Universality of long-distance AdS physics from the CFT bootstrap
A bstract We begin by explicating a recent proof of the cluster decomposition principle in AdS ≥4 from the CFT ≥3 bootstrap. The CFT argument also computes the leading interactions between distant objects in AdS ≥4 , and we confirm the universal agreement between the CFT bootstrap and AdS gravity in...
Saved in:
Published in | The journal of high energy physics Vol. 2014; no. 8; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2014
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We begin by explicating a recent proof of the cluster decomposition principle in AdS
≥4
from the CFT
≥3
bootstrap. The CFT argument also computes the leading interactions between distant objects in AdS
≥4
, and we confirm the universal agreement between the CFT bootstrap and AdS gravity in the semi-classical limit.
We proceed to study the generalization to CFT
2
, which requires knowledge of the Virasoro conformal blocks in a lightcone OPE limit. We compute these blocks in a semiclassical, large central charge approximation, and use them to prove a suitably modified theorem. In particular, from the
d
= 2 bootstrap we prove the existence of large spin operators with fixed ‘anomalous dimensions’ indicative of the presence of deficit angles in AdS
3
. As we approach the threshold for the BTZ black hole, interpreted as a CFT
2
scaling dimension, the twist spectrum of large spin operators becomes dense.
Due to the exchange of the Virasoro identity block, primary states above the BTZ threshold mimic a thermal background for light operators. We derive the BTZ quasinormal modes, and we use the bootstrap equation to prove that the twist spectrum is dense. Corrections to thermality could be obtained from a more refined computation of the Virasoro conformal blocks. |
---|---|
AbstractList | A
bstract
We begin by explicating a recent proof of the cluster decomposition principle in AdS
≥4
from the CFT
≥3
bootstrap. The CFT argument also computes the leading interactions between distant objects in AdS
≥4
, and we confirm the universal agreement between the CFT bootstrap and AdS gravity in the semi-classical limit.
We proceed to study the generalization to CFT
2
, which requires knowledge of the Virasoro conformal blocks in a lightcone OPE limit. We compute these blocks in a semiclassical, large central charge approximation, and use them to prove a suitably modified theorem. In particular, from the
d
= 2 bootstrap we prove the existence of large spin operators with fixed ‘anomalous dimensions’ indicative of the presence of deficit angles in AdS
3
. As we approach the threshold for the BTZ black hole, interpreted as a CFT
2
scaling dimension, the twist spectrum of large spin operators becomes dense.
Due to the exchange of the Virasoro identity block, primary states above the BTZ threshold mimic a thermal background for light operators. We derive the BTZ quasinormal modes, and we use the bootstrap equation to prove that the twist spectrum is dense. Corrections to thermality could be obtained from a more refined computation of the Virasoro conformal blocks. Abstract We begin by explicating a recent proof of the cluster decomposition principle in AdS^sub [greater than or equal to]4^ from the CFT^sub [greater than or equal to]3^ bootstrap. The CFT argument also computes the leading interactions between distant objects in AdS^sub [greater than or equal to]4^, and we confirm the universal agreement between the CFT bootstrap and AdS gravity in the semi-classical limit. We proceed to study the generalization to CFT^sub 2^, which requires knowledge of the Virasoro conformal blocks in a lightcone OPE limit. We compute these blocks in a semiclassical, large central charge approximation, and use them to prove a suitably modified theorem. In particular, from the d = 2 bootstrap we prove the existence of large spin operators with fixed 'anomalous dimensions' indicative of the presence of deficit angles in AdS^sub 3^. As we approach the threshold for the BTZ black hole, interpreted as a CFT^sub 2^ scaling dimension, the twist spectrum of large spin operators becomes dense. Due to the exchange of the Virasoro identity block, primary states above the BTZ threshold mimic a thermal background for light operators. We derive the BTZ quasinormal modes, and we use the bootstrap equation to prove that the twist spectrum is dense. Corrections to thermality could be obtained from a more refined computation of the Virasoro conformal blocks. |
ArticleNumber | 145 |
Author | Walters, Matthew T. Fitzpatrick, A. Liam Kaplan, Jared |
Author_xml | – sequence: 1 givenname: A. Liam surname: Fitzpatrick fullname: Fitzpatrick, A. Liam organization: Stanford Institute for Theoretical Physics, Stanford University, SLAC National Accelerator Laboratory – sequence: 2 givenname: Jared surname: Kaplan fullname: Kaplan, Jared organization: Department of Physics and Astronomy, Johns Hopkins University – sequence: 3 givenname: Matthew T. surname: Walters fullname: Walters, Matthew T. email: mwalters@pha.jhu.edu organization: Department of Physics and Astronomy, Johns Hopkins University |
BookMark | eNp9kMFPwjAUhxuDiYCevTbxoofJ6-jW7SYhIBoSTYRz020tlIx2tsWE_96ReSAmenrv8L73e-8boJ6xRiJ0S-CRALDR62L2Dtl9DIQ-EJpcoD6BOI8yyvLeWX-FBt7vAEhCcuijp7XRX9J5UetwxFbh2ppNVGkfhCklnlQfuNkevS49Vs7ucdhKPJ2vcGFt8MGJ5hpdKlF7efNTh2g9n62mi2j59vwynSyjkhIWIipUIrKCZbEoqqwqqBKxhIqlqRznFc2hKJUSVZamBNKqSPKMUQaQUJKPIS7YeIjuur2Ns58H6QPf2YMzbSQnDDIgaUxoOzXqpkpnvXdS8cbpvXBHToCfNPFOEz9p4q2mlkh-EaUOImhr2u90_Q8HHefbBLOR7uyeP5BvXfJ7qg |
CitedBy_id | crossref_primary_10_1007_JHEP05_2024_309 crossref_primary_10_1007_JHEP05_2018_154 crossref_primary_10_1007_JHEP12_2017_049 crossref_primary_10_1007_JHEP09_2018_091 crossref_primary_10_1007_JHEP01_2016_176 crossref_primary_10_1007_JHEP11_2015_149 crossref_primary_10_1007_JHEP08_2018_112 crossref_primary_10_1007_JHEP12_2022_069 crossref_primary_10_1103_PhysRevLett_115_131603 crossref_primary_10_1103_PhysRevD_109_L041903 crossref_primary_10_1007_JHEP08_2022_221 crossref_primary_10_1007_JHEP01_2019_025 crossref_primary_10_1007_JHEP10_2017_136 crossref_primary_10_1007_JHEP01_2023_006 crossref_primary_10_1088_1361_6382_aa8003 crossref_primary_10_1140_epjc_s10052_022_11129_8 crossref_primary_10_1007_JHEP12_2016_110 crossref_primary_10_1007_JHEP08_2019_038 crossref_primary_10_1103_PhysRevD_106_066020 crossref_primary_10_1007_JHEP08_2015_011 crossref_primary_10_1007_JHEP09_2014_064 crossref_primary_10_1007_JHEP03_2019_068 crossref_primary_10_1088_1751_8113_48_29_29FT01 crossref_primary_10_1007_JHEP04_2016_121 crossref_primary_10_1007_JHEP11_2014_109 crossref_primary_10_1088_1475_7516_2017_01_044 crossref_primary_10_1007_JHEP07_2018_179 crossref_primary_10_1007_JHEP07_2019_099 crossref_primary_10_1007_JHEP09_2016_130 crossref_primary_10_1016_j_physletb_2021_136273 crossref_primary_10_1007_JHEP09_2018_086 crossref_primary_10_1007_JHEP05_2016_099 crossref_primary_10_1007_JHEP04_2021_289 crossref_primary_10_1007_JHEP08_2020_163 crossref_primary_10_1007_JHEP05_2023_166 crossref_primary_10_1007_JHEP11_2017_096 crossref_primary_10_1007_JHEP07_2018_180 crossref_primary_10_1007_JHEP04_2019_009 crossref_primary_10_1103_PhysRevD_98_026003 crossref_primary_10_1007_JHEP09_2017_149 crossref_primary_10_1140_epjc_s10052_020_08680_7 crossref_primary_10_1007_JHEP06_2020_004 crossref_primary_10_1007_JHEP06_2021_048 crossref_primary_10_1007_JHEP07_2021_021 crossref_primary_10_1007_JHEP03_2023_176 crossref_primary_10_1007_JHEP10_2018_044 crossref_primary_10_1007_JHEP09_2022_053 crossref_primary_10_21468_SciPostPhys_14_6_148 crossref_primary_10_1007_JHEP06_2024_184 crossref_primary_10_1007_JHEP10_2016_110 crossref_primary_10_1007_JHEP08_2020_037 crossref_primary_10_21468_SciPostPhys_6_6_065 crossref_primary_10_1007_JHEP05_2022_166 crossref_primary_10_1007_JHEP10_2024_105 crossref_primary_10_1007_JHEP01_2015_102 crossref_primary_10_1038_s42254_020_0225_1 crossref_primary_10_1007_JHEP05_2019_051 crossref_primary_10_1103_PhysRevD_105_086013 crossref_primary_10_1093_ptep_ptad054 crossref_primary_10_1007_JHEP08_2020_151 crossref_primary_10_1007_JHEP06_2016_136 crossref_primary_10_1007_JHEP10_2017_153 crossref_primary_10_1007_JHEP06_2020_119 crossref_primary_10_21468_SciPostPhys_12_2_074 crossref_primary_10_1007_JHEP07_2020_208 crossref_primary_10_21468_SciPostPhys_14_5_116 crossref_primary_10_1007_JHEP01_2018_115 crossref_primary_10_1093_ptep_ptw157 crossref_primary_10_1007_JHEP06_2019_026 crossref_primary_10_1007_JHEP08_2016_099 crossref_primary_10_1007_JHEP09_2018_061 crossref_primary_10_1140_epjc_s10052_023_12166_7 crossref_primary_10_1007_JHEP08_2024_082 crossref_primary_10_1007_JHEP10_2017_140 crossref_primary_10_1007_JHEP11_2023_107 crossref_primary_10_1103_PhysRevD_100_106015 crossref_primary_10_1007_JHEP04_2017_147 crossref_primary_10_1007_JHEP01_2019_152 crossref_primary_10_1007_JHEP07_2022_046 crossref_primary_10_1007_JHEP12_2021_104 crossref_primary_10_1007_JHEP02_2017_074 crossref_primary_10_1007_JHEP06_2023_159 crossref_primary_10_1103_PhysRevD_98_086009 crossref_primary_10_1103_PhysRevD_97_066003 crossref_primary_10_1007_JHEP11_2015_106 crossref_primary_10_1007_JHEP02_2016_143 crossref_primary_10_1007_JHEP10_2018_028 crossref_primary_10_1007_JHEP07_2015_168 crossref_primary_10_1007_JHEP08_2018_162 crossref_primary_10_1142_S0217751X24501598 crossref_primary_10_1007_JHEP08_2018_161 crossref_primary_10_1007_JHEP02_2016_149 crossref_primary_10_1007_JHEP11_2017_183 crossref_primary_10_1007_JHEP04_2019_026 crossref_primary_10_1007_JHEP05_2016_109 crossref_primary_10_1007_JHEP10_2022_091 crossref_primary_10_1007_JHEP07_2018_010 crossref_primary_10_1007_JHEP03_2022_161 crossref_primary_10_1007_JHEP02_2020_088 crossref_primary_10_1007_JHEP01_2018_133 crossref_primary_10_1007_JHEP11_2024_033 crossref_primary_10_1007_JHEP12_2019_003 crossref_primary_10_1007_JHEP10_2018_156 crossref_primary_10_1007_JHEP01_2020_076 crossref_primary_10_1093_ptep_ptaa152 crossref_primary_10_1016_j_nuclphysb_2018_11_021 crossref_primary_10_1007_JHEP08_2019_063 crossref_primary_10_1007_JHEP12_2015_109 crossref_primary_10_1007_JHEP10_2019_077 crossref_primary_10_1007_JHEP10_2019_048 crossref_primary_10_1007_JHEP06_2016_183 crossref_primary_10_1007_JHEP07_2018_002 crossref_primary_10_1007_JHEP07_2020_019 crossref_primary_10_1007_JHEP11_2015_200 crossref_primary_10_1007_JHEP05_2018_172 crossref_primary_10_1007_JHEP12_2019_114 crossref_primary_10_1103_PhysRevD_98_101901 crossref_primary_10_1007_JHEP07_2019_171 crossref_primary_10_1007_JHEP09_2016_017 crossref_primary_10_1007_JHEP09_2016_015 crossref_primary_10_1007_JHEP12_2022_163 crossref_primary_10_1007_JHEP05_2024_054 crossref_primary_10_1007_JHEP01_2023_108 crossref_primary_10_1007_JHEP05_2016_127 crossref_primary_10_1007_JHEP07_2024_229 crossref_primary_10_1103_PhysRevD_101_066003 crossref_primary_10_1007_JHEP08_2017_126 crossref_primary_10_1007_JHEP08_2017_125 crossref_primary_10_1007_JHEP10_2019_046 crossref_primary_10_1007_JHEP05_2017_160 crossref_primary_10_1007_JHEP11_2016_116 crossref_primary_10_1007_JHEP12_2017_073 crossref_primary_10_1007_JHEP05_2022_106 crossref_primary_10_1007_JHEP06_2019_107 crossref_primary_10_1007_JHEP08_2018_042 crossref_primary_10_1007_JHEP10_2021_194 crossref_primary_10_1007_JHEP06_2022_162 crossref_primary_10_1007_JHEP07_2015_059 crossref_primary_10_1103_PhysRevD_93_046002 crossref_primary_10_1007_JHEP01_2017_004 crossref_primary_10_1007_JHEP01_2017_006 crossref_primary_10_1007_JHEP01_2025_067 crossref_primary_10_1007_JHEP03_2016_184 crossref_primary_10_1103_PhysRevLett_122_141601 crossref_primary_10_1007_JHEP03_2016_183 crossref_primary_10_1007_JHEP10_2019_268 crossref_primary_10_1007_JHEP03_2025_167 crossref_primary_10_1103_PhysRevD_103_106003 crossref_primary_10_1007_JHEP03_2017_167 crossref_primary_10_1103_PhysRevD_103_026005 crossref_primary_10_1088_1751_8121_ab2dae crossref_primary_10_1007_JHEP12_2019_170 crossref_primary_10_1103_PhysRevLett_132_041602 crossref_primary_10_1103_RevModPhys_91_015002 crossref_primary_10_1007_JHEP07_2015_131 crossref_primary_10_1007_JHEP07_2019_143 crossref_primary_10_1007_JHEP07_2019_141 crossref_primary_10_1007_JHEP09_2022_234 crossref_primary_10_1007_JHEP06_2018_044 crossref_primary_10_1140_epjc_s10052_018_6259_1 crossref_primary_10_1007_JHEP07_2020_046 crossref_primary_10_1007_JHEP12_2016_070 crossref_primary_10_1140_epjc_s10052_019_7032_9 crossref_primary_10_1103_PhysRevD_108_126013 crossref_primary_10_1007_JHEP10_2019_037 crossref_primary_10_1007_JHEP05_2021_067 crossref_primary_10_1103_PhysRevD_99_106010 crossref_primary_10_4213_tmf9231 crossref_primary_10_1007_JHEP04_2020_093 crossref_primary_10_1007_JHEP02_2019_023 crossref_primary_10_1093_ptep_ptab163 crossref_primary_10_1007_JHEP02_2016_072 crossref_primary_10_1007_JHEP02_2019_022 crossref_primary_10_1007_JHEP07_2020_037 crossref_primary_10_1007_JHEP01_2019_098 crossref_primary_10_1007_JHEP08_2015_088 crossref_primary_10_1051_epjconf_201612505010 crossref_primary_10_1007_JHEP10_2020_055 crossref_primary_10_1007_JHEP08_2016_129 crossref_primary_10_1007_JHEP02_2024_167 crossref_primary_10_1007_JHEP09_2016_065 crossref_primary_10_1007_JHEP03_2017_067 crossref_primary_10_1103_PhysRevD_111_046016 crossref_primary_10_1007_JHEP09_2015_019 crossref_primary_10_1007_JHEP12_2021_206 crossref_primary_10_1007_JHEP07_2015_026 crossref_primary_10_1007_JHEP05_2019_212 crossref_primary_10_1007_JHEP04_2023_029 crossref_primary_10_1007_JHEP11_2021_105 crossref_primary_10_1007_JHEP08_2017_045 crossref_primary_10_1140_epjc_s10052_019_6693_8 crossref_primary_10_1103_PhysRevD_104_086014 crossref_primary_10_1007_JHEP07_2024_287 crossref_primary_10_1140_epjc_s10052_022_10980_z crossref_primary_10_21468_SciPostPhys_15_2_054 crossref_primary_10_1007_JHEP11_2019_107 crossref_primary_10_1007_JHEP07_2017_092 crossref_primary_10_1007_JHEP10_2016_069 crossref_primary_10_1007_JHEP12_2019_141 crossref_primary_10_1093_ptep_pty063 crossref_primary_10_1007_JHEP11_2019_102 crossref_primary_10_1007_JHEP06_2022_116 crossref_primary_10_1007_JHEP10_2023_136 crossref_primary_10_1007_JHEP09_2023_011 crossref_primary_10_1007_JHEP08_2024_122 crossref_primary_10_1007_JHEP09_2014_118 crossref_primary_10_1007_JHEP03_2017_129 crossref_primary_10_1007_JHEP04_2018_067 crossref_primary_10_1007_JHEP08_2017_075 crossref_primary_10_1007_JHEP10_2019_107 crossref_primary_10_1007_JHEP01_2016_139 crossref_primary_10_1007_JHEP09_2019_018 crossref_primary_10_1007_JHEP05_2016_070 crossref_primary_10_1007_JHEP08_2016_023 crossref_primary_10_1007_s00023_016_0529_y crossref_primary_10_1007_JHEP09_2017_009 crossref_primary_10_1007_JHEP12_2015_077 crossref_primary_10_1007_JHEP06_2018_123 crossref_primary_10_1007_JHEP11_2020_121 crossref_primary_10_1140_epjc_s10052_018_5969_8 crossref_primary_10_1007_JHEP02_2019_079 crossref_primary_10_1007_JHEP05_2022_060 crossref_primary_10_1007_JHEP05_2016_069 crossref_primary_10_1007_JHEP02_2020_125 crossref_primary_10_1007_JHEP03_2025_092 crossref_primary_10_1007_JHEP06_2016_111 crossref_primary_10_1007_JHEP01_2016_025 crossref_primary_10_1007_JHEP01_2016_146 crossref_primary_10_1007_JHEP01_2020_109 crossref_primary_10_1007_JHEP09_2017_115 crossref_primary_10_1007_JHEP09_2019_020 crossref_primary_10_1007_JHEP12_2023_123 crossref_primary_10_1007_JHEP04_2018_075 crossref_primary_10_1007_JHEP05_2024_117 crossref_primary_10_1007_JHEP08_2016_041 crossref_primary_10_1007_JHEP11_2020_010 crossref_primary_10_1103_PhysRevLett_123_131603 crossref_primary_10_21468_SciPostPhysCore_5_1_013 crossref_primary_10_1007_JHEP07_2020_074 crossref_primary_10_1007_JHEP11_2023_203 crossref_primary_10_1103_PhysRevD_93_025016 crossref_primary_10_1007_JHEP08_2020_002 crossref_primary_10_1007_JHEP12_2024_047 crossref_primary_10_1007_JHEP11_2020_018 crossref_primary_10_1007_JHEP08_2015_049 crossref_primary_10_1007_JHEP02_2020_119 crossref_primary_10_1007_JHEP02_2018_148 crossref_primary_10_1007_JHEP03_2018_033 crossref_primary_10_1007_JHEP08_2022_150 crossref_primary_10_1142_S0217751X24501409 crossref_primary_10_1007_JHEP02_2018_019 crossref_primary_10_1007_JHEP05_2021_033 crossref_primary_10_1007_JHEP11_2015_040 crossref_primary_10_1007_JHEP08_2024_202 crossref_primary_10_1007_JHEP06_2020_048 crossref_primary_10_1007_JHEP11_2015_044 crossref_primary_10_1007_JHEP09_2017_102 crossref_primary_10_1007_JHEP11_2019_139 crossref_primary_10_1007_JHEP06_2017_100 crossref_primary_10_1007_JHEP05_2020_104 crossref_primary_10_1007_JHEP07_2017_036 crossref_primary_10_1007_JHEP04_2017_072 crossref_primary_10_1007_JHEP02_2019_054 crossref_primary_10_1103_PhysRevD_98_126015 crossref_primary_10_1103_PhysRevD_98_126013 crossref_primary_10_1007_JHEP02_2018_012 crossref_primary_10_1007_JHEP05_2021_029 crossref_primary_10_1007_JHEP08_2019_138 crossref_primary_10_1007_JHEP11_2021_020 crossref_primary_10_1007_JHEP11_2021_021 crossref_primary_10_1007_JHEP04_2018_096 crossref_primary_10_1007_JHEP06_2020_054 crossref_primary_10_1007_JHEP07_2016_123 crossref_primary_10_1007_JHEP11_2018_101 crossref_primary_10_1007_JHEP10_2016_141 crossref_primary_10_1134_S0040577916110106 crossref_primary_10_1007_JHEP02_2015_171 crossref_primary_10_1007_JHEP02_2020_021 crossref_primary_10_1007_JHEP03_2017_011 crossref_primary_10_1007_JHEP05_2020_120 crossref_primary_10_1007_JHEP04_2017_070 crossref_primary_10_1007_JHEP08_2016_056 crossref_primary_10_1103_PhysRevD_105_026019 crossref_primary_10_1007_JHEP05_2024_216 crossref_primary_10_1103_PhysRevD_102_021701 crossref_primary_10_1103_PhysRevD_93_064049 crossref_primary_10_1007_JHEP02_2020_017 crossref_primary_10_1007_JHEP05_2016_075 crossref_primary_10_1007_JHEP10_2023_050 crossref_primary_10_21468_SciPostPhys_7_1_003 crossref_primary_10_1007_JHEP12_2017_119 crossref_primary_10_1088_1361_6382_ab0d3f crossref_primary_10_1140_epjc_s10052_018_6522_5 crossref_primary_10_1007_JHEP02_2025_035 |
Cites_doi | 10.1088/1126-6708/2007/08/019 10.1103/PhysRevLett.111.161602 10.1007/JHEP10(2012)032 10.1007/JHEP05(2012)110 10.1103/PhysRevLett.88.151301 10.1007/JHEP10(2012)106 10.1103/PhysRevA.43.2046 10.1007/BF01208266 10.1103/PhysRevLett.69.1849 10.1007/JHEP01(2014)023 10.1007/JHEP11(2013)140 10.1007/JHEP12(2013)004 10.1007/JHEP02(2013)054 10.1016/0550-3213(84)90052-X 10.1007/JHEP07(2014)144 10.1103/PhysRevLett.111.071601 10.1007/JHEP10(2011)113 10.1007/BF01211590 10.1023/A:1026654312961 10.1088/0264-9381/11/11/014 10.1016/0003-4916(84)90085-X 10.1007/BF01022967 10.1103/PhysRevLett.111.041102 10.1016/j.nuclphysb.2003.11.016 10.1007/BF01214585 10.1007/JHEP06(2014)091 10.1007/JHEP05(2011)022 10.1007/JHEP03(2011)025 10.1016/0003-4916(73)90446-6 10.1016/0550-3213(93)90167-N 10.1088/1126-6708/2009/10/079 10.1016/0370-2693(82)90643-8 10.1016/0370-1573(93)90111-P 10.1016/S0550-3213(03)00542-X 10.1016/S0370-2693(98)00377-3 10.1007/JHEP10(2013)212 10.1007/JHEP07(2011)023 10.1016/0003-4916(84)90025-3 10.1007/JHEP12(2011)071 10.1007/JHEP10(2013)202 10.1007/JHEP07(2013)113 10.1103/PhysRevLett.96.181602 10.1088/0264-9381/30/10/104003 10.1103/PhysRevLett.111.241601 10.1007/JHEP03(2014)100 10.1088/1126-6708/2007/09/037 10.1016/0550-3213(86)90552-3 10.1007/JHEP01(2012)162 10.1103/PhysRevLett.112.141601 10.1016/0550-3213(96)00351-3 10.1088/1126-6708/2008/12/031 10.1088/1126-6708/2007/11/019 10.1007/JHEP05(2011)017 10.1016/j.nuclphysb.2007.01.007 10.1088/1126-6708/2006/08/045 10.1007/BF01036128 10.4310/ATMP.1998.v2.n2.a2 |
ContentType | Journal Article |
Copyright | The Author(s) 2014 SISSA, Trieste, Italy 2014 |
Copyright_xml | – notice: The Author(s) 2014 – notice: SISSA, Trieste, Italy 2014 |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/JHEP08(2014)145 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
ExternalDocumentID | 3791658481 10_1007_JHEP08_2014_145 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACBXY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHSBF AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ H13 HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O9- O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSEE AHWEU AHYZX AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c417t-4af5a8b782abd8db4fa2e0d766e39d490bcffad866106db598747005419302b73 |
IEDL.DBID | C6C |
ISSN | 1029-8479 |
IngestDate | Sun Jul 13 05:05:29 EDT 2025 Tue Jul 01 03:04:30 EDT 2025 Thu Apr 24 23:08:02 EDT 2025 Fri Feb 21 02:35:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | AdS-CFT Correspondence Black Holes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-4af5a8b782abd8db4fa2e0d766e39d490bcffad866106db598747005419302b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/JHEP08(2014)145 |
PQID | 1708016214 |
PQPubID | 2034718 |
ParticipantIDs | proquest_journals_1708016214 crossref_primary_10_1007_JHEP08_2014_145 crossref_citationtrail_10_1007_JHEP08_2014_145 springer_journals_10_1007_JHEP08_2014_145 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140801 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 20140801 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2014 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Fitzpatrick, Katz, Poland, Simmons-Duffin (CR11) 2011; 07 Maldacena, Zhiboedov (CR23) 2013; A 46 Zamolodchikov (CR74) 1984; 96 Rattazzi, Rychkov, Vichi (CR47) 2011; D 83 Cornalba, Costa, Penedones, Schiappa (CR32) 2007; B 767 Cardy (CR19) 1986; B 270 Brown, Henneaux (CR38) 1986; 104 Litvinov, Lukyanov, Nekrasov, Zamolodchikov (CR76) 2014; 07 Breitenlohner, Freedman (CR29) 1982; B 115 El-Showk (CR58) 2014; 112 Hamilton, Kabat, Lifschytz, Lowe (CR10) 2006; D 73 CR79 CR77 Liendo, Rastelli, van Rees (CR53) 2013; 07 El-Showk, Paulos (CR54) 2013; 111 Bañados, Teitelboim, Zanelli (CR8) 1992; 69 Fitzpatrick, Shih (CR35) 2011; 10 Bizon, Jałmużna (CR68) 2013; 111 de Boer, Jottar (CR72) 2014; 01 Harlow, Maltz, Witten (CR78) 2011; 12 Bouwknegt, Schoutens (CR70) 1993; 223 Ferrara, Grillo, Gatto (CR1) 1973; 76 Deser, Jackiw, t Hooft (CR36) 1984; 152 Alday, Maldacena (CR5) 2007; 11 Gubser, Klebanov, Polyakov (CR26) 1998; B 428 Korchemsky, Marchesini (CR16) 1993; B 406 Poland, Simmons-Duffin (CR46) 2011; 05 Gutperle, Kraus (CR71) 2011; 05 CR2 Rattazzi, Rychkov, Tonni, Vichi (CR3) 2008; 12 Ryu, Takayanagi (CR65) 2006; 96 El-Showk (CR52) 2012; D 86 CR43 CR42 Zamolodchikov, Zamolodchikov (CR75) 1996; B 477 CR80 Fitzpatrick, Kaplan (CR14) 2013; 02 Vichi (CR49) 2012; 01 Kos, Poland, Simmons-Duffin (CR56) 2014; 06 Gliozzi (CR57) 2013; 111 Dolan, Osborn (CR64) 2004; B 678 Komargodski, Zhiboedov (CR6) 2013; 11 Rattazzi, Rychkov, Vichi (CR48) 2011; A 44 Witten (CR27) 1998; 2 Caracciolo, Rychkov (CR45) 2010; D 81 Penedones (CR30) 2011; 03 Zamolodchikov (CR73) 1987; 73 Cornalba, Costa, Penedones, Schiappa (CR33) 2007; 08 Cardy (CR18) 1984; A 17 Maldacena, Zhiboedov (CR62) 2013; 30 Srednicki (CR21) 1994; E 50 Beem, Rastelli, van Rees (CR55) 2013; 111 CR51 Hawking, Page (CR34) 1983; 87 Maldacena (CR25) 1999; 38 Deutsch (CR20) 1991; A 43 Birmingham, Sachs, Solodukhin (CR24) 2002; 88 Heemskerk, Penedones, Polchinski, Sully (CR9) 2009; 10 Belavin, Polyakov, Zamolodchikov (CR17) 1984; B 241 El-Showk, Papadodimas (CR12) 2012; 10 Papadodimas, Raju (CR13) 2013; 10 Ryu, Takayanagi (CR66) 2006; 08 Cornalba, Costa, Penedones (CR31) 2007; 09 Fitzpatrick, Kaplan, Poland, Simmons-Duffin (CR7) 2013; 12 Poland, Simmons-Duffin, Vichi (CR50) 2012; 05 Fitzpatrick, Kaplan (CR22) 2012; 10 Deser, Jackiw (CR37) 1984; 153 CR69 Alday, Bissi (CR41) 2013; 10 CR67 Belitsky, Gorsky, Korchemsky (CR15) 2003; B 667 Polchinski (CR28) 2005 CR63 CR61 CR60 Cruz, Martinez, Pena (CR39) 1994; 11 Callan, Gross (CR4) 1973; D 8 Komargodski, Zhiboedov (CR40) 2013; 11 Gaiotto, Mazac, Paulos (CR59) 2014; 03 Rychkov, Vichi (CR44) 2009; D 80 P Breitenlohner (8750_CR29) 1982; B 115 SW Hawking (8750_CR34) 1983; 87 S El-Showk (8750_CR54) 2013; 111 S Ferrara (8750_CR1) 1973; 76 GP Korchemsky (8750_CR16) 1993; B 406 VS Rychkov (8750_CR44) 2009; D 80 CG Callan Jr (8750_CR4) 1973; D 8 AL Fitzpatrick (8750_CR22) 2012; 10 J Penedones (8750_CR30) 2011; 03 8750_CR79 8750_CR77 D Harlow (8750_CR78) 2011; 12 M Gutperle (8750_CR71) 2011; 05 J Boer de (8750_CR72) 2014; 01 L Cornalba (8750_CR32) 2007; B 767 A Vichi (8750_CR49) 2012; 01 S El-Showk (8750_CR52) 2012; D 86 K Papadodimas (8750_CR13) 2013; 10 S Deser (8750_CR37) 1984; 153 D Poland (8750_CR50) 2012; 05 S Ryu (8750_CR66) 2006; 08 AL Fitzpatrick (8750_CR11) 2011; 07 S El-Showk (8750_CR12) 2012; 10 M Bañados (8750_CR8) 1992; 69 S Ryu (8750_CR65) 2006; 96 8750_CR80 A Hamilton (8750_CR10) 2006; D 73 AV Belitsky (8750_CR15) 2003; B 667 C Beem (8750_CR55) 2013; 111 S Deser (8750_CR36) 1984; 152 JD Brown (8750_CR38) 1986; 104 E Witten (8750_CR27) 1998; 2 8750_CR42 8750_CR43 AL Fitzpatrick (8750_CR14) 2013; 02 JL Cardy (8750_CR18) 1984; A 17 A Litvinov (8750_CR76) 2014; 07 J Polchinski (8750_CR28) 2005 AL Fitzpatrick (8750_CR35) 2011; 10 8750_CR2 N Cruz (8750_CR39) 1994; 11 A Zamolodchikov (8750_CR74) 1984; 96 R Rattazzi (8750_CR47) 2011; D 83 AA Belavin (8750_CR17) 1984; B 241 P Bouwknegt (8750_CR70) 1993; 223 F Gliozzi (8750_CR57) 2013; 111 LF Alday (8750_CR5) 2007; 11 R Rattazzi (8750_CR48) 2011; A 44 F Kos (8750_CR56) 2014; 06 D Birmingham (8750_CR24) 2002; 88 L Cornalba (8750_CR31) 2007; 09 JM Deutsch (8750_CR20) 1991; A 43 8750_CR51 J Maldacena (8750_CR62) 2013; 30 LF Alday (8750_CR41) 2013; 10 D Poland (8750_CR46) 2011; 05 FA Dolan (8750_CR64) 2004; B 678 SS Gubser (8750_CR26) 1998; B 428 P Bizon (8750_CR68) 2013; 111 J Maldacena (8750_CR23) 2013; A 46 AB Zamolodchikov (8750_CR75) 1996; B 477 AL Fitzpatrick (8750_CR7) 2013; 12 8750_CR60 8750_CR61 I Heemskerk (8750_CR9) 2009; 10 L Cornalba (8750_CR33) 2007; 08 F Caracciolo (8750_CR45) 2010; D 81 JL Cardy (8750_CR19) 1986; B 270 S El-Showk (8750_CR58) 2014; 112 Z Komargodski (8750_CR6) 2013; 11 8750_CR69 R Rattazzi (8750_CR3) 2008; 12 8750_CR67 M Srednicki (8750_CR21) 1994; E 50 JM Maldacena (8750_CR25) 1999; 38 8750_CR63 Z Komargodski (8750_CR40) 2013; 11 P Liendo (8750_CR53) 2013; 07 A Zamolodchikov (8750_CR73) 1987; 73 D Gaiotto (8750_CR59) 2014; 03 |
References_xml | – volume: 08 start-page: 019 year: 2007 ident: CR33 article-title: Eikonal approximation in AdS/CFT: from shock waves to four-point functions publication-title: JHEP doi: 10.1088/1126-6708/2007/08/019 – volume: E 50 start-page: 888 year: 1994 ident: CR21 article-title: Chaos and quantum thermalization publication-title: Phys. Rev. – volume: 111 start-page: 161602 year: 2013 ident: CR57 article-title: More constraining conformal bootstrap publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.161602 – volume: 10 start-page: 032 year: 2012 ident: CR22 article-title: Unitarity and the holographic S-matrix publication-title: JHEP doi: 10.1007/JHEP10(2012)032 – volume: 05 start-page: 110 year: 2012 ident: CR50 article-title: Carving out the space of 4D CFTs publication-title: JHEP doi: 10.1007/JHEP05(2012)110 – volume: 88 start-page: 151301 year: 2002 ident: CR24 article-title: Conformal field theory interpretation of black hole quasinormal modes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.151301 – volume: 10 start-page: 106 year: 2012 ident: CR12 article-title: Emergent spacetime and holographic CFTs publication-title: JHEP doi: 10.1007/JHEP10(2012)106 – ident: CR51 – volume: A 43 start-page: 2046 year: 1991 ident: CR20 article-title: Quantum statistical mechanics in a closed system publication-title: Phys. Rev. doi: 10.1103/PhysRevA.43.2046 – volume: 87 start-page: 577 year: 1983 ident: CR34 article-title: Thermodynamics of black holes in anti-de Sitter space publication-title: Commun. Math. Phys. doi: 10.1007/BF01208266 – volume: 69 start-page: 1849 year: 1992 ident: CR8 article-title: The black hole in three-dimensional space-time publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1849 – ident: CR61 – volume: 01 start-page: 023 year: 2014 ident: CR72 article-title: Thermodynamics of higher spin black holes in AdS publication-title: JHEP doi: 10.1007/JHEP01(2014)023 – volume: 11 start-page: 140 year: 2013 ident: CR40 article-title: Convexity and liberation at large spin publication-title: JHEP doi: 10.1007/JHEP11(2013)140 – ident: CR80 – ident: CR77 – volume: 12 start-page: 004 year: 2013 ident: CR7 article-title: The analytic bootstrap and AdS superhorizon locality publication-title: JHEP doi: 10.1007/JHEP12(2013)004 – volume: 02 start-page: 054 year: 2013 ident: CR14 article-title: AdS field theory from conformal field theory publication-title: JHEP doi: 10.1007/JHEP02(2013)054 – volume: B 241 start-page: 333 year: 1984 ident: CR17 article-title: Infinite conformal symmetry in two-dimensional quantum field theory publication-title: Nucl. Phys. doi: 10.1016/0550-3213(84)90052-X – ident: CR42 – volume: 07 start-page: 144 year: 2014 ident: CR76 article-title: Classical conformal blocks and Painlevé VI publication-title: JHEP doi: 10.1007/JHEP07(2014)144 – volume: 111 start-page: 071601 year: 2013 ident: CR55 article-title: The superconformal bootstrap publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.071601 – volume: 10 start-page: 113 year: 2011 ident: CR35 article-title: Anomalous dimensions of non-chiral operators from AdS/CFT publication-title: JHEP doi: 10.1007/JHEP10(2011)113 – volume: 104 start-page: 207 year: 1986 ident: CR38 article-title: Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity publication-title: Commun. Math. Phys. doi: 10.1007/BF01211590 – volume: 38 start-page: 1113 year: 1999 ident: CR25 article-title: The large-N limit of superconformal field theories and supergravity publication-title: Int. J. Theor. Phys. doi: 10.1023/A:1026654312961 – ident: CR67 – year: 2005 ident: CR28 publication-title: String theory. Vol. 1: an introduction to the bosonic string – volume: D 73 start-page: 086003 year: 2006 ident: CR10 article-title: Local bulk operators in AdS/CFT: a boundary view of horizons and locality publication-title: Phys. Rev. – volume: 11 start-page: 2731 year: 1994 ident: CR39 article-title: Geodesic structure of the (2 + 1) black hole publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/11/11/014 – volume: 152 start-page: 220 year: 1984 ident: CR36 article-title: Three-dimensional Einstein gravity: dynamics of flat space publication-title: Annals Phys. doi: 10.1016/0003-4916(84)90085-X – volume: A 17 start-page: L385 year: 1984 ident: CR18 article-title: Conformal invariance and universality in finite-size scaling publication-title: J. Phys. – volume: D 8 start-page: 4383 year: 1973 ident: CR4 article-title: Bjorken scaling in quantum field theory publication-title: Phys. Rev. – volume: 11 start-page: 140 year: 2013 ident: CR6 article-title: Convexity and liberation at large spin publication-title: JHEP doi: 10.1007/JHEP11(2013)140 – ident: CR60 – volume: 73 start-page: 1088 year: 1987 ident: CR73 article-title: Conformal symmetry in two-dimensional space: recursion representation of conformal block publication-title: Theor. Math. Phys. doi: 10.1007/BF01022967 – volume: D 86 start-page: 025022 year: 2012 ident: CR52 article-title: Solving the 3D Ising model with the conformal bootstrap publication-title: Phys. Rev. – volume: 111 start-page: 041102 year: 2013 ident: CR68 article-title: Globally regular instability of AdS publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.041102 – volume: B 678 start-page: 491 year: 2004 ident: CR64 article-title: Conformal partial waves and the operator product expansion publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysb.2003.11.016 – volume: 96 start-page: 419 year: 1984 ident: CR74 article-title: Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude publication-title: Commun. Math. Phys. doi: 10.1007/BF01214585 – ident: CR43 – volume: 06 start-page: 091 year: 2014 ident: CR56 article-title: Bootstrapping the O(N) vector models publication-title: JHEP doi: 10.1007/JHEP06(2014)091 – volume: 05 start-page: 022 year: 2011 ident: CR71 article-title: Higher spin black holes publication-title: JHEP doi: 10.1007/JHEP05(2011)022 – volume: D 81 start-page: 085037 year: 2010 ident: CR45 article-title: Rigorous limits on the interaction strength in quantum field theory publication-title: Phys. Rev. – volume: 03 start-page: 025 year: 2011 ident: CR30 article-title: Writing CFT correlation functions as AdS scattering amplitudes publication-title: JHEP doi: 10.1007/JHEP03(2011)025 – ident: CR2 – volume: 76 start-page: 161 year: 1973 ident: CR1 article-title: Tensor representations of conformal algebra and conformally covariant operator product expansion publication-title: Annals Phys. doi: 10.1016/0003-4916(73)90446-6 – volume: B 406 start-page: 225 year: 1993 ident: CR16 article-title: Structure function for large x and renormalization of Wilson loop publication-title: Nucl. Phys. doi: 10.1016/0550-3213(93)90167-N – volume: 10 start-page: 079 year: 2009 ident: CR9 article-title: Holography from conformal field theory publication-title: JHEP doi: 10.1088/1126-6708/2009/10/079 – volume: B 115 start-page: 197 year: 1982 ident: CR29 article-title: Positive energy in anti-de Sitter backgrounds and gauged extended supergravity publication-title: Phys. Lett. doi: 10.1016/0370-2693(82)90643-8 – volume: D 83 start-page: 046011 year: 2011 ident: CR47 article-title: Central charge bounds in 4D conformal field theory publication-title: Phys. Rev. – volume: 223 start-page: 183 year: 1993 ident: CR70 article-title: W symmetry in conformal field theory publication-title: Phys. Rept. doi: 10.1016/0370-1573(93)90111-P – volume: B 667 start-page: 3 year: 2003 ident: CR15 article-title: Gauge/string duality for QCD conformal operators publication-title: Nucl. Phys. doi: 10.1016/S0550-3213(03)00542-X – ident: CR79 – volume: B 428 start-page: 105 year: 1998 ident: CR26 article-title: Gauge theory correlators from noncritical string theory publication-title: Phys. Lett. doi: 10.1016/S0370-2693(98)00377-3 – volume: 10 start-page: 212 year: 2013 ident: CR13 article-title: An infalling observer in AdS/CFT publication-title: JHEP doi: 10.1007/JHEP10(2013)212 – ident: CR63 – volume: A 46 start-page: 214011 year: 2013 ident: CR23 article-title: Constraining conformal field theories with a higher spin symmetry publication-title: J. Phys. – volume: 07 start-page: 023 year: 2011 ident: CR11 article-title: Effective conformal theory and the flat-space limit of AdS publication-title: JHEP doi: 10.1007/JHEP07(2011)023 – ident: CR69 – volume: D 80 start-page: 045006 year: 2009 ident: CR44 article-title: Universal constraints on conformal operator dimensions publication-title: Phys. Rev. – volume: 153 start-page: 405 year: 1984 ident: CR37 article-title: Three-dimensional cosmological gravity: dynamics of constant curvature publication-title: Annals Phys. doi: 10.1016/0003-4916(84)90025-3 – volume: 12 start-page: 071 year: 2011 ident: CR78 article-title: Analytic continuation of Liouville theory publication-title: JHEP doi: 10.1007/JHEP12(2011)071 – volume: 10 start-page: 202 year: 2013 ident: CR41 article-title: Higher-spin correlators publication-title: JHEP doi: 10.1007/JHEP10(2013)202 – volume: 07 start-page: 113 year: 2013 ident: CR53 article-title: The bootstrap program for boundary CFT publication-title: JHEP doi: 10.1007/JHEP07(2013)113 – volume: 96 start-page: 181602 year: 2006 ident: CR65 article-title: Holographic derivation of entanglement entropy from AdS/CFT publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.181602 – volume: 30 start-page: 104003 year: 2013 ident: CR62 article-title: Constraining conformal field theories with a slightly broken higher spin symmetry publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/30/10/104003 – volume: 111 start-page: 241601 year: 2013 ident: CR54 article-title: Bootstrapping conformal field theories with the extremal functional method publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.241601 – volume: 03 start-page: 100 year: 2014 ident: CR59 article-title: Bootstrapping the 3d Ising twist defect publication-title: JHEP doi: 10.1007/JHEP03(2014)100 – volume: 09 start-page: 037 year: 2007 ident: CR31 article-title: Eikonal approximation in AdS/CFT: resumming the gravitational loop expansion publication-title: JHEP doi: 10.1088/1126-6708/2007/09/037 – volume: B 270 start-page: 186 year: 1986 ident: CR19 article-title: Operator content of two-dimensional conformally invariant theories publication-title: Nucl. Phys. doi: 10.1016/0550-3213(86)90552-3 – volume: A 44 start-page: 035402 year: 2011 ident: CR48 article-title: Bounds in 4D conformal field theories with global symmetry publication-title: J. Phys. – volume: 01 start-page: 162 year: 2012 ident: CR49 article-title: Improved bounds for CFT’s with global symmetries publication-title: JHEP doi: 10.1007/JHEP01(2012)162 – volume: 112 start-page: 141601 year: 2014 ident: CR58 article-title: Conformal field theories in fractional dimensions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.141601 – volume: B 477 start-page: 577 year: 1996 ident: CR75 article-title: Structure constants and conformal bootstrap in Liouville field theory publication-title: Nucl. Phys. doi: 10.1016/0550-3213(96)00351-3 – volume: 12 start-page: 031 year: 2008 ident: CR3 article-title: Bounding scalar operator dimensions in 4D CFT publication-title: JHEP doi: 10.1088/1126-6708/2008/12/031 – volume: 11 start-page: 019 year: 2007 ident: CR5 article-title: Comments on operators with large spin publication-title: JHEP doi: 10.1088/1126-6708/2007/11/019 – volume: 2 start-page: 253 year: 1998 ident: CR27 article-title: Anti-de Sitter space and holography publication-title: Adv. Theor. Math. Phys. – volume: 05 start-page: 017 year: 2011 ident: CR46 article-title: Bounds on 4D conformal and superconformal field theories publication-title: JHEP doi: 10.1007/JHEP05(2011)017 – volume: B 767 start-page: 327 year: 2007 ident: CR32 article-title: Eikonal approximation in AdS/CFT: conformal partial waves and finite N four-point functions publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysb.2007.01.007 – volume: 08 start-page: 045 year: 2006 ident: CR66 article-title: Aspects of holographic entanglement entropy publication-title: JHEP doi: 10.1088/1126-6708/2006/08/045 – volume: 87 start-page: 577 year: 1983 ident: 8750_CR34 publication-title: Commun. Math. Phys. doi: 10.1007/BF01208266 – volume: 12 start-page: 031 year: 2008 ident: 8750_CR3 publication-title: JHEP doi: 10.1088/1126-6708/2008/12/031 – volume: 11 start-page: 140 year: 2013 ident: 8750_CR6 publication-title: JHEP doi: 10.1007/JHEP11(2013)140 – volume: 112 start-page: 141601 year: 2014 ident: 8750_CR58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.141601 – volume: 73 start-page: 1088 year: 1987 ident: 8750_CR73 publication-title: Theor. Math. Phys. doi: 10.1007/BF01022967 – ident: 8750_CR69 doi: 10.1007/BF01036128 – volume: 05 start-page: 017 year: 2011 ident: 8750_CR46 publication-title: JHEP doi: 10.1007/JHEP05(2011)017 – volume: A 44 start-page: 035402 year: 2011 ident: 8750_CR48 publication-title: J. Phys. – volume: 11 start-page: 2731 year: 1994 ident: 8750_CR39 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/11/11/014 – volume: B 241 start-page: 333 year: 1984 ident: 8750_CR17 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(84)90052-X – volume: 104 start-page: 207 year: 1986 ident: 8750_CR38 publication-title: Commun. Math. Phys. doi: 10.1007/BF01211590 – volume: D 8 start-page: 4383 year: 1973 ident: 8750_CR4 publication-title: Phys. Rev. – volume: B 678 start-page: 491 year: 2004 ident: 8750_CR64 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysb.2003.11.016 – volume: B 667 start-page: 3 year: 2003 ident: 8750_CR15 publication-title: Nucl. Phys. doi: 10.1016/S0550-3213(03)00542-X – volume: 111 start-page: 161602 year: 2013 ident: 8750_CR57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.161602 – ident: 8750_CR43 – volume: 03 start-page: 025 year: 2011 ident: 8750_CR30 publication-title: JHEP doi: 10.1007/JHEP03(2011)025 – volume: 10 start-page: 202 year: 2013 ident: 8750_CR41 publication-title: JHEP doi: 10.1007/JHEP10(2013)202 – volume: D 73 start-page: 086003 year: 2006 ident: 8750_CR10 publication-title: Phys. Rev. – ident: 8750_CR51 – volume: 06 start-page: 091 year: 2014 ident: 8750_CR56 publication-title: JHEP doi: 10.1007/JHEP06(2014)091 – volume: B 477 start-page: 577 year: 1996 ident: 8750_CR75 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(96)00351-3 – volume: B 270 start-page: 186 year: 1986 ident: 8750_CR19 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(86)90552-3 – volume: D 81 start-page: 085037 year: 2010 ident: 8750_CR45 publication-title: Phys. Rev. – volume-title: String theory. Vol. 1: an introduction to the bosonic string year: 2005 ident: 8750_CR28 – volume: 02 start-page: 054 year: 2013 ident: 8750_CR14 publication-title: JHEP doi: 10.1007/JHEP02(2013)054 – volume: 07 start-page: 023 year: 2011 ident: 8750_CR11 publication-title: JHEP doi: 10.1007/JHEP07(2011)023 – volume: 152 start-page: 220 year: 1984 ident: 8750_CR36 publication-title: Annals Phys. doi: 10.1016/0003-4916(84)90085-X – volume: 07 start-page: 113 year: 2013 ident: 8750_CR53 publication-title: JHEP doi: 10.1007/JHEP07(2013)113 – volume: B 115 start-page: 197 year: 1982 ident: 8750_CR29 publication-title: Phys. Lett. doi: 10.1016/0370-2693(82)90643-8 – volume: 03 start-page: 100 year: 2014 ident: 8750_CR59 publication-title: JHEP doi: 10.1007/JHEP03(2014)100 – ident: 8750_CR79 – volume: 10 start-page: 212 year: 2013 ident: 8750_CR13 publication-title: JHEP doi: 10.1007/JHEP10(2013)212 – volume: 111 start-page: 241601 year: 2013 ident: 8750_CR54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.241601 – volume: E 50 start-page: 888 year: 1994 ident: 8750_CR21 publication-title: Phys. Rev. – volume: 88 start-page: 151301 year: 2002 ident: 8750_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.151301 – ident: 8750_CR61 – volume: 96 start-page: 181602 year: 2006 ident: 8750_CR65 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.181602 – volume: 111 start-page: 041102 year: 2013 ident: 8750_CR68 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.041102 – volume: 09 start-page: 037 year: 2007 ident: 8750_CR31 publication-title: JHEP doi: 10.1088/1126-6708/2007/09/037 – volume: 10 start-page: 113 year: 2011 ident: 8750_CR35 publication-title: JHEP doi: 10.1007/JHEP10(2011)113 – volume: 96 start-page: 419 year: 1984 ident: 8750_CR74 publication-title: Commun. Math. Phys. doi: 10.1007/BF01214585 – volume: 10 start-page: 032 year: 2012 ident: 8750_CR22 publication-title: JHEP doi: 10.1007/JHEP10(2012)032 – volume: D 83 start-page: 046011 year: 2011 ident: 8750_CR47 publication-title: Phys. Rev. – volume: 153 start-page: 405 year: 1984 ident: 8750_CR37 publication-title: Annals Phys. doi: 10.1016/0003-4916(84)90025-3 – volume: 01 start-page: 023 year: 2014 ident: 8750_CR72 publication-title: JHEP doi: 10.1007/JHEP01(2014)023 – volume: D 86 start-page: 025022 year: 2012 ident: 8750_CR52 publication-title: Phys. Rev. – volume: 10 start-page: 079 year: 2009 ident: 8750_CR9 publication-title: JHEP doi: 10.1088/1126-6708/2009/10/079 – volume: 07 start-page: 144 year: 2014 ident: 8750_CR76 publication-title: JHEP doi: 10.1007/JHEP07(2014)144 – volume: 10 start-page: 106 year: 2012 ident: 8750_CR12 publication-title: JHEP doi: 10.1007/JHEP10(2012)106 – ident: 8750_CR77 – volume: 08 start-page: 045 year: 2006 ident: 8750_CR66 publication-title: JHEP doi: 10.1088/1126-6708/2006/08/045 – volume: 30 start-page: 104003 year: 2013 ident: 8750_CR62 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/30/10/104003 – volume: 69 start-page: 1849 year: 1992 ident: 8750_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1849 – volume: 08 start-page: 019 year: 2007 ident: 8750_CR33 publication-title: JHEP doi: 10.1088/1126-6708/2007/08/019 – volume: 12 start-page: 004 year: 2013 ident: 8750_CR7 publication-title: JHEP doi: 10.1007/JHEP12(2013)004 – volume: 01 start-page: 162 year: 2012 ident: 8750_CR49 publication-title: JHEP doi: 10.1007/JHEP01(2012)162 – ident: 8750_CR60 – volume: B 767 start-page: 327 year: 2007 ident: 8750_CR32 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysb.2007.01.007 – volume: 11 start-page: 019 year: 2007 ident: 8750_CR5 publication-title: JHEP doi: 10.1088/1126-6708/2007/11/019 – volume: 38 start-page: 1113 year: 1999 ident: 8750_CR25 publication-title: Int. J. Theor. Phys. doi: 10.1023/A:1026654312961 – volume: A 17 start-page: L385 year: 1984 ident: 8750_CR18 publication-title: J. Phys. – volume: A 43 start-page: 2046 year: 1991 ident: 8750_CR20 publication-title: Phys. Rev. doi: 10.1103/PhysRevA.43.2046 – volume: A 46 start-page: 214011 year: 2013 ident: 8750_CR23 publication-title: J. Phys. – volume: 11 start-page: 140 year: 2013 ident: 8750_CR40 publication-title: JHEP doi: 10.1007/JHEP11(2013)140 – volume: 2 start-page: 253 year: 1998 ident: 8750_CR27 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a2 – ident: 8750_CR2 – volume: B 428 start-page: 105 year: 1998 ident: 8750_CR26 publication-title: Phys. Lett. doi: 10.1016/S0370-2693(98)00377-3 – volume: 05 start-page: 110 year: 2012 ident: 8750_CR50 publication-title: JHEP doi: 10.1007/JHEP05(2012)110 – volume: 12 start-page: 071 year: 2011 ident: 8750_CR78 publication-title: JHEP doi: 10.1007/JHEP12(2011)071 – ident: 8750_CR63 – volume: B 406 start-page: 225 year: 1993 ident: 8750_CR16 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(93)90167-N – volume: 111 start-page: 071601 year: 2013 ident: 8750_CR55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.071601 – volume: 223 start-page: 183 year: 1993 ident: 8750_CR70 publication-title: Phys. Rept. doi: 10.1016/0370-1573(93)90111-P – ident: 8750_CR42 – ident: 8750_CR67 – volume: 76 start-page: 161 year: 1973 ident: 8750_CR1 publication-title: Annals Phys. doi: 10.1016/0003-4916(73)90446-6 – volume: D 80 start-page: 045006 year: 2009 ident: 8750_CR44 publication-title: Phys. Rev. – volume: 05 start-page: 022 year: 2011 ident: 8750_CR71 publication-title: JHEP doi: 10.1007/JHEP05(2011)022 – ident: 8750_CR80 |
SSID | ssj0015190 |
Score | 2.6000764 |
Snippet | A
bstract
We begin by explicating a recent proof of the cluster decomposition principle in AdS
≥4
from the CFT
≥3
bootstrap. The CFT argument also computes the... Abstract We begin by explicating a recent proof of the cluster decomposition principle in AdS^sub [greater than or equal to]4^ from the CFT^sub [greater than... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Classical and Quantum Gravitation Elementary Particles High energy physics Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory String Theory |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UYuLF-BlRND14gMNkH-3anRQJhJBIiELCbemnF7KhzP_fduuEGPW8rof3-t77vW8A7nylojjRRr4xizykrcyJiHkcK4kjQWKkbDfy8zQeL9BkiZcu4LZxZZW1TiwVtcyFjZH3AmKwTRCHAXpYv3t2a5TNrroVGvugaVQwpQ3QfBpOZy_feQSDT_x6oI9PepPxcObTjjF6qBvYDqZdW7QFmD9yoqWpGR2DI4cRYb9i6gnYU9kpOChrNcXmDDy6YooSQcNcw1WevXnSAkHDQdiXr7CKV2ygbR6BBuLBwWgODZ4ubGBjfQ4Wo-F8MPbcIgRPoIAUHmIaM8qNMWdcUsmRZqHyJYljFSUSJT4XWjNJja31Y8lxQo2TYMGYQWd-yEl0ARpZnqlLAEliPS7NsAg5khIxzDQlkuBEKxSEsgXua5Kkwk0Jt8sqVmk937iiYWppaPwG3AKd7x_W1YCMv4-2axqnTlI26ZavLdCt6b7z-ferrv6_6hoc2pNVoV4bNIqPT3VjwEPBb90L-QJhv8GQ priority: 102 providerName: ProQuest |
Title | Universality of long-distance AdS physics from the CFT bootstrap |
URI | https://link.springer.com/article/10.1007/JHEP08(2014)145 https://www.proquest.com/docview/1708016214 |
Volume | 2014 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwFMBfBGLixfgZUSQ9eIDDdB_tut3EhUlIJEQh4ba0a-uFDCLz_7fdByrqwcuyZe0Or3t5v9f3UYAbW0rPD5XWb8I8Cyujc6nHLE6kIF5KfSxNNfLTxB_N8XhBFlWTJFMLsxO_vxuPhlM76GkzhfsOJg1oEcej5oyGyI-24QKNIXbdt-fnpO8m55Mjd0KfhUWJj-CwQkE0KNfuGPZkdgL7RUpmujmF-ypnogBltFJoucpeLWF4Ty8UGogXVG5LbJCpEUGa5FAUz5DG5tzsX6zPYB4PZ9HIqs47sFLs0NzCTBEWcG2zGReB4FgxV9qC-r70QoFDm6dKMRFok2r7gpMw0L6AYS4NYbbLqXcOzWyVyQtANDSOlWIkdTkWAjPCVEAFJaGS2HFFG25rkSRp1QzcnEmxTOo2xqUMEyND7R6QNvS2E9ZlH4y_h3ZqGSeVQmwSh2o0dXzXwW3o13L_8vr3T13-Y-wVHJjbMjmvA8387V1ea2DIeRcaQfzYhdbDcDJ91k-Ri7vFD9QtXHB9nbuDD_NUvPY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xCMEFsYqy-gASHAJZ7Dg5IKgKpQsgJIrELdixzaVqCy1C_BTfyDgLRQi4cY49h8mM580OsOtqHYSxQf1mInCosTqXBsKRTCsWpDyk2nYjX12HjTvaumf3E_Be9sLYssryTcweatVPbYz8yOOIbbzQ9-jJ4MmxW6NsdrVcoZGLRVu_vaLLNjxunuH_3fP9-nmn1nCKrQJOSj0-cqgwTEQSLaOQKlKSGuFrV_Ew1EGsaOzK1BihIjRcbqgkQ6eccotsEOq4vuQB0p2EaRqgJbed6fWLz6wFoiG3HB_k8qNW4_zGjfbRxNIDz_ZLfbV8Yzj7LQObGbb6AswXiJRUcxFahAndW4KZrDI0HS7DaVG6keF10jek2-89OsrCTpQXUlW3JI-ODIltVSEIKEmt3iGI3kc2jDJYgbt_YdAqTPX6Pb0GhMfWvzOCpb6kSlHBhIm44iw2mnq-qsBhyZIkLWaS29UY3aScppzzMLE8RC-FVWD_88IgH8fx-9HNksdJoZfDZCxFFTgo-f7l88-k1v8mtQOzjc7VZXLZvG5vwJy9lZcIbsLU6PlFbyFsGcntTFYIPPy3cH4AcA385A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BEYgLYhVl9QEkOIRmsePkgFhbla2qoJW4BTu2uaC20CLEr_F1jJuEVgi4cY7tw-TZ82YH2HG1DsLY4P1mInCosXcuDYQjmVYsSHlIta1GvmmE9Ta9vGf3E_BR1MLYtMriTRw-1KqbWh95xePIbbzQ92jF5GkRzfPaUe_ZsROkbKS1GKeRQeRKv7-h-dY_vDjHf73r-7Vq66zu5BMGnJR6fOBQYZiIJGpJIVWkJDXC167iYaiDWNHYlakxQkWoxNxQSYYGOuWW5SDtcX3JAzx3Eqa4tYpKMHVabTRvv2IYyI3copmQyyuX9WrTjfZQ4dJ9z1ZPjevBEbn9Fo8dqrnaPMzl_JScZIBagAndWYTpYZ5o2l-C4zyRY8jeSdeQp27n0VGWhCJ6yIm6I5mvpE9s4QpBeknOai2CXH5gnSq9ZWj_i4hWoNTpdvQqEB5ba88IlvqSKkUFEybiirPYaOr5qgwHhUiSNO9QbgdlPCVFb-VMhomVIdosrAx7Xxt6WXOO35duFDJO8lvaT0aYKsN-Ifexzz8ftfb3Udswg8BMri8aV-swazdl-YIbUBq8vOpN5DADuZWDhcDDf-PzE20LAoU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universality+of+long-distance+AdS+physics+from+the+CFT+bootstrap&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Fitzpatrick%2C+A.+Liam&rft.au=Kaplan%2C+Jared&rft.au=Walters%2C+Matthew+T.&rft.date=2014-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2014&rft.issue=8&rft_id=info:doi/10.1007%2FJHEP08%282014%29145&rft.externalDocID=10_1007_JHEP08_2014_145 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |