An End-to-End Learning Framework for Video Compression
Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this paper, we propose the first end-to-end deep video compression framework to take advantage of both the classical compression architecture and the p...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 43; no. 10; pp. 3292 - 3308 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this paper, we propose the first end-to-end deep video compression framework to take advantage of both the classical compression architecture and the powerful non-linear representation ability of neural networks. Our framework employs pixel-wise motion information, which is learned from an optical flow network and further compressed by an auto-encoder network to save bits. The other compression components are also implemented by the well-designed networks for high efficiency. All the modules are jointly optimized by using the rate-distortion trade-off and can collaborate with each other. More importantly, the proposed deep video compression framework is very flexible and can be easily extended by using lightweight or advanced networks for higher speed or better efficiency. We also propose to introduce the adaptive quantization layer to reduce the number of parameters for variable bitrate coding. Comprehensive experimental results demonstrate the effectiveness of the proposed framework on the benchmark datasets. |
---|---|
AbstractList | Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this paper, we propose the first end-to-end deep video compression framework to take advantage of both the classical compression architecture and the powerful non-linear representation ability of neural networks. Our framework employs pixel-wise motion information, which is learned from an optical flow network and further compressed by an auto-encoder network to save bits. The other compression components are also implemented by the well-designed networks for high efficiency. All the modules are jointly optimized by using the rate-distortion trade-off and can collaborate with each other. More importantly, the proposed deep video compression framework is very flexible and can be easily extended by using lightweight or advanced networks for higher speed or better efficiency. We also propose to introduce the adaptive quantization layer to reduce the number of parameters for variable bitrate coding. Comprehensive experimental results demonstrate the effectiveness of the proposed framework on the benchmark datasets. Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this paper, taking advantage of both the classical compression architecture and the powerful non-linear representation ability of neural networks, we propose the first end-to-end deep video compression framework. Our framework employs pixel-wise motion information, which is learned from an optical flow network and further compressed by an auto-encoder network to save bits. The other compression components are also implemented by well-designed networks for high efficiency. All the modules are jointly optimized by using the rate-distortion trade-off and collaborate with each other. More importantly, the proposed deep video compression framework is very flexible and can be easily extended by using lightweight or advanced networks for higher speed or better efficiency. Experimental results show that the proposed approach can outperform the widely used video coding standard H.264 and be even on par with the latest standard H.265. Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this paper, we propose the first end-to-end deep video compression framework to take advantage of both the classical compression architecture and the powerful non-linear representation ability of neural networks. Our framework employs pixel-wise motion information, which is learned from an optical flow network and further compressed by an auto-encoder network to save bits. The other compression components are also implemented by the well-designed networks for high efficiency. All the modules are jointly optimized by using the rate-distortion trade-off and can collaborate with each other. More importantly, the proposed deep video compression framework is very flexible and can be easily extended by using lightweight or advanced networks for higher speed or better efficiency. We also propose to introduce the adaptive quantization layer to reduce the number of parameters for variable bitrate coding. Comprehensive experimental results demonstrate the effectiveness of the proposed framework on the benchmark datasets.Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this paper, we propose the first end-to-end deep video compression framework to take advantage of both the classical compression architecture and the powerful non-linear representation ability of neural networks. Our framework employs pixel-wise motion information, which is learned from an optical flow network and further compressed by an auto-encoder network to save bits. The other compression components are also implemented by the well-designed networks for high efficiency. All the modules are jointly optimized by using the rate-distortion trade-off and can collaborate with each other. More importantly, the proposed deep video compression framework is very flexible and can be easily extended by using lightweight or advanced networks for higher speed or better efficiency. We also propose to introduce the adaptive quantization layer to reduce the number of parameters for variable bitrate coding. Comprehensive experimental results demonstrate the effectiveness of the proposed framework on the benchmark datasets. |
Author | Lu, Guo Zhang, Xiaoyun Xu, Dong Chen, Li Ouyang, Wanli Gao, Zhiyong |
Author_xml | – sequence: 1 givenname: Guo orcidid: 0000-0001-6951-0090 surname: Lu fullname: Lu, Guo email: luguo2014@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Xiaoyun orcidid: 0000-0001-7680-4062 surname: Zhang fullname: Zhang, Xiaoyun email: xiaoyun.zhang@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Wanli orcidid: 0000-0002-9163-2761 surname: Ouyang fullname: Ouyang, Wanli email: wanli.ouyang@sydney.edu.au organization: School of Electrical and Information Engineering, The University of Sydney, NSW, Australia – sequence: 4 givenname: Li orcidid: 0000-0001-9899-2535 surname: Chen fullname: Chen, Li email: hilichen@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Zhiyong surname: Gao fullname: Gao, Zhiyong email: zhiyong.gao@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 6 givenname: Dong orcidid: 0000-0003-2775-9730 surname: Xu fullname: Xu, Dong email: dong.xu@sydney.edu.au organization: School of Electrical and Information Engineering, The University of Sydney, NSW, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32324541$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMFqGzEQQEVJaOy0P9BAWegll3WkkVYrHY2xk4BLckh7FVrtbNnEK7nSmtC_r1w7OfjQ04B4b9C8KTnzwSMhXxidMUb1zdPj_Pv9DCjQGWilRMU_kAkwSUsNGs7IhDIJpVKgLsg0pWdKmago_0guOHAQlWATIue-WPq2HEOZR7FGG33vfxWraAd8DfGl6EIsfvYthmIRhm3ElPrgP5Hzzm4Sfj7OS_JjtXxa3JXrh9v7xXxdOsHqsRQ1WAuqkU53DSJvZFUB06KpOKpKOepcfhKUdY1taGexQwey1W3HqQah-CW5PuzdxvB7h2k0Q58cbjbWY9glA1wLpbQEkdFvJ-hz2EWff2egkqquldQ0U1-P1K4ZsDXb2A82_jFvRTKgDoCLIaWInXH9aMd88xhtvzGMmn188y--2cc3x_hZhRP1bft_pauD1CPiu6Bpnc-v-V_Dho1p |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3350643 crossref_primary_10_1007_s12652_023_04748_w crossref_primary_10_1109_LSP_2022_3187917 crossref_primary_10_1109_TCSVT_2022_3222418 crossref_primary_10_1109_TIP_2023_3276333 crossref_primary_10_1109_TPAMI_2024_3356548 crossref_primary_10_1109_TPAMI_2024_3507873 crossref_primary_10_1109_TBC_2024_3434736 crossref_primary_10_1117_1_JEI_32_6_063013 crossref_primary_10_1109_TMM_2022_3233245 crossref_primary_10_1109_JSTSP_2020_3034501 crossref_primary_10_3390_s22249656 crossref_primary_10_1007_s42979_023_02503_8 crossref_primary_10_1109_TMM_2020_3019683 crossref_primary_10_1016_j_eswa_2025_126682 crossref_primary_10_1109_JSAC_2022_3180802 crossref_primary_10_1145_3607139 crossref_primary_10_1145_3661824 crossref_primary_10_1109_TVLSI_2024_3515113 crossref_primary_10_1117_1_JRS_18_036508 crossref_primary_10_1016_j_eswa_2024_123322 crossref_primary_10_1109_JETCAS_2024_3524260 crossref_primary_10_1109_TBC_2021_3132826 crossref_primary_10_1016_j_dsp_2023_104130 crossref_primary_10_1109_TIP_2023_3251020 crossref_primary_10_3390_bdcc6020044 crossref_primary_10_1016_j_displa_2023_102462 crossref_primary_10_5937_vojtehg70_34739 crossref_primary_10_1109_TBC_2024_3434702 crossref_primary_10_1109_TCSVT_2023_3313611 crossref_primary_10_1109_TII_2022_3204681 crossref_primary_10_1007_s41870_023_01456_8 crossref_primary_10_1109_LSP_2024_3443516 crossref_primary_10_1109_TIP_2024_3349859 crossref_primary_10_1109_JPROC_2021_3059994 crossref_primary_10_1016_j_jksuci_2024_102029 crossref_primary_10_1109_TMM_2023_3289763 crossref_primary_10_1080_13682199_2023_2187514 crossref_primary_10_1109_TCSVT_2023_3303228 crossref_primary_10_1016_j_eswa_2024_125535 crossref_primary_10_1109_JETCAS_2024_3403524 crossref_primary_10_1016_j_cviu_2024_104127 crossref_primary_10_1109_TMM_2024_3372352 crossref_primary_10_1109_JSAC_2022_3221977 crossref_primary_10_1109_TCSVT_2024_3360248 crossref_primary_10_1109_TIP_2022_3140608 crossref_primary_10_1109_TMM_2023_3316429 crossref_primary_10_3233_JHS_222087 crossref_primary_10_1109_TCE_2024_3441934 crossref_primary_10_1007_s11042_025_20686_5 crossref_primary_10_1145_3715144 crossref_primary_10_1109_TIP_2023_3287495 crossref_primary_10_1109_TCSVT_2023_3301016 crossref_primary_10_1145_3661311 crossref_primary_10_1007_s10489_021_02527_8 crossref_primary_10_1109_JETCAS_2024_3387301 crossref_primary_10_3390_app14135573 crossref_primary_10_3390_e24111677 crossref_primary_10_1109_ACCESS_2023_3323873 crossref_primary_10_1109_TIP_2023_3242774 crossref_primary_10_1007_s10462_021_10039_7 crossref_primary_10_1109_TCSVT_2021_3104305 crossref_primary_10_1109_TCSVT_2022_3233221 crossref_primary_10_1109_TPAMI_2022_3210652 crossref_primary_10_1109_TCSVT_2021_3135337 crossref_primary_10_1109_TPAMI_2024_3367879 crossref_primary_10_1109_ACCESS_2023_3283277 crossref_primary_10_1109_TMM_2022_3220421 crossref_primary_10_1109_TCSVT_2022_3150014 crossref_primary_10_1142_S021800142354023X |
Cites_doi | 10.1109/ICCV.2019.00031 10.1109/30.125072 10.1007/s11263-018-01144-2 10.1109/CVPR.2018.00936 10.1109/ACSSC.2003.1292216 10.1109/CVPR.2019.01126 10.1109/ICCV.2019.00324 10.1109/CVPR.2018.00461 10.1002/j.1538-7305.1948.tb01338.x 10.1109/ICIP.2017.8296792 10.1016/j.jvcir.2004.12.002 10.1109/CVPR.2017.577 10.1109/CVPR.2018.00931 10.1109/CVPR.2018.00462 10.1109/VCIP.2017.8305033 10.1109/ICCV.2019.00355 10.1007/978-3-030-01264-9_35 10.1007/978-3-030-01237-3_26 10.1109/TCSVT.2012.2221191 10.1109/79.952804 10.1109/ICCV.2015.316 10.1109/CVPR.2018.00339 10.1109/TCSVT.2019.2892608 10.1109/TCSVT.2003.815165 10.1109/CVPR.2019.01031 10.1145/3368405 10.1109/CVPR.2017.291 10.1109/TCSI.2005.858488 10.1109/TIP.2016.2601264 10.1109/CVPR.2018.00697 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2020.2988453 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 3308 |
ExternalDocumentID | 32324541 10_1109_TPAMI_2020_2988453 9072487 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shanghai grantid: 18ZR1418100 funderid: 10.13039/100007219 – fundername: Shanghai Key Laboratory of Digital Media Processing and Transmission; Shanghai Key Laboratory of Digital Media Processing and Transmissions grantid: STCSM 18DZ2270700 funderid: 10.13039/501100012656 – fundername: Australian Research Council grantid: FT180100116 funderid: 10.13039/501100000923 – fundername: 111 plan grantid: B07022 – fundername: National Natural Science Foundation of China grantid: 61771306 funderid: 10.13039/501100001809 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION NPM RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c417t-472aa28b6c9fbee3b6552194b53e858c0ccb65401fbab0faefec26d9df3092483 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 09:22:43 EDT 2025 Sun Jun 29 16:40:52 EDT 2025 Wed Feb 19 02:30:52 EST 2025 Tue Jul 01 03:18:25 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Aug 27 02:27:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-472aa28b6c9fbee3b6552194b53e858c0ccb65401fbab0faefec26d9df3092483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7680-4062 0000-0002-9163-2761 0000-0001-6951-0090 0000-0001-9899-2535 0000-0003-2775-9730 |
PMID | 32324541 |
PQID | 2568778690 |
PQPubID | 85458 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2394889624 crossref_citationtrail_10_1109_TPAMI_2020_2988453 proquest_journals_2568778690 crossref_primary_10_1109_TPAMI_2020_2988453 pubmed_primary_32324541 ieee_primary_9072487 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 (ref59) 2018 ref15 ref14 baig (ref34) 2017 wiegand (ref2) 2003; 13 ref11 ref54 (ref56) 2020 (ref39) 2018 ref17 ref19 song (ref20) 2017 ref18 tsai (ref37) 2018 ref51 ref46 ref45 ref41 ref44 ref43 bjontegaard (ref53) 2001 ballé (ref8) 2018 ref49 blau (ref31) 2019 lee (ref30) 2019 ref9 (ref57) 2018 ref3 ref6 ref40 toderici (ref4) 2016 ref36 minnen (ref27) 2018 ref33 ref32 barjatya (ref42) 2004; 8 ballé (ref5) 2017 ref38 bellard (ref16) 2018 kingma (ref50) 2014 agustsson (ref7) 2017 patel (ref35) 2019 rippel (ref12) 2017 (ref1) 2016; 1 ref24 ref23 ref26 ref25 ref22 ref21 (ref58) 2018 ref28 (ref55) 2020 hui (ref47) 2019 (ref60) 2018 patel (ref29) 2019 jaderberg (ref48) 2015 (ref52) 2018 theis (ref10) 2017 |
References_xml | – ident: ref13 doi: 10.1109/ICCV.2019.00031 – ident: ref14 doi: 10.1109/30.125072 – start-page: 675 year: 2019 ident: ref31 article-title: Rethinking lossy compression: The rate-distortion-perception tradeoff publication-title: Proc 36th Int Conf Mach Learn – ident: ref24 doi: 10.1007/s11263-018-01144-2 – year: 2016 ident: ref4 article-title: Variable rate image compression with recurrent neural networks publication-title: Proc 4th Int Conf Learn Representations – ident: ref46 doi: 10.1109/CVPR.2018.00936 – ident: ref49 doi: 10.1109/ACSSC.2003.1292216 – year: 2020 ident: ref56 article-title: Xiph.org video test media dataset – year: 2018 ident: ref52 article-title: Ultra video group test sequences – ident: ref25 doi: 10.1109/CVPR.2019.01126 – ident: ref51 doi: 10.1109/ICCV.2019.00324 – ident: ref9 doi: 10.1109/CVPR.2018.00461 – volume: 8 start-page: 225 year: 2004 ident: ref42 article-title: Block matching algorithms for motion estimation publication-title: IEEE Trans Evol Comput – year: 2014 ident: ref50 article-title: Adam: A method for stochastic optimization publication-title: Proc 3rd Int Conf Learn Representations – year: 2019 ident: ref47 article-title: A lightweight optical flow CNN-revisiting data fidelity and regularization publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref32 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: ref33 doi: 10.1109/ICIP.2017.8296792 – start-page: 2017 year: 2015 ident: ref48 article-title: Spatial transformer networks publication-title: Proc Advances Neural Inf Process Syst – year: 2018 ident: ref57 article-title: The h.264/avc reference software – ident: ref40 doi: 10.1016/j.jvcir.2004.12.002 – start-page: 2922 year: 2017 ident: ref12 article-title: Real-time adaptive image compression publication-title: Proc 34th Int Conf Mach Learn – ident: ref6 doi: 10.1109/CVPR.2017.577 – ident: ref45 doi: 10.1109/CVPR.2018.00931 – ident: ref26 doi: 10.1109/CVPR.2018.00462 – year: 2018 ident: ref16 article-title: BPG image format – year: 2019 ident: ref35 article-title: Human perceptual evaluations for image compression – volume: 1 year: 2016 ident: ref1 article-title: Forecast and methodology, 2016-2021, White Paper – ident: ref18 doi: 10.1109/VCIP.2017.8305033 – year: 2018 ident: ref8 article-title: Variational image compression with a scale hyperprior publication-title: Proc 6th Int Conf Learn Representations – year: 2019 ident: ref30 article-title: Context-adaptive entropy model for end-to-end optimized image compression publication-title: Proc 7th Int Conf Learn Representations – ident: ref54 doi: 10.1109/ICCV.2019.00355 – year: 2018 ident: ref59 article-title: x264, the best H.264/AVC encoder – start-page: 1 year: 2017 ident: ref20 article-title: Neural network-based arithmetic coding of intra prediction modes in VEVC publication-title: Proc IEEE Vis Commun Image Process Conf – ident: ref21 doi: 10.1007/978-3-030-01264-9_35 – ident: ref23 doi: 10.1007/978-3-030-01237-3_26 – year: 2017 ident: ref5 article-title: End-to-end optimized image compression publication-title: Proc 5th Int Conf Learn Representations – year: 2018 ident: ref58 article-title: Hevc test model (HM) – year: 2018 ident: ref39 article-title: A new image format for the Web – year: 2020 ident: ref55 article-title: Video trace library (VTL) dataset – start-page: 1246 year: 2017 ident: ref34 article-title: Learning to inpaint for image compression publication-title: Proc 31st Int Conf Neural Inf Process Syst – ident: ref3 doi: 10.1109/TCSVT.2012.2221191 – start-page: 2 year: 2001 ident: ref53 article-title: Calculation of average PSNR differences between RD-curves publication-title: VCEG Meeting (ITU-T SG16 Q 6) – ident: ref15 doi: 10.1109/79.952804 – ident: ref43 doi: 10.1109/ICCV.2015.316 – ident: ref11 doi: 10.1109/CVPR.2018.00339 – ident: ref36 doi: 10.1109/TCSVT.2019.2892608 – start-page: 1141 year: 2017 ident: ref7 article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations publication-title: Proc 31st Int Conf Neural Inf Process Syst – year: 2019 ident: ref29 article-title: Deep perceptual compression – volume: 13 start-page: 560 year: 2003 ident: ref2 article-title: overview of the h.264/avc video coding standard publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2003.815165 – ident: ref38 doi: 10.1109/CVPR.2019.01031 – ident: ref17 doi: 10.1145/3368405 – ident: ref44 doi: 10.1109/CVPR.2017.291 – year: 2018 ident: ref60 article-title: x265 HEVC encoder / H.265 video codec – ident: ref41 doi: 10.1109/TCSI.2005.858488 – ident: ref19 doi: 10.1109/TIP.2016.2601264 – ident: ref28 doi: 10.1109/ICCV.2019.00031 – start-page: 7363 year: 2018 ident: ref37 article-title: Learning binary residual representations for domain-specific video streaming publication-title: Proc 32nd AAAI Conf Artif Intell – ident: ref22 doi: 10.1109/CVPR.2018.00697 – start-page: 10 771 year: 2018 ident: ref27 article-title: Joint autoregressive and hierarchical priors for learned image compression publication-title: Proc Advances Neural Inf Process Syst – year: 2017 ident: ref10 article-title: Lossy image compression with compressive autoencoders publication-title: Proc 5th Int Conf Learn Representations |
SSID | ssj0014503 |
Score | 2.6562638 |
Snippet | Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3292 |
SubjectTerms | Adaptive optics Coders Coding end-to-end optimization Estimation Image coding image compression Motion estimation neural network Neural networks Optical distortion Optical flow (image analysis) Optical imaging Video compression |
Title | An End-to-End Learning Framework for Video Compression |
URI | https://ieeexplore.ieee.org/document/9072487 https://www.ncbi.nlm.nih.gov/pubmed/32324541 https://www.proquest.com/docview/2568778690 https://www.proquest.com/docview/2394889624 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjUJCRuEG2Xr_WPq5QVwVpEYcW9RbZzgShogTR7KW_nrHzECBAnBIlTux4Zuz54vE3AK9ck6L8oim1l5oAytKU3gdb1jaxjde4CpnxZvvBnF-q91f6ag_ezHthEDEHn-Einea1_LqLu_Sr7JSAnCAHex_2CbgNe7XmFQOlcxZkqowsnGDEtEGGu9OLj-vtO4KCgi-Es1bplDxHJldCq-Uv81FOsPJ3XzPPOZtD2E6tHUJNrhe7Pizi7W9Ejv_7Offh3uh8svWgLQ9gD9sjOJwSO7DRzo_g7k8shcdg1i07a-uy70o6sJGR9TPbTHFdjBxf9ulLjR1L7xoia9uHcLk5u3h7Xo7pFsqolqu-VCvhvbDBRNcERBmMprndqaAlWm0jj5EukTib4ANvPDYYhald3UhOKM7KR3DQdi0-ASbRII0FOspaqpqjd43ijRDeENojiFLAcur0Ko5c5CklxtcqYxLuqiyzKsmsGmVWwOv5mW8DE8c_Sx-nDp9Ljn1dwMkk22o01puKvD6baPQcL-DlfJvMLK2d-Ba7HZWRjoY6R-0v4PGgE_O7J1V6-uc6n8EdkQJhcgTgCRz033f4nDyZPrzIKvwDYNrp3g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoAeKLS0BAoYCU4oW68dZ-MDhxV0tUu7FYct6i3YzgQhUIJoVgiehVfh3Rg7PwIE3CpxSpQ4ju2ZjOeLP88APNalZ_m5NFZGKgIo4zQ2xmZxkflo4wVObIh4szxN52fJy3N1vgHfhr0wiBjIZzjyp2Etv6jd2v8qOyQgJ8jB7iiUx_jlMwG0i2eLFyTNJ0LMjlbP53GXQyB2yXjSxMlEGCMymzpdWkRpU0UTlk6skpipzHHn6BK1sbTG8tJgiU6khS5KyQmaZJLqvQJXyc9Qot0dNqxRJCrkXabukU0h4NJvyeH6cPVqulwQ-BR8JHSWJcqn65HeeVHJ-JcZMKR0-bt3G2a52TZ878enJbe8H60bO3Jffwsd-b8O4E240bnXbNp-D7dgA6sd2O5TV7DOku3A1k9xGHchnVbsqCripo7pwLqYs2_ZrGeuMXLt2et3BdbM19Vyh6vbcHYpfdmDzaqu8A4wiSmStVNOFjIpOBpdJrwUwqSEZwmERTDuhZy7Ltq6T_rxIQ-oi-s86EjudSTvdCSCp8MzH9tYI_8svesFPJTsZBvBQa9LeWeOLnLyazMfKFDzCB4Nt8mQ-NUhU2G9pjJSkzHX1P4I9lsdHOruVffun9_5EK7NV8uT_GRxenwPrgtP-wl8xwPYbD6t8T75bY19ED4fBm8uW91-AIHqSUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+End-to-End+Learning+Framework+for+Video+Compression&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Lu%2C+Guo&rft.au=Zhang%2C+Xiaoyun&rft.au=Ouyang%2C+Wanli&rft.au=Chen%2C+Li&rft.date=2021-10-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=43&rft.issue=10&rft.spage=3292&rft_id=info:doi/10.1109%2FTPAMI.2020.2988453&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |