 – ident: 14154_CR14 – volume: 09 start-page: 018 year: 2013 ident: 14154_CR15 publication-title: JHEP doi: 10.1007/JHEP09(2013)018 – volume: 97 start-page: 126007 year: 2018 ident: 14154_CR21 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.126007 – volume: 07 start-page: 151 year: 2017 ident: 14154_CR5 publication-title: JHEP doi: 10.1007/JHEP07(2017)151 – volume: 05 start-page: 014 year: 2013 ident: 14154_CR9 publication-title: JHEP doi: 10.1007/JHEP05(2013)014 – ident: 14154_CR24 – ident: 14154_CR19 – volume: 08 start-page: 121 year: 2020 ident: 14154_CR11 publication-title: JHEP doi: 10.1007/JHEP08(2020)121 – volume: 64 start-page: 49 year: 2016 ident: 14154_CR10 publication-title: Fortsch. Phys. doi: 10.1002/prop.201500095 – volume: 06 start-page: 085 year: 2013 ident: 14154_CR12 publication-title: JHEP doi: 10.1007/JHEP06(2013)085 – ident: 14154_CR2 – ident: 14154_CR23 – volume: 90 start-page: 126007 year: 2014 ident: 14154_CR18 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.126007 – ident: 14154_CR13 – volume: 9 year: 2019 ident: 14154_CR7 publication-title: Phys. Rev. X – volume: 01 start-page: 168 year: 2020 ident: 14154_CR8 publication-title: JHEP doi: 10.1007/JHEP01(2020)168 – volume: 65 year: 2017 ident: 14154_CR25 publication-title: Fortsch. Phys. doi: 10.1002/prop.201700034 – volume: 95 year: 2017 ident: 14154_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.045010 – volume: 06 start-page: 004 year: 2016 ident: 14154_CR3 publication-title: JHEP doi: 10.1007/JHEP06(2016)004 |
SSID | ssj0015190 |
Score | 2.3903275 |
Snippet | A
bstract
We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as... We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as... Abstract We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Black Holes Classical and Quantum Gravitation Complexity Elementary Particles High energy physics Models of Quantum Gravity Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Subsystems |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UYuLF-BmnYHbwAIfJunbrdjJiIIREshhJuC391AMCAh705L_hv-dfYrt1oCZ47d6W9b32ffT1_R4AlwZELkhk5EmOsYclVl7MWOBJJLFETIoor0q7G0S9Ie6PwpE9cFvYa5WlTswVtZhyc0beCjBBOCA6vLievXima5TJrtoWGtugqlVwrIOvarszSO9XeQTtn_gloI9PWv1eJ4WwoQN-v-mbkpQftiiH7P_lZ_5JjeYWp7sP9qyr6N4Usj0AW3JyCHbyK5t8cQTqqVy-u8905tKJcNM3AwLw9fG5cMfaVD0dg2G383Db82yzA49jSJZeSLRlTThlNAx8KXgYSW05FI8EZhFLFNHTowLqQRRpnykUMSScxhhKw9RQoRNQmUwn8hS4hEVJaJpvYqHDpUQmjCMiEhrGnGFMfQdcldPOuEUCNw0pxlmJYVzwKTN8yjSfHNBYvTArQDA2k7YNH1dkBr06H5jOHzO7GTIYMOJjpaSiHMdaZ0LFY58pRChCFEEH1EopZHZLLbL1AnBAs5TM-vGG_zn7_1PnYNdQFsWFNVBZzl9lXXsZS3Zhl9I3wU7Nkw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED6VIiQWxK8ItCgDQzsExbEdJyNUrapKoA5U6hbZjg1Daau2DDDxGrweT4LtJEUFdWCznLMU3519dzrfdwDXFkQuSlUcKElIQBTRQSJEFCisiMJC5bGrSrt_iPsjMhjTcQ1QVQvjXrtXKUl3U1fFboN-d4hQywTrYTvEyQ7sUjO2St2xBQ5l4sA4JGGF4PN30YbxcRj9G47lr1yoMzG9QzgofUP_thDmEdTU9Bj23BtNuTyB5lCt3v0XPvdN9O8P32zV_9fH59KfGNv0fAqjXvex0w_K7gaBJIitAsqMKU0lF9zsQ-WSxsqYCi3jnIhYpJqZWIbnyEzi2DhJNE8QkzwhSFkuUo3PoD6dTdU5-EzEKbXdNklu4qNUpUJilqecJlIQwkMPbqptZ7KE_rYdKCZZBVpc8CmzfMoMnzxorRfMC9SL7aR3lo9rMgtX7SZmi6es1P4MRYKFRGuluSSJuSSRlkkoNGYcY46RB41KCll5hpZZRBgmETPEHrQryfx83vI_F_-gvYR9OyxKCxtQXy1eVdP4GCtx5bTqGwJYx5I priority: 102 providerName: Springer Nature |
Title | Petz map and Python’s lunch |
URI | https://link.springer.com/article/10.1007/JHEP11(2020)038 https://www.proquest.com/docview/2473427191 https://doaj.org/article/12b704ffefac482191fc80bf37a33a31 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58IHgRn7g-lh486KHaJtOkPeqy6yIoi7jgrSRpggddF3c96Mm_4d_zlzjpwxeIFy-BptMy_aZhZkjmG4A9TyLHMitCaxBDtOjCVGsWWm7Rcm0LUValnV-I_hDPrpPrL62-_Jmwih64Au4oZlpG6Jx1ymBK6yt2Jo2041JxrsoKakY-r0mm6v0Dikuihsgnkkdn_e4gjvcp0Y8OIl-K8sUHlVT93-LLH1uipafpLcNSHSIGx5VqKzBjR6uwUB7VNJM12B3Y6XNwp8aBGhXB4MkX_7-9vE6CW3JRN-sw7HWvOv2wbnIQGozlNEwkedTMKK0SFtnCJMKSx3BGFKiFzpyklEYVMU1yQbFSUqSxNCrF2HowE8c3YG50P7KbEEgtssQ33cSC0qTMZtpwWWQqSY1GVFELDpvPzk3NAO4bUdzmDXdxhVPuccoJpxbsfzwwrsgvfhc98Th-iHnW6nKCbJnXtsz_smULdhor5PVSmuQMJUcmSbgFB41lPm__os_Wf-izDYv-fVXp4Q7MTR8e7S7FIFPdhtm0d9qG-ZPuxeCSrjoM_Sg67fJHpHHIjt8BqJnaHA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC0lQShcEKuYkEAfQEoOTdp2dbv7gBBLhsmqOSRSbsZLGQ6TmSEzCIUTv8FP8FF8CXYvE0AKt1zdtuUul2txuV4BPIsgcryiIiWLmCKhT0tjeEqCkIQhV9RZaYdHxeAE907z0yX42eXCxGeVnUysBbWb2HhHvs1RCuQyuBevpp_TWDUqRle7EhoNW-zTxdfgss1e7r4L-_uc8_7O8dtB2lYVSC0yOU9zGVRYZbXROc_I2bygIKK9LRyawlReBh9COxYaRRGMk9yVTFpdIqO4-tyLMO8y3EAhqniiyv77RdQiWENZBx-Uye29wc6QsU0eLLKtLCbA_KH56gIBf1m1_wRia_3WvwO3W8M0ed1w0l1YovE9uFk_ELWz-7AxpPm35ExPEz12yfAiQg78-v5jloyCYvz0AE6uhQgPYWU8GdMjSKQpqjyW-kQXnLOKKmOFdJXOS2sQddaDF91vK9vijsfyFyPVISY3dFKRTirQqQebiwHTBnLj6q5vIh0X3SJWdt0wOf-o2qOnGDcyQ-_Ja4tlkNDM2zIzXkgthBasB-vdLqj2AM_UJbv1YKvbmcvPV6xn7f9TPYXVwfHhgTrYPdp_DLfiqCatcR1W5udfaCPYN3PzpGaqBD5cNxf_Br_HCPo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gEowXowJxEXQOmsBh2OnHTM8cjBHZzQK6mRBIuDX91APsruwagyf_hn_Fn-MvsXoei5rgjWtPd2e6uroeXV1fAbwMIHK0cFnsDOcxd9zHudY0dsxxx7SzWZWV9mGUDU_54Vl6tgQ_21yY8KyylYmVoLYTE-7Ie5QLxqlA96Lnm2cR5f7gzfRzHCpIhUhrW06jZpEjd_0V3bfZ64N93OtXlA76J--GcVNhIDaciHmcClRnhVFapTRx1qSZQ3HtTWa5znThBfoTyhJsZBkaKqnNiTAq58SFlaSe4bz3YFmgV5R0YHmvPyqPFzEMtI2SFkwoEb3DYb8kZJuifbaThHSYP_RgVS7gLxv3n7Bspe0Gj-BhY6ZGb2u-egxLbvwEVqrnoma2Clulm3-LLtU0UmMbldcBgODX9x-z6ALV5Kc1OL0TMqxDZzwZu6cQCZ0VaSj8yS26aoUrtGHCFirNjeZcJV3YbZctTYNCHophXMgWP7mmkwx0kkinLmwvBkxrAI7bu-4FOi66BeTsqmFy9VE2B1ESqkXCvXdeGZ6jvCbe5In2TCjGFCNd2Gx3QTbHeSZvmK8LO-3O3Hy-5X82_j_VC7iPHCzfH4yOnsGDMKjOcdyEzvzqi9tCY2eunzdcFcH5XTPyb6DcDow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Petz+map+and+Python%E2%80%99s+lunch&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Ying+Zhao&rft.date=2020-11-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2020&rft.issue=11&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1007%2FJHEP11%282020%29038&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_12b704ffefac482191fc80bf37a33a31 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |