Petz map and Python’s lunch

A bstract We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as precursors under the condition of perfect recovery. When we have the entire boundary system its complexity is related to the volume/action o...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2020; no. 11; pp. 1 - 15
Main Author Zhao, Ying
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as precursors under the condition of perfect recovery. When we have the entire boundary system its complexity is related to the volume/action of the wormhole from the bulk operator to the boundary. When we only have access to part of the system, Python’s lunch appears and its restricted complexity depends exponentially on the size of the subsystem one loses access to.
AbstractList A bstract We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as precursors under the condition of perfect recovery. When we have the entire boundary system its complexity is related to the volume/action of the wormhole from the bulk operator to the boundary. When we only have access to part of the system, Python’s lunch appears and its restricted complexity depends exponentially on the size of the subsystem one loses access to.
We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as precursors under the condition of perfect recovery. When we have the entire boundary system its complexity is related to the volume/action of the wormhole from the bulk operator to the boundary. When we only have access to part of the system, Python’s lunch appears and its restricted complexity depends exponentially on the size of the subsystem one loses access to.
Abstract We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as precursors under the condition of perfect recovery. When we have the entire boundary system its complexity is related to the volume/action of the wormhole from the bulk operator to the boundary. When we only have access to part of the system, Python’s lunch appears and its restricted complexity depends exponentially on the size of the subsystem one loses access to.
ArticleNumber 38
Author Zhao, Ying
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0002-3286-1054
  surname: Zhao
  fullname: Zhao, Ying
  email: zhaoying@ias.edu
  organization: Institute for Advanced Study
BookMark eNp1kEFLAzEUhINUsK2ePQkFL3pYm5dkN9mjlGorBXvQc8hmk3bLNqnZ7aGe_Bv-PX-JW1dRhJ7eY5hvGKaHOs47g9A54BvAmA8fJuM5wBXBBF9jKo5QFzBJI8F42vnzn6BeVa0whhhS3EUXc1O_DtZqM1AuH8x39dK7j7f3alBunV6eomOrysqcfd8-er4bP40m0ezxfjq6nUWaAa-jmOMEUq0yFRNsch0nhghmdZKzLMlSy4ngKodGpElMSJwL4FoJBsYwQ2NL-2ja5uZereQmFGsVdtKrQn4JPiykCnWhSyOBZBwza41VmgkCKVgtcGYpV5QqCk3WZZu1Cf5la6parvw2uKa-JIxTRnjDNK64dengqyoYK3VRq7rwrg6qKCVguV9VtqvK_aqyWbXhhv-4n7aHCdwSVeN0CxN--xxCPgE_xYg6
CitedBy_id crossref_primary_10_1007_JHEP07_2023_189
crossref_primary_10_1007_JHEP08_2023_071
crossref_primary_10_1007_JHEP11_2020_111
crossref_primary_10_1140_epjc_s10052_022_10382_1
crossref_primary_10_1007_JHEP04_2022_175
crossref_primary_10_1007_JHEP03_2025_095
Cites_doi 10.1103/PhysRevD.74.066009
10.1007/JHEP04(2015)163
10.1103/PhysRevD.89.086010
10.1007/JHEP09(2020)002
10.1103/PhysRevLett.117.021601
10.1007/JHEP09(2013)018
10.1103/PhysRevD.97.126007
10.1007/JHEP07(2017)151
10.1007/JHEP05(2013)014
10.1007/JHEP08(2020)121
10.1002/prop.201500095
10.1007/JHEP06(2013)085
10.1103/PhysRevD.90.126007
10.1007/JHEP01(2020)168
10.1002/prop.201700034
10.1103/PhysRevD.95.045010
10.1007/JHEP06(2016)004
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP11(2020)038
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 15
ExternalDocumentID oai_doaj_org_article_12b704ffefac482191fc80bf37a33a31
10_1007_JHEP11_2020_038
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-570619caba520edc56e284fc6d4b6b9f7287ad1e28365225d817ca841ee4e35f3
IEDL.DBID DOA
ISSN 1029-8479
IngestDate Wed Aug 27 01:32:43 EDT 2025
Sun Jul 13 04:32:59 EDT 2025
Tue Jul 01 00:58:57 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
Fri Feb 21 02:49:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Black Holes
Models of Quantum Gravity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-570619caba520edc56e284fc6d4b6b9f7287ad1e28365225d817ca841ee4e35f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3286-1054
OpenAccessLink https://doaj.org/article/12b704ffefac482191fc80bf37a33a31
PQID 2473427191
PQPubID 2034718
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_12b704ffefac482191fc80bf37a33a31
proquest_journals_2473427191
crossref_citationtrail_10_1007_JHEP11_2020_038
crossref_primary_10_1007_JHEP11_2020_038
springer_journals_10_1007_JHEP11_2020_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References DongXHarlowDWallACReconstruction of bulk operators within the entanglement wedge in gauge-gravity dualityPhys. Rev. Lett.20161172016PhRvL.117b1601D362695910.1103/PhysRevLett.117.021601[arXiv:1601.05416] [INSPIRE]
JafferisDLLewkowyczAMaldacenaJSuhSJRelative entropy equals bulk relative entropyJHEP2016060042016JHEP...06..004J353816510.1007/JHEP06(2016)004[arXiv:1512.06431] [INSPIRE]
HartmanTMaldacenaJTime evolution of entanglement entropy from black hole interiorsJHEP2013050142013JHEP...05..014H308092710.1007/JHEP05(2013)014[arXiv:1303.1080] [INSPIRE]
PeningtonGEntanglement wedge reconstruction and the information paradoxJHEP2020090022020JHEP...09..002P420325710.1007/JHEP09(2020)002[arXiv:1905.08255] [INSPIRE]
HarlowDHaydenPQuantum computation vs. firewallsJHEP2013060852013JHEP...06..085H308332510.1007/JHEP06(2013)085[arXiv:1301.4504] [INSPIRE]
G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].
L. Susskind, Horizons protect Church-Turing, arXiv:2003.01807 [INSPIRE].
BrownARSusskindLZhaoYQuantum complexity and negative curvaturePhys. Rev. D2017952017PhRvD..95d5010B378390210.1103/PhysRevD.95.045010[arXiv:1608.02612] [INSPIRE]
MaldacenaJStanfordDYangZDiving into traversable wormholesFortsch. Phys.2017652017ForPh..6500034M366964410.1002/prop.201700034[arXiv:1704.05333] [INSPIRE]
SusskindLEntanglement is not enoughFortsch. Phys.201664492016ForPh..64...49S345836210.1002/prop.201500095[arXiv:1411.0690] [INSPIRE]
ChenC-FPeningtonGSaltonGEntanglement wedge reconstruction using the Petz mapJHEP2020011682020JHEP...01..168C408815110.1007/JHEP01(2020)168[arXiv:1902.02844] [INSPIRE]
A. Gilyén, S. Lloyd, I. Marvian, Y. Quek and M.M. Wilde, Quantum algorithm for Petz recovery channels and pretty good measurements, arXiv:2006.16924 [INSPIRE].
A. Bouland, B. Fefferman and U. Vazirani, Computational pseudorandomness, the wormhole growth paradox, and constraints on the AdS/CFT duality, arXiv:1910.14646 [INSPIRE].
PapadodimasKRajuSState-dependent bulk-boundary maps and black hole complementarityPhys. Rev. D2014892014PhRvD..89h6010P10.1103/PhysRevD.89.086010[arXiv:1310.6335] [INSPIRE]
CotlerJHaydenPPeningtonGSaltonGSwingleBWalterMEntanglement wedge reconstruction via universal recovery channelsPhys. Rev. X20199[arXiv:1704.05839] [INSPIRE]
AlmheiriAMarolfDPolchinskiJStanfordDSullyJAn apologia for firewal lsJHEP2013090182013JHEP...09..018A10.1007/JHEP09(2013)018[arXiv:1304.6483] [INSPIRE]
StanfordDSusskindLComplexity and shock wave geometriesPhys. Rev. D2014901260072014PhRvD..90l6007S10.1103/PhysRevD.90.126007[arXiv:1406.2678] [INSPIRE]
FaulknerTLewkowyczABulk locality from modular flowJHEP2017071512017JHEP...07..151F368664710.1007/JHEP07(2017)151[arXiv:1704.05464] [INSPIRE]
ZhaoYUncomplexity and black hole geometryPhys. Rev. D2018971260072018PhRvD..97l6007Z389369510.1103/PhysRevD.97.126007[arXiv:1711.03125] [INSPIRE]
B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv:1710.03363 [INSPIRE].
L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys.64 (2016) 24 [Addendum ibid.64 (2016) 44] [arXiv:1403.5695] [INSPIRE].
L. Susskind and Y. Zhao, Switchbacks and the bridge to nowhere, arXiv:1408.2823 [INSPIRE].
AlmheiriADongXHarlowDBulk locality and quantum error correction in AdS/CFTJHEP2015041632015JHEP...04..163A335120610.1007/JHEP04(2015)163[arXiv:1411.7041] [INSPIRE]
BrownARGharibyanHPeningtonGSusskindLThe Python’s lunch: geometric obstructions to decoding Hawking radiationJHEP2020081212020JHEP...08..121B417647310.1007/JHEP08(2020)121[arXiv:1912.00228] [INSPIRE]
HamiltonAKabatDNLifschytzGLoweDAHolographic representation of local bulk operatorsPhys. Rev. D2006742006PhRvD..74f6009H227640210.1103/PhysRevD.74.066009[hep-th/0606141] [INSPIRE]
D Stanford (14154_CR18) 2014; 90
14154_CR19
J Maldacena (14154_CR25) 2017; 65
14154_CR14
14154_CR13
A Almheiri (14154_CR15) 2013; 09
14154_CR2
A Hamilton (14154_CR1) 2006; 74
T Faulkner (14154_CR5) 2017; 07
L Susskind (14154_CR10) 2016; 64
D Harlow (14154_CR12) 2013; 06
K Papadodimas (14154_CR16) 2014; 89
DL Jafferis (14154_CR3) 2016; 06
Y Zhao (14154_CR21) 2018; 97
14154_CR24
J Cotler (14154_CR7) 2019; 9
T Hartman (14154_CR9) 2013; 05
14154_CR23
14154_CR22
A Almheiri (14154_CR6) 2015; 04
AR Brown (14154_CR11) 2020; 08
AR Brown (14154_CR20) 2017; 95
G Penington (14154_CR17) 2020; 09
X Dong (14154_CR4) 2016; 117
C-F Chen (14154_CR8) 2020; 01
References_xml – reference: A. Gilyén, S. Lloyd, I. Marvian, Y. Quek and M.M. Wilde, Quantum algorithm for Petz recovery channels and pretty good measurements, arXiv:2006.16924 [INSPIRE].
– reference: HarlowDHaydenPQuantum computation vs. firewallsJHEP2013060852013JHEP...06..085H308332510.1007/JHEP06(2013)085[arXiv:1301.4504] [INSPIRE]
– reference: CotlerJHaydenPPeningtonGSaltonGSwingleBWalterMEntanglement wedge reconstruction via universal recovery channelsPhys. Rev. X20199[arXiv:1704.05839] [INSPIRE]
– reference: FaulknerTLewkowyczABulk locality from modular flowJHEP2017071512017JHEP...07..151F368664710.1007/JHEP07(2017)151[arXiv:1704.05464] [INSPIRE]
– reference: PeningtonGEntanglement wedge reconstruction and the information paradoxJHEP2020090022020JHEP...09..002P420325710.1007/JHEP09(2020)002[arXiv:1905.08255] [INSPIRE]
– reference: BrownARGharibyanHPeningtonGSusskindLThe Python’s lunch: geometric obstructions to decoding Hawking radiationJHEP2020081212020JHEP...08..121B417647310.1007/JHEP08(2020)121[arXiv:1912.00228] [INSPIRE]
– reference: AlmheiriADongXHarlowDBulk locality and quantum error correction in AdS/CFTJHEP2015041632015JHEP...04..163A335120610.1007/JHEP04(2015)163[arXiv:1411.7041] [INSPIRE]
– reference: HartmanTMaldacenaJTime evolution of entanglement entropy from black hole interiorsJHEP2013050142013JHEP...05..014H308092710.1007/JHEP05(2013)014[arXiv:1303.1080] [INSPIRE]
– reference: L. Susskind and Y. Zhao, Switchbacks and the bridge to nowhere, arXiv:1408.2823 [INSPIRE].
– reference: ZhaoYUncomplexity and black hole geometryPhys. Rev. D2018971260072018PhRvD..97l6007Z389369510.1103/PhysRevD.97.126007[arXiv:1711.03125] [INSPIRE]
– reference: L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys.64 (2016) 24 [Addendum ibid.64 (2016) 44] [arXiv:1403.5695] [INSPIRE].
– reference: G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].
– reference: AlmheiriAMarolfDPolchinskiJStanfordDSullyJAn apologia for firewal lsJHEP2013090182013JHEP...09..018A10.1007/JHEP09(2013)018[arXiv:1304.6483] [INSPIRE]
– reference: StanfordDSusskindLComplexity and shock wave geometriesPhys. Rev. D2014901260072014PhRvD..90l6007S10.1103/PhysRevD.90.126007[arXiv:1406.2678] [INSPIRE]
– reference: PapadodimasKRajuSState-dependent bulk-boundary maps and black hole complementarityPhys. Rev. D2014892014PhRvD..89h6010P10.1103/PhysRevD.89.086010[arXiv:1310.6335] [INSPIRE]
– reference: A. Bouland, B. Fefferman and U. Vazirani, Computational pseudorandomness, the wormhole growth paradox, and constraints on the AdS/CFT duality, arXiv:1910.14646 [INSPIRE].
– reference: MaldacenaJStanfordDYangZDiving into traversable wormholesFortsch. Phys.2017652017ForPh..6500034M366964410.1002/prop.201700034[arXiv:1704.05333] [INSPIRE]
– reference: L. Susskind, Horizons protect Church-Turing, arXiv:2003.01807 [INSPIRE].
– reference: JafferisDLLewkowyczAMaldacenaJSuhSJRelative entropy equals bulk relative entropyJHEP2016060042016JHEP...06..004J353816510.1007/JHEP06(2016)004[arXiv:1512.06431] [INSPIRE]
– reference: DongXHarlowDWallACReconstruction of bulk operators within the entanglement wedge in gauge-gravity dualityPhys. Rev. Lett.20161172016PhRvL.117b1601D362695910.1103/PhysRevLett.117.021601[arXiv:1601.05416] [INSPIRE]
– reference: BrownARSusskindLZhaoYQuantum complexity and negative curvaturePhys. Rev. D2017952017PhRvD..95d5010B378390210.1103/PhysRevD.95.045010[arXiv:1608.02612] [INSPIRE]
– reference: B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv:1710.03363 [INSPIRE].
– reference: HamiltonAKabatDNLifschytzGLoweDAHolographic representation of local bulk operatorsPhys. Rev. D2006742006PhRvD..74f6009H227640210.1103/PhysRevD.74.066009[hep-th/0606141] [INSPIRE]
– reference: SusskindLEntanglement is not enoughFortsch. Phys.201664492016ForPh..64...49S345836210.1002/prop.201500095[arXiv:1411.0690] [INSPIRE]
– reference: ChenC-FPeningtonGSaltonGEntanglement wedge reconstruction using the Petz mapJHEP2020011682020JHEP...01..168C408815110.1007/JHEP01(2020)168[arXiv:1902.02844] [INSPIRE]
– volume: 74
  year: 2006
  ident: 14154_CR1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.74.066009
– volume: 04
  start-page: 163
  year: 2015
  ident: 14154_CR6
  publication-title: JHEP
  doi: 10.1007/JHEP04(2015)163
– volume: 89
  year: 2014
  ident: 14154_CR16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.086010
– volume: 09
  start-page: 002
  year: 2020
  ident: 14154_CR17
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)002
– volume: 117
  year: 2016
  ident: 14154_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.021601
– ident: 14154_CR22
– ident: 14154_CR14
– volume: 09
  start-page: 018
  year: 2013
  ident: 14154_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP09(2013)018
– volume: 97
  start-page: 126007
  year: 2018
  ident: 14154_CR21
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.126007
– volume: 07
  start-page: 151
  year: 2017
  ident: 14154_CR5
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)151
– volume: 05
  start-page: 014
  year: 2013
  ident: 14154_CR9
  publication-title: JHEP
  doi: 10.1007/JHEP05(2013)014
– ident: 14154_CR24
– ident: 14154_CR19
– volume: 08
  start-page: 121
  year: 2020
  ident: 14154_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP08(2020)121
– volume: 64
  start-page: 49
  year: 2016
  ident: 14154_CR10
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201500095
– volume: 06
  start-page: 085
  year: 2013
  ident: 14154_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP06(2013)085
– ident: 14154_CR2
– ident: 14154_CR23
– volume: 90
  start-page: 126007
  year: 2014
  ident: 14154_CR18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.126007
– ident: 14154_CR13
– volume: 9
  year: 2019
  ident: 14154_CR7
  publication-title: Phys. Rev. X
– volume: 01
  start-page: 168
  year: 2020
  ident: 14154_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)168
– volume: 65
  year: 2017
  ident: 14154_CR25
  publication-title: Fortsch. Phys.
  doi: 10.1002/prop.201700034
– volume: 95
  year: 2017
  ident: 14154_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.045010
– volume: 06
  start-page: 004
  year: 2016
  ident: 14154_CR3
  publication-title: JHEP
  doi: 10.1007/JHEP06(2016)004
SSID ssj0015190
Score 2.3903275
Snippet A bstract We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as...
We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as...
Abstract We look at the interior operator reconstruction from the point of view of Petz map and study its complexity. We show that Petz maps can be written as...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Black Holes
Classical and Quantum Gravitation
Complexity
Elementary Particles
High energy physics
Models of Quantum Gravity
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Subsystems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UYuLF-BmnYHbwAIfJunbrdjJiIIREshhJuC391AMCAh705L_hv-dfYrt1oCZ47d6W9b32ffT1_R4AlwZELkhk5EmOsYclVl7MWOBJJLFETIoor0q7G0S9Ie6PwpE9cFvYa5WlTswVtZhyc0beCjBBOCA6vLievXima5TJrtoWGtugqlVwrIOvarszSO9XeQTtn_gloI9PWv1eJ4WwoQN-v-mbkpQftiiH7P_lZ_5JjeYWp7sP9qyr6N4Usj0AW3JyCHbyK5t8cQTqqVy-u8905tKJcNM3AwLw9fG5cMfaVD0dg2G383Db82yzA49jSJZeSLRlTThlNAx8KXgYSW05FI8EZhFLFNHTowLqQRRpnykUMSScxhhKw9RQoRNQmUwn8hS4hEVJaJpvYqHDpUQmjCMiEhrGnGFMfQdcldPOuEUCNw0pxlmJYVzwKTN8yjSfHNBYvTArQDA2k7YNH1dkBr06H5jOHzO7GTIYMOJjpaSiHMdaZ0LFY58pRChCFEEH1EopZHZLLbL1AnBAs5TM-vGG_zn7_1PnYNdQFsWFNVBZzl9lXXsZS3Zhl9I3wU7Nkw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED6VIiQWxK8ItCgDQzsExbEdJyNUrapKoA5U6hbZjg1Daau2DDDxGrweT4LtJEUFdWCznLMU3519dzrfdwDXFkQuSlUcKElIQBTRQSJEFCisiMJC5bGrSrt_iPsjMhjTcQ1QVQvjXrtXKUl3U1fFboN-d4hQywTrYTvEyQ7sUjO2St2xBQ5l4sA4JGGF4PN30YbxcRj9G47lr1yoMzG9QzgofUP_thDmEdTU9Bj23BtNuTyB5lCt3v0XPvdN9O8P32zV_9fH59KfGNv0fAqjXvex0w_K7gaBJIitAsqMKU0lF9zsQ-WSxsqYCi3jnIhYpJqZWIbnyEzi2DhJNE8QkzwhSFkuUo3PoD6dTdU5-EzEKbXdNklu4qNUpUJilqecJlIQwkMPbqptZ7KE_rYdKCZZBVpc8CmzfMoMnzxorRfMC9SL7aR3lo9rMgtX7SZmi6es1P4MRYKFRGuluSSJuSSRlkkoNGYcY46RB41KCll5hpZZRBgmETPEHrQryfx83vI_F_-gvYR9OyxKCxtQXy1eVdP4GCtx5bTqGwJYx5I
  priority: 102
  providerName: Springer Nature
Title Petz map and Python’s lunch
URI https://link.springer.com/article/10.1007/JHEP11(2020)038
https://www.proquest.com/docview/2473427191
https://doaj.org/article/12b704ffefac482191fc80bf37a33a31
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58IHgRn7g-lh486KHaJtOkPeqy6yIoi7jgrSRpggddF3c96Mm_4d_zlzjpwxeIFy-BptMy_aZhZkjmG4A9TyLHMitCaxBDtOjCVGsWWm7Rcm0LUValnV-I_hDPrpPrL62-_Jmwih64Au4oZlpG6Jx1ymBK6yt2Jo2041JxrsoKakY-r0mm6v0Dikuihsgnkkdn_e4gjvcp0Y8OIl-K8sUHlVT93-LLH1uipafpLcNSHSIGx5VqKzBjR6uwUB7VNJM12B3Y6XNwp8aBGhXB4MkX_7-9vE6CW3JRN-sw7HWvOv2wbnIQGozlNEwkedTMKK0SFtnCJMKSx3BGFKiFzpyklEYVMU1yQbFSUqSxNCrF2HowE8c3YG50P7KbEEgtssQ33cSC0qTMZtpwWWQqSY1GVFELDpvPzk3NAO4bUdzmDXdxhVPuccoJpxbsfzwwrsgvfhc98Th-iHnW6nKCbJnXtsz_smULdhor5PVSmuQMJUcmSbgFB41lPm__os_Wf-izDYv-fVXp4Q7MTR8e7S7FIFPdhtm0d9qG-ZPuxeCSrjoM_Sg67fJHpHHIjt8BqJnaHA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC0lQShcEKuYkEAfQEoOTdp2dbv7gBBLhsmqOSRSbsZLGQ6TmSEzCIUTv8FP8FF8CXYvE0AKt1zdtuUul2txuV4BPIsgcryiIiWLmCKhT0tjeEqCkIQhV9RZaYdHxeAE907z0yX42eXCxGeVnUysBbWb2HhHvs1RCuQyuBevpp_TWDUqRle7EhoNW-zTxdfgss1e7r4L-_uc8_7O8dtB2lYVSC0yOU9zGVRYZbXROc_I2bygIKK9LRyawlReBh9COxYaRRGMk9yVTFpdIqO4-tyLMO8y3EAhqniiyv77RdQiWENZBx-Uye29wc6QsU0eLLKtLCbA_KH56gIBf1m1_wRia_3WvwO3W8M0ed1w0l1YovE9uFk_ELWz-7AxpPm35ExPEz12yfAiQg78-v5jloyCYvz0AE6uhQgPYWU8GdMjSKQpqjyW-kQXnLOKKmOFdJXOS2sQddaDF91vK9vijsfyFyPVISY3dFKRTirQqQebiwHTBnLj6q5vIh0X3SJWdt0wOf-o2qOnGDcyQ-_Ja4tlkNDM2zIzXkgthBasB-vdLqj2AM_UJbv1YKvbmcvPV6xn7f9TPYXVwfHhgTrYPdp_DLfiqCatcR1W5udfaCPYN3PzpGaqBD5cNxf_Br_HCPo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gEowXowJxEXQOmsBh2OnHTM8cjBHZzQK6mRBIuDX91APsruwagyf_hn_Fn-MvsXoei5rgjWtPd2e6uroeXV1fAbwMIHK0cFnsDOcxd9zHudY0dsxxx7SzWZWV9mGUDU_54Vl6tgQ_21yY8KyylYmVoLYTE-7Ie5QLxqlA96Lnm2cR5f7gzfRzHCpIhUhrW06jZpEjd_0V3bfZ64N93OtXlA76J--GcVNhIDaciHmcClRnhVFapTRx1qSZQ3HtTWa5znThBfoTyhJsZBkaKqnNiTAq58SFlaSe4bz3YFmgV5R0YHmvPyqPFzEMtI2SFkwoEb3DYb8kZJuifbaThHSYP_RgVS7gLxv3n7Bspe0Gj-BhY6ZGb2u-egxLbvwEVqrnoma2Clulm3-LLtU0UmMbldcBgODX9x-z6ALV5Kc1OL0TMqxDZzwZu6cQCZ0VaSj8yS26aoUrtGHCFirNjeZcJV3YbZctTYNCHophXMgWP7mmkwx0kkinLmwvBkxrAI7bu-4FOi66BeTsqmFy9VE2B1ESqkXCvXdeGZ6jvCbe5In2TCjGFCNd2Gx3QTbHeSZvmK8LO-3O3Hy-5X82_j_VC7iPHCzfH4yOnsGDMKjOcdyEzvzqi9tCY2eunzdcFcH5XTPyb6DcDow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Petz+map+and+Python%E2%80%99s+lunch&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Ying+Zhao&rft.date=2020-11-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2020&rft.issue=11&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1007%2FJHEP11%282020%29038&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_12b704ffefac482191fc80bf37a33a31
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon