An End-to-End Learning Framework for Video Compression

Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this paper, we propose the first end-to-end deep video compression framework to take advantage of both the classical compression architecture and the p...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 43; no. 10; pp. 3292 - 3308
Main Authors Lu, Guo, Zhang, Xiaoyun, Ouyang, Wanli, Chen, Li, Gao, Zhiyong, Xu, Dong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this paper, we propose the first end-to-end deep video compression framework to take advantage of both the classical compression architecture and the powerful non-linear representation ability of neural networks. Our framework employs pixel-wise motion information, which is learned from an optical flow network and further compressed by an auto-encoder network to save bits. The other compression components are also implemented by the well-designed networks for high efficiency. All the modules are jointly optimized by using the rate-distortion trade-off and can collaborate with each other. More importantly, the proposed deep video compression framework is very flexible and can be easily extended by using lightweight or advanced networks for higher speed or better efficiency. We also propose to introduce the adaptive quantization layer to reduce the number of parameters for variable bitrate coding. Comprehensive experimental results demonstrate the effectiveness of the proposed framework on the benchmark datasets.
AbstractList Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this paper, we propose the first end-to-end deep video compression framework to take advantage of both the classical compression architecture and the powerful non-linear representation ability of neural networks. Our framework employs pixel-wise motion information, which is learned from an optical flow network and further compressed by an auto-encoder network to save bits. The other compression components are also implemented by the well-designed networks for high efficiency. All the modules are jointly optimized by using the rate-distortion trade-off and can collaborate with each other. More importantly, the proposed deep video compression framework is very flexible and can be easily extended by using lightweight or advanced networks for higher speed or better efficiency. We also propose to introduce the adaptive quantization layer to reduce the number of parameters for variable bitrate coding. Comprehensive experimental results demonstrate the effectiveness of the proposed framework on the benchmark datasets.
Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this paper, taking advantage of both the classical compression architecture and the powerful non-linear representation ability of neural networks, we propose the first end-to-end deep video compression framework. Our framework employs pixel-wise motion information, which is learned from an optical flow network and further compressed by an auto-encoder network to save bits. The other compression components are also implemented by well-designed networks for high efficiency. All the modules are jointly optimized by using the rate-distortion trade-off and collaborate with each other. More importantly, the proposed deep video compression framework is very flexible and can be easily extended by using lightweight or advanced networks for higher speed or better efficiency. Experimental results show that the proposed approach can outperform the widely used video coding standard H.264 and be even on par with the latest standard H.265.
Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this paper, we propose the first end-to-end deep video compression framework to take advantage of both the classical compression architecture and the powerful non-linear representation ability of neural networks. Our framework employs pixel-wise motion information, which is learned from an optical flow network and further compressed by an auto-encoder network to save bits. The other compression components are also implemented by the well-designed networks for high efficiency. All the modules are jointly optimized by using the rate-distortion trade-off and can collaborate with each other. More importantly, the proposed deep video compression framework is very flexible and can be easily extended by using lightweight or advanced networks for higher speed or better efficiency. We also propose to introduce the adaptive quantization layer to reduce the number of parameters for variable bitrate coding. Comprehensive experimental results demonstrate the effectiveness of the proposed framework on the benchmark datasets.Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this paper, we propose the first end-to-end deep video compression framework to take advantage of both the classical compression architecture and the powerful non-linear representation ability of neural networks. Our framework employs pixel-wise motion information, which is learned from an optical flow network and further compressed by an auto-encoder network to save bits. The other compression components are also implemented by the well-designed networks for high efficiency. All the modules are jointly optimized by using the rate-distortion trade-off and can collaborate with each other. More importantly, the proposed deep video compression framework is very flexible and can be easily extended by using lightweight or advanced networks for higher speed or better efficiency. We also propose to introduce the adaptive quantization layer to reduce the number of parameters for variable bitrate coding. Comprehensive experimental results demonstrate the effectiveness of the proposed framework on the benchmark datasets.
Author Lu, Guo
Zhang, Xiaoyun
Xu, Dong
Chen, Li
Ouyang, Wanli
Gao, Zhiyong
Author_xml – sequence: 1
  givenname: Guo
  orcidid: 0000-0001-6951-0090
  surname: Lu
  fullname: Lu, Guo
  email: luguo2014@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Xiaoyun
  orcidid: 0000-0001-7680-4062
  surname: Zhang
  fullname: Zhang, Xiaoyun
  email: xiaoyun.zhang@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Wanli
  orcidid: 0000-0002-9163-2761
  surname: Ouyang
  fullname: Ouyang, Wanli
  email: wanli.ouyang@sydney.edu.au
  organization: School of Electrical and Information Engineering, The University of Sydney, NSW, Australia
– sequence: 4
  givenname: Li
  orcidid: 0000-0001-9899-2535
  surname: Chen
  fullname: Chen, Li
  email: hilichen@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Zhiyong
  surname: Gao
  fullname: Gao, Zhiyong
  email: zhiyong.gao@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 6
  givenname: Dong
  orcidid: 0000-0003-2775-9730
  surname: Xu
  fullname: Xu, Dong
  email: dong.xu@sydney.edu.au
  organization: School of Electrical and Information Engineering, The University of Sydney, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32324541$$D View this record in MEDLINE/PubMed
BookMark eNp9kMFqGzEQQEVJaOy0P9BAWegll3WkkVYrHY2xk4BLckh7FVrtbNnEK7nSmtC_r1w7OfjQ04B4b9C8KTnzwSMhXxidMUb1zdPj_Pv9DCjQGWilRMU_kAkwSUsNGs7IhDIJpVKgLsg0pWdKmago_0guOHAQlWATIue-WPq2HEOZR7FGG33vfxWraAd8DfGl6EIsfvYthmIRhm3ElPrgP5Hzzm4Sfj7OS_JjtXxa3JXrh9v7xXxdOsHqsRQ1WAuqkU53DSJvZFUB06KpOKpKOepcfhKUdY1taGexQwey1W3HqQah-CW5PuzdxvB7h2k0Q58cbjbWY9glA1wLpbQEkdFvJ-hz2EWff2egkqquldQ0U1-P1K4ZsDXb2A82_jFvRTKgDoCLIaWInXH9aMd88xhtvzGMmn188y--2cc3x_hZhRP1bft_pauD1CPiu6Bpnc-v-V_Dho1p
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3350643
crossref_primary_10_1007_s12652_023_04748_w
crossref_primary_10_1109_LSP_2022_3187917
crossref_primary_10_1109_TCSVT_2022_3222418
crossref_primary_10_1109_TIP_2023_3276333
crossref_primary_10_1109_TPAMI_2024_3356548
crossref_primary_10_1109_TPAMI_2024_3507873
crossref_primary_10_1109_TBC_2024_3434736
crossref_primary_10_1117_1_JEI_32_6_063013
crossref_primary_10_1109_TMM_2022_3233245
crossref_primary_10_1109_JSTSP_2020_3034501
crossref_primary_10_3390_s22249656
crossref_primary_10_1007_s42979_023_02503_8
crossref_primary_10_1109_TMM_2020_3019683
crossref_primary_10_1016_j_eswa_2025_126682
crossref_primary_10_1109_JSAC_2022_3180802
crossref_primary_10_1145_3607139
crossref_primary_10_1145_3661824
crossref_primary_10_1109_TVLSI_2024_3515113
crossref_primary_10_1117_1_JRS_18_036508
crossref_primary_10_1016_j_eswa_2024_123322
crossref_primary_10_1109_JETCAS_2024_3524260
crossref_primary_10_1109_TBC_2021_3132826
crossref_primary_10_1016_j_dsp_2023_104130
crossref_primary_10_1109_TIP_2023_3251020
crossref_primary_10_3390_bdcc6020044
crossref_primary_10_1016_j_displa_2023_102462
crossref_primary_10_5937_vojtehg70_34739
crossref_primary_10_1109_TBC_2024_3434702
crossref_primary_10_1109_TCSVT_2023_3313611
crossref_primary_10_1109_TII_2022_3204681
crossref_primary_10_1007_s41870_023_01456_8
crossref_primary_10_1109_LSP_2024_3443516
crossref_primary_10_1109_TIP_2024_3349859
crossref_primary_10_1109_JPROC_2021_3059994
crossref_primary_10_1016_j_jksuci_2024_102029
crossref_primary_10_1109_TMM_2023_3289763
crossref_primary_10_1080_13682199_2023_2187514
crossref_primary_10_1109_TCSVT_2023_3303228
crossref_primary_10_1016_j_eswa_2024_125535
crossref_primary_10_1109_JETCAS_2024_3403524
crossref_primary_10_1016_j_cviu_2024_104127
crossref_primary_10_1109_TMM_2024_3372352
crossref_primary_10_1109_JSAC_2022_3221977
crossref_primary_10_1109_TCSVT_2024_3360248
crossref_primary_10_1109_TIP_2022_3140608
crossref_primary_10_1109_TMM_2023_3316429
crossref_primary_10_3233_JHS_222087
crossref_primary_10_1109_TCE_2024_3441934
crossref_primary_10_1007_s11042_025_20686_5
crossref_primary_10_1145_3715144
crossref_primary_10_1109_TIP_2023_3287495
crossref_primary_10_1109_TCSVT_2023_3301016
crossref_primary_10_1145_3661311
crossref_primary_10_1007_s10489_021_02527_8
crossref_primary_10_1109_JETCAS_2024_3387301
crossref_primary_10_3390_app14135573
crossref_primary_10_3390_e24111677
crossref_primary_10_1109_ACCESS_2023_3323873
crossref_primary_10_1109_TIP_2023_3242774
crossref_primary_10_1007_s10462_021_10039_7
crossref_primary_10_1109_TCSVT_2021_3104305
crossref_primary_10_1109_TCSVT_2022_3233221
crossref_primary_10_1109_TPAMI_2022_3210652
crossref_primary_10_1109_TCSVT_2021_3135337
crossref_primary_10_1109_TPAMI_2024_3367879
crossref_primary_10_1109_ACCESS_2023_3283277
crossref_primary_10_1109_TMM_2022_3220421
crossref_primary_10_1109_TCSVT_2022_3150014
crossref_primary_10_1142_S021800142354023X
Cites_doi 10.1109/ICCV.2019.00031
10.1109/30.125072
10.1007/s11263-018-01144-2
10.1109/CVPR.2018.00936
10.1109/ACSSC.2003.1292216
10.1109/CVPR.2019.01126
10.1109/ICCV.2019.00324
10.1109/CVPR.2018.00461
10.1002/j.1538-7305.1948.tb01338.x
10.1109/ICIP.2017.8296792
10.1016/j.jvcir.2004.12.002
10.1109/CVPR.2017.577
10.1109/CVPR.2018.00931
10.1109/CVPR.2018.00462
10.1109/VCIP.2017.8305033
10.1109/ICCV.2019.00355
10.1007/978-3-030-01264-9_35
10.1007/978-3-030-01237-3_26
10.1109/TCSVT.2012.2221191
10.1109/79.952804
10.1109/ICCV.2015.316
10.1109/CVPR.2018.00339
10.1109/TCSVT.2019.2892608
10.1109/TCSVT.2003.815165
10.1109/CVPR.2019.01031
10.1145/3368405
10.1109/CVPR.2017.291
10.1109/TCSI.2005.858488
10.1109/TIP.2016.2601264
10.1109/CVPR.2018.00697
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2020.2988453
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 3308
ExternalDocumentID 32324541
10_1109_TPAMI_2020_2988453
9072487
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shanghai
  grantid: 18ZR1418100
  funderid: 10.13039/100007219
– fundername: Shanghai Key Laboratory of Digital Media Processing and Transmission; Shanghai Key Laboratory of Digital Media Processing and Transmissions
  grantid: STCSM 18DZ2270700
  funderid: 10.13039/501100012656
– fundername: Australian Research Council
  grantid: FT180100116
  funderid: 10.13039/501100000923
– fundername: 111 plan
  grantid: B07022
– fundername: National Natural Science Foundation of China
  grantid: 61771306
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
NPM
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c417t-472aa28b6c9fbee3b6552194b53e858c0ccb65401fbab0faefec26d9df3092483
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 09:22:43 EDT 2025
Sun Jun 29 16:40:52 EDT 2025
Wed Feb 19 02:30:52 EST 2025
Tue Jul 01 03:18:25 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Aug 27 02:27:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-472aa28b6c9fbee3b6552194b53e858c0ccb65401fbab0faefec26d9df3092483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7680-4062
0000-0002-9163-2761
0000-0001-6951-0090
0000-0001-9899-2535
0000-0003-2775-9730
PMID 32324541
PQID 2568778690
PQPubID 85458
PageCount 17
ParticipantIDs proquest_miscellaneous_2394889624
crossref_citationtrail_10_1109_TPAMI_2020_2988453
proquest_journals_2568778690
crossref_primary_10_1109_TPAMI_2020_2988453
pubmed_primary_32324541
ieee_primary_9072487
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref59) 2018
ref15
ref14
baig (ref34) 2017
wiegand (ref2) 2003; 13
ref11
ref54
(ref56) 2020
(ref39) 2018
ref17
ref19
song (ref20) 2017
ref18
tsai (ref37) 2018
ref51
ref46
ref45
ref41
ref44
ref43
bjontegaard (ref53) 2001
ballé (ref8) 2018
ref49
blau (ref31) 2019
lee (ref30) 2019
ref9
(ref57) 2018
ref3
ref6
ref40
toderici (ref4) 2016
ref36
minnen (ref27) 2018
ref33
ref32
barjatya (ref42) 2004; 8
ballé (ref5) 2017
ref38
bellard (ref16) 2018
kingma (ref50) 2014
agustsson (ref7) 2017
patel (ref35) 2019
rippel (ref12) 2017
(ref1) 2016; 1
ref24
ref23
ref26
ref25
ref22
ref21
(ref58) 2018
ref28
(ref55) 2020
hui (ref47) 2019
(ref60) 2018
patel (ref29) 2019
jaderberg (ref48) 2015
(ref52) 2018
theis (ref10) 2017
References_xml – ident: ref13
  doi: 10.1109/ICCV.2019.00031
– ident: ref14
  doi: 10.1109/30.125072
– start-page: 675
  year: 2019
  ident: ref31
  article-title: Rethinking lossy compression: The rate-distortion-perception tradeoff
  publication-title: Proc 36th Int Conf Mach Learn
– ident: ref24
  doi: 10.1007/s11263-018-01144-2
– year: 2016
  ident: ref4
  article-title: Variable rate image compression with recurrent neural networks
  publication-title: Proc 4th Int Conf Learn Representations
– ident: ref46
  doi: 10.1109/CVPR.2018.00936
– ident: ref49
  doi: 10.1109/ACSSC.2003.1292216
– year: 2020
  ident: ref56
  article-title: Xiph.org video test media dataset
– year: 2018
  ident: ref52
  article-title: Ultra video group test sequences
– ident: ref25
  doi: 10.1109/CVPR.2019.01126
– ident: ref51
  doi: 10.1109/ICCV.2019.00324
– ident: ref9
  doi: 10.1109/CVPR.2018.00461
– volume: 8
  start-page: 225
  year: 2004
  ident: ref42
  article-title: Block matching algorithms for motion estimation
  publication-title: IEEE Trans Evol Comput
– year: 2014
  ident: ref50
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Representations
– year: 2019
  ident: ref47
  article-title: A lightweight optical flow CNN-revisiting data fidelity and regularization
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref32
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref33
  doi: 10.1109/ICIP.2017.8296792
– start-page: 2017
  year: 2015
  ident: ref48
  article-title: Spatial transformer networks
  publication-title: Proc Advances Neural Inf Process Syst
– year: 2018
  ident: ref57
  article-title: The h.264/avc reference software
– ident: ref40
  doi: 10.1016/j.jvcir.2004.12.002
– start-page: 2922
  year: 2017
  ident: ref12
  article-title: Real-time adaptive image compression
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref6
  doi: 10.1109/CVPR.2017.577
– ident: ref45
  doi: 10.1109/CVPR.2018.00931
– ident: ref26
  doi: 10.1109/CVPR.2018.00462
– year: 2018
  ident: ref16
  article-title: BPG image format
– year: 2019
  ident: ref35
  article-title: Human perceptual evaluations for image compression
– volume: 1
  year: 2016
  ident: ref1
  article-title: Forecast and methodology, 2016-2021, White Paper
– ident: ref18
  doi: 10.1109/VCIP.2017.8305033
– year: 2018
  ident: ref8
  article-title: Variational image compression with a scale hyperprior
  publication-title: Proc 6th Int Conf Learn Representations
– year: 2019
  ident: ref30
  article-title: Context-adaptive entropy model for end-to-end optimized image compression
  publication-title: Proc 7th Int Conf Learn Representations
– ident: ref54
  doi: 10.1109/ICCV.2019.00355
– year: 2018
  ident: ref59
  article-title: x264, the best H.264/AVC encoder
– start-page: 1
  year: 2017
  ident: ref20
  article-title: Neural network-based arithmetic coding of intra prediction modes in VEVC
  publication-title: Proc IEEE Vis Commun Image Process Conf
– ident: ref21
  doi: 10.1007/978-3-030-01264-9_35
– ident: ref23
  doi: 10.1007/978-3-030-01237-3_26
– year: 2017
  ident: ref5
  article-title: End-to-end optimized image compression
  publication-title: Proc 5th Int Conf Learn Representations
– year: 2018
  ident: ref58
  article-title: Hevc test model (HM)
– year: 2018
  ident: ref39
  article-title: A new image format for the Web
– year: 2020
  ident: ref55
  article-title: Video trace library (VTL) dataset
– start-page: 1246
  year: 2017
  ident: ref34
  article-title: Learning to inpaint for image compression
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– ident: ref3
  doi: 10.1109/TCSVT.2012.2221191
– start-page: 2
  year: 2001
  ident: ref53
  article-title: Calculation of average PSNR differences between RD-curves
  publication-title: VCEG Meeting (ITU-T SG16 Q 6)
– ident: ref15
  doi: 10.1109/79.952804
– ident: ref43
  doi: 10.1109/ICCV.2015.316
– ident: ref11
  doi: 10.1109/CVPR.2018.00339
– ident: ref36
  doi: 10.1109/TCSVT.2019.2892608
– start-page: 1141
  year: 2017
  ident: ref7
  article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– year: 2019
  ident: ref29
  article-title: Deep perceptual compression
– volume: 13
  start-page: 560
  year: 2003
  ident: ref2
  article-title: overview of the h.264/avc video coding standard
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2003.815165
– ident: ref38
  doi: 10.1109/CVPR.2019.01031
– ident: ref17
  doi: 10.1145/3368405
– ident: ref44
  doi: 10.1109/CVPR.2017.291
– year: 2018
  ident: ref60
  article-title: x265 HEVC encoder / H.265 video codec
– ident: ref41
  doi: 10.1109/TCSI.2005.858488
– ident: ref19
  doi: 10.1109/TIP.2016.2601264
– ident: ref28
  doi: 10.1109/ICCV.2019.00031
– start-page: 7363
  year: 2018
  ident: ref37
  article-title: Learning binary residual representations for domain-specific video streaming
  publication-title: Proc 32nd AAAI Conf Artif Intell
– ident: ref22
  doi: 10.1109/CVPR.2018.00697
– start-page: 10 771
  year: 2018
  ident: ref27
  article-title: Joint autoregressive and hierarchical priors for learned image compression
  publication-title: Proc Advances Neural Inf Process Syst
– year: 2017
  ident: ref10
  article-title: Lossy image compression with compressive autoencoders
  publication-title: Proc 5th Int Conf Learn Representations
SSID ssj0014503
Score 2.6562638
Snippet Traditional video compression approaches build upon the hybrid coding framework with motion-compensated prediction and residual transform coding. In this...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3292
SubjectTerms Adaptive optics
Coders
Coding
end-to-end optimization
Estimation
Image coding
image compression
Motion estimation
neural network
Neural networks
Optical distortion
Optical flow (image analysis)
Optical imaging
Video compression
Title An End-to-End Learning Framework for Video Compression
URI https://ieeexplore.ieee.org/document/9072487
https://www.ncbi.nlm.nih.gov/pubmed/32324541
https://www.proquest.com/docview/2568778690
https://www.proquest.com/docview/2394889624
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjUJCRuEG2Xr_WPq5QVwVpEYcW9RbZzgShogTR7KW_nrHzECBAnBIlTux4Zuz54vE3AK9ck6L8oim1l5oAytKU3gdb1jaxjde4CpnxZvvBnF-q91f6ag_ezHthEDEHn-Einea1_LqLu_Sr7JSAnCAHex_2CbgNe7XmFQOlcxZkqowsnGDEtEGGu9OLj-vtO4KCgi-Es1bplDxHJldCq-Uv81FOsPJ3XzPPOZtD2E6tHUJNrhe7Pizi7W9Ejv_7Offh3uh8svWgLQ9gD9sjOJwSO7DRzo_g7k8shcdg1i07a-uy70o6sJGR9TPbTHFdjBxf9ulLjR1L7xoia9uHcLk5u3h7Xo7pFsqolqu-VCvhvbDBRNcERBmMprndqaAlWm0jj5EukTib4ANvPDYYhald3UhOKM7KR3DQdi0-ASbRII0FOspaqpqjd43ijRDeENojiFLAcur0Ko5c5CklxtcqYxLuqiyzKsmsGmVWwOv5mW8DE8c_Sx-nDp9Ljn1dwMkk22o01puKvD6baPQcL-DlfJvMLK2d-Ba7HZWRjoY6R-0v4PGgE_O7J1V6-uc6n8EdkQJhcgTgCRz033f4nDyZPrzIKvwDYNrp3g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoAeKLS0BAoYCU4oW68dZ-MDhxV0tUu7FYct6i3YzgQhUIJoVgiehVfh3Rg7PwIE3CpxSpQ4ju2ZjOeLP88APNalZ_m5NFZGKgIo4zQ2xmZxkflo4wVObIh4szxN52fJy3N1vgHfhr0wiBjIZzjyp2Etv6jd2v8qOyQgJ8jB7iiUx_jlMwG0i2eLFyTNJ0LMjlbP53GXQyB2yXjSxMlEGCMymzpdWkRpU0UTlk6skpipzHHn6BK1sbTG8tJgiU6khS5KyQmaZJLqvQJXyc9Qot0dNqxRJCrkXabukU0h4NJvyeH6cPVqulwQ-BR8JHSWJcqn65HeeVHJ-JcZMKR0-bt3G2a52TZ878enJbe8H60bO3Jffwsd-b8O4E240bnXbNp-D7dgA6sd2O5TV7DOku3A1k9xGHchnVbsqCripo7pwLqYs2_ZrGeuMXLt2et3BdbM19Vyh6vbcHYpfdmDzaqu8A4wiSmStVNOFjIpOBpdJrwUwqSEZwmERTDuhZy7Ltq6T_rxIQ-oi-s86EjudSTvdCSCp8MzH9tYI_8svesFPJTsZBvBQa9LeWeOLnLyazMfKFDzCB4Nt8mQ-NUhU2G9pjJSkzHX1P4I9lsdHOruVffun9_5EK7NV8uT_GRxenwPrgtP-wl8xwPYbD6t8T75bY19ED4fBm8uW91-AIHqSUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+End-to-End+Learning+Framework+for+Video+Compression&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Lu%2C+Guo&rft.au=Zhang%2C+Xiaoyun&rft.au=Ouyang%2C+Wanli&rft.au=Chen%2C+Li&rft.date=2021-10-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=43&rft.issue=10&rft.spage=3292&rft_id=info:doi/10.1109%2FTPAMI.2020.2988453&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon