Distributed Economic Dispatch in Microgrids Based on Cooperative Reinforcement Learning

Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonline...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 29; no. 6; pp. 2192 - 2203
Main Authors Liu, Weirong, Zhuang, Peng, Liang, Hao, Peng, Jun, Huang, Zhiwu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2018.2801880

Cover

Loading…
Abstract Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm.
AbstractList Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm.
Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm.Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm.
Author Liang, Hao
Zhuang, Peng
Huang, Zhiwu
Peng, Jun
Liu, Weirong
Author_xml – sequence: 1
  givenname: Weirong
  orcidid: 0000-0002-2567-9369
  surname: Liu
  fullname: Liu, Weirong
  email: frat@csu.edu.cn
  organization: School of Information Science and Engineering, Central South University, Changsha, China
– sequence: 2
  givenname: Peng
  surname: Zhuang
  fullname: Zhuang, Peng
  email: pzhuang@ualberta.ca
  organization: Department of Electrical and Computer Engineering, University of Alberta, Edmontion, Canada
– sequence: 3
  givenname: Hao
  orcidid: 0000-0001-7010-4540
  surname: Liang
  fullname: Liang, Hao
  email: hao2@ualberta.ca
  organization: Department of Electrical and Computer Engineering, University of Alberta, Edmontion, Canada
– sequence: 4
  givenname: Jun
  surname: Peng
  fullname: Peng, Jun
  email: pengj@csu.edu.cn
  organization: Hunan Engineering Laboratory of Rail Vehicles Braking Technology, School of Information Science and Engineering, Central South University, Changsha, China
– sequence: 5
  givenname: Zhiwu
  surname: Huang
  fullname: Huang, Zhiwu
  email: hzw@csu.edu.cn
  organization: Hunan Engineering Laboratory of Rail Vehicles Braking Technology, School of Information Science and Engineering, Central South University, Changsha, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29771671$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuPFCEUhYkZ4zycP6CJqcTNbLrlAgVVS6cdH0k7JjpGd4SCWyOTLmiBMvHfy9htL2YhCyDkO5d7zzklRyEGJOQZ0CUA7V_dXF-vvywZhW7Jurp39BE5YSDZgvGuOzrc1fdjcp7zHa1L0laK_gk5Zr1SIBWckG9vfC7JD3NB11zZGOLkbVMft6bYH40PzUdvU7xN3uXm0uRKxdCsYtxiMsX_wuYz-jDGZHHCUJo1mhR8uH1KHo9mk_F8f56Rr2-vblbvF-tP7z6sXq8XVoAqi7ZlzBpgvO2VQyoE9NC6oXcSjHXSDdIAKj6OVHacMQOGjkI5BcbIdhwMPyMXu7rbFH_OmIuefLa42ZiAcc6aUVF9EB2nFX35AL2Lcwq1O81AiVaIruWVerGn5mFCp7fJTyb91v8sqwDbAdWWnBOOBwSovo9G_41G30ej99FUUfdAZH2p_sVQkvGb_0uf76QeEQ9_1YEkB-B_ANSSmto
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_COMST_2021_3073036
crossref_primary_10_1063_5_0245111
crossref_primary_10_1016_j_ijepes_2023_109526
crossref_primary_10_1016_j_rser_2024_115251
crossref_primary_10_1109_TSG_2019_2933502
crossref_primary_10_1109_TSMC_2019_2903485
crossref_primary_10_1016_j_ifacol_2020_12_144
crossref_primary_10_1016_j_arcontrol_2020_03_001
crossref_primary_10_1016_j_segan_2024_101556
crossref_primary_10_61435_ijred_2024_60119
crossref_primary_10_1109_TSG_2023_3329459
crossref_primary_10_1007_s12083_019_00753_z
crossref_primary_10_3390_en14217217
crossref_primary_10_1016_j_epsr_2021_107423
crossref_primary_10_1007_s12083_019_00752_0
crossref_primary_10_1109_TSG_2019_2896182
crossref_primary_10_1080_22348972_2019_1686861
crossref_primary_10_1109_TCSI_2024_3351942
crossref_primary_10_1109_JIOT_2021_3067951
crossref_primary_10_1109_TNNLS_2022_3222206
crossref_primary_10_32604_ee_2024_043159
crossref_primary_10_1109_TNNLS_2020_3027381
crossref_primary_10_1109_TSG_2022_3194131
crossref_primary_10_1016_j_ijepes_2023_109195
crossref_primary_10_1007_s10489_023_04489_5
crossref_primary_10_3390_en16041792
crossref_primary_10_1049_gtd2_12796
crossref_primary_10_1109_JIOT_2021_3131719
crossref_primary_10_1016_j_ijepes_2023_109230
crossref_primary_10_1016_j_energy_2025_135724
crossref_primary_10_1016_j_energy_2024_134115
crossref_primary_10_1109_TPWRS_2023_3298007
crossref_primary_10_1109_JIOT_2020_3046622
crossref_primary_10_1016_j_ijepes_2020_106759
crossref_primary_10_1109_ACCESS_2019_2925829
crossref_primary_10_1109_TII_2022_3159570
crossref_primary_10_1109_TSG_2019_2930299
crossref_primary_10_1109_ACCESS_2019_2911543
crossref_primary_10_1109_TNNLS_2023_3234049
crossref_primary_10_1109_TSTE_2021_3088951
crossref_primary_10_1007_s10668_023_03058_7
crossref_primary_10_3390_en13123207
crossref_primary_10_1109_ACCESS_2019_2935462
crossref_primary_10_1109_ACCESS_2020_3018142
crossref_primary_10_3390_electronics12030565
crossref_primary_10_1016_j_apenergy_2024_123611
crossref_primary_10_1109_TPWRS_2022_3142969
crossref_primary_10_1109_TSG_2023_3281935
crossref_primary_10_1109_TSTE_2022_3178415
crossref_primary_10_3390_app142210635
crossref_primary_10_1016_j_apenergy_2023_121359
crossref_primary_10_1109_ACCESS_2021_3075247
crossref_primary_10_1016_j_asoc_2021_108345
crossref_primary_10_1109_TPWRS_2019_2948132
crossref_primary_10_1109_TSIPN_2024_3407660
crossref_primary_10_1016_j_epsr_2024_110711
crossref_primary_10_1016_j_rser_2019_109523
crossref_primary_10_1109_JSYST_2023_3315833
crossref_primary_10_1186_s13638_019_1490_5
crossref_primary_10_1016_j_adapen_2023_100155
crossref_primary_10_1016_j_ecmx_2022_100192
crossref_primary_10_1016_j_isatra_2025_01_009
crossref_primary_10_1016_j_jhydrol_2023_130019
crossref_primary_10_1109_ACCESS_2019_2937626
crossref_primary_10_1109_TPWRS_2022_3159825
crossref_primary_10_1109_ACCESS_2020_3041273
crossref_primary_10_1109_ACCESS_2019_2909869
crossref_primary_10_1016_j_ijepes_2023_109212
crossref_primary_10_1109_ACCESS_2020_3030026
crossref_primary_10_1109_TSIPN_2023_3239698
crossref_primary_10_1016_j_apenergy_2019_114423
crossref_primary_10_1186_s13638_019_1566_2
crossref_primary_10_1109_JSYST_2022_3171534
crossref_primary_10_1007_s00202_022_01643_z
crossref_primary_10_1360_nso_20220038
crossref_primary_10_1002_2050_7038_12896
crossref_primary_10_1016_j_rico_2021_100030
crossref_primary_10_1016_j_aeue_2024_155395
crossref_primary_10_1109_TSMC_2020_3035406
crossref_primary_10_1007_s12083_020_00879_5
crossref_primary_10_1109_TPWRS_2021_3070161
crossref_primary_10_1109_TPWRS_2022_3155750
crossref_primary_10_1109_TNSE_2023_3295079
crossref_primary_10_1049_gtd2_12904
crossref_primary_10_3390_en14185688
crossref_primary_10_1016_j_egyai_2022_100147
crossref_primary_10_1109_TNNLS_2021_3060187
crossref_primary_10_1016_j_epsr_2021_107229
crossref_primary_10_1016_j_swevo_2019_05_008
crossref_primary_10_1109_ACCESS_2021_3112817
crossref_primary_10_3390_en15144960
crossref_primary_10_1186_s13677_021_00259_1
crossref_primary_10_1002_er_5649
crossref_primary_10_1007_s00202_023_01947_8
crossref_primary_10_1007_s12667_023_00603_1
crossref_primary_10_1109_ACCESS_2024_3495032
crossref_primary_10_1109_TCST_2024_3494733
crossref_primary_10_1109_ACCESS_2019_2956995
crossref_primary_10_1109_TSG_2024_3466768
crossref_primary_10_12677_SG_2023_131002
crossref_primary_10_1016_j_enbuild_2024_114410
crossref_primary_10_1016_j_energy_2022_125624
crossref_primary_10_1371_journal_pone_0261709
crossref_primary_10_1109_JSYST_2023_3284403
crossref_primary_10_1109_TSG_2020_3035127
crossref_primary_10_1109_TSG_2022_3154718
crossref_primary_10_1109_ACCESS_2019_2904079
crossref_primary_10_1109_TCNS_2024_3510598
crossref_primary_10_1016_j_apenergy_2021_116879
crossref_primary_10_1016_j_prime_2024_100745
crossref_primary_10_1109_JSYST_2024_3355328
crossref_primary_10_1109_ACCESS_2021_3082538
crossref_primary_10_1016_j_isatra_2024_12_045
crossref_primary_10_1109_JIOT_2021_3112883
crossref_primary_10_1016_j_egyr_2023_10_078
crossref_primary_10_1049_iet_gtd_2019_1284
crossref_primary_10_1016_j_ijepes_2020_105904
crossref_primary_10_1016_j_engappai_2021_104326
crossref_primary_10_1109_ACCESS_2019_2913885
crossref_primary_10_3390_designs7030058
crossref_primary_10_1109_ACCESS_2022_3176446
crossref_primary_10_1016_j_ifacol_2023_10_915
crossref_primary_10_1109_TSG_2022_3164080
crossref_primary_10_1109_TNNLS_2022_3170070
crossref_primary_10_1049_gtd2_12206
crossref_primary_10_1016_j_asoc_2020_106882
crossref_primary_10_1049_cps2_12007
crossref_primary_10_3390_en15082894
crossref_primary_10_1016_j_ijepes_2022_108149
crossref_primary_10_3390_su132212734
crossref_primary_10_1016_j_rser_2025_115489
crossref_primary_10_1109_TSG_2022_3214202
crossref_primary_10_1109_TSG_2022_3153082
crossref_primary_10_1109_TCE_2023_3279869
crossref_primary_10_1109_ACCESS_2019_2918928
crossref_primary_10_1109_TNNLS_2021_3105668
crossref_primary_10_3390_s23167216
crossref_primary_10_1016_j_rser_2020_110618
crossref_primary_10_1109_TII_2024_3390595
crossref_primary_10_1016_j_apenergy_2024_123923
crossref_primary_10_1016_j_ijepes_2024_110017
crossref_primary_10_1016_j_segan_2024_101362
crossref_primary_10_1109_TIA_2019_2958786
crossref_primary_10_1002_ett_3871
crossref_primary_10_1063_5_0051840
crossref_primary_10_1109_TPWRS_2021_3092220
crossref_primary_10_3390_su16072642
Cites_doi 10.1109/TNNLS.2014.2320280
10.1109/TSG.2015.2409053
10.1109/TPWRS.2014.2357079
10.1109/TIE.2014.2361485
10.1109/TAC.2014.2368731
10.1109/TSG.2015.2476669
10.1109/PTC.2003.1304379
10.1109/ICASSP.2013.6638519
10.1109/TPWRS.2015.2395452
10.1109/JESTPE.2014.2315961
10.1109/TCYB.2016.2544866
10.1109/SmartGridComm.2013.6687950
10.1109/TCST.2011.2180907
10.1201/CRCAUTCONENG
10.1109/TNNLS.2015.2441749
10.1016/j.jpowsour.2005.04.030
10.1017/CBO9780511804441
10.1109/TSG.2012.2213348
10.3390/en7042027
10.1109/TNNLS.2015.2412035
10.1109/CITRES.2010.5619782
10.1049/iet-gtd.2014.1084
10.1109/TPWRS.2015.2455491
10.3390/en6115625
10.1109/SURV.2014.020614.00115
10.1145/1553374.1553501
10.1109/CCIP.2015.7122614
10.1109/TSG.2014.2329846
10.1007/978-3-642-27645-3_15
10.1016/j.rser.2016.06.037
10.1109/TSG.2013.2269481
10.1109/TSP.2012.2217338
10.1109/TPWRS.2014.2299436
10.1109/TNNLS.2016.2514358
10.1109/JSAC.2012.120705
10.1109/TSG.2010.2095046
10.1109/ACCESS.2015.2443119
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2801880
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Computer Science
EISSN 2162-2388
EndPage 2203
ExternalDocumentID 29771671
10_1109_TNNLS_2018_2801880
8306311
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61672539; 61672537; 61379111; 61772558
  funderid: 10.13039/501100001809
– fundername: CSC State Scholarship Fund
  grantid: 201406375017
  funderid: 10.13039/501100004543
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-5522ca123597de0441915db9d61acd6db6a1e73ff068322a1a0f47d71aa65fba3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 17:32:57 EDT 2025
Mon Jun 30 03:45:10 EDT 2025
Mon Jul 21 05:45:03 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Tue Jul 01 00:27:26 EDT 2025
Wed Aug 27 02:50:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-5522ca123597de0441915db9d61acd6db6a1e73ff068322a1a0f47d71aa65fba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2567-9369
0000-0001-7010-4540
PMID 29771671
PQID 2174544853
PQPubID 85436
PageCount 12
ParticipantIDs proquest_journals_2174544853
crossref_primary_10_1109_TNNLS_2018_2801880
proquest_miscellaneous_2041624830
pubmed_primary_29771671
ieee_primary_8306311
crossref_citationtrail_10_1109_TNNLS_2018_2801880
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
st?elec (ref8) 2012
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref11
wood (ref33) 1996
ref32
lei (ref37) 2015; 26
ref10
ref2
(ref39) 2017
ref1
ref17
ref38
ref16
ref19
ref18
(ref41) 2017
xin (ref20) 2012
maei (ref24) 2010
ref45
ref23
ref26
ref25
ref42
ref22
ref44
(ref43) 2017
ref21
ref28
ref27
ref29
ref7
(ref40) 2017
ref9
ref4
ref3
ref6
ref5
References_xml – volume: 26
  start-page: 551
  year: 2015
  ident: ref37
  article-title: Generalization performance of radial basis function networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2014.2320280
– ident: ref10
  doi: 10.1109/TSG.2015.2409053
– ident: ref19
  doi: 10.1109/TPWRS.2014.2357079
– ident: ref18
  doi: 10.1109/TIE.2014.2361485
– start-page: 6924
  year: 2012
  ident: ref20
  article-title: Genetic based fuzzy Q-learning energy management for smart grid
  publication-title: Proc IEEE CCC
– ident: ref26
  doi: 10.1109/TAC.2014.2368731
– ident: ref42
  doi: 10.1109/TSG.2015.2476669
– year: 2017
  ident: ref40
  publication-title: NREL Measurement and Instrumentation Data Center
– start-page: 1
  year: 2010
  ident: ref24
  article-title: Toward off-policy learning control with function approximation
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref13
  doi: 10.1109/PTC.2003.1304379
– ident: ref27
  doi: 10.1109/ICASSP.2013.6638519
– ident: ref32
  doi: 10.1109/TPWRS.2015.2395452
– year: 2017
  ident: ref39
  publication-title: Distribution Test 33-Bus Feeder (Node_33 m)
– start-page: 1
  year: 2012
  ident: ref8
  article-title: Modeling and simulation of a microgrid as a stochastic hybrid system
  publication-title: Proc IEEE ISGT
– ident: ref29
  doi: 10.1109/JESTPE.2014.2315961
– ident: ref17
  doi: 10.1109/TCYB.2016.2544866
– ident: ref30
  doi: 10.1109/SmartGridComm.2013.6687950
– ident: ref11
  doi: 10.1109/TCST.2011.2180907
– ident: ref22
  doi: 10.1201/CRCAUTCONENG
– ident: ref25
  doi: 10.1109/TNNLS.2015.2441749
– ident: ref31
  doi: 10.1016/j.jpowsour.2005.04.030
– ident: ref35
  doi: 10.1017/CBO9780511804441
– ident: ref12
  doi: 10.1109/TSG.2012.2213348
– ident: ref5
  doi: 10.3390/en7042027
– ident: ref36
  doi: 10.1109/TNNLS.2015.2412035
– ident: ref44
  doi: 10.1109/CITRES.2010.5619782
– year: 2017
  ident: ref43
  publication-title: Datasheets for Diesel On-Site Power Industrial Generators of MQ POWER Company
– ident: ref34
  doi: 10.1049/iet-gtd.2014.1084
– ident: ref15
  doi: 10.1109/TPWRS.2015.2455491
– ident: ref45
  doi: 10.3390/en6115625
– ident: ref7
  doi: 10.1109/SURV.2014.020614.00115
– ident: ref23
  doi: 10.1145/1553374.1553501
– ident: ref21
  doi: 10.1109/CCIP.2015.7122614
– ident: ref14
  doi: 10.1109/TSG.2014.2329846
– ident: ref16
  doi: 10.1007/978-3-642-27645-3_15
– ident: ref1
  doi: 10.1016/j.rser.2016.06.037
– ident: ref9
  doi: 10.1109/TSG.2013.2269481
– year: 2017
  ident: ref41
  publication-title: Open Energy Information (OpenEI)
– ident: ref38
  doi: 10.1109/TSP.2012.2217338
– ident: ref3
  doi: 10.1109/TPWRS.2014.2299436
– ident: ref4
  doi: 10.1109/TNNLS.2016.2514358
– ident: ref6
  doi: 10.1109/JSAC.2012.120705
– ident: ref28
  doi: 10.1109/TSG.2010.2095046
– year: 1996
  ident: ref33
  publication-title: Power Generation Operation and Control
– ident: ref2
  doi: 10.1109/ACCESS.2015.2443119
SSID ssj0000605649
Score 2.608612
Snippet Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2192
SubjectTerms Algorithms
Approximation algorithms
Batteries
Computer applications
Computer simulation
Cooperative reinforcement learning
diffusion strategy
distributed economic dispatch
Distributed generation
Economics
Electric power grids
Energy storage
energy storage (ES)
function approximation
Learning
Learning (artificial intelligence)
Load modeling
Machine learning
Microgrids
Power dispatch
Randomness
Reinforcement
Stochastic processes
Stochasticity
Title Distributed Economic Dispatch in Microgrids Based on Cooperative Reinforcement Learning
URI https://ieeexplore.ieee.org/document/8306311
https://www.ncbi.nlm.nih.gov/pubmed/29771671
https://www.proquest.com/docview/2174544853
https://www.proquest.com/docview/2041624830
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VXuBCS8sjUJCRuJVsbSexN8dSqCrE7qEPsbfIju1StUpW3d0Lv54Z56EKAeISRYmTOPr8-Mae-Qbgg5cGzWQbUufxkJsypNZSGJcOpVPClsHQju5srs6u8q-LYrEFH8dYGO99dD7zEzqNe_murTe0VHY0RX6bUSDvIzTculitcT2FIy9Xke1KoWQqM70YYmR4eXQ5n3-7IEeu6UTimDwlFcgH81BMrPJ3jhnnmtMdmA217FxMbiebtZ3UP38TcPzf39iFpz3pZMddK3kGW77Zg50hoQPr-_cePB7ClFf78P0zSepSNizv2HCd4cUlDt4_2E3DZuTLd31_41bsE86FjrUNO2nbpe_ExNm5j6qsdVyAZL2Q6_VzuDr9cnlylvZZGNI6F3qdFsjQakMhtaV2niN9KkXhLCFpakpHpYzwOguBKxodjDA85NppYYwqgjXZC9hu2sa_AqZFMc1craS0BmmcsMIJZ3whfCaC5jwBMWBS1b1EOWXKuKuiqcLLKuJYEY5Vj2MCh-Mzy06g45-l9wmPsWQPRQIHA_RV34dXFRlrBVqvRZbA-_E29j7aUjGNbzdYhiOhlTm-JoGXXZMZ3y2RWgulxes_f_MNPKGadW5nB7C9vt_4t0hw1vZdbNm_ANFf9go
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-axmFcGGzAAgOMxA3SxU5sN0cYTGVre4BO9BbZsVMmUFKt7YW_nvecDyEEiEsUOY7j6Gf7_Z79PgBeeWFQTbZV7DxeMpNXsbXkxqWr3Clu88rQie5sribX2eVSLvfgzeAL470Pxmd-RLfhLN815Y62ys7GyG9TcuS9g3Jf8tZba9hRSZCZq8B3BVciFqle9l4ySX62mM-nn8mUazwSuCqPKQ7kL5IopFb5O8sM0ubiEGZ9P1sjk2-j3daOyh-_hXD83x-5D_c62snetuPkAez5-ggO-5QOrJvhR3DQOypvjuHLewqqS_mwvGN9OcPCNS7fX9lNzWZkzbe6vXEb9g6loWNNzc6bZu3bcOLskw9xWcuwBcm6UK6rh3B98WFxPom7PAxxmXG9jSVytNKQU22unU-QQOVcOktYmpISUinDvU6rKlG0PhhukirTTnNjlKysSR_Bft3U_gSY5nKculIJYQ0SOW654854yX3KK50kEfAek6LsgpRTrozvRVBWkrwIOBaEY9HhGMHr4Z11G6Ljn7WPCY-hZgdFBKc99EU3izcFqWsS9VeZRvByeIzzjw5VTO2bHdZJkNKKDJuJ4HE7ZIa2BZJrrjR_8udvvoCDyWI2LaYf51dP4S71sjVCO4X97e3OP0O6s7XPwyj_CcyG-VM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Economic+Dispatch+in+Microgrids+Based+on+Cooperative+Reinforcement+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Weirong&rft.au=Zhuang%2C+Peng&rft.au=Liang%2C+Hao&rft.au=Peng%2C+Jun&rft.date=2018-06-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=29&rft.issue=6&rft.spage=2192&rft_id=info:doi/10.1109%2FTNNLS.2018.2801880&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon