Distributed Economic Dispatch in Microgrids Based on Cooperative Reinforcement Learning
Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonline...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 29; no. 6; pp. 2192 - 2203 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2018.2801880 |
Cover
Loading…
Abstract | Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm. |
---|---|
AbstractList | Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm. Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm.Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm. |
Author | Liang, Hao Zhuang, Peng Huang, Zhiwu Peng, Jun Liu, Weirong |
Author_xml | – sequence: 1 givenname: Weirong orcidid: 0000-0002-2567-9369 surname: Liu fullname: Liu, Weirong email: frat@csu.edu.cn organization: School of Information Science and Engineering, Central South University, Changsha, China – sequence: 2 givenname: Peng surname: Zhuang fullname: Zhuang, Peng email: pzhuang@ualberta.ca organization: Department of Electrical and Computer Engineering, University of Alberta, Edmontion, Canada – sequence: 3 givenname: Hao orcidid: 0000-0001-7010-4540 surname: Liang fullname: Liang, Hao email: hao2@ualberta.ca organization: Department of Electrical and Computer Engineering, University of Alberta, Edmontion, Canada – sequence: 4 givenname: Jun surname: Peng fullname: Peng, Jun email: pengj@csu.edu.cn organization: Hunan Engineering Laboratory of Rail Vehicles Braking Technology, School of Information Science and Engineering, Central South University, Changsha, China – sequence: 5 givenname: Zhiwu surname: Huang fullname: Huang, Zhiwu email: hzw@csu.edu.cn organization: Hunan Engineering Laboratory of Rail Vehicles Braking Technology, School of Information Science and Engineering, Central South University, Changsha, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29771671$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUuPFCEUhYkZ4zycP6CJqcTNbLrlAgVVS6cdH0k7JjpGd4SCWyOTLmiBMvHfy9htL2YhCyDkO5d7zzklRyEGJOQZ0CUA7V_dXF-vvywZhW7Jurp39BE5YSDZgvGuOzrc1fdjcp7zHa1L0laK_gk5Zr1SIBWckG9vfC7JD3NB11zZGOLkbVMft6bYH40PzUdvU7xN3uXm0uRKxdCsYtxiMsX_wuYz-jDGZHHCUJo1mhR8uH1KHo9mk_F8f56Rr2-vblbvF-tP7z6sXq8XVoAqi7ZlzBpgvO2VQyoE9NC6oXcSjHXSDdIAKj6OVHacMQOGjkI5BcbIdhwMPyMXu7rbFH_OmIuefLa42ZiAcc6aUVF9EB2nFX35AL2Lcwq1O81AiVaIruWVerGn5mFCp7fJTyb91v8sqwDbAdWWnBOOBwSovo9G_41G30ej99FUUfdAZH2p_sVQkvGb_0uf76QeEQ9_1YEkB-B_ANSSmto |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1109_COMST_2021_3073036 crossref_primary_10_1063_5_0245111 crossref_primary_10_1016_j_ijepes_2023_109526 crossref_primary_10_1016_j_rser_2024_115251 crossref_primary_10_1109_TSG_2019_2933502 crossref_primary_10_1109_TSMC_2019_2903485 crossref_primary_10_1016_j_ifacol_2020_12_144 crossref_primary_10_1016_j_arcontrol_2020_03_001 crossref_primary_10_1016_j_segan_2024_101556 crossref_primary_10_61435_ijred_2024_60119 crossref_primary_10_1109_TSG_2023_3329459 crossref_primary_10_1007_s12083_019_00753_z crossref_primary_10_3390_en14217217 crossref_primary_10_1016_j_epsr_2021_107423 crossref_primary_10_1007_s12083_019_00752_0 crossref_primary_10_1109_TSG_2019_2896182 crossref_primary_10_1080_22348972_2019_1686861 crossref_primary_10_1109_TCSI_2024_3351942 crossref_primary_10_1109_JIOT_2021_3067951 crossref_primary_10_1109_TNNLS_2022_3222206 crossref_primary_10_32604_ee_2024_043159 crossref_primary_10_1109_TNNLS_2020_3027381 crossref_primary_10_1109_TSG_2022_3194131 crossref_primary_10_1016_j_ijepes_2023_109195 crossref_primary_10_1007_s10489_023_04489_5 crossref_primary_10_3390_en16041792 crossref_primary_10_1049_gtd2_12796 crossref_primary_10_1109_JIOT_2021_3131719 crossref_primary_10_1016_j_ijepes_2023_109230 crossref_primary_10_1016_j_energy_2025_135724 crossref_primary_10_1016_j_energy_2024_134115 crossref_primary_10_1109_TPWRS_2023_3298007 crossref_primary_10_1109_JIOT_2020_3046622 crossref_primary_10_1016_j_ijepes_2020_106759 crossref_primary_10_1109_ACCESS_2019_2925829 crossref_primary_10_1109_TII_2022_3159570 crossref_primary_10_1109_TSG_2019_2930299 crossref_primary_10_1109_ACCESS_2019_2911543 crossref_primary_10_1109_TNNLS_2023_3234049 crossref_primary_10_1109_TSTE_2021_3088951 crossref_primary_10_1007_s10668_023_03058_7 crossref_primary_10_3390_en13123207 crossref_primary_10_1109_ACCESS_2019_2935462 crossref_primary_10_1109_ACCESS_2020_3018142 crossref_primary_10_3390_electronics12030565 crossref_primary_10_1016_j_apenergy_2024_123611 crossref_primary_10_1109_TPWRS_2022_3142969 crossref_primary_10_1109_TSG_2023_3281935 crossref_primary_10_1109_TSTE_2022_3178415 crossref_primary_10_3390_app142210635 crossref_primary_10_1016_j_apenergy_2023_121359 crossref_primary_10_1109_ACCESS_2021_3075247 crossref_primary_10_1016_j_asoc_2021_108345 crossref_primary_10_1109_TPWRS_2019_2948132 crossref_primary_10_1109_TSIPN_2024_3407660 crossref_primary_10_1016_j_epsr_2024_110711 crossref_primary_10_1016_j_rser_2019_109523 crossref_primary_10_1109_JSYST_2023_3315833 crossref_primary_10_1186_s13638_019_1490_5 crossref_primary_10_1016_j_adapen_2023_100155 crossref_primary_10_1016_j_ecmx_2022_100192 crossref_primary_10_1016_j_isatra_2025_01_009 crossref_primary_10_1016_j_jhydrol_2023_130019 crossref_primary_10_1109_ACCESS_2019_2937626 crossref_primary_10_1109_TPWRS_2022_3159825 crossref_primary_10_1109_ACCESS_2020_3041273 crossref_primary_10_1109_ACCESS_2019_2909869 crossref_primary_10_1016_j_ijepes_2023_109212 crossref_primary_10_1109_ACCESS_2020_3030026 crossref_primary_10_1109_TSIPN_2023_3239698 crossref_primary_10_1016_j_apenergy_2019_114423 crossref_primary_10_1186_s13638_019_1566_2 crossref_primary_10_1109_JSYST_2022_3171534 crossref_primary_10_1007_s00202_022_01643_z crossref_primary_10_1360_nso_20220038 crossref_primary_10_1002_2050_7038_12896 crossref_primary_10_1016_j_rico_2021_100030 crossref_primary_10_1016_j_aeue_2024_155395 crossref_primary_10_1109_TSMC_2020_3035406 crossref_primary_10_1007_s12083_020_00879_5 crossref_primary_10_1109_TPWRS_2021_3070161 crossref_primary_10_1109_TPWRS_2022_3155750 crossref_primary_10_1109_TNSE_2023_3295079 crossref_primary_10_1049_gtd2_12904 crossref_primary_10_3390_en14185688 crossref_primary_10_1016_j_egyai_2022_100147 crossref_primary_10_1109_TNNLS_2021_3060187 crossref_primary_10_1016_j_epsr_2021_107229 crossref_primary_10_1016_j_swevo_2019_05_008 crossref_primary_10_1109_ACCESS_2021_3112817 crossref_primary_10_3390_en15144960 crossref_primary_10_1186_s13677_021_00259_1 crossref_primary_10_1002_er_5649 crossref_primary_10_1007_s00202_023_01947_8 crossref_primary_10_1007_s12667_023_00603_1 crossref_primary_10_1109_ACCESS_2024_3495032 crossref_primary_10_1109_TCST_2024_3494733 crossref_primary_10_1109_ACCESS_2019_2956995 crossref_primary_10_1109_TSG_2024_3466768 crossref_primary_10_12677_SG_2023_131002 crossref_primary_10_1016_j_enbuild_2024_114410 crossref_primary_10_1016_j_energy_2022_125624 crossref_primary_10_1371_journal_pone_0261709 crossref_primary_10_1109_JSYST_2023_3284403 crossref_primary_10_1109_TSG_2020_3035127 crossref_primary_10_1109_TSG_2022_3154718 crossref_primary_10_1109_ACCESS_2019_2904079 crossref_primary_10_1109_TCNS_2024_3510598 crossref_primary_10_1016_j_apenergy_2021_116879 crossref_primary_10_1016_j_prime_2024_100745 crossref_primary_10_1109_JSYST_2024_3355328 crossref_primary_10_1109_ACCESS_2021_3082538 crossref_primary_10_1016_j_isatra_2024_12_045 crossref_primary_10_1109_JIOT_2021_3112883 crossref_primary_10_1016_j_egyr_2023_10_078 crossref_primary_10_1049_iet_gtd_2019_1284 crossref_primary_10_1016_j_ijepes_2020_105904 crossref_primary_10_1016_j_engappai_2021_104326 crossref_primary_10_1109_ACCESS_2019_2913885 crossref_primary_10_3390_designs7030058 crossref_primary_10_1109_ACCESS_2022_3176446 crossref_primary_10_1016_j_ifacol_2023_10_915 crossref_primary_10_1109_TSG_2022_3164080 crossref_primary_10_1109_TNNLS_2022_3170070 crossref_primary_10_1049_gtd2_12206 crossref_primary_10_1016_j_asoc_2020_106882 crossref_primary_10_1049_cps2_12007 crossref_primary_10_3390_en15082894 crossref_primary_10_1016_j_ijepes_2022_108149 crossref_primary_10_3390_su132212734 crossref_primary_10_1016_j_rser_2025_115489 crossref_primary_10_1109_TSG_2022_3214202 crossref_primary_10_1109_TSG_2022_3153082 crossref_primary_10_1109_TCE_2023_3279869 crossref_primary_10_1109_ACCESS_2019_2918928 crossref_primary_10_1109_TNNLS_2021_3105668 crossref_primary_10_3390_s23167216 crossref_primary_10_1016_j_rser_2020_110618 crossref_primary_10_1109_TII_2024_3390595 crossref_primary_10_1016_j_apenergy_2024_123923 crossref_primary_10_1016_j_ijepes_2024_110017 crossref_primary_10_1016_j_segan_2024_101362 crossref_primary_10_1109_TIA_2019_2958786 crossref_primary_10_1002_ett_3871 crossref_primary_10_1063_5_0051840 crossref_primary_10_1109_TPWRS_2021_3092220 crossref_primary_10_3390_su16072642 |
Cites_doi | 10.1109/TNNLS.2014.2320280 10.1109/TSG.2015.2409053 10.1109/TPWRS.2014.2357079 10.1109/TIE.2014.2361485 10.1109/TAC.2014.2368731 10.1109/TSG.2015.2476669 10.1109/PTC.2003.1304379 10.1109/ICASSP.2013.6638519 10.1109/TPWRS.2015.2395452 10.1109/JESTPE.2014.2315961 10.1109/TCYB.2016.2544866 10.1109/SmartGridComm.2013.6687950 10.1109/TCST.2011.2180907 10.1201/CRCAUTCONENG 10.1109/TNNLS.2015.2441749 10.1016/j.jpowsour.2005.04.030 10.1017/CBO9780511804441 10.1109/TSG.2012.2213348 10.3390/en7042027 10.1109/TNNLS.2015.2412035 10.1109/CITRES.2010.5619782 10.1049/iet-gtd.2014.1084 10.1109/TPWRS.2015.2455491 10.3390/en6115625 10.1109/SURV.2014.020614.00115 10.1145/1553374.1553501 10.1109/CCIP.2015.7122614 10.1109/TSG.2014.2329846 10.1007/978-3-642-27645-3_15 10.1016/j.rser.2016.06.037 10.1109/TSG.2013.2269481 10.1109/TSP.2012.2217338 10.1109/TPWRS.2014.2299436 10.1109/TNNLS.2016.2514358 10.1109/JSAC.2012.120705 10.1109/TSG.2010.2095046 10.1109/ACCESS.2015.2443119 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2018.2801880 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Computer Science |
EISSN | 2162-2388 |
EndPage | 2203 |
ExternalDocumentID | 29771671 10_1109_TNNLS_2018_2801880 8306311 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61672539; 61672537; 61379111; 61772558 funderid: 10.13039/501100001809 – fundername: CSC State Scholarship Fund grantid: 201406375017 funderid: 10.13039/501100004543 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 10.13039/501100000038 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c417t-5522ca123597de0441915db9d61acd6db6a1e73ff068322a1a0f47d71aa65fba3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 17:32:57 EDT 2025 Mon Jun 30 03:45:10 EDT 2025 Mon Jul 21 05:45:03 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 Tue Jul 01 00:27:26 EDT 2025 Wed Aug 27 02:50:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-5522ca123597de0441915db9d61acd6db6a1e73ff068322a1a0f47d71aa65fba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2567-9369 0000-0001-7010-4540 |
PMID | 29771671 |
PQID | 2174544853 |
PQPubID | 85436 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2174544853 crossref_primary_10_1109_TNNLS_2018_2801880 proquest_miscellaneous_2041624830 pubmed_primary_29771671 ieee_primary_8306311 crossref_citationtrail_10_1109_TNNLS_2018_2801880 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 st?elec (ref8) 2012 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref11 wood (ref33) 1996 ref32 lei (ref37) 2015; 26 ref10 ref2 (ref39) 2017 ref1 ref17 ref38 ref16 ref19 ref18 (ref41) 2017 xin (ref20) 2012 maei (ref24) 2010 ref45 ref23 ref26 ref25 ref42 ref22 ref44 (ref43) 2017 ref21 ref28 ref27 ref29 ref7 (ref40) 2017 ref9 ref4 ref3 ref6 ref5 |
References_xml | – volume: 26 start-page: 551 year: 2015 ident: ref37 article-title: Generalization performance of radial basis function networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2320280 – ident: ref10 doi: 10.1109/TSG.2015.2409053 – ident: ref19 doi: 10.1109/TPWRS.2014.2357079 – ident: ref18 doi: 10.1109/TIE.2014.2361485 – start-page: 6924 year: 2012 ident: ref20 article-title: Genetic based fuzzy Q-learning energy management for smart grid publication-title: Proc IEEE CCC – ident: ref26 doi: 10.1109/TAC.2014.2368731 – ident: ref42 doi: 10.1109/TSG.2015.2476669 – year: 2017 ident: ref40 publication-title: NREL Measurement and Instrumentation Data Center – start-page: 1 year: 2010 ident: ref24 article-title: Toward off-policy learning control with function approximation publication-title: Proc 27th Int Conf Mach Learn – ident: ref13 doi: 10.1109/PTC.2003.1304379 – ident: ref27 doi: 10.1109/ICASSP.2013.6638519 – ident: ref32 doi: 10.1109/TPWRS.2015.2395452 – year: 2017 ident: ref39 publication-title: Distribution Test 33-Bus Feeder (Node_33 m) – start-page: 1 year: 2012 ident: ref8 article-title: Modeling and simulation of a microgrid as a stochastic hybrid system publication-title: Proc IEEE ISGT – ident: ref29 doi: 10.1109/JESTPE.2014.2315961 – ident: ref17 doi: 10.1109/TCYB.2016.2544866 – ident: ref30 doi: 10.1109/SmartGridComm.2013.6687950 – ident: ref11 doi: 10.1109/TCST.2011.2180907 – ident: ref22 doi: 10.1201/CRCAUTCONENG – ident: ref25 doi: 10.1109/TNNLS.2015.2441749 – ident: ref31 doi: 10.1016/j.jpowsour.2005.04.030 – ident: ref35 doi: 10.1017/CBO9780511804441 – ident: ref12 doi: 10.1109/TSG.2012.2213348 – ident: ref5 doi: 10.3390/en7042027 – ident: ref36 doi: 10.1109/TNNLS.2015.2412035 – ident: ref44 doi: 10.1109/CITRES.2010.5619782 – year: 2017 ident: ref43 publication-title: Datasheets for Diesel On-Site Power Industrial Generators of MQ POWER Company – ident: ref34 doi: 10.1049/iet-gtd.2014.1084 – ident: ref15 doi: 10.1109/TPWRS.2015.2455491 – ident: ref45 doi: 10.3390/en6115625 – ident: ref7 doi: 10.1109/SURV.2014.020614.00115 – ident: ref23 doi: 10.1145/1553374.1553501 – ident: ref21 doi: 10.1109/CCIP.2015.7122614 – ident: ref14 doi: 10.1109/TSG.2014.2329846 – ident: ref16 doi: 10.1007/978-3-642-27645-3_15 – ident: ref1 doi: 10.1016/j.rser.2016.06.037 – ident: ref9 doi: 10.1109/TSG.2013.2269481 – year: 2017 ident: ref41 publication-title: Open Energy Information (OpenEI) – ident: ref38 doi: 10.1109/TSP.2012.2217338 – ident: ref3 doi: 10.1109/TPWRS.2014.2299436 – ident: ref4 doi: 10.1109/TNNLS.2016.2514358 – ident: ref6 doi: 10.1109/JSAC.2012.120705 – ident: ref28 doi: 10.1109/TSG.2010.2095046 – year: 1996 ident: ref33 publication-title: Power Generation Operation and Control – ident: ref2 doi: 10.1109/ACCESS.2015.2443119 |
SSID | ssj0000605649 |
Score | 2.608612 |
Snippet | Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2192 |
SubjectTerms | Algorithms Approximation algorithms Batteries Computer applications Computer simulation Cooperative reinforcement learning diffusion strategy distributed economic dispatch Distributed generation Economics Electric power grids Energy storage energy storage (ES) function approximation Learning Learning (artificial intelligence) Load modeling Machine learning Microgrids Power dispatch Randomness Reinforcement Stochastic processes Stochasticity |
Title | Distributed Economic Dispatch in Microgrids Based on Cooperative Reinforcement Learning |
URI | https://ieeexplore.ieee.org/document/8306311 https://www.ncbi.nlm.nih.gov/pubmed/29771671 https://www.proquest.com/docview/2174544853 https://www.proquest.com/docview/2041624830 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VXuBCS8sjUJCRuJVsbSexN8dSqCrE7qEPsbfIju1StUpW3d0Lv54Z56EKAeISRYmTOPr8-Mae-Qbgg5cGzWQbUufxkJsypNZSGJcOpVPClsHQju5srs6u8q-LYrEFH8dYGO99dD7zEzqNe_murTe0VHY0RX6bUSDvIzTculitcT2FIy9Xke1KoWQqM70YYmR4eXQ5n3-7IEeu6UTimDwlFcgH81BMrPJ3jhnnmtMdmA217FxMbiebtZ3UP38TcPzf39iFpz3pZMddK3kGW77Zg50hoQPr-_cePB7ClFf78P0zSepSNizv2HCd4cUlDt4_2E3DZuTLd31_41bsE86FjrUNO2nbpe_ExNm5j6qsdVyAZL2Q6_VzuDr9cnlylvZZGNI6F3qdFsjQakMhtaV2niN9KkXhLCFpakpHpYzwOguBKxodjDA85NppYYwqgjXZC9hu2sa_AqZFMc1craS0BmmcsMIJZ3whfCaC5jwBMWBS1b1EOWXKuKuiqcLLKuJYEY5Vj2MCh-Mzy06g45-l9wmPsWQPRQIHA_RV34dXFRlrBVqvRZbA-_E29j7aUjGNbzdYhiOhlTm-JoGXXZMZ3y2RWgulxes_f_MNPKGadW5nB7C9vt_4t0hw1vZdbNm_ANFf9go |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH-axmFcGGzAAgOMxA3SxU5sN0cYTGVre4BO9BbZsVMmUFKt7YW_nvecDyEEiEsUOY7j6Gf7_Z79PgBeeWFQTbZV7DxeMpNXsbXkxqWr3Clu88rQie5sribX2eVSLvfgzeAL470Pxmd-RLfhLN815Y62ys7GyG9TcuS9g3Jf8tZba9hRSZCZq8B3BVciFqle9l4ySX62mM-nn8mUazwSuCqPKQ7kL5IopFb5O8sM0ubiEGZ9P1sjk2-j3daOyh-_hXD83x-5D_c62snetuPkAez5-ggO-5QOrJvhR3DQOypvjuHLewqqS_mwvGN9OcPCNS7fX9lNzWZkzbe6vXEb9g6loWNNzc6bZu3bcOLskw9xWcuwBcm6UK6rh3B98WFxPom7PAxxmXG9jSVytNKQU22unU-QQOVcOktYmpISUinDvU6rKlG0PhhukirTTnNjlKysSR_Bft3U_gSY5nKculIJYQ0SOW654854yX3KK50kEfAek6LsgpRTrozvRVBWkrwIOBaEY9HhGMHr4Z11G6Ljn7WPCY-hZgdFBKc99EU3izcFqWsS9VeZRvByeIzzjw5VTO2bHdZJkNKKDJuJ4HE7ZIa2BZJrrjR_8udvvoCDyWI2LaYf51dP4S71sjVCO4X97e3OP0O6s7XPwyj_CcyG-VM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Economic+Dispatch+in+Microgrids+Based+on+Cooperative+Reinforcement+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Weirong&rft.au=Zhuang%2C+Peng&rft.au=Liang%2C+Hao&rft.au=Peng%2C+Jun&rft.date=2018-06-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=29&rft.issue=6&rft.spage=2192&rft_id=info:doi/10.1109%2FTNNLS.2018.2801880&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |