Universality of long-distance AdS physics from the CFT bootstrap

A bstract We begin by explicating a recent proof of the cluster decomposition principle in AdS ≥4 from the CFT ≥3 bootstrap. The CFT argument also computes the leading interactions between distant objects in AdS ≥4 , and we confirm the universal agreement between the CFT bootstrap and AdS gravity in...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2014; no. 8; p. 1
Main Authors Fitzpatrick, A. Liam, Kaplan, Jared, Walters, Matthew T.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We begin by explicating a recent proof of the cluster decomposition principle in AdS ≥4 from the CFT ≥3 bootstrap. The CFT argument also computes the leading interactions between distant objects in AdS ≥4 , and we confirm the universal agreement between the CFT bootstrap and AdS gravity in the semi-classical limit. We proceed to study the generalization to CFT 2 , which requires knowledge of the Virasoro conformal blocks in a lightcone OPE limit. We compute these blocks in a semiclassical, large central charge approximation, and use them to prove a suitably modified theorem. In particular, from the d = 2 bootstrap we prove the existence of large spin operators with fixed ‘anomalous dimensions’ indicative of the presence of deficit angles in AdS 3 . As we approach the threshold for the BTZ black hole, interpreted as a CFT 2 scaling dimension, the twist spectrum of large spin operators becomes dense. Due to the exchange of the Virasoro identity block, primary states above the BTZ threshold mimic a thermal background for light operators. We derive the BTZ quasinormal modes, and we use the bootstrap equation to prove that the twist spectrum is dense. Corrections to thermality could be obtained from a more refined computation of the Virasoro conformal blocks.
AbstractList A bstract We begin by explicating a recent proof of the cluster decomposition principle in AdS ≥4 from the CFT ≥3 bootstrap. The CFT argument also computes the leading interactions between distant objects in AdS ≥4 , and we confirm the universal agreement between the CFT bootstrap and AdS gravity in the semi-classical limit. We proceed to study the generalization to CFT 2 , which requires knowledge of the Virasoro conformal blocks in a lightcone OPE limit. We compute these blocks in a semiclassical, large central charge approximation, and use them to prove a suitably modified theorem. In particular, from the d = 2 bootstrap we prove the existence of large spin operators with fixed ‘anomalous dimensions’ indicative of the presence of deficit angles in AdS 3 . As we approach the threshold for the BTZ black hole, interpreted as a CFT 2 scaling dimension, the twist spectrum of large spin operators becomes dense. Due to the exchange of the Virasoro identity block, primary states above the BTZ threshold mimic a thermal background for light operators. We derive the BTZ quasinormal modes, and we use the bootstrap equation to prove that the twist spectrum is dense. Corrections to thermality could be obtained from a more refined computation of the Virasoro conformal blocks.
Abstract We begin by explicating a recent proof of the cluster decomposition principle in AdS^sub [greater than or equal to]4^ from the CFT^sub [greater than or equal to]3^ bootstrap. The CFT argument also computes the leading interactions between distant objects in AdS^sub [greater than or equal to]4^, and we confirm the universal agreement between the CFT bootstrap and AdS gravity in the semi-classical limit. We proceed to study the generalization to CFT^sub 2^, which requires knowledge of the Virasoro conformal blocks in a lightcone OPE limit. We compute these blocks in a semiclassical, large central charge approximation, and use them to prove a suitably modified theorem. In particular, from the d = 2 bootstrap we prove the existence of large spin operators with fixed 'anomalous dimensions' indicative of the presence of deficit angles in AdS^sub 3^. As we approach the threshold for the BTZ black hole, interpreted as a CFT^sub 2^ scaling dimension, the twist spectrum of large spin operators becomes dense. Due to the exchange of the Virasoro identity block, primary states above the BTZ threshold mimic a thermal background for light operators. We derive the BTZ quasinormal modes, and we use the bootstrap equation to prove that the twist spectrum is dense. Corrections to thermality could be obtained from a more refined computation of the Virasoro conformal blocks.
ArticleNumber 145
Author Walters, Matthew T.
Fitzpatrick, A. Liam
Kaplan, Jared
Author_xml – sequence: 1
  givenname: A. Liam
  surname: Fitzpatrick
  fullname: Fitzpatrick, A. Liam
  organization: Stanford Institute for Theoretical Physics, Stanford University, SLAC National Accelerator Laboratory
– sequence: 2
  givenname: Jared
  surname: Kaplan
  fullname: Kaplan, Jared
  organization: Department of Physics and Astronomy, Johns Hopkins University
– sequence: 3
  givenname: Matthew T.
  surname: Walters
  fullname: Walters, Matthew T.
  email: mwalters@pha.jhu.edu
  organization: Department of Physics and Astronomy, Johns Hopkins University
BookMark eNp9kMFPwjAUhxuDiYCevTbxoofJ6-jW7SYhIBoSTYRz020tlIx2tsWE_96ReSAmenrv8L73e-8boJ6xRiJ0S-CRALDR62L2Dtl9DIQ-EJpcoD6BOI8yyvLeWX-FBt7vAEhCcuijp7XRX9J5UetwxFbh2ppNVGkfhCklnlQfuNkevS49Vs7ucdhKPJ2vcGFt8MGJ5hpdKlF7efNTh2g9n62mi2j59vwynSyjkhIWIipUIrKCZbEoqqwqqBKxhIqlqRznFc2hKJUSVZamBNKqSPKMUQaQUJKPIS7YeIjuur2Ns58H6QPf2YMzbSQnDDIgaUxoOzXqpkpnvXdS8cbpvXBHToCfNPFOEz9p4q2mlkh-EaUOImhr2u90_Q8HHefbBLOR7uyeP5BvXfJ7qg
CitedBy_id crossref_primary_10_1007_JHEP05_2024_309
crossref_primary_10_1007_JHEP05_2018_154
crossref_primary_10_1007_JHEP12_2017_049
crossref_primary_10_1007_JHEP09_2018_091
crossref_primary_10_1007_JHEP01_2016_176
crossref_primary_10_1007_JHEP11_2015_149
crossref_primary_10_1007_JHEP08_2018_112
crossref_primary_10_1007_JHEP12_2022_069
crossref_primary_10_1103_PhysRevLett_115_131603
crossref_primary_10_1103_PhysRevD_109_L041903
crossref_primary_10_1007_JHEP08_2022_221
crossref_primary_10_1007_JHEP01_2019_025
crossref_primary_10_1007_JHEP10_2017_136
crossref_primary_10_1007_JHEP01_2023_006
crossref_primary_10_1088_1361_6382_aa8003
crossref_primary_10_1140_epjc_s10052_022_11129_8
crossref_primary_10_1007_JHEP12_2016_110
crossref_primary_10_1007_JHEP08_2019_038
crossref_primary_10_1103_PhysRevD_106_066020
crossref_primary_10_1007_JHEP08_2015_011
crossref_primary_10_1007_JHEP09_2014_064
crossref_primary_10_1007_JHEP03_2019_068
crossref_primary_10_1088_1751_8113_48_29_29FT01
crossref_primary_10_1007_JHEP04_2016_121
crossref_primary_10_1007_JHEP11_2014_109
crossref_primary_10_1088_1475_7516_2017_01_044
crossref_primary_10_1007_JHEP07_2018_179
crossref_primary_10_1007_JHEP07_2019_099
crossref_primary_10_1007_JHEP09_2016_130
crossref_primary_10_1016_j_physletb_2021_136273
crossref_primary_10_1007_JHEP09_2018_086
crossref_primary_10_1007_JHEP05_2016_099
crossref_primary_10_1007_JHEP04_2021_289
crossref_primary_10_1007_JHEP08_2020_163
crossref_primary_10_1007_JHEP05_2023_166
crossref_primary_10_1007_JHEP11_2017_096
crossref_primary_10_1007_JHEP07_2018_180
crossref_primary_10_1007_JHEP04_2019_009
crossref_primary_10_1103_PhysRevD_98_026003
crossref_primary_10_1007_JHEP09_2017_149
crossref_primary_10_1140_epjc_s10052_020_08680_7
crossref_primary_10_1007_JHEP06_2020_004
crossref_primary_10_1007_JHEP06_2021_048
crossref_primary_10_1007_JHEP07_2021_021
crossref_primary_10_1007_JHEP03_2023_176
crossref_primary_10_1007_JHEP10_2018_044
crossref_primary_10_1007_JHEP09_2022_053
crossref_primary_10_21468_SciPostPhys_14_6_148
crossref_primary_10_1007_JHEP06_2024_184
crossref_primary_10_1007_JHEP10_2016_110
crossref_primary_10_1007_JHEP08_2020_037
crossref_primary_10_21468_SciPostPhys_6_6_065
crossref_primary_10_1007_JHEP05_2022_166
crossref_primary_10_1007_JHEP10_2024_105
crossref_primary_10_1007_JHEP01_2015_102
crossref_primary_10_1038_s42254_020_0225_1
crossref_primary_10_1007_JHEP05_2019_051
crossref_primary_10_1103_PhysRevD_105_086013
crossref_primary_10_1093_ptep_ptad054
crossref_primary_10_1007_JHEP08_2020_151
crossref_primary_10_1007_JHEP06_2016_136
crossref_primary_10_1007_JHEP10_2017_153
crossref_primary_10_1007_JHEP06_2020_119
crossref_primary_10_21468_SciPostPhys_12_2_074
crossref_primary_10_1007_JHEP07_2020_208
crossref_primary_10_21468_SciPostPhys_14_5_116
crossref_primary_10_1007_JHEP01_2018_115
crossref_primary_10_1093_ptep_ptw157
crossref_primary_10_1007_JHEP06_2019_026
crossref_primary_10_1007_JHEP08_2016_099
crossref_primary_10_1007_JHEP09_2018_061
crossref_primary_10_1140_epjc_s10052_023_12166_7
crossref_primary_10_1007_JHEP08_2024_082
crossref_primary_10_1007_JHEP10_2017_140
crossref_primary_10_1007_JHEP11_2023_107
crossref_primary_10_1103_PhysRevD_100_106015
crossref_primary_10_1007_JHEP04_2017_147
crossref_primary_10_1007_JHEP01_2019_152
crossref_primary_10_1007_JHEP07_2022_046
crossref_primary_10_1007_JHEP12_2021_104
crossref_primary_10_1007_JHEP02_2017_074
crossref_primary_10_1007_JHEP06_2023_159
crossref_primary_10_1103_PhysRevD_98_086009
crossref_primary_10_1103_PhysRevD_97_066003
crossref_primary_10_1007_JHEP11_2015_106
crossref_primary_10_1007_JHEP02_2016_143
crossref_primary_10_1007_JHEP10_2018_028
crossref_primary_10_1007_JHEP07_2015_168
crossref_primary_10_1007_JHEP08_2018_162
crossref_primary_10_1142_S0217751X24501598
crossref_primary_10_1007_JHEP08_2018_161
crossref_primary_10_1007_JHEP02_2016_149
crossref_primary_10_1007_JHEP11_2017_183
crossref_primary_10_1007_JHEP04_2019_026
crossref_primary_10_1007_JHEP05_2016_109
crossref_primary_10_1007_JHEP10_2022_091
crossref_primary_10_1007_JHEP07_2018_010
crossref_primary_10_1007_JHEP03_2022_161
crossref_primary_10_1007_JHEP02_2020_088
crossref_primary_10_1007_JHEP01_2018_133
crossref_primary_10_1007_JHEP11_2024_033
crossref_primary_10_1007_JHEP12_2019_003
crossref_primary_10_1007_JHEP10_2018_156
crossref_primary_10_1007_JHEP01_2020_076
crossref_primary_10_1093_ptep_ptaa152
crossref_primary_10_1016_j_nuclphysb_2018_11_021
crossref_primary_10_1007_JHEP08_2019_063
crossref_primary_10_1007_JHEP12_2015_109
crossref_primary_10_1007_JHEP10_2019_077
crossref_primary_10_1007_JHEP10_2019_048
crossref_primary_10_1007_JHEP06_2016_183
crossref_primary_10_1007_JHEP07_2018_002
crossref_primary_10_1007_JHEP07_2020_019
crossref_primary_10_1007_JHEP11_2015_200
crossref_primary_10_1007_JHEP05_2018_172
crossref_primary_10_1007_JHEP12_2019_114
crossref_primary_10_1103_PhysRevD_98_101901
crossref_primary_10_1007_JHEP07_2019_171
crossref_primary_10_1007_JHEP09_2016_017
crossref_primary_10_1007_JHEP09_2016_015
crossref_primary_10_1007_JHEP12_2022_163
crossref_primary_10_1007_JHEP05_2024_054
crossref_primary_10_1007_JHEP01_2023_108
crossref_primary_10_1007_JHEP05_2016_127
crossref_primary_10_1007_JHEP07_2024_229
crossref_primary_10_1103_PhysRevD_101_066003
crossref_primary_10_1007_JHEP08_2017_126
crossref_primary_10_1007_JHEP08_2017_125
crossref_primary_10_1007_JHEP10_2019_046
crossref_primary_10_1007_JHEP05_2017_160
crossref_primary_10_1007_JHEP11_2016_116
crossref_primary_10_1007_JHEP12_2017_073
crossref_primary_10_1007_JHEP05_2022_106
crossref_primary_10_1007_JHEP06_2019_107
crossref_primary_10_1007_JHEP08_2018_042
crossref_primary_10_1007_JHEP10_2021_194
crossref_primary_10_1007_JHEP06_2022_162
crossref_primary_10_1007_JHEP07_2015_059
crossref_primary_10_1103_PhysRevD_93_046002
crossref_primary_10_1007_JHEP01_2017_004
crossref_primary_10_1007_JHEP01_2017_006
crossref_primary_10_1007_JHEP01_2025_067
crossref_primary_10_1007_JHEP03_2016_184
crossref_primary_10_1103_PhysRevLett_122_141601
crossref_primary_10_1007_JHEP03_2016_183
crossref_primary_10_1007_JHEP10_2019_268
crossref_primary_10_1007_JHEP03_2025_167
crossref_primary_10_1103_PhysRevD_103_106003
crossref_primary_10_1007_JHEP03_2017_167
crossref_primary_10_1103_PhysRevD_103_026005
crossref_primary_10_1088_1751_8121_ab2dae
crossref_primary_10_1007_JHEP12_2019_170
crossref_primary_10_1103_PhysRevLett_132_041602
crossref_primary_10_1103_RevModPhys_91_015002
crossref_primary_10_1007_JHEP07_2015_131
crossref_primary_10_1007_JHEP07_2019_143
crossref_primary_10_1007_JHEP07_2019_141
crossref_primary_10_1007_JHEP09_2022_234
crossref_primary_10_1007_JHEP06_2018_044
crossref_primary_10_1140_epjc_s10052_018_6259_1
crossref_primary_10_1007_JHEP07_2020_046
crossref_primary_10_1007_JHEP12_2016_070
crossref_primary_10_1140_epjc_s10052_019_7032_9
crossref_primary_10_1103_PhysRevD_108_126013
crossref_primary_10_1007_JHEP10_2019_037
crossref_primary_10_1007_JHEP05_2021_067
crossref_primary_10_1103_PhysRevD_99_106010
crossref_primary_10_4213_tmf9231
crossref_primary_10_1007_JHEP04_2020_093
crossref_primary_10_1007_JHEP02_2019_023
crossref_primary_10_1093_ptep_ptab163
crossref_primary_10_1007_JHEP02_2016_072
crossref_primary_10_1007_JHEP02_2019_022
crossref_primary_10_1007_JHEP07_2020_037
crossref_primary_10_1007_JHEP01_2019_098
crossref_primary_10_1007_JHEP08_2015_088
crossref_primary_10_1051_epjconf_201612505010
crossref_primary_10_1007_JHEP10_2020_055
crossref_primary_10_1007_JHEP08_2016_129
crossref_primary_10_1007_JHEP02_2024_167
crossref_primary_10_1007_JHEP09_2016_065
crossref_primary_10_1007_JHEP03_2017_067
crossref_primary_10_1103_PhysRevD_111_046016
crossref_primary_10_1007_JHEP09_2015_019
crossref_primary_10_1007_JHEP12_2021_206
crossref_primary_10_1007_JHEP07_2015_026
crossref_primary_10_1007_JHEP05_2019_212
crossref_primary_10_1007_JHEP04_2023_029
crossref_primary_10_1007_JHEP11_2021_105
crossref_primary_10_1007_JHEP08_2017_045
crossref_primary_10_1140_epjc_s10052_019_6693_8
crossref_primary_10_1103_PhysRevD_104_086014
crossref_primary_10_1007_JHEP07_2024_287
crossref_primary_10_1140_epjc_s10052_022_10980_z
crossref_primary_10_21468_SciPostPhys_15_2_054
crossref_primary_10_1007_JHEP11_2019_107
crossref_primary_10_1007_JHEP07_2017_092
crossref_primary_10_1007_JHEP10_2016_069
crossref_primary_10_1007_JHEP12_2019_141
crossref_primary_10_1093_ptep_pty063
crossref_primary_10_1007_JHEP11_2019_102
crossref_primary_10_1007_JHEP06_2022_116
crossref_primary_10_1007_JHEP10_2023_136
crossref_primary_10_1007_JHEP09_2023_011
crossref_primary_10_1007_JHEP08_2024_122
crossref_primary_10_1007_JHEP09_2014_118
crossref_primary_10_1007_JHEP03_2017_129
crossref_primary_10_1007_JHEP04_2018_067
crossref_primary_10_1007_JHEP08_2017_075
crossref_primary_10_1007_JHEP10_2019_107
crossref_primary_10_1007_JHEP01_2016_139
crossref_primary_10_1007_JHEP09_2019_018
crossref_primary_10_1007_JHEP05_2016_070
crossref_primary_10_1007_JHEP08_2016_023
crossref_primary_10_1007_s00023_016_0529_y
crossref_primary_10_1007_JHEP09_2017_009
crossref_primary_10_1007_JHEP12_2015_077
crossref_primary_10_1007_JHEP06_2018_123
crossref_primary_10_1007_JHEP11_2020_121
crossref_primary_10_1140_epjc_s10052_018_5969_8
crossref_primary_10_1007_JHEP02_2019_079
crossref_primary_10_1007_JHEP05_2022_060
crossref_primary_10_1007_JHEP05_2016_069
crossref_primary_10_1007_JHEP02_2020_125
crossref_primary_10_1007_JHEP03_2025_092
crossref_primary_10_1007_JHEP06_2016_111
crossref_primary_10_1007_JHEP01_2016_025
crossref_primary_10_1007_JHEP01_2016_146
crossref_primary_10_1007_JHEP01_2020_109
crossref_primary_10_1007_JHEP09_2017_115
crossref_primary_10_1007_JHEP09_2019_020
crossref_primary_10_1007_JHEP12_2023_123
crossref_primary_10_1007_JHEP04_2018_075
crossref_primary_10_1007_JHEP05_2024_117
crossref_primary_10_1007_JHEP08_2016_041
crossref_primary_10_1007_JHEP11_2020_010
crossref_primary_10_1103_PhysRevLett_123_131603
crossref_primary_10_21468_SciPostPhysCore_5_1_013
crossref_primary_10_1007_JHEP07_2020_074
crossref_primary_10_1007_JHEP11_2023_203
crossref_primary_10_1103_PhysRevD_93_025016
crossref_primary_10_1007_JHEP08_2020_002
crossref_primary_10_1007_JHEP12_2024_047
crossref_primary_10_1007_JHEP11_2020_018
crossref_primary_10_1007_JHEP08_2015_049
crossref_primary_10_1007_JHEP02_2020_119
crossref_primary_10_1007_JHEP02_2018_148
crossref_primary_10_1007_JHEP03_2018_033
crossref_primary_10_1007_JHEP08_2022_150
crossref_primary_10_1142_S0217751X24501409
crossref_primary_10_1007_JHEP02_2018_019
crossref_primary_10_1007_JHEP05_2021_033
crossref_primary_10_1007_JHEP11_2015_040
crossref_primary_10_1007_JHEP08_2024_202
crossref_primary_10_1007_JHEP06_2020_048
crossref_primary_10_1007_JHEP11_2015_044
crossref_primary_10_1007_JHEP09_2017_102
crossref_primary_10_1007_JHEP11_2019_139
crossref_primary_10_1007_JHEP06_2017_100
crossref_primary_10_1007_JHEP05_2020_104
crossref_primary_10_1007_JHEP07_2017_036
crossref_primary_10_1007_JHEP04_2017_072
crossref_primary_10_1007_JHEP02_2019_054
crossref_primary_10_1103_PhysRevD_98_126015
crossref_primary_10_1103_PhysRevD_98_126013
crossref_primary_10_1007_JHEP02_2018_012
crossref_primary_10_1007_JHEP05_2021_029
crossref_primary_10_1007_JHEP08_2019_138
crossref_primary_10_1007_JHEP11_2021_020
crossref_primary_10_1007_JHEP11_2021_021
crossref_primary_10_1007_JHEP04_2018_096
crossref_primary_10_1007_JHEP06_2020_054
crossref_primary_10_1007_JHEP07_2016_123
crossref_primary_10_1007_JHEP11_2018_101
crossref_primary_10_1007_JHEP10_2016_141
crossref_primary_10_1134_S0040577916110106
crossref_primary_10_1007_JHEP02_2015_171
crossref_primary_10_1007_JHEP02_2020_021
crossref_primary_10_1007_JHEP03_2017_011
crossref_primary_10_1007_JHEP05_2020_120
crossref_primary_10_1007_JHEP04_2017_070
crossref_primary_10_1007_JHEP08_2016_056
crossref_primary_10_1103_PhysRevD_105_026019
crossref_primary_10_1007_JHEP05_2024_216
crossref_primary_10_1103_PhysRevD_102_021701
crossref_primary_10_1103_PhysRevD_93_064049
crossref_primary_10_1007_JHEP02_2020_017
crossref_primary_10_1007_JHEP05_2016_075
crossref_primary_10_1007_JHEP10_2023_050
crossref_primary_10_21468_SciPostPhys_7_1_003
crossref_primary_10_1007_JHEP12_2017_119
crossref_primary_10_1088_1361_6382_ab0d3f
crossref_primary_10_1140_epjc_s10052_018_6522_5
crossref_primary_10_1007_JHEP02_2025_035
Cites_doi 10.1088/1126-6708/2007/08/019
10.1103/PhysRevLett.111.161602
10.1007/JHEP10(2012)032
10.1007/JHEP05(2012)110
10.1103/PhysRevLett.88.151301
10.1007/JHEP10(2012)106
10.1103/PhysRevA.43.2046
10.1007/BF01208266
10.1103/PhysRevLett.69.1849
10.1007/JHEP01(2014)023
10.1007/JHEP11(2013)140
10.1007/JHEP12(2013)004
10.1007/JHEP02(2013)054
10.1016/0550-3213(84)90052-X
10.1007/JHEP07(2014)144
10.1103/PhysRevLett.111.071601
10.1007/JHEP10(2011)113
10.1007/BF01211590
10.1023/A:1026654312961
10.1088/0264-9381/11/11/014
10.1016/0003-4916(84)90085-X
10.1007/BF01022967
10.1103/PhysRevLett.111.041102
10.1016/j.nuclphysb.2003.11.016
10.1007/BF01214585
10.1007/JHEP06(2014)091
10.1007/JHEP05(2011)022
10.1007/JHEP03(2011)025
10.1016/0003-4916(73)90446-6
10.1016/0550-3213(93)90167-N
10.1088/1126-6708/2009/10/079
10.1016/0370-2693(82)90643-8
10.1016/0370-1573(93)90111-P
10.1016/S0550-3213(03)00542-X
10.1016/S0370-2693(98)00377-3
10.1007/JHEP10(2013)212
10.1007/JHEP07(2011)023
10.1016/0003-4916(84)90025-3
10.1007/JHEP12(2011)071
10.1007/JHEP10(2013)202
10.1007/JHEP07(2013)113
10.1103/PhysRevLett.96.181602
10.1088/0264-9381/30/10/104003
10.1103/PhysRevLett.111.241601
10.1007/JHEP03(2014)100
10.1088/1126-6708/2007/09/037
10.1016/0550-3213(86)90552-3
10.1007/JHEP01(2012)162
10.1103/PhysRevLett.112.141601
10.1016/0550-3213(96)00351-3
10.1088/1126-6708/2008/12/031
10.1088/1126-6708/2007/11/019
10.1007/JHEP05(2011)017
10.1016/j.nuclphysb.2007.01.007
10.1088/1126-6708/2006/08/045
10.1007/BF01036128
10.4310/ATMP.1998.v2.n2.a2
ContentType Journal Article
Copyright The Author(s) 2014
SISSA, Trieste, Italy 2014
Copyright_xml – notice: The Author(s) 2014
– notice: SISSA, Trieste, Italy 2014
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/JHEP08(2014)145
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
ExternalDocumentID 3791658481
10_1007_JHEP08_2014_145
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACBXY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHSBF
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
H13
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O9-
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSEE
AHWEU
AHYZX
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c417t-4af5a8b782abd8db4fa2e0d766e39d490bcffad866106db598747005419302b73
IEDL.DBID C6C
ISSN 1029-8479
IngestDate Sun Jul 13 05:05:29 EDT 2025
Tue Jul 01 03:04:30 EDT 2025
Thu Apr 24 23:08:02 EDT 2025
Fri Feb 21 02:35:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords AdS-CFT Correspondence
Black Holes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-4af5a8b782abd8db4fa2e0d766e39d490bcffad866106db598747005419302b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/JHEP08(2014)145
PQID 1708016214
PQPubID 2034718
ParticipantIDs proquest_journals_1708016214
crossref_primary_10_1007_JHEP08_2014_145
crossref_citationtrail_10_1007_JHEP08_2014_145
springer_journals_10_1007_JHEP08_2014_145
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140801
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 20140801
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Fitzpatrick, Katz, Poland, Simmons-Duffin (CR11) 2011; 07
Maldacena, Zhiboedov (CR23) 2013; A 46
Zamolodchikov (CR74) 1984; 96
Rattazzi, Rychkov, Vichi (CR47) 2011; D 83
Cornalba, Costa, Penedones, Schiappa (CR32) 2007; B 767
Cardy (CR19) 1986; B 270
Brown, Henneaux (CR38) 1986; 104
Litvinov, Lukyanov, Nekrasov, Zamolodchikov (CR76) 2014; 07
Breitenlohner, Freedman (CR29) 1982; B 115
El-Showk (CR58) 2014; 112
Hamilton, Kabat, Lifschytz, Lowe (CR10) 2006; D 73
CR79
CR77
Liendo, Rastelli, van Rees (CR53) 2013; 07
El-Showk, Paulos (CR54) 2013; 111
Bañados, Teitelboim, Zanelli (CR8) 1992; 69
Fitzpatrick, Shih (CR35) 2011; 10
Bizon, Jałmużna (CR68) 2013; 111
de Boer, Jottar (CR72) 2014; 01
Harlow, Maltz, Witten (CR78) 2011; 12
Bouwknegt, Schoutens (CR70) 1993; 223
Ferrara, Grillo, Gatto (CR1) 1973; 76
Deser, Jackiw, t Hooft (CR36) 1984; 152
Alday, Maldacena (CR5) 2007; 11
Gubser, Klebanov, Polyakov (CR26) 1998; B 428
Korchemsky, Marchesini (CR16) 1993; B 406
Poland, Simmons-Duffin (CR46) 2011; 05
Gutperle, Kraus (CR71) 2011; 05
CR2
Rattazzi, Rychkov, Tonni, Vichi (CR3) 2008; 12
Ryu, Takayanagi (CR65) 2006; 96
El-Showk (CR52) 2012; D 86
CR43
CR42
Zamolodchikov, Zamolodchikov (CR75) 1996; B 477
CR80
Fitzpatrick, Kaplan (CR14) 2013; 02
Vichi (CR49) 2012; 01
Kos, Poland, Simmons-Duffin (CR56) 2014; 06
Gliozzi (CR57) 2013; 111
Dolan, Osborn (CR64) 2004; B 678
Komargodski, Zhiboedov (CR6) 2013; 11
Rattazzi, Rychkov, Vichi (CR48) 2011; A 44
Witten (CR27) 1998; 2
Caracciolo, Rychkov (CR45) 2010; D 81
Penedones (CR30) 2011; 03
Zamolodchikov (CR73) 1987; 73
Cornalba, Costa, Penedones, Schiappa (CR33) 2007; 08
Cardy (CR18) 1984; A 17
Maldacena, Zhiboedov (CR62) 2013; 30
Srednicki (CR21) 1994; E 50
Beem, Rastelli, van Rees (CR55) 2013; 111
CR51
Hawking, Page (CR34) 1983; 87
Maldacena (CR25) 1999; 38
Deutsch (CR20) 1991; A 43
Birmingham, Sachs, Solodukhin (CR24) 2002; 88
Heemskerk, Penedones, Polchinski, Sully (CR9) 2009; 10
Belavin, Polyakov, Zamolodchikov (CR17) 1984; B 241
El-Showk, Papadodimas (CR12) 2012; 10
Papadodimas, Raju (CR13) 2013; 10
Ryu, Takayanagi (CR66) 2006; 08
Cornalba, Costa, Penedones (CR31) 2007; 09
Fitzpatrick, Kaplan, Poland, Simmons-Duffin (CR7) 2013; 12
Poland, Simmons-Duffin, Vichi (CR50) 2012; 05
Fitzpatrick, Kaplan (CR22) 2012; 10
Deser, Jackiw (CR37) 1984; 153
CR69
Alday, Bissi (CR41) 2013; 10
CR67
Belitsky, Gorsky, Korchemsky (CR15) 2003; B 667
Polchinski (CR28) 2005
CR63
CR61
CR60
Cruz, Martinez, Pena (CR39) 1994; 11
Callan, Gross (CR4) 1973; D 8
Komargodski, Zhiboedov (CR40) 2013; 11
Gaiotto, Mazac, Paulos (CR59) 2014; 03
Rychkov, Vichi (CR44) 2009; D 80
P Breitenlohner (8750_CR29) 1982; B 115
SW Hawking (8750_CR34) 1983; 87
S El-Showk (8750_CR54) 2013; 111
S Ferrara (8750_CR1) 1973; 76
GP Korchemsky (8750_CR16) 1993; B 406
VS Rychkov (8750_CR44) 2009; D 80
CG Callan Jr (8750_CR4) 1973; D 8
AL Fitzpatrick (8750_CR22) 2012; 10
J Penedones (8750_CR30) 2011; 03
8750_CR79
8750_CR77
D Harlow (8750_CR78) 2011; 12
M Gutperle (8750_CR71) 2011; 05
J Boer de (8750_CR72) 2014; 01
L Cornalba (8750_CR32) 2007; B 767
A Vichi (8750_CR49) 2012; 01
S El-Showk (8750_CR52) 2012; D 86
K Papadodimas (8750_CR13) 2013; 10
S Deser (8750_CR37) 1984; 153
D Poland (8750_CR50) 2012; 05
S Ryu (8750_CR66) 2006; 08
AL Fitzpatrick (8750_CR11) 2011; 07
S El-Showk (8750_CR12) 2012; 10
M Bañados (8750_CR8) 1992; 69
S Ryu (8750_CR65) 2006; 96
8750_CR80
A Hamilton (8750_CR10) 2006; D 73
AV Belitsky (8750_CR15) 2003; B 667
C Beem (8750_CR55) 2013; 111
S Deser (8750_CR36) 1984; 152
JD Brown (8750_CR38) 1986; 104
E Witten (8750_CR27) 1998; 2
8750_CR42
8750_CR43
AL Fitzpatrick (8750_CR14) 2013; 02
JL Cardy (8750_CR18) 1984; A 17
A Litvinov (8750_CR76) 2014; 07
J Polchinski (8750_CR28) 2005
AL Fitzpatrick (8750_CR35) 2011; 10
8750_CR2
N Cruz (8750_CR39) 1994; 11
A Zamolodchikov (8750_CR74) 1984; 96
R Rattazzi (8750_CR47) 2011; D 83
AA Belavin (8750_CR17) 1984; B 241
P Bouwknegt (8750_CR70) 1993; 223
F Gliozzi (8750_CR57) 2013; 111
LF Alday (8750_CR5) 2007; 11
R Rattazzi (8750_CR48) 2011; A 44
F Kos (8750_CR56) 2014; 06
D Birmingham (8750_CR24) 2002; 88
L Cornalba (8750_CR31) 2007; 09
JM Deutsch (8750_CR20) 1991; A 43
8750_CR51
J Maldacena (8750_CR62) 2013; 30
LF Alday (8750_CR41) 2013; 10
D Poland (8750_CR46) 2011; 05
FA Dolan (8750_CR64) 2004; B 678
SS Gubser (8750_CR26) 1998; B 428
P Bizon (8750_CR68) 2013; 111
J Maldacena (8750_CR23) 2013; A 46
AB Zamolodchikov (8750_CR75) 1996; B 477
AL Fitzpatrick (8750_CR7) 2013; 12
8750_CR60
8750_CR61
I Heemskerk (8750_CR9) 2009; 10
L Cornalba (8750_CR33) 2007; 08
F Caracciolo (8750_CR45) 2010; D 81
JL Cardy (8750_CR19) 1986; B 270
S El-Showk (8750_CR58) 2014; 112
Z Komargodski (8750_CR6) 2013; 11
8750_CR69
R Rattazzi (8750_CR3) 2008; 12
8750_CR67
M Srednicki (8750_CR21) 1994; E 50
JM Maldacena (8750_CR25) 1999; 38
8750_CR63
Z Komargodski (8750_CR40) 2013; 11
P Liendo (8750_CR53) 2013; 07
A Zamolodchikov (8750_CR73) 1987; 73
D Gaiotto (8750_CR59) 2014; 03
References_xml – volume: 08
  start-page: 019
  year: 2007
  ident: CR33
  article-title: Eikonal approximation in AdS/CFT: from shock waves to four-point functions
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/08/019
– volume: E 50
  start-page: 888
  year: 1994
  ident: CR21
  article-title: Chaos and quantum thermalization
  publication-title: Phys. Rev.
– volume: 111
  start-page: 161602
  year: 2013
  ident: CR57
  article-title: More constraining conformal bootstrap
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.161602
– volume: 10
  start-page: 032
  year: 2012
  ident: CR22
  article-title: Unitarity and the holographic S-matrix
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)032
– volume: 05
  start-page: 110
  year: 2012
  ident: CR50
  article-title: Carving out the space of 4D CFTs
  publication-title: JHEP
  doi: 10.1007/JHEP05(2012)110
– volume: 88
  start-page: 151301
  year: 2002
  ident: CR24
  article-title: Conformal field theory interpretation of black hole quasinormal modes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.151301
– volume: 10
  start-page: 106
  year: 2012
  ident: CR12
  article-title: Emergent spacetime and holographic CFTs
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)106
– ident: CR51
– volume: A 43
  start-page: 2046
  year: 1991
  ident: CR20
  article-title: Quantum statistical mechanics in a closed system
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.43.2046
– volume: 87
  start-page: 577
  year: 1983
  ident: CR34
  article-title: Thermodynamics of black holes in anti-de Sitter space
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01208266
– volume: 69
  start-page: 1849
  year: 1992
  ident: CR8
  article-title: The black hole in three-dimensional space-time
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.1849
– ident: CR61
– volume: 01
  start-page: 023
  year: 2014
  ident: CR72
  article-title: Thermodynamics of higher spin black holes in AdS
  publication-title: JHEP
  doi: 10.1007/JHEP01(2014)023
– volume: 11
  start-page: 140
  year: 2013
  ident: CR40
  article-title: Convexity and liberation at large spin
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)140
– ident: CR80
– ident: CR77
– volume: 12
  start-page: 004
  year: 2013
  ident: CR7
  article-title: The analytic bootstrap and AdS superhorizon locality
  publication-title: JHEP
  doi: 10.1007/JHEP12(2013)004
– volume: 02
  start-page: 054
  year: 2013
  ident: CR14
  article-title: AdS field theory from conformal field theory
  publication-title: JHEP
  doi: 10.1007/JHEP02(2013)054
– volume: B 241
  start-page: 333
  year: 1984
  ident: CR17
  article-title: Infinite conformal symmetry in two-dimensional quantum field theory
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(84)90052-X
– ident: CR42
– volume: 07
  start-page: 144
  year: 2014
  ident: CR76
  article-title: Classical conformal blocks and Painlevé VI
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)144
– volume: 111
  start-page: 071601
  year: 2013
  ident: CR55
  article-title: The superconformal bootstrap
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.071601
– volume: 10
  start-page: 113
  year: 2011
  ident: CR35
  article-title: Anomalous dimensions of non-chiral operators from AdS/CFT
  publication-title: JHEP
  doi: 10.1007/JHEP10(2011)113
– volume: 104
  start-page: 207
  year: 1986
  ident: CR38
  article-title: Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01211590
– volume: 38
  start-page: 1113
  year: 1999
  ident: CR25
  article-title: The large-N limit of superconformal field theories and supergravity
  publication-title: Int. J. Theor. Phys.
  doi: 10.1023/A:1026654312961
– ident: CR67
– year: 2005
  ident: CR28
  publication-title: String theory. Vol. 1: an introduction to the bosonic string
– volume: D 73
  start-page: 086003
  year: 2006
  ident: CR10
  article-title: Local bulk operators in AdS/CFT: a boundary view of horizons and locality
  publication-title: Phys. Rev.
– volume: 11
  start-page: 2731
  year: 1994
  ident: CR39
  article-title: Geodesic structure of the (2 + 1) black hole
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/11/11/014
– volume: 152
  start-page: 220
  year: 1984
  ident: CR36
  article-title: Three-dimensional Einstein gravity: dynamics of flat space
  publication-title: Annals Phys.
  doi: 10.1016/0003-4916(84)90085-X
– volume: A 17
  start-page: L385
  year: 1984
  ident: CR18
  article-title: Conformal invariance and universality in finite-size scaling
  publication-title: J. Phys.
– volume: D 8
  start-page: 4383
  year: 1973
  ident: CR4
  article-title: Bjorken scaling in quantum field theory
  publication-title: Phys. Rev.
– volume: 11
  start-page: 140
  year: 2013
  ident: CR6
  article-title: Convexity and liberation at large spin
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)140
– ident: CR60
– volume: 73
  start-page: 1088
  year: 1987
  ident: CR73
  article-title: Conformal symmetry in two-dimensional space: recursion representation of conformal block
  publication-title: Theor. Math. Phys.
  doi: 10.1007/BF01022967
– volume: D 86
  start-page: 025022
  year: 2012
  ident: CR52
  article-title: Solving the 3D Ising model with the conformal bootstrap
  publication-title: Phys. Rev.
– volume: 111
  start-page: 041102
  year: 2013
  ident: CR68
  article-title: Globally regular instability of AdS
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.041102
– volume: B 678
  start-page: 491
  year: 2004
  ident: CR64
  article-title: Conformal partial waves and the operator product expansion
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2003.11.016
– volume: 96
  start-page: 419
  year: 1984
  ident: CR74
  article-title: Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01214585
– ident: CR43
– volume: 06
  start-page: 091
  year: 2014
  ident: CR56
  article-title: Bootstrapping the O(N) vector models
  publication-title: JHEP
  doi: 10.1007/JHEP06(2014)091
– volume: 05
  start-page: 022
  year: 2011
  ident: CR71
  article-title: Higher spin black holes
  publication-title: JHEP
  doi: 10.1007/JHEP05(2011)022
– volume: D 81
  start-page: 085037
  year: 2010
  ident: CR45
  article-title: Rigorous limits on the interaction strength in quantum field theory
  publication-title: Phys. Rev.
– volume: 03
  start-page: 025
  year: 2011
  ident: CR30
  article-title: Writing CFT correlation functions as AdS scattering amplitudes
  publication-title: JHEP
  doi: 10.1007/JHEP03(2011)025
– ident: CR2
– volume: 76
  start-page: 161
  year: 1973
  ident: CR1
  article-title: Tensor representations of conformal algebra and conformally covariant operator product expansion
  publication-title: Annals Phys.
  doi: 10.1016/0003-4916(73)90446-6
– volume: B 406
  start-page: 225
  year: 1993
  ident: CR16
  article-title: Structure function for large x and renormalization of Wilson loop
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(93)90167-N
– volume: 10
  start-page: 079
  year: 2009
  ident: CR9
  article-title: Holography from conformal field theory
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/10/079
– volume: B 115
  start-page: 197
  year: 1982
  ident: CR29
  article-title: Positive energy in anti-de Sitter backgrounds and gauged extended supergravity
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(82)90643-8
– volume: D 83
  start-page: 046011
  year: 2011
  ident: CR47
  article-title: Central charge bounds in 4D conformal field theory
  publication-title: Phys. Rev.
– volume: 223
  start-page: 183
  year: 1993
  ident: CR70
  article-title: W symmetry in conformal field theory
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(93)90111-P
– volume: B 667
  start-page: 3
  year: 2003
  ident: CR15
  article-title: Gauge/string duality for QCD conformal operators
  publication-title: Nucl. Phys.
  doi: 10.1016/S0550-3213(03)00542-X
– ident: CR79
– volume: B 428
  start-page: 105
  year: 1998
  ident: CR26
  article-title: Gauge theory correlators from noncritical string theory
  publication-title: Phys. Lett.
  doi: 10.1016/S0370-2693(98)00377-3
– volume: 10
  start-page: 212
  year: 2013
  ident: CR13
  article-title: An infalling observer in AdS/CFT
  publication-title: JHEP
  doi: 10.1007/JHEP10(2013)212
– ident: CR63
– volume: A 46
  start-page: 214011
  year: 2013
  ident: CR23
  article-title: Constraining conformal field theories with a higher spin symmetry
  publication-title: J. Phys.
– volume: 07
  start-page: 023
  year: 2011
  ident: CR11
  article-title: Effective conformal theory and the flat-space limit of AdS
  publication-title: JHEP
  doi: 10.1007/JHEP07(2011)023
– ident: CR69
– volume: D 80
  start-page: 045006
  year: 2009
  ident: CR44
  article-title: Universal constraints on conformal operator dimensions
  publication-title: Phys. Rev.
– volume: 153
  start-page: 405
  year: 1984
  ident: CR37
  article-title: Three-dimensional cosmological gravity: dynamics of constant curvature
  publication-title: Annals Phys.
  doi: 10.1016/0003-4916(84)90025-3
– volume: 12
  start-page: 071
  year: 2011
  ident: CR78
  article-title: Analytic continuation of Liouville theory
  publication-title: JHEP
  doi: 10.1007/JHEP12(2011)071
– volume: 10
  start-page: 202
  year: 2013
  ident: CR41
  article-title: Higher-spin correlators
  publication-title: JHEP
  doi: 10.1007/JHEP10(2013)202
– volume: 07
  start-page: 113
  year: 2013
  ident: CR53
  article-title: The bootstrap program for boundary CFT
  publication-title: JHEP
  doi: 10.1007/JHEP07(2013)113
– volume: 96
  start-page: 181602
  year: 2006
  ident: CR65
  article-title: Holographic derivation of entanglement entropy from AdS/CFT
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.181602
– volume: 30
  start-page: 104003
  year: 2013
  ident: CR62
  article-title: Constraining conformal field theories with a slightly broken higher spin symmetry
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/30/10/104003
– volume: 111
  start-page: 241601
  year: 2013
  ident: CR54
  article-title: Bootstrapping conformal field theories with the extremal functional method
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.241601
– volume: 03
  start-page: 100
  year: 2014
  ident: CR59
  article-title: Bootstrapping the 3d Ising twist defect
  publication-title: JHEP
  doi: 10.1007/JHEP03(2014)100
– volume: 09
  start-page: 037
  year: 2007
  ident: CR31
  article-title: Eikonal approximation in AdS/CFT: resumming the gravitational loop expansion
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/09/037
– volume: B 270
  start-page: 186
  year: 1986
  ident: CR19
  article-title: Operator content of two-dimensional conformally invariant theories
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(86)90552-3
– volume: A 44
  start-page: 035402
  year: 2011
  ident: CR48
  article-title: Bounds in 4D conformal field theories with global symmetry
  publication-title: J. Phys.
– volume: 01
  start-page: 162
  year: 2012
  ident: CR49
  article-title: Improved bounds for CFT’s with global symmetries
  publication-title: JHEP
  doi: 10.1007/JHEP01(2012)162
– volume: 112
  start-page: 141601
  year: 2014
  ident: CR58
  article-title: Conformal field theories in fractional dimensions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.141601
– volume: B 477
  start-page: 577
  year: 1996
  ident: CR75
  article-title: Structure constants and conformal bootstrap in Liouville field theory
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(96)00351-3
– volume: 12
  start-page: 031
  year: 2008
  ident: CR3
  article-title: Bounding scalar operator dimensions in 4D CFT
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/12/031
– volume: 11
  start-page: 019
  year: 2007
  ident: CR5
  article-title: Comments on operators with large spin
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/11/019
– volume: 2
  start-page: 253
  year: 1998
  ident: CR27
  article-title: Anti-de Sitter space and holography
  publication-title: Adv. Theor. Math. Phys.
– volume: 05
  start-page: 017
  year: 2011
  ident: CR46
  article-title: Bounds on 4D conformal and superconformal field theories
  publication-title: JHEP
  doi: 10.1007/JHEP05(2011)017
– volume: B 767
  start-page: 327
  year: 2007
  ident: CR32
  article-title: Eikonal approximation in AdS/CFT: conformal partial waves and finite N four-point functions
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2007.01.007
– volume: 08
  start-page: 045
  year: 2006
  ident: CR66
  article-title: Aspects of holographic entanglement entropy
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/08/045
– volume: 87
  start-page: 577
  year: 1983
  ident: 8750_CR34
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01208266
– volume: 12
  start-page: 031
  year: 2008
  ident: 8750_CR3
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/12/031
– volume: 11
  start-page: 140
  year: 2013
  ident: 8750_CR6
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)140
– volume: 112
  start-page: 141601
  year: 2014
  ident: 8750_CR58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.141601
– volume: 73
  start-page: 1088
  year: 1987
  ident: 8750_CR73
  publication-title: Theor. Math. Phys.
  doi: 10.1007/BF01022967
– ident: 8750_CR69
  doi: 10.1007/BF01036128
– volume: 05
  start-page: 017
  year: 2011
  ident: 8750_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP05(2011)017
– volume: A 44
  start-page: 035402
  year: 2011
  ident: 8750_CR48
  publication-title: J. Phys.
– volume: 11
  start-page: 2731
  year: 1994
  ident: 8750_CR39
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/11/11/014
– volume: B 241
  start-page: 333
  year: 1984
  ident: 8750_CR17
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(84)90052-X
– volume: 104
  start-page: 207
  year: 1986
  ident: 8750_CR38
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01211590
– volume: D 8
  start-page: 4383
  year: 1973
  ident: 8750_CR4
  publication-title: Phys. Rev.
– volume: B 678
  start-page: 491
  year: 2004
  ident: 8750_CR64
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2003.11.016
– volume: B 667
  start-page: 3
  year: 2003
  ident: 8750_CR15
  publication-title: Nucl. Phys.
  doi: 10.1016/S0550-3213(03)00542-X
– volume: 111
  start-page: 161602
  year: 2013
  ident: 8750_CR57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.161602
– ident: 8750_CR43
– volume: 03
  start-page: 025
  year: 2011
  ident: 8750_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP03(2011)025
– volume: 10
  start-page: 202
  year: 2013
  ident: 8750_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP10(2013)202
– volume: D 73
  start-page: 086003
  year: 2006
  ident: 8750_CR10
  publication-title: Phys. Rev.
– ident: 8750_CR51
– volume: 06
  start-page: 091
  year: 2014
  ident: 8750_CR56
  publication-title: JHEP
  doi: 10.1007/JHEP06(2014)091
– volume: B 477
  start-page: 577
  year: 1996
  ident: 8750_CR75
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(96)00351-3
– volume: B 270
  start-page: 186
  year: 1986
  ident: 8750_CR19
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(86)90552-3
– volume: D 81
  start-page: 085037
  year: 2010
  ident: 8750_CR45
  publication-title: Phys. Rev.
– volume-title: String theory. Vol. 1: an introduction to the bosonic string
  year: 2005
  ident: 8750_CR28
– volume: 02
  start-page: 054
  year: 2013
  ident: 8750_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP02(2013)054
– volume: 07
  start-page: 023
  year: 2011
  ident: 8750_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP07(2011)023
– volume: 152
  start-page: 220
  year: 1984
  ident: 8750_CR36
  publication-title: Annals Phys.
  doi: 10.1016/0003-4916(84)90085-X
– volume: 07
  start-page: 113
  year: 2013
  ident: 8750_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP07(2013)113
– volume: B 115
  start-page: 197
  year: 1982
  ident: 8750_CR29
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(82)90643-8
– volume: 03
  start-page: 100
  year: 2014
  ident: 8750_CR59
  publication-title: JHEP
  doi: 10.1007/JHEP03(2014)100
– ident: 8750_CR79
– volume: 10
  start-page: 212
  year: 2013
  ident: 8750_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP10(2013)212
– volume: 111
  start-page: 241601
  year: 2013
  ident: 8750_CR54
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.241601
– volume: E 50
  start-page: 888
  year: 1994
  ident: 8750_CR21
  publication-title: Phys. Rev.
– volume: 88
  start-page: 151301
  year: 2002
  ident: 8750_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.151301
– ident: 8750_CR61
– volume: 96
  start-page: 181602
  year: 2006
  ident: 8750_CR65
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.181602
– volume: 111
  start-page: 041102
  year: 2013
  ident: 8750_CR68
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.041102
– volume: 09
  start-page: 037
  year: 2007
  ident: 8750_CR31
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/09/037
– volume: 10
  start-page: 113
  year: 2011
  ident: 8750_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP10(2011)113
– volume: 96
  start-page: 419
  year: 1984
  ident: 8750_CR74
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01214585
– volume: 10
  start-page: 032
  year: 2012
  ident: 8750_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)032
– volume: D 83
  start-page: 046011
  year: 2011
  ident: 8750_CR47
  publication-title: Phys. Rev.
– volume: 153
  start-page: 405
  year: 1984
  ident: 8750_CR37
  publication-title: Annals Phys.
  doi: 10.1016/0003-4916(84)90025-3
– volume: 01
  start-page: 023
  year: 2014
  ident: 8750_CR72
  publication-title: JHEP
  doi: 10.1007/JHEP01(2014)023
– volume: D 86
  start-page: 025022
  year: 2012
  ident: 8750_CR52
  publication-title: Phys. Rev.
– volume: 10
  start-page: 079
  year: 2009
  ident: 8750_CR9
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/10/079
– volume: 07
  start-page: 144
  year: 2014
  ident: 8750_CR76
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)144
– volume: 10
  start-page: 106
  year: 2012
  ident: 8750_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP10(2012)106
– ident: 8750_CR77
– volume: 08
  start-page: 045
  year: 2006
  ident: 8750_CR66
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/08/045
– volume: 30
  start-page: 104003
  year: 2013
  ident: 8750_CR62
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/30/10/104003
– volume: 69
  start-page: 1849
  year: 1992
  ident: 8750_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.1849
– volume: 08
  start-page: 019
  year: 2007
  ident: 8750_CR33
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/08/019
– volume: 12
  start-page: 004
  year: 2013
  ident: 8750_CR7
  publication-title: JHEP
  doi: 10.1007/JHEP12(2013)004
– volume: 01
  start-page: 162
  year: 2012
  ident: 8750_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP01(2012)162
– ident: 8750_CR60
– volume: B 767
  start-page: 327
  year: 2007
  ident: 8750_CR32
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2007.01.007
– volume: 11
  start-page: 019
  year: 2007
  ident: 8750_CR5
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/11/019
– volume: 38
  start-page: 1113
  year: 1999
  ident: 8750_CR25
  publication-title: Int. J. Theor. Phys.
  doi: 10.1023/A:1026654312961
– volume: A 17
  start-page: L385
  year: 1984
  ident: 8750_CR18
  publication-title: J. Phys.
– volume: A 43
  start-page: 2046
  year: 1991
  ident: 8750_CR20
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevA.43.2046
– volume: A 46
  start-page: 214011
  year: 2013
  ident: 8750_CR23
  publication-title: J. Phys.
– volume: 11
  start-page: 140
  year: 2013
  ident: 8750_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)140
– volume: 2
  start-page: 253
  year: 1998
  ident: 8750_CR27
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a2
– ident: 8750_CR2
– volume: B 428
  start-page: 105
  year: 1998
  ident: 8750_CR26
  publication-title: Phys. Lett.
  doi: 10.1016/S0370-2693(98)00377-3
– volume: 05
  start-page: 110
  year: 2012
  ident: 8750_CR50
  publication-title: JHEP
  doi: 10.1007/JHEP05(2012)110
– volume: 12
  start-page: 071
  year: 2011
  ident: 8750_CR78
  publication-title: JHEP
  doi: 10.1007/JHEP12(2011)071
– ident: 8750_CR63
– volume: B 406
  start-page: 225
  year: 1993
  ident: 8750_CR16
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(93)90167-N
– volume: 111
  start-page: 071601
  year: 2013
  ident: 8750_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.071601
– volume: 223
  start-page: 183
  year: 1993
  ident: 8750_CR70
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(93)90111-P
– ident: 8750_CR42
– ident: 8750_CR67
– volume: 76
  start-page: 161
  year: 1973
  ident: 8750_CR1
  publication-title: Annals Phys.
  doi: 10.1016/0003-4916(73)90446-6
– volume: D 80
  start-page: 045006
  year: 2009
  ident: 8750_CR44
  publication-title: Phys. Rev.
– volume: 05
  start-page: 022
  year: 2011
  ident: 8750_CR71
  publication-title: JHEP
  doi: 10.1007/JHEP05(2011)022
– ident: 8750_CR80
SSID ssj0015190
Score 2.6000764
Snippet A bstract We begin by explicating a recent proof of the cluster decomposition principle in AdS ≥4 from the CFT ≥3 bootstrap. The CFT argument also computes the...
Abstract We begin by explicating a recent proof of the cluster decomposition principle in AdS^sub [greater than or equal to]4^ from the CFT^sub [greater than...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Classical and Quantum Gravitation
Elementary Particles
High energy physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
String Theory
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UYuLF-BlRND14gMNkH-3anRQJhJBIiELCbemnF7KhzP_fduuEGPW8rof3-t77vW8A7nylojjRRr4xizykrcyJiHkcK4kjQWKkbDfy8zQeL9BkiZcu4LZxZZW1TiwVtcyFjZH3AmKwTRCHAXpYv3t2a5TNrroVGvugaVQwpQ3QfBpOZy_feQSDT_x6oI9PepPxcObTjjF6qBvYDqZdW7QFmD9yoqWpGR2DI4cRYb9i6gnYU9kpOChrNcXmDDy6YooSQcNcw1WevXnSAkHDQdiXr7CKV2ygbR6BBuLBwWgODZ4ubGBjfQ4Wo-F8MPbcIgRPoIAUHmIaM8qNMWdcUsmRZqHyJYljFSUSJT4XWjNJja31Y8lxQo2TYMGYQWd-yEl0ARpZnqlLAEliPS7NsAg5khIxzDQlkuBEKxSEsgXua5Kkwk0Jt8sqVmk937iiYWppaPwG3AKd7x_W1YCMv4-2axqnTlI26ZavLdCt6b7z-ferrv6_6hoc2pNVoV4bNIqPT3VjwEPBb90L-QJhv8GQ
  priority: 102
  providerName: ProQuest
Title Universality of long-distance AdS physics from the CFT bootstrap
URI https://link.springer.com/article/10.1007/JHEP08(2014)145
https://www.proquest.com/docview/1708016214
Volume 2014
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwFMBfBGLixfgZUSQ9eIDDdB_tut3EhUlIJEQh4ba0a-uFDCLz_7fdByrqwcuyZe0Or3t5v9f3UYAbW0rPD5XWb8I8Cyujc6nHLE6kIF5KfSxNNfLTxB_N8XhBFlWTJFMLsxO_vxuPhlM76GkzhfsOJg1oEcej5oyGyI-24QKNIXbdt-fnpO8m55Mjd0KfhUWJj-CwQkE0KNfuGPZkdgL7RUpmujmF-ypnogBltFJoucpeLWF4Ty8UGogXVG5LbJCpEUGa5FAUz5DG5tzsX6zPYB4PZ9HIqs47sFLs0NzCTBEWcG2zGReB4FgxV9qC-r70QoFDm6dKMRFok2r7gpMw0L6AYS4NYbbLqXcOzWyVyQtANDSOlWIkdTkWAjPCVEAFJaGS2HFFG25rkSRp1QzcnEmxTOo2xqUMEyND7R6QNvS2E9ZlH4y_h3ZqGSeVQmwSh2o0dXzXwW3o13L_8vr3T13-Y-wVHJjbMjmvA8387V1ea2DIeRcaQfzYhdbDcDJ91k-Ri7vFD9QtXHB9nbuDD_NUvPY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xCMEFsYqy-gASHAJZ7Dg5IKgKpQsgJIrELdixzaVqCy1C_BTfyDgLRQi4cY49h8mM580OsOtqHYSxQf1mInCosTqXBsKRTCsWpDyk2nYjX12HjTvaumf3E_Be9sLYssryTcweatVPbYz8yOOIbbzQ9-jJ4MmxW6NsdrVcoZGLRVu_vaLLNjxunuH_3fP9-nmn1nCKrQJOSj0-cqgwTEQSLaOQKlKSGuFrV_Ew1EGsaOzK1BihIjRcbqgkQ6eccotsEOq4vuQB0p2EaRqgJbed6fWLz6wFoiG3HB_k8qNW4_zGjfbRxNIDz_ZLfbV8Yzj7LQObGbb6AswXiJRUcxFahAndW4KZrDI0HS7DaVG6keF10jek2-89OsrCTpQXUlW3JI-ODIltVSEIKEmt3iGI3kc2jDJYgbt_YdAqTPX6Pb0GhMfWvzOCpb6kSlHBhIm44iw2mnq-qsBhyZIkLWaS29UY3aScppzzMLE8RC-FVWD_88IgH8fx-9HNksdJoZfDZCxFFTgo-f7l88-k1v8mtQOzjc7VZXLZvG5vwJy9lZcIbsLU6PlFbyFsGcntTFYIPPy3cH4AcA385A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BEYgLYhVl9QEkOIRmsePkgFhbla2qoJW4BTu2uaC20CLEr_F1jJuEVgi4cY7tw-TZ82YH2HG1DsLY4P1mInCosXcuDYQjmVYsSHlIta1GvmmE9Ta9vGf3E_BR1MLYtMriTRw-1KqbWh95xePIbbzQ92jF5GkRzfPaUe_ZsROkbKS1GKeRQeRKv7-h-dY_vDjHf73r-7Vq66zu5BMGnJR6fOBQYZiIJGpJIVWkJDXC167iYaiDWNHYlakxQkWoxNxQSYYGOuWW5SDtcX3JAzx3Eqa4tYpKMHVabTRvv2IYyI3copmQyyuX9WrTjfZQ4dJ9z1ZPjevBEbn9Fo8dqrnaPMzl_JScZIBagAndWYTpYZ5o2l-C4zyRY8jeSdeQp27n0VGWhCJ6yIm6I5mvpE9s4QpBeknOai2CXH5gnSq9ZWj_i4hWoNTpdvQqEB5ba88IlvqSKkUFEybiirPYaOr5qgwHhUiSNO9QbgdlPCVFb-VMhomVIdosrAx7Xxt6WXOO35duFDJO8lvaT0aYKsN-Ifexzz8ftfb3Udswg8BMri8aV-swazdl-YIbUBq8vOpN5DADuZWDhcDDf-PzE20LAoU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universality+of+long-distance+AdS+physics+from+the+CFT+bootstrap&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Fitzpatrick%2C+A.+Liam&rft.au=Kaplan%2C+Jared&rft.au=Walters%2C+Matthew+T.&rft.date=2014-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2014&rft.issue=8&rft_id=info:doi/10.1007%2FJHEP08%282014%29145&rft.externalDocID=10_1007_JHEP08_2014_145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon