A novel route for the flexible preparation of hydrocarbon jet fuels from biomass-based platform chemicals: a case of using furfural and 2,3-butanediol as feedstocks
Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was developed. Carbonaceous solid acids bearing -SO 3 H groups were prepared from biomass or its isolated polymeric components to catalyze the dehy...
Saved in:
Published in | Green chemistry : an international journal and green chemistry resource : GC Vol. 2; no. 9; pp. 218 - 226 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was developed. Carbonaceous solid acids bearing -SO
3
H groups were prepared from biomass or its isolated polymeric components to catalyze the dehydration of BD to methyl ethyl ketone (MEK) in the liquid phase at low temperatures (<170 °C). Lignocellulose, cellulose, and lignin were more suitable feedstocks than xylan to prepare cabonaceous solid acids for well introducing -SO
3
H groups into carbon carriers with good acidity. The highest MEK yield of 57.6% with 79.1% BD conversion and 72.8% MEK selectivity was obtained when sugarcane bagasse solid acid with
p
-toluenesulfonic acid (PTSA) was used as the catalyst. However, the main side product in the dehydration process was cyclic hydrophobic ketal (CHK), formed by the condensation of BD and MEK, and it could be easily re-converted to BD and MEK
via
acid catalysis. The C9/C14 precursors were obtained by carbon chain extension
via
aldol condensation of furfural and MEK under alkaline conditions. The product profile could be easily controlled by adjusting the reaction variables, particularly the ratio of furfural to MEK, as well as the solvent system to maximize the yield of the desired C9/C14 precursors and minimize the formation of heavier condensation products. Under the optimal reaction conditions, nearly 100% conversion of furfural with a C9/C14 yield of 99.8% was obtained. Hydrodeoxygenation of the precursors resulted in the formation of hydrocarbon fuels, with C1-C4, C5-C8, and C9-C14 alkane products obtained in the yields of 15.4%, 7.9%, and 73%, respectively. This process showed a theoretical exergy efficiency similar to that of the bioethanol process and higher than that of the biobutanol process.
Flexible production of hydrocarbon jet fuels with biomass-derived furfural and 2,3-butanediol as feedstocks by a combination of acid-catalyzed dehydration, aldol condensation, and hydrodeoxygenation. |
---|---|
AbstractList | Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was developed. Carbonaceous solid acids bearing –SO
3
H groups were prepared from biomass or its isolated polymeric components to catalyze the dehydration of BD to methyl ethyl ketone (MEK) in the liquid phase at low temperatures (<170 °C). Lignocellulose, cellulose, and lignin were more suitable feedstocks than xylan to prepare cabonaceous solid acids for well introducing –SO
3
H groups into carbon carriers with good acidity. The highest MEK yield of 57.6% with 79.1% BD conversion and 72.8% MEK selectivity was obtained when sugarcane bagasse solid acid with
p
-toluenesulfonic acid (PTSA) was used as the catalyst. However, the main side product in the dehydration process was cyclic hydrophobic ketal (CHK), formed by the condensation of BD and MEK, and it could be easily re-converted to BD and MEK
via
acid catalysis. The C9/C14 precursors were obtained by carbon chain extension
via
aldol condensation of furfural and MEK under alkaline conditions. The product profile could be easily controlled by adjusting the reaction variables, particularly the ratio of furfural to MEK, as well as the solvent system to maximize the yield of the desired C9/C14 precursors and minimize the formation of heavier condensation products. Under the optimal reaction conditions, nearly 100% conversion of furfural with a C9/C14 yield of 99.8% was obtained. Hydrodeoxygenation of the precursors resulted in the formation of hydrocarbon fuels, with C1–C4, C5–C8, and C9–C14 alkane products obtained in the yields of 15.4%, 7.9%, and 73%, respectively. This process showed a theoretical exergy efficiency similar to that of the bioethanol process and higher than that of the biobutanol process. Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was developed. Carbonaceous solid acids bearing –SO3H groups were prepared from biomass or its isolated polymeric components to catalyze the dehydration of BD to methyl ethyl ketone (MEK) in the liquid phase at low temperatures (<170 °C). Lignocellulose, cellulose, and lignin were more suitable feedstocks than xylan to prepare cabonaceous solid acids for well introducing –SO3H groups into carbon carriers with good acidity. The highest MEK yield of 57.6% with 79.1% BD conversion and 72.8% MEK selectivity was obtained when sugarcane bagasse solid acid with p-toluenesulfonic acid (PTSA) was used as the catalyst. However, the main side product in the dehydration process was cyclic hydrophobic ketal (CHK), formed by the condensation of BD and MEK, and it could be easily re-converted to BD and MEK via acid catalysis. The C9/C14 precursors were obtained by carbon chain extension via aldol condensation of furfural and MEK under alkaline conditions. The product profile could be easily controlled by adjusting the reaction variables, particularly the ratio of furfural to MEK, as well as the solvent system to maximize the yield of the desired C9/C14 precursors and minimize the formation of heavier condensation products. Under the optimal reaction conditions, nearly 100% conversion of furfural with a C9/C14 yield of 99.8% was obtained. Hydrodeoxygenation of the precursors resulted in the formation of hydrocarbon fuels, with C1–C4, C5–C8, and C9–C14 alkane products obtained in the yields of 15.4%, 7.9%, and 73%, respectively. This process showed a theoretical exergy efficiency similar to that of the bioethanol process and higher than that of the biobutanol process. Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was developed. Carbonaceous solid acids bearing -SO 3 H groups were prepared from biomass or its isolated polymeric components to catalyze the dehydration of BD to methyl ethyl ketone (MEK) in the liquid phase at low temperatures (<170 °C). Lignocellulose, cellulose, and lignin were more suitable feedstocks than xylan to prepare cabonaceous solid acids for well introducing -SO 3 H groups into carbon carriers with good acidity. The highest MEK yield of 57.6% with 79.1% BD conversion and 72.8% MEK selectivity was obtained when sugarcane bagasse solid acid with p -toluenesulfonic acid (PTSA) was used as the catalyst. However, the main side product in the dehydration process was cyclic hydrophobic ketal (CHK), formed by the condensation of BD and MEK, and it could be easily re-converted to BD and MEK via acid catalysis. The C9/C14 precursors were obtained by carbon chain extension via aldol condensation of furfural and MEK under alkaline conditions. The product profile could be easily controlled by adjusting the reaction variables, particularly the ratio of furfural to MEK, as well as the solvent system to maximize the yield of the desired C9/C14 precursors and minimize the formation of heavier condensation products. Under the optimal reaction conditions, nearly 100% conversion of furfural with a C9/C14 yield of 99.8% was obtained. Hydrodeoxygenation of the precursors resulted in the formation of hydrocarbon fuels, with C1-C4, C5-C8, and C9-C14 alkane products obtained in the yields of 15.4%, 7.9%, and 73%, respectively. This process showed a theoretical exergy efficiency similar to that of the bioethanol process and higher than that of the biobutanol process. Flexible production of hydrocarbon jet fuels with biomass-derived furfural and 2,3-butanediol as feedstocks by a combination of acid-catalyzed dehydration, aldol condensation, and hydrodeoxygenation. Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was developed. Carbonaceous solid acids bearing –SO₃H groups were prepared from biomass or its isolated polymeric components to catalyze the dehydration of BD to methyl ethyl ketone (MEK) in the liquid phase at low temperatures (<170 °C). Lignocellulose, cellulose, and lignin were more suitable feedstocks than xylan to prepare cabonaceous solid acids for well introducing –SO₃H groups into carbon carriers with good acidity. The highest MEK yield of 57.6% with 79.1% BD conversion and 72.8% MEK selectivity was obtained when sugarcane bagasse solid acid with p-toluenesulfonic acid (PTSA) was used as the catalyst. However, the main side product in the dehydration process was cyclic hydrophobic ketal (CHK), formed by the condensation of BD and MEK, and it could be easily re-converted to BD and MEK via acid catalysis. The C9/C14 precursors were obtained by carbon chain extension via aldol condensation of furfural and MEK under alkaline conditions. The product profile could be easily controlled by adjusting the reaction variables, particularly the ratio of furfural to MEK, as well as the solvent system to maximize the yield of the desired C9/C14 precursors and minimize the formation of heavier condensation products. Under the optimal reaction conditions, nearly 100% conversion of furfural with a C9/C14 yield of 99.8% was obtained. Hydrodeoxygenation of the precursors resulted in the formation of hydrocarbon fuels, with C1–C4, C5–C8, and C9–C14 alkane products obtained in the yields of 15.4%, 7.9%, and 73%, respectively. This process showed a theoretical exergy efficiency similar to that of the bioethanol process and higher than that of the biobutanol process. |
Author | Zhao, Xuebing Liu, Dehua Cui, Xingkai |
AuthorAffiliation | Department of Chemical Engineering Tsinghua University Ministry of Education of China Institute of Applied Chemistry Key Laboratory for Industrial Biocatalysis |
AuthorAffiliation_xml | – sequence: 0 name: Key Laboratory for Industrial Biocatalysis – sequence: 0 name: Tsinghua University – sequence: 0 name: Institute of Applied Chemistry – sequence: 0 name: Ministry of Education of China – sequence: 0 name: Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Xingkai surname: Cui fullname: Cui, Xingkai – sequence: 2 givenname: Xuebing surname: Zhao fullname: Zhao, Xuebing – sequence: 3 givenname: Dehua surname: Liu fullname: Liu, Dehua |
BookMark | eNptkktr3DAQgEVJoHn00ntBkEspdaqHbcm5hU2bBAK9tGejxzirrWw5khya_5MfGm22JBAKgtHjm49hRodobwoTIPSRklNKePfNyFtDCOuYfYcOaN3yqmOC7L3sW_YeHaa0IYRS0dYH6PEcT-EePI5hyYCHEHFel-jhr9Me8BxhVlFlFyYcBrx-sDEYFXU5biDjYQGf8BDDiLULo0qp0iqBxbNXuchGbNYwOqN8OsMKm_K21SzJTbclOZalPFaTxewrr_SS1QTWhXJVrAA25WD-pGO0PxQDfPgXj9DvH99_ra6qm5-X16vzm8rUVOSqtgCS6ka0YrBCgSDSStHJmgzSkE6D7pq6BuCUEgVSWNUR2chaSy1KmxQ_Qp933jmGuwVS7keXDHhfqgpL6hljlDSUNV1BT96gm7DEqVTXM8JbzgnnW-rLjjIxpBRh6OfoRhUfekr67cD6lbxcPQ_sosDkDWxcfu58jsr5_6d82qXEZF7Ur3-APwGW2KV_ |
CitedBy_id | crossref_primary_10_1016_j_fuel_2021_120889 crossref_primary_10_1021_acs_energyfuels_0c00919 crossref_primary_10_1016_j_cattod_2024_114847 crossref_primary_10_1021_acssuschemeng_9b00190 crossref_primary_10_1007_s13399_021_01823_0 crossref_primary_10_1016_j_biortech_2021_125155 crossref_primary_10_1016_j_biortech_2023_128626 crossref_primary_10_1016_j_procbio_2020_08_018 crossref_primary_10_1039_D3NJ02558F crossref_primary_10_1002_cctc_202400179 crossref_primary_10_1016_j_enconman_2022_115956 crossref_primary_10_1021_acssuschemeng_9b07300 crossref_primary_10_1039_D0GC02770G crossref_primary_10_3390_fermentation9050488 crossref_primary_10_1016_j_fuel_2019_116267 crossref_primary_10_3390_fermentation7040307 crossref_primary_10_1016_j_cej_2025_160622 crossref_primary_10_1007_s13399_020_01206_x crossref_primary_10_1007_s13399_024_06194_w crossref_primary_10_1039_D0SE01110J crossref_primary_10_1039_D3CY01664A crossref_primary_10_1016_j_cej_2020_124451 crossref_primary_10_1039_C8GC02680G crossref_primary_10_1039_D3EY00309D crossref_primary_10_3775_jie_101_95 crossref_primary_10_1021_acscatal_2c01257 crossref_primary_10_1021_acssuschemeng_2c01971 crossref_primary_10_1016_j_fuel_2021_121765 crossref_primary_10_1627_jpi_67_195 crossref_primary_10_1016_j_jechem_2022_12_017 crossref_primary_10_1016_j_fuproc_2019_106161 crossref_primary_10_1186_s13068_023_02344_w crossref_primary_10_3390_pr9030517 crossref_primary_10_1002_hlca_202200032 crossref_primary_10_1002_slct_202003770 crossref_primary_10_1016_j_biotechadv_2021_107783 crossref_primary_10_1016_j_renene_2023_05_063 crossref_primary_10_1007_s11814_018_0161_2 crossref_primary_10_1039_D0GC02331K crossref_primary_10_1002_bbb_2057 crossref_primary_10_3390_catal13030530 crossref_primary_10_1007_s00253_022_12301_6 crossref_primary_10_1016_j_cattod_2020_04_067 crossref_primary_10_1016_j_fuel_2020_119401 crossref_primary_10_1016_j_fuel_2024_133670 crossref_primary_10_3390_en16155802 |
Cites_doi | 10.1016/j.jhazmat.2014.08.033 10.1039/C3EE43846E 10.1039/C0EE00436G 10.1039/C2EE23316A 10.1021/acscatal.7b02577 10.1016/j.biortech.2015.12.005 10.1016/j.biortech.2016.02.059 10.1016/j.rser.2014.06.013 10.1002/cssc.201402056 10.1002/cssc.201601251 10.1039/C4GC01314J 10.1039/c0gc00263a 10.1186/s13068-015-0336-6 10.1039/C5EE02666K 10.1039/C6GC02528E 10.1039/B918922J 10.1038/nchem.1609 10.1021/acscatal.6b03113 10.1016/j.carbon.2009.04.026 10.1007/s10562-017-2027-3 10.1039/C5RA23251A 10.1007/s00253-009-1883-1 10.1016/0008-6223(64)90035-1 10.1111/j.1365-313X.2008.03463.x 10.1002/cssc.201501136 10.1002/cssc.201700863 10.1039/C5GC02414E 10.1021/acssuschemeng.6b01540 10.1002/bit.260290308 10.1002/cssc.201100811 10.1039/c004654j 10.1002/cssc.201300318 10.1039/c3gc37065h 10.1038/438178a 10.1016/j.fuel.2003.11.015 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SR 7ST 7U6 8BQ 8FD C1K JG9 7S9 L.6 |
DOI | 10.1039/c8gc00292d |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Sustainability Science Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Sustainability Science Abstracts Environment Abstracts METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1463-9270 |
EndPage | 226 |
ExternalDocumentID | 10_1039_C8GC00292D c8gc00292d |
GroupedDBID | -JG 0-7 0R~ 29I 4.4 5GY 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K COF CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 0UZ 1TJ 53G 71~ AAYXX ACHDF ACRPL ADNMO ADVLN AFFNX AFRZK AGQPQ AHGXI AITUG AKMSF AKRWK ALSGL ALUYA AMRAJ ANBJS ANLMG ASPBG AVWKF AZFZN BBWZM CAG CITATION EEHRC FEDTE HVGLF H~9 IDY J3G J3H L-8 NDZJH R56 RCLXC ROL 7SR 7ST 7U6 8BQ 8FD C1K JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c417t-4dee81b5767fd7ae708d879840f8c09beb9544ee3110ae87da908584b8b7927a3 |
ISSN | 1463-9262 1463-9270 |
IngestDate | Fri Jul 11 06:23:10 EDT 2025 Mon Jun 30 12:03:14 EDT 2025 Tue Jul 01 01:41:14 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Tue Dec 17 20:58:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-4dee81b5767fd7ae708d879840f8c09beb9544ee3110ae87da908584b8b7927a3 |
Notes | Electronic supplementary information (ESI) available: specifications of jet A-1 fuel and properties of tetradecane; schematic diagram of the reactive distillation apparatus used in the experiments; characterization and comparison on the structures of sugarcane bagasse, filter paper cellulose, isolated lignin and xylan, and corresponding carbonized solid and sulfonated solid acids by XPS, FTIR, XRD and SEM. See DOI: 10.1039/c8gc00292d n nonane and ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4094-268X |
PQID | 2036330339 |
PQPubID | 2047490 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_C8GC00292D proquest_journals_2036330339 proquest_miscellaneous_2221051259 rsc_primary_c8gc00292d crossref_citationtrail_10_1039_C8GC00292D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Alonso (C8GC00292D-(cit3)/*[position()=1]) 2013; 15 Tran (C8GC00292D-(cit29)/*[position()=1]) 1987; 29 Tang (C8GC00292D-(cit37)/*[position()=1]) 1964; 2 Bohre (C8GC00292D-(cit9)/*[position()=1]) 2015; 8 Toda (C8GC00292D-(cit27)/*[position()=1]) 2005; 438 Mariscal (C8GC00292D-(cit25)/*[position()=1]) 2016; 9 Li (C8GC00292D-(cit10)/*[position()=1]) 2018; 8 Zhu (C8GC00292D-(cit8)/*[position()=1]) 2016; 18 Dutta (C8GC00292D-(cit13)/*[position()=1]) 2017; 7 Bond (C8GC00292D-(cit17)/*[position()=1]) 2014; 7 Sharma (C8GC00292D-(cit39)/*[position()=1]) 2004; 83 Serrano-Ruiz (C8GC00292D-(cit7)/*[position()=1]) 2011; 4 Olcay (C8GC00292D-(cit15)/*[position()=1]) 2013; 6 Liu (C8GC00292D-(cit18)/*[position()=1]) 2017; 10 Jones (C8GC00292D-(cit6)/*[position()=1]) 2013 Akimkulova (C8GC00292D-(cit34)/*[position()=1]) 2016; 208 Alonso (C8GC00292D-(cit24)/*[position()=1]) 2010; 12 Xing (C8GC00292D-(cit11)/*[position()=1]) 2010; 12 Zhao (C8GC00292D-(cit31)/*[position()=1]) 2016; 6 Thome (C8GC00292D-(cit22)/*[position()=1]) 2017; 147 Sutton (C8GC00292D-(cit16)/*[position()=1]) 2013; 5 Lou (C8GC00292D-(cit28)/*[position()=1]) 2012; 5 Cho (C8GC00292D-(cit21)/*[position()=1]) 2015; 8 Chen (C8GC00292D-(cit26)/*[position()=1]) 2016; 4 Koutinas (C8GC00292D-(cit20)/*[position()=1]) 2016; 204 Wegenhart (C8GC00292D-(cit14)/*[position()=1]) 2014; 7 Collard (C8GC00292D-(cit38)/*[position()=1]) 2014; 38 Sevilla (C8GC00292D-(cit36)/*[position()=1]) 2009; 47 Mascal (C8GC00292D-(cit2)/*[position()=1]) 2010; 12 Tran (C8GC00292D-(cit23)/*[position()=1]) 1987; 29 Li (C8GC00292D-(cit35)/*[position()=1]) 2014; 280 Pramod (C8GC00292D-(cit5)/*[position()=1]) 2016 Pauly (C8GC00292D-(cit1)/*[position()=1]) 2008; 54 Zhao (C8GC00292D-(cit33)/*[position()=1]) 2009; 82 Multer (C8GC00292D-(cit30)/*[position()=1]) 2013; 52 Yang (C8GC00292D-(cit41)/*[position()=1]) 2014; 16 Alam (C8GC00292D-(cit4)/*[position()=1]) 2016; 18 Bui (C8GC00292D-(cit12)/*[position()=1]) 2017; 10 Song (C8GC00292D-(cit19)/*[position()=1]) 2012; 7 Yang (C8GC00292D-(cit40)/*[position()=1]) 2013; 6 |
References_xml | – issn: 2012 doi: Shao – issn: 2013 publication-title: Pacific Northwest National Laboratory (PNNL) doi: Jones Meyer Snowden-Swan Padmaperuma Tan Dutta Jacobson Cafferty – issn: 2016 end-page: 173-198 publication-title: Catalytic Gasification of Lignocellulosic Biomass doi: Pramod Seshan – volume: 7 start-page: 4517 year: 2012 ident: C8GC00292D-(cit19)/*[position()=1] publication-title: BioResources – volume: 280 start-page: 450 year: 2014 ident: C8GC00292D-(cit35)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.08.033 – volume: 7 start-page: 1500 year: 2014 ident: C8GC00292D-(cit17)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43846E – volume: 4 start-page: 83 year: 2011 ident: C8GC00292D-(cit7)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00436G – volume: 6 start-page: 205 year: 2013 ident: C8GC00292D-(cit15)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C2EE23316A – volume: 8 start-page: 148 year: 2018 ident: C8GC00292D-(cit10)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b02577 – volume: 204 start-page: 55 year: 2016 ident: C8GC00292D-(cit20)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.12.005 – volume: 52 start-page: 56 year: 2013 ident: C8GC00292D-(cit30)/*[position()=1] publication-title: Ind. Eng. Chem. Res. – volume: 208 start-page: 110 year: 2016 ident: C8GC00292D-(cit34)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.02.059 – volume: 38 start-page: 594 year: 2014 ident: C8GC00292D-(cit38)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2014.06.013 – volume: 7 start-page: 2742 year: 2014 ident: C8GC00292D-(cit14)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201402056 – volume: 10 start-page: 1631 year: 2017 ident: C8GC00292D-(cit12)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201601251 – volume: 16 start-page: 4879 year: 2014 ident: C8GC00292D-(cit41)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C4GC01314J – volume: 12 start-page: 1933 year: 2010 ident: C8GC00292D-(cit11)/*[position()=1] publication-title: Green Chem. doi: 10.1039/c0gc00263a – volume: 8 start-page: 146 year: 2015 ident: C8GC00292D-(cit21)/*[position()=1] publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-015-0336-6 – volume: 9 start-page: 1144 year: 2016 ident: C8GC00292D-(cit25)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02666K – volume: 18 start-page: 6431 year: 2016 ident: C8GC00292D-(cit4)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C6GC02528E – volume-title: Catalytic Gasification of Lignocellulosic Biomass year: 2016 ident: C8GC00292D-(cit5)/*[position()=1] – volume: 12 start-page: 370 year: 2010 ident: C8GC00292D-(cit2)/*[position()=1] publication-title: Green Chem. doi: 10.1039/B918922J – volume: 5 start-page: 428 year: 2013 ident: C8GC00292D-(cit16)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1609 – volume: 7 start-page: 3905 year: 2017 ident: C8GC00292D-(cit13)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b03113 – volume: 47 start-page: 2281 year: 2009 ident: C8GC00292D-(cit36)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2009.04.026 – volume: 147 start-page: 1271 year: 2017 ident: C8GC00292D-(cit22)/*[position()=1] publication-title: Catal. Lett. doi: 10.1007/s10562-017-2027-3 – volume: 6 start-page: 16988 year: 2016 ident: C8GC00292D-(cit31)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA23251A – volume: 82 start-page: 815 year: 2009 ident: C8GC00292D-(cit33)/*[position()=1] publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-1883-1 – volume: 2 start-page: 211 year: 1964 ident: C8GC00292D-(cit37)/*[position()=1] publication-title: Carbon doi: 10.1016/0008-6223(64)90035-1 – volume: 54 start-page: 559 year: 2008 ident: C8GC00292D-(cit1)/*[position()=1] publication-title: Plant J. doi: 10.1111/j.1365-313X.2008.03463.x – volume-title: Pacific Northwest National Laboratory (PNNL) year: 2013 ident: C8GC00292D-(cit6)/*[position()=1] – volume: 8 start-page: 4022 year: 2015 ident: C8GC00292D-(cit9)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201501136 – volume: 10 start-page: 3225 year: 2017 ident: C8GC00292D-(cit18)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201700863 – volume: 18 start-page: 2165 year: 2016 ident: C8GC00292D-(cit8)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C5GC02414E – volume: 4 start-page: 6668 year: 2016 ident: C8GC00292D-(cit26)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b01540 – volume: 29 start-page: 343 year: 1987 ident: C8GC00292D-(cit23)/*[position()=1] publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260290308 – volume: 5 start-page: 1533 year: 2012 ident: C8GC00292D-(cit28)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201100811 – volume: 12 start-page: 1493 year: 2010 ident: C8GC00292D-(cit24)/*[position()=1] publication-title: Green Chem. doi: 10.1039/c004654j – volume: 6 start-page: 1149 year: 2013 ident: C8GC00292D-(cit40)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201300318 – volume: 29 start-page: 343 year: 1987 ident: C8GC00292D-(cit29)/*[position()=1] publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260290308 – volume: 15 start-page: 584 year: 2013 ident: C8GC00292D-(cit3)/*[position()=1] publication-title: Green Chem. doi: 10.1039/c3gc37065h – volume: 438 start-page: 178 year: 2005 ident: C8GC00292D-(cit27)/*[position()=1] publication-title: Nature doi: 10.1038/438178a – volume: 83 start-page: 1469 year: 2004 ident: C8GC00292D-(cit39)/*[position()=1] publication-title: Fuel doi: 10.1016/j.fuel.2003.11.015 |
SSID | ssj0011764 |
Score | 2.4519408 |
Snippet | Herein, a novel route for the production of renewable hydrocarbon jet fuels from the biomass-derived platform chemicals furfural and 2,3-butanediol (BD) was... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 218 |
SubjectTerms | Acidity Acids Aldehydes Alkanes Bagasse biobutanol bioethanol Biofuels Biomass Butanediol Carbon Catalysis catalysts catalytic activity Cellulose Condensates Condensation Condensation products condensation reactions Conversion Dehydration Ethanol Exergy feedstocks Fuels Furfural Green chemistry Hydrocarbon fuels Hydrocarbons Hydrophobicity Jet engine fuels Lignin Lignocellulose liquids Low temperature Methyl ethyl ketone Precursors solvents Sugarcane sugarcane bagasse temperature Xylan |
Title | A novel route for the flexible preparation of hydrocarbon jet fuels from biomass-based platform chemicals: a case of using furfural and 2,3-butanediol as feedstocks |
URI | https://www.proquest.com/docview/2036330339 https://www.proquest.com/docview/2221051259 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QE4IAhUBApaBBcUDI7txDa3KKQtKJRLIuVmrde7pTSKK8dGgt_Df-NvMLMPZwsVAi5WvF6PLc-XncfOg5DnqS9SmY-FF4A-j66byAM2jz1MkhSgUnBfNZv4cDo-WUbvV6NVp_PDiVpq6vwV_3ZtXsn_cBXGgK-YJfsPnG2JwgD8Bv7CETgMx7_i8WSwKb-I9aAqcbffBgxKrHGJCVGXldCVvY1O-LUAacWqHE4_i3ogG5CLOr8Ek_BBi_ZQphXYWbpGXXbATTWBrU6J5kw7_hvlX5BNJVXNDnS9B8Cq0MsbUDVBGpZrbF8jQTCCaskvtq4GrAJ9NGXsM6dcEmyjylbsPJO2ngWSPvvlhspsOKg7j1sn77RRcQkreLULdu74w5UveNWI3AppDD86b_Ri-6lhrt_DLNI6VAr9KjaoVQWtmDdw1vFoHHpYClGLOXdM9ymxi3_gOyBP3ZXcPlKYU53Y_5vE8UMs2MqTM44bnEGxk6s2luD0Y3a0nM-zxWy12CP7AdgzQZfsT2aLd_N2w2sYq0pn7XvbSrph-npH-6rutDOI9irbrUZpRYs75LYxZ-hEY_Mu6YhNj9xoP1WP3HIKXvbIwWyXVwm3GcGyvUe-T6iCMlVQpoA-ClCmFsrUgTItJXWgTAHKVEGZIpTpFShTC2XaQvkNZRSBjGQUkKkFMgW00eClC2PKgGoL4_tkeTRbTE8800DE49Ewrr2oEALMMjCpY1nETMR-UiRxmkS-TLif5iJPR1EkRAg6MBNJXLAULJAkypM8BqCw8IB0N-VGPCCU-XwMhHgh-TDKw4LJOJYjnhQyLIY-D_rkhWVNxk11fWzyss5UlEeYZtPkeKrY-LZPnrVzL3VNmWtnHVoOZ-Zft80wbCAErTNM--RpexlYitt88GnKBuYEARhNYLjAnANARvuMHZAe_pn2I3IT4a89jYekW1eNeAy6d50_Mbj9CcPn45s |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+route+for+the+flexible+preparation+of+hydrocarbon+jet+fuels+from+biomass-based+platform+chemicals%3A+a+case+of+using+furfural+and+2%2C3-butanediol+as+feedstocks&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Cui%2C+Xingkai&rft.au=Zhao%2C+Xuebing&rft.au=Liu%2C+Dehua&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=20&rft.issue=9&rft.spage=2018&rft.epage=2026&rft_id=info:doi/10.1039%2Fc8gc00292d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |