A novel route for the flexible preparation of hydrocarbon jet fuels from biomass-based platform chemicals: a case of using furfural and 2,3-butanediol as feedstocks

Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was developed. Carbonaceous solid acids bearing -SO 3 H groups were prepared from biomass or its isolated polymeric components to catalyze the dehy...

Full description

Saved in:
Bibliographic Details
Published inGreen chemistry : an international journal and green chemistry resource : GC Vol. 2; no. 9; pp. 218 - 226
Main Authors Cui, Xingkai, Zhao, Xuebing, Liu, Dehua
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was developed. Carbonaceous solid acids bearing -SO 3 H groups were prepared from biomass or its isolated polymeric components to catalyze the dehydration of BD to methyl ethyl ketone (MEK) in the liquid phase at low temperatures (<170 °C). Lignocellulose, cellulose, and lignin were more suitable feedstocks than xylan to prepare cabonaceous solid acids for well introducing -SO 3 H groups into carbon carriers with good acidity. The highest MEK yield of 57.6% with 79.1% BD conversion and 72.8% MEK selectivity was obtained when sugarcane bagasse solid acid with p -toluenesulfonic acid (PTSA) was used as the catalyst. However, the main side product in the dehydration process was cyclic hydrophobic ketal (CHK), formed by the condensation of BD and MEK, and it could be easily re-converted to BD and MEK via acid catalysis. The C9/C14 precursors were obtained by carbon chain extension via aldol condensation of furfural and MEK under alkaline conditions. The product profile could be easily controlled by adjusting the reaction variables, particularly the ratio of furfural to MEK, as well as the solvent system to maximize the yield of the desired C9/C14 precursors and minimize the formation of heavier condensation products. Under the optimal reaction conditions, nearly 100% conversion of furfural with a C9/C14 yield of 99.8% was obtained. Hydrodeoxygenation of the precursors resulted in the formation of hydrocarbon fuels, with C1-C4, C5-C8, and C9-C14 alkane products obtained in the yields of 15.4%, 7.9%, and 73%, respectively. This process showed a theoretical exergy efficiency similar to that of the bioethanol process and higher than that of the biobutanol process. Flexible production of hydrocarbon jet fuels with biomass-derived furfural and 2,3-butanediol as feedstocks by a combination of acid-catalyzed dehydration, aldol condensation, and hydrodeoxygenation.
AbstractList Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was developed. Carbonaceous solid acids bearing –SO 3 H groups were prepared from biomass or its isolated polymeric components to catalyze the dehydration of BD to methyl ethyl ketone (MEK) in the liquid phase at low temperatures (<170 °C). Lignocellulose, cellulose, and lignin were more suitable feedstocks than xylan to prepare cabonaceous solid acids for well introducing –SO 3 H groups into carbon carriers with good acidity. The highest MEK yield of 57.6% with 79.1% BD conversion and 72.8% MEK selectivity was obtained when sugarcane bagasse solid acid with p -toluenesulfonic acid (PTSA) was used as the catalyst. However, the main side product in the dehydration process was cyclic hydrophobic ketal (CHK), formed by the condensation of BD and MEK, and it could be easily re-converted to BD and MEK via acid catalysis. The C9/C14 precursors were obtained by carbon chain extension via aldol condensation of furfural and MEK under alkaline conditions. The product profile could be easily controlled by adjusting the reaction variables, particularly the ratio of furfural to MEK, as well as the solvent system to maximize the yield of the desired C9/C14 precursors and minimize the formation of heavier condensation products. Under the optimal reaction conditions, nearly 100% conversion of furfural with a C9/C14 yield of 99.8% was obtained. Hydrodeoxygenation of the precursors resulted in the formation of hydrocarbon fuels, with C1–C4, C5–C8, and C9–C14 alkane products obtained in the yields of 15.4%, 7.9%, and 73%, respectively. This process showed a theoretical exergy efficiency similar to that of the bioethanol process and higher than that of the biobutanol process.
Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was developed. Carbonaceous solid acids bearing –SO3H groups were prepared from biomass or its isolated polymeric components to catalyze the dehydration of BD to methyl ethyl ketone (MEK) in the liquid phase at low temperatures (<170 °C). Lignocellulose, cellulose, and lignin were more suitable feedstocks than xylan to prepare cabonaceous solid acids for well introducing –SO3H groups into carbon carriers with good acidity. The highest MEK yield of 57.6% with 79.1% BD conversion and 72.8% MEK selectivity was obtained when sugarcane bagasse solid acid with p-toluenesulfonic acid (PTSA) was used as the catalyst. However, the main side product in the dehydration process was cyclic hydrophobic ketal (CHK), formed by the condensation of BD and MEK, and it could be easily re-converted to BD and MEK via acid catalysis. The C9/C14 precursors were obtained by carbon chain extension via aldol condensation of furfural and MEK under alkaline conditions. The product profile could be easily controlled by adjusting the reaction variables, particularly the ratio of furfural to MEK, as well as the solvent system to maximize the yield of the desired C9/C14 precursors and minimize the formation of heavier condensation products. Under the optimal reaction conditions, nearly 100% conversion of furfural with a C9/C14 yield of 99.8% was obtained. Hydrodeoxygenation of the precursors resulted in the formation of hydrocarbon fuels, with C1–C4, C5–C8, and C9–C14 alkane products obtained in the yields of 15.4%, 7.9%, and 73%, respectively. This process showed a theoretical exergy efficiency similar to that of the bioethanol process and higher than that of the biobutanol process.
Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was developed. Carbonaceous solid acids bearing -SO 3 H groups were prepared from biomass or its isolated polymeric components to catalyze the dehydration of BD to methyl ethyl ketone (MEK) in the liquid phase at low temperatures (<170 °C). Lignocellulose, cellulose, and lignin were more suitable feedstocks than xylan to prepare cabonaceous solid acids for well introducing -SO 3 H groups into carbon carriers with good acidity. The highest MEK yield of 57.6% with 79.1% BD conversion and 72.8% MEK selectivity was obtained when sugarcane bagasse solid acid with p -toluenesulfonic acid (PTSA) was used as the catalyst. However, the main side product in the dehydration process was cyclic hydrophobic ketal (CHK), formed by the condensation of BD and MEK, and it could be easily re-converted to BD and MEK via acid catalysis. The C9/C14 precursors were obtained by carbon chain extension via aldol condensation of furfural and MEK under alkaline conditions. The product profile could be easily controlled by adjusting the reaction variables, particularly the ratio of furfural to MEK, as well as the solvent system to maximize the yield of the desired C9/C14 precursors and minimize the formation of heavier condensation products. Under the optimal reaction conditions, nearly 100% conversion of furfural with a C9/C14 yield of 99.8% was obtained. Hydrodeoxygenation of the precursors resulted in the formation of hydrocarbon fuels, with C1-C4, C5-C8, and C9-C14 alkane products obtained in the yields of 15.4%, 7.9%, and 73%, respectively. This process showed a theoretical exergy efficiency similar to that of the bioethanol process and higher than that of the biobutanol process. Flexible production of hydrocarbon jet fuels with biomass-derived furfural and 2,3-butanediol as feedstocks by a combination of acid-catalyzed dehydration, aldol condensation, and hydrodeoxygenation.
Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was developed. Carbonaceous solid acids bearing –SO₃H groups were prepared from biomass or its isolated polymeric components to catalyze the dehydration of BD to methyl ethyl ketone (MEK) in the liquid phase at low temperatures (<170 °C). Lignocellulose, cellulose, and lignin were more suitable feedstocks than xylan to prepare cabonaceous solid acids for well introducing –SO₃H groups into carbon carriers with good acidity. The highest MEK yield of 57.6% with 79.1% BD conversion and 72.8% MEK selectivity was obtained when sugarcane bagasse solid acid with p-toluenesulfonic acid (PTSA) was used as the catalyst. However, the main side product in the dehydration process was cyclic hydrophobic ketal (CHK), formed by the condensation of BD and MEK, and it could be easily re-converted to BD and MEK via acid catalysis. The C9/C14 precursors were obtained by carbon chain extension via aldol condensation of furfural and MEK under alkaline conditions. The product profile could be easily controlled by adjusting the reaction variables, particularly the ratio of furfural to MEK, as well as the solvent system to maximize the yield of the desired C9/C14 precursors and minimize the formation of heavier condensation products. Under the optimal reaction conditions, nearly 100% conversion of furfural with a C9/C14 yield of 99.8% was obtained. Hydrodeoxygenation of the precursors resulted in the formation of hydrocarbon fuels, with C1–C4, C5–C8, and C9–C14 alkane products obtained in the yields of 15.4%, 7.9%, and 73%, respectively. This process showed a theoretical exergy efficiency similar to that of the bioethanol process and higher than that of the biobutanol process.
Author Zhao, Xuebing
Liu, Dehua
Cui, Xingkai
AuthorAffiliation Department of Chemical Engineering
Tsinghua University
Ministry of Education of China
Institute of Applied Chemistry
Key Laboratory for Industrial Biocatalysis
AuthorAffiliation_xml – sequence: 0
  name: Key Laboratory for Industrial Biocatalysis
– sequence: 0
  name: Tsinghua University
– sequence: 0
  name: Institute of Applied Chemistry
– sequence: 0
  name: Ministry of Education of China
– sequence: 0
  name: Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Xingkai
  surname: Cui
  fullname: Cui, Xingkai
– sequence: 2
  givenname: Xuebing
  surname: Zhao
  fullname: Zhao, Xuebing
– sequence: 3
  givenname: Dehua
  surname: Liu
  fullname: Liu, Dehua
BookMark eNptkktr3DAQgEVJoHn00ntBkEspdaqHbcm5hU2bBAK9tGejxzirrWw5khya_5MfGm22JBAKgtHjm49hRodobwoTIPSRklNKePfNyFtDCOuYfYcOaN3yqmOC7L3sW_YeHaa0IYRS0dYH6PEcT-EePI5hyYCHEHFel-jhr9Me8BxhVlFlFyYcBrx-sDEYFXU5biDjYQGf8BDDiLULo0qp0iqBxbNXuchGbNYwOqN8OsMKm_K21SzJTbclOZalPFaTxewrr_SS1QTWhXJVrAA25WD-pGO0PxQDfPgXj9DvH99_ra6qm5-X16vzm8rUVOSqtgCS6ka0YrBCgSDSStHJmgzSkE6D7pq6BuCUEgVSWNUR2chaSy1KmxQ_Qp933jmGuwVS7keXDHhfqgpL6hljlDSUNV1BT96gm7DEqVTXM8JbzgnnW-rLjjIxpBRh6OfoRhUfekr67cD6lbxcPQ_sosDkDWxcfu58jsr5_6d82qXEZF7Ur3-APwGW2KV_
CitedBy_id crossref_primary_10_1016_j_fuel_2021_120889
crossref_primary_10_1021_acs_energyfuels_0c00919
crossref_primary_10_1016_j_cattod_2024_114847
crossref_primary_10_1021_acssuschemeng_9b00190
crossref_primary_10_1007_s13399_021_01823_0
crossref_primary_10_1016_j_biortech_2021_125155
crossref_primary_10_1016_j_biortech_2023_128626
crossref_primary_10_1016_j_procbio_2020_08_018
crossref_primary_10_1039_D3NJ02558F
crossref_primary_10_1002_cctc_202400179
crossref_primary_10_1016_j_enconman_2022_115956
crossref_primary_10_1021_acssuschemeng_9b07300
crossref_primary_10_1039_D0GC02770G
crossref_primary_10_3390_fermentation9050488
crossref_primary_10_1016_j_fuel_2019_116267
crossref_primary_10_3390_fermentation7040307
crossref_primary_10_1016_j_cej_2025_160622
crossref_primary_10_1007_s13399_020_01206_x
crossref_primary_10_1007_s13399_024_06194_w
crossref_primary_10_1039_D0SE01110J
crossref_primary_10_1039_D3CY01664A
crossref_primary_10_1016_j_cej_2020_124451
crossref_primary_10_1039_C8GC02680G
crossref_primary_10_1039_D3EY00309D
crossref_primary_10_3775_jie_101_95
crossref_primary_10_1021_acscatal_2c01257
crossref_primary_10_1021_acssuschemeng_2c01971
crossref_primary_10_1016_j_fuel_2021_121765
crossref_primary_10_1627_jpi_67_195
crossref_primary_10_1016_j_jechem_2022_12_017
crossref_primary_10_1016_j_fuproc_2019_106161
crossref_primary_10_1186_s13068_023_02344_w
crossref_primary_10_3390_pr9030517
crossref_primary_10_1002_hlca_202200032
crossref_primary_10_1002_slct_202003770
crossref_primary_10_1016_j_biotechadv_2021_107783
crossref_primary_10_1016_j_renene_2023_05_063
crossref_primary_10_1007_s11814_018_0161_2
crossref_primary_10_1039_D0GC02331K
crossref_primary_10_1002_bbb_2057
crossref_primary_10_3390_catal13030530
crossref_primary_10_1007_s00253_022_12301_6
crossref_primary_10_1016_j_cattod_2020_04_067
crossref_primary_10_1016_j_fuel_2020_119401
crossref_primary_10_1016_j_fuel_2024_133670
crossref_primary_10_3390_en16155802
Cites_doi 10.1016/j.jhazmat.2014.08.033
10.1039/C3EE43846E
10.1039/C0EE00436G
10.1039/C2EE23316A
10.1021/acscatal.7b02577
10.1016/j.biortech.2015.12.005
10.1016/j.biortech.2016.02.059
10.1016/j.rser.2014.06.013
10.1002/cssc.201402056
10.1002/cssc.201601251
10.1039/C4GC01314J
10.1039/c0gc00263a
10.1186/s13068-015-0336-6
10.1039/C5EE02666K
10.1039/C6GC02528E
10.1039/B918922J
10.1038/nchem.1609
10.1021/acscatal.6b03113
10.1016/j.carbon.2009.04.026
10.1007/s10562-017-2027-3
10.1039/C5RA23251A
10.1007/s00253-009-1883-1
10.1016/0008-6223(64)90035-1
10.1111/j.1365-313X.2008.03463.x
10.1002/cssc.201501136
10.1002/cssc.201700863
10.1039/C5GC02414E
10.1021/acssuschemeng.6b01540
10.1002/bit.260290308
10.1002/cssc.201100811
10.1039/c004654j
10.1002/cssc.201300318
10.1039/c3gc37065h
10.1038/438178a
10.1016/j.fuel.2003.11.015
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
7S9
L.6
DOI 10.1039/c8gc00292d
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Sustainability Science Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Sustainability Science Abstracts
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Materials Research Database

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1463-9270
EndPage 226
ExternalDocumentID 10_1039_C8GC00292D
c8gc00292d
GroupedDBID -JG
0-7
0R~
29I
4.4
5GY
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
0UZ
1TJ
53G
71~
AAYXX
ACHDF
ACRPL
ADNMO
ADVLN
AFFNX
AFRZK
AGQPQ
AHGXI
AITUG
AKMSF
AKRWK
ALSGL
ALUYA
AMRAJ
ANBJS
ANLMG
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
EEHRC
FEDTE
HVGLF
H~9
IDY
J3G
J3H
L-8
NDZJH
R56
RCLXC
ROL
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
7S9
L.6
ID FETCH-LOGICAL-c417t-4dee81b5767fd7ae708d879840f8c09beb9544ee3110ae87da908584b8b7927a3
ISSN 1463-9262
1463-9270
IngestDate Fri Jul 11 06:23:10 EDT 2025
Mon Jun 30 12:03:14 EDT 2025
Tue Jul 01 01:41:14 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Tue Dec 17 20:58:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-4dee81b5767fd7ae708d879840f8c09beb9544ee3110ae87da908584b8b7927a3
Notes Electronic supplementary information (ESI) available: specifications of jet A-1 fuel and properties of
tetradecane; schematic diagram of the reactive distillation apparatus used in the experiments; characterization and comparison on the structures of sugarcane bagasse, filter paper cellulose, isolated lignin and xylan, and corresponding carbonized solid and sulfonated solid acids by XPS, FTIR, XRD and SEM. See DOI: 10.1039/c8gc00292d
n
nonane and
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4094-268X
PQID 2036330339
PQPubID 2047490
PageCount 9
ParticipantIDs crossref_primary_10_1039_C8GC00292D
proquest_journals_2036330339
proquest_miscellaneous_2221051259
rsc_primary_c8gc00292d
crossref_citationtrail_10_1039_C8GC00292D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Green chemistry : an international journal and green chemistry resource : GC
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Alonso (C8GC00292D-(cit3)/*[position()=1]) 2013; 15
Tran (C8GC00292D-(cit29)/*[position()=1]) 1987; 29
Tang (C8GC00292D-(cit37)/*[position()=1]) 1964; 2
Bohre (C8GC00292D-(cit9)/*[position()=1]) 2015; 8
Toda (C8GC00292D-(cit27)/*[position()=1]) 2005; 438
Mariscal (C8GC00292D-(cit25)/*[position()=1]) 2016; 9
Li (C8GC00292D-(cit10)/*[position()=1]) 2018; 8
Zhu (C8GC00292D-(cit8)/*[position()=1]) 2016; 18
Dutta (C8GC00292D-(cit13)/*[position()=1]) 2017; 7
Bond (C8GC00292D-(cit17)/*[position()=1]) 2014; 7
Sharma (C8GC00292D-(cit39)/*[position()=1]) 2004; 83
Serrano-Ruiz (C8GC00292D-(cit7)/*[position()=1]) 2011; 4
Olcay (C8GC00292D-(cit15)/*[position()=1]) 2013; 6
Liu (C8GC00292D-(cit18)/*[position()=1]) 2017; 10
Jones (C8GC00292D-(cit6)/*[position()=1]) 2013
Akimkulova (C8GC00292D-(cit34)/*[position()=1]) 2016; 208
Alonso (C8GC00292D-(cit24)/*[position()=1]) 2010; 12
Xing (C8GC00292D-(cit11)/*[position()=1]) 2010; 12
Zhao (C8GC00292D-(cit31)/*[position()=1]) 2016; 6
Thome (C8GC00292D-(cit22)/*[position()=1]) 2017; 147
Sutton (C8GC00292D-(cit16)/*[position()=1]) 2013; 5
Lou (C8GC00292D-(cit28)/*[position()=1]) 2012; 5
Cho (C8GC00292D-(cit21)/*[position()=1]) 2015; 8
Chen (C8GC00292D-(cit26)/*[position()=1]) 2016; 4
Koutinas (C8GC00292D-(cit20)/*[position()=1]) 2016; 204
Wegenhart (C8GC00292D-(cit14)/*[position()=1]) 2014; 7
Collard (C8GC00292D-(cit38)/*[position()=1]) 2014; 38
Sevilla (C8GC00292D-(cit36)/*[position()=1]) 2009; 47
Mascal (C8GC00292D-(cit2)/*[position()=1]) 2010; 12
Tran (C8GC00292D-(cit23)/*[position()=1]) 1987; 29
Li (C8GC00292D-(cit35)/*[position()=1]) 2014; 280
Pramod (C8GC00292D-(cit5)/*[position()=1]) 2016
Pauly (C8GC00292D-(cit1)/*[position()=1]) 2008; 54
Zhao (C8GC00292D-(cit33)/*[position()=1]) 2009; 82
Multer (C8GC00292D-(cit30)/*[position()=1]) 2013; 52
Yang (C8GC00292D-(cit41)/*[position()=1]) 2014; 16
Alam (C8GC00292D-(cit4)/*[position()=1]) 2016; 18
Bui (C8GC00292D-(cit12)/*[position()=1]) 2017; 10
Song (C8GC00292D-(cit19)/*[position()=1]) 2012; 7
Yang (C8GC00292D-(cit40)/*[position()=1]) 2013; 6
References_xml – issn: 2012
  doi: Shao
– issn: 2013
  publication-title: Pacific Northwest National Laboratory (PNNL)
  doi: Jones Meyer Snowden-Swan Padmaperuma Tan Dutta Jacobson Cafferty
– issn: 2016
  end-page: 173-198
  publication-title: Catalytic Gasification of Lignocellulosic Biomass
  doi: Pramod Seshan
– volume: 7
  start-page: 4517
  year: 2012
  ident: C8GC00292D-(cit19)/*[position()=1]
  publication-title: BioResources
– volume: 280
  start-page: 450
  year: 2014
  ident: C8GC00292D-(cit35)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.08.033
– volume: 7
  start-page: 1500
  year: 2014
  ident: C8GC00292D-(cit17)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43846E
– volume: 4
  start-page: 83
  year: 2011
  ident: C8GC00292D-(cit7)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00436G
– volume: 6
  start-page: 205
  year: 2013
  ident: C8GC00292D-(cit15)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE23316A
– volume: 8
  start-page: 148
  year: 2018
  ident: C8GC00292D-(cit10)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02577
– volume: 204
  start-page: 55
  year: 2016
  ident: C8GC00292D-(cit20)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.12.005
– volume: 52
  start-page: 56
  year: 2013
  ident: C8GC00292D-(cit30)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
– volume: 208
  start-page: 110
  year: 2016
  ident: C8GC00292D-(cit34)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.02.059
– volume: 38
  start-page: 594
  year: 2014
  ident: C8GC00292D-(cit38)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2014.06.013
– volume: 7
  start-page: 2742
  year: 2014
  ident: C8GC00292D-(cit14)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402056
– volume: 10
  start-page: 1631
  year: 2017
  ident: C8GC00292D-(cit12)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601251
– volume: 16
  start-page: 4879
  year: 2014
  ident: C8GC00292D-(cit41)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C4GC01314J
– volume: 12
  start-page: 1933
  year: 2010
  ident: C8GC00292D-(cit11)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/c0gc00263a
– volume: 8
  start-page: 146
  year: 2015
  ident: C8GC00292D-(cit21)/*[position()=1]
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-015-0336-6
– volume: 9
  start-page: 1144
  year: 2016
  ident: C8GC00292D-(cit25)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02666K
– volume: 18
  start-page: 6431
  year: 2016
  ident: C8GC00292D-(cit4)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C6GC02528E
– volume-title: Catalytic Gasification of Lignocellulosic Biomass
  year: 2016
  ident: C8GC00292D-(cit5)/*[position()=1]
– volume: 12
  start-page: 370
  year: 2010
  ident: C8GC00292D-(cit2)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/B918922J
– volume: 5
  start-page: 428
  year: 2013
  ident: C8GC00292D-(cit16)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1609
– volume: 7
  start-page: 3905
  year: 2017
  ident: C8GC00292D-(cit13)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03113
– volume: 47
  start-page: 2281
  year: 2009
  ident: C8GC00292D-(cit36)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.04.026
– volume: 147
  start-page: 1271
  year: 2017
  ident: C8GC00292D-(cit22)/*[position()=1]
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-017-2027-3
– volume: 6
  start-page: 16988
  year: 2016
  ident: C8GC00292D-(cit31)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA23251A
– volume: 82
  start-page: 815
  year: 2009
  ident: C8GC00292D-(cit33)/*[position()=1]
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-1883-1
– volume: 2
  start-page: 211
  year: 1964
  ident: C8GC00292D-(cit37)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/0008-6223(64)90035-1
– volume: 54
  start-page: 559
  year: 2008
  ident: C8GC00292D-(cit1)/*[position()=1]
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2008.03463.x
– volume-title: Pacific Northwest National Laboratory (PNNL)
  year: 2013
  ident: C8GC00292D-(cit6)/*[position()=1]
– volume: 8
  start-page: 4022
  year: 2015
  ident: C8GC00292D-(cit9)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201501136
– volume: 10
  start-page: 3225
  year: 2017
  ident: C8GC00292D-(cit18)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201700863
– volume: 18
  start-page: 2165
  year: 2016
  ident: C8GC00292D-(cit8)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C5GC02414E
– volume: 4
  start-page: 6668
  year: 2016
  ident: C8GC00292D-(cit26)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b01540
– volume: 29
  start-page: 343
  year: 1987
  ident: C8GC00292D-(cit23)/*[position()=1]
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260290308
– volume: 5
  start-page: 1533
  year: 2012
  ident: C8GC00292D-(cit28)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100811
– volume: 12
  start-page: 1493
  year: 2010
  ident: C8GC00292D-(cit24)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/c004654j
– volume: 6
  start-page: 1149
  year: 2013
  ident: C8GC00292D-(cit40)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300318
– volume: 29
  start-page: 343
  year: 1987
  ident: C8GC00292D-(cit29)/*[position()=1]
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260290308
– volume: 15
  start-page: 584
  year: 2013
  ident: C8GC00292D-(cit3)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/c3gc37065h
– volume: 438
  start-page: 178
  year: 2005
  ident: C8GC00292D-(cit27)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/438178a
– volume: 83
  start-page: 1469
  year: 2004
  ident: C8GC00292D-(cit39)/*[position()=1]
  publication-title: Fuel
  doi: 10.1016/j.fuel.2003.11.015
SSID ssj0011764
Score 2.4519408
Snippet Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 218
SubjectTerms Acidity
Acids
Aldehydes
Alkanes
Bagasse
biobutanol
bioethanol
Biofuels
Biomass
Butanediol
Carbon
Catalysis
catalysts
catalytic activity
Cellulose
Condensates
Condensation
Condensation products
condensation reactions
Conversion
Dehydration
Ethanol
Exergy
feedstocks
Fuels
Furfural
Green chemistry
Hydrocarbon fuels
Hydrocarbons
Hydrophobicity
Jet engine fuels
Lignin
Lignocellulose
liquids
Low temperature
Methyl ethyl ketone
Precursors
solvents
Sugarcane
sugarcane bagasse
temperature
Xylan
Title A novel route for the flexible preparation of hydrocarbon jet fuels from biomass-based platform chemicals: a case of using furfural and 2,3-butanediol as feedstocks
URI https://www.proquest.com/docview/2036330339
https://www.proquest.com/docview/2221051259
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QE4IAhUBApaBBcUDI7txDa3KKQtKJRLIuVmrde7pTSKK8dGgt_Df-NvMLMPZwsVAi5WvF6PLc-XncfOg5DnqS9SmY-FF4A-j66byAM2jz1MkhSgUnBfNZv4cDo-WUbvV6NVp_PDiVpq6vwV_3ZtXsn_cBXGgK-YJfsPnG2JwgD8Bv7CETgMx7_i8WSwKb-I9aAqcbffBgxKrHGJCVGXldCVvY1O-LUAacWqHE4_i3ogG5CLOr8Ek_BBi_ZQphXYWbpGXXbATTWBrU6J5kw7_hvlX5BNJVXNDnS9B8Cq0MsbUDVBGpZrbF8jQTCCaskvtq4GrAJ9NGXsM6dcEmyjylbsPJO2ngWSPvvlhspsOKg7j1sn77RRcQkreLULdu74w5UveNWI3AppDD86b_Ri-6lhrt_DLNI6VAr9KjaoVQWtmDdw1vFoHHpYClGLOXdM9ymxi3_gOyBP3ZXcPlKYU53Y_5vE8UMs2MqTM44bnEGxk6s2luD0Y3a0nM-zxWy12CP7AdgzQZfsT2aLd_N2w2sYq0pn7XvbSrph-npH-6rutDOI9irbrUZpRYs75LYxZ-hEY_Mu6YhNj9xoP1WP3HIKXvbIwWyXVwm3GcGyvUe-T6iCMlVQpoA-ClCmFsrUgTItJXWgTAHKVEGZIpTpFShTC2XaQvkNZRSBjGQUkKkFMgW00eClC2PKgGoL4_tkeTRbTE8800DE49Ewrr2oEALMMjCpY1nETMR-UiRxmkS-TLif5iJPR1EkRAg6MBNJXLAULJAkypM8BqCw8IB0N-VGPCCU-XwMhHgh-TDKw4LJOJYjnhQyLIY-D_rkhWVNxk11fWzyss5UlEeYZtPkeKrY-LZPnrVzL3VNmWtnHVoOZ-Zft80wbCAErTNM--RpexlYitt88GnKBuYEARhNYLjAnANARvuMHZAe_pn2I3IT4a89jYekW1eNeAy6d50_Mbj9CcPn45s
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+route+for+the+flexible+preparation+of+hydrocarbon+jet+fuels+from+biomass-based+platform+chemicals%3A+a+case+of+using+furfural+and+2%2C3-butanediol+as+feedstocks&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Cui%2C+Xingkai&rft.au=Zhao%2C+Xuebing&rft.au=Liu%2C+Dehua&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=20&rft.issue=9&rft.spage=2018&rft.epage=2026&rft_id=info:doi/10.1039%2Fc8gc00292d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon