Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
A van der Waals heterostructure of monolayer WSe 2 and ferromagnetic CrI 3 enables exceptional control of valley pseudospin. The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration...
Saved in:
Published in | Science advances Vol. 3; no. 5; p. e1603113 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
AAAS
01.05.2017
American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A van der Waals heterostructure of monolayer WSe
2
and ferromagnetic CrI
3
enables exceptional control of valley pseudospin.
The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI
3
and a monolayer of WSe
2
. We observe unprecedented control of the spin and valley pseudospin in WSe
2
, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe
2
valley splitting and polarization via flipping of the CrI
3
magnetization. The WSe
2
photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe
2
and the CrI
3
magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure. |
---|---|
AbstractList | The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI
and a monolayer of WSe
. We observe unprecedented control of the spin and valley pseudospin in WSe
, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe
valley splitting and polarization via flipping of the CrI
magnetization. The WSe
photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe
and the CrI
magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure. A van der Waals heterostructure of monolayer WSe 2 and ferromagnetic CrI 3 enables exceptional control of valley pseudospin. The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2 . We observe unprecedented control of the spin and valley pseudospin in WSe 2 , where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe 2 photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure. The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI3 and a monolayer of WSe2. We observe unprecedented control of the spin and valley pseudospin in WSe2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe2 valley splitting and polarization via flipping of the CrI3 magnetization. The WSe2 photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe2 and the CrI3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure. The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI3 and a monolayer of WSe2. We observe unprecedented control of the spin and valley pseudospin in WSe2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe2 valley splitting and polarization via flipping of the CrI3 magnetization. The WSe2 photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe2 and the CrI3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI3 and a monolayer of WSe2. We observe unprecedented control of the spin and valley pseudospin in WSe2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe2 valley splitting and polarization via flipping of the CrI3 magnetization. The WSe2 photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe2 and the CrI3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure. |
Author | Sivadas, Nikhil Taniguchi, Takashi Fu, Kai-Mei C. Zhong, Ding Yao, Wang Linpeng, Xiayu Xiao, Di Schmidgall, Emma Huang, Bevin Cheng, Ran Watanabe, Kenji Seyler, Kyle L. McGuire, Michael A. Xu, Xiaodong |
Author_xml | – sequence: 1 givenname: Ding orcidid: 0000-0003-3149-2071 surname: Zhong fullname: Zhong, Ding organization: Department of Physics, University of Washington, Seattle, WA 98195, USA – sequence: 2 givenname: Kyle L. surname: Seyler fullname: Seyler, Kyle L. organization: Department of Physics, University of Washington, Seattle, WA 98195, USA – sequence: 3 givenname: Xiayu surname: Linpeng fullname: Linpeng, Xiayu organization: Department of Physics, University of Washington, Seattle, WA 98195, USA – sequence: 4 givenname: Ran orcidid: 0000-0003-0166-2172 surname: Cheng fullname: Cheng, Ran organization: Department of Physics, Carnegie Mellon University, Pittsburg, PA 15213, USA – sequence: 5 givenname: Nikhil surname: Sivadas fullname: Sivadas, Nikhil organization: Department of Physics, Carnegie Mellon University, Pittsburg, PA 15213, USA – sequence: 6 givenname: Bevin surname: Huang fullname: Huang, Bevin organization: Department of Physics, University of Washington, Seattle, WA 98195, USA – sequence: 7 givenname: Emma orcidid: 0000-0001-6809-1808 surname: Schmidgall fullname: Schmidgall, Emma organization: Department of Physics, University of Washington, Seattle, WA 98195, USA – sequence: 8 givenname: Takashi surname: Taniguchi fullname: Taniguchi, Takashi organization: National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan – sequence: 9 givenname: Kenji orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, Kenji organization: National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan – sequence: 10 givenname: Michael A. surname: McGuire fullname: McGuire, Michael A. organization: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA – sequence: 11 givenname: Wang orcidid: 0000-0003-2883-4528 surname: Yao fullname: Yao, Wang organization: Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong, China – sequence: 12 givenname: Di surname: Xiao fullname: Xiao, Di organization: Department of Physics, Carnegie Mellon University, Pittsburg, PA 15213, USA – sequence: 13 givenname: Kai-Mei C. surname: Fu fullname: Fu, Kai-Mei C. organization: Department of Physics, University of Washington, Seattle, WA 98195, USA., Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA – sequence: 14 givenname: Xiaodong surname: Xu fullname: Xu, Xiaodong organization: Department of Physics, University of Washington, Seattle, WA 98195, USA., Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28580423$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1376521$$D View this record in Osti.gov |
BookMark | eNp1UU2LFDEQDbLifrhXjxI8eZkx1fno7osgi67Cghc_jiGdrsxEupMxSQ_svzfjjMsqeEpSefXqvVeX5CzEgIS8ALYGaNSbbL0Z92tQjAPwJ-Si4a1cNVJ0Z4_u5-Q65x-MMRBKSeifkfOmkx0TDb8g4zcT6IiJfjdmyhTDxgfE5MOGRkcdphRnswlYvKUZZ29jGBdbYqJbLJhiLqk-l4SZulrMOx-oCSPdm2nC-5Ji8DY_J09dZcfr03lFvn54_-Xm4-ru8-2nm3d3KyugLSsBjtmDlapOyb5zfTtWkVJIACfaWlDYyF5g1zorOHRDLxthh2HgbHAO-RV5e-TdLcOMo8VQkpn0LvnZpHsdjdd__wS_1Zu4179H9LISvDoSVF9e13gL2m21HNAWDbxVsoEKen2akuLPBXPRs88Wp8kEjEvW0DMFvAN14Hv5WNCDkj_5V8D6CLA1ypzQPUCA6cOO9XHH-rTj2iD-aagiTfHxYMhP_2v7Bf-drb0 |
CitedBy_id | crossref_primary_10_1038_s41524_022_00715_9 crossref_primary_10_1039_D1MA01196K crossref_primary_10_1039_D2NR03026H crossref_primary_10_1002_adfm_202102560 crossref_primary_10_1038_s41467_019_12128_2 crossref_primary_10_1002_adma_202200117 crossref_primary_10_7498_aps_71_20221424 crossref_primary_10_1103_PhysRevB_98_241410 crossref_primary_10_1103_PhysRevB_101_024412 crossref_primary_10_3390_cryst11050500 crossref_primary_10_1088_1361_648X_ab28d1 crossref_primary_10_1103_PhysRevMaterials_3_031001 crossref_primary_10_1021_acsanm_3c03298 crossref_primary_10_1088_2053_1583_acd12a crossref_primary_10_1103_PhysRevB_105_115305 crossref_primary_10_1103_PhysRevB_109_115434 crossref_primary_10_1038_s41524_022_00802_x crossref_primary_10_1038_s41578_024_00671_4 crossref_primary_10_1021_acs_jpclett_0c01911 crossref_primary_10_1039_C9NR08890C crossref_primary_10_1016_j_nanoso_2019_100324 crossref_primary_10_1016_j_physc_2018_02_049 crossref_primary_10_1039_D0TC03065A crossref_primary_10_1088_0256_307X_38_9_096101 crossref_primary_10_1002_adfm_202400552 crossref_primary_10_1038_s41699_023_00400_5 crossref_primary_10_1021_acs_nanolett_0c00756 crossref_primary_10_1038_s42254_020_00259_1 crossref_primary_10_1002_adma_202105079 crossref_primary_10_1021_acsami_4c00640 crossref_primary_10_1002_adom_201800420 crossref_primary_10_1088_1674_1056_acd10a crossref_primary_10_1038_s41565_021_00936_x crossref_primary_10_1088_1674_1056_ac041f crossref_primary_10_1103_PhysRevB_109_205101 crossref_primary_10_1016_j_ssc_2019_113662 crossref_primary_10_1021_acsnano_7b06551 crossref_primary_10_1063_5_0021237 crossref_primary_10_1103_PhysRevB_107_245133 crossref_primary_10_1088_1674_1056_acf660 crossref_primary_10_1103_PhysRevResearch_2_033001 crossref_primary_10_1016_j_mattod_2022_04_011 crossref_primary_10_1103_PhysRevB_110_214412 crossref_primary_10_1088_1361_6528_ab0a37 crossref_primary_10_1109_LMAG_2018_2867339 crossref_primary_10_1109_TNANO_2020_3025481 crossref_primary_10_1021_acs_jpclett_2c03148 crossref_primary_10_1002_advs_202301243 crossref_primary_10_1038_s41567_019_0651_0 crossref_primary_10_1039_D2CP05228H crossref_primary_10_1103_PhysRevMaterials_7_L121002 crossref_primary_10_1038_s41565_018_0128_9 crossref_primary_10_1103_PhysRevB_101_035204 crossref_primary_10_1088_1361_6528_aba0f4 crossref_primary_10_1039_D0NR08248A crossref_primary_10_1002_aelm_201800270 crossref_primary_10_1016_j_physe_2023_115774 crossref_primary_10_1039_D1TC00096A crossref_primary_10_1021_acs_nanolett_9b03316 crossref_primary_10_1088_2053_1583_ab8b48 crossref_primary_10_1002_adma_202301197 crossref_primary_10_1002_smm2_1013 crossref_primary_10_1039_D3TC02877A crossref_primary_10_1016_j_carbon_2024_119437 crossref_primary_10_1021_acsnano_1c06864 crossref_primary_10_1063_5_0055054 crossref_primary_10_7498_aps_71_20220326 crossref_primary_10_1088_1674_1056_ab8215 crossref_primary_10_1021_acsnano_8b09230 crossref_primary_10_1103_PhysRevB_109_115425 crossref_primary_10_1021_acs_nanolett_8b00987 crossref_primary_10_1002_aelm_202100941 crossref_primary_10_1039_D3CP02466K crossref_primary_10_1021_acs_nanolett_1c04403 crossref_primary_10_1038_s41563_022_01459_z crossref_primary_10_1038_s41524_022_00748_0 crossref_primary_10_1021_acsnano_8b08051 crossref_primary_10_1360_nso_20220034 crossref_primary_10_1021_acsphotonics_8b01306 crossref_primary_10_1002_adma_202004469 crossref_primary_10_1039_D2NR05455H crossref_primary_10_1038_s41565_019_0543_6 crossref_primary_10_1002_adma_202410816 crossref_primary_10_1088_1361_6528_ac17fd crossref_primary_10_1038_s41467_020_18627_x crossref_primary_10_1103_PhysRevB_101_205425 crossref_primary_10_1063_1_5143387 crossref_primary_10_1038_s41467_021_23127_7 crossref_primary_10_1021_jacs_1c08906 crossref_primary_10_1038_s41563_022_01424_w crossref_primary_10_1007_s40843_022_2298_0 crossref_primary_10_1088_1674_1056_ac6eed crossref_primary_10_1063_5_0239431 crossref_primary_10_1103_PhysRevB_101_195422 crossref_primary_10_1103_PhysRevX_14_040501 crossref_primary_10_1038_s41598_021_02918_4 crossref_primary_10_1021_acsami_4c01437 crossref_primary_10_1039_D0TC03712E crossref_primary_10_1038_s41563_018_0040_6 crossref_primary_10_1103_PhysRevMaterials_5_064413 crossref_primary_10_1007_s11467_018_0835_6 crossref_primary_10_1016_j_trechm_2019_11_007 crossref_primary_10_1021_acsaelm_2c01749 crossref_primary_10_1002_adma_202002032 crossref_primary_10_1021_acs_nanolett_4c04184 crossref_primary_10_1038_s41699_024_00463_y crossref_primary_10_1016_j_ssc_2024_115481 crossref_primary_10_1021_acsaelm_2c00419 crossref_primary_10_1002_advs_202304792 crossref_primary_10_1103_PhysRevMaterials_5_025202 crossref_primary_10_1002_adfm_201910036 crossref_primary_10_1038_s41586_024_07858_3 crossref_primary_10_1103_PhysRevB_109_184405 crossref_primary_10_1002_adma_201801586 crossref_primary_10_1016_j_actamat_2023_118731 crossref_primary_10_1016_j_jssc_2022_123580 crossref_primary_10_1002_adma_202003240 crossref_primary_10_1021_acs_nanolett_3c03431 crossref_primary_10_1063_9_0000074 crossref_primary_10_1103_PhysRevB_101_205409 crossref_primary_10_1039_D1TC02837E crossref_primary_10_1103_PhysRevMaterials_7_033402 crossref_primary_10_1103_PhysRevB_101_205404 crossref_primary_10_1016_j_jmmm_2020_167171 crossref_primary_10_1063_1_5142077 crossref_primary_10_1103_PhysRevMaterials_1_014001 crossref_primary_10_1002_cphc_202300726 crossref_primary_10_1103_PhysRevB_106_205416 crossref_primary_10_1002_adfm_202308733 crossref_primary_10_1016_j_apsusc_2021_151478 crossref_primary_10_3390_cryst7050121 crossref_primary_10_1038_s41467_024_47294_5 crossref_primary_10_1103_PhysRevResearch_5_L042023 crossref_primary_10_1016_j_matlet_2021_131478 crossref_primary_10_1021_acs_jpclett_1c00454 crossref_primary_10_1038_s41563_020_0791_8 crossref_primary_10_1088_2053_1583_ac3887 crossref_primary_10_1103_PhysRevB_100_195126 crossref_primary_10_1364_OE_394113 crossref_primary_10_1007_s12274_021_3288_0 crossref_primary_10_1038_s41699_021_00233_0 crossref_primary_10_1002_advs_202206191 crossref_primary_10_1039_C9CP05638F crossref_primary_10_1103_PhysRevMaterials_8_104801 crossref_primary_10_3389_fphy_2022_1021192 crossref_primary_10_1021_acsami_2c22494 crossref_primary_10_1038_s41467_023_39529_8 crossref_primary_10_1038_s41524_021_00663_w crossref_primary_10_1002_adma_202006850 crossref_primary_10_1038_s41598_022_08785_x crossref_primary_10_1088_1361_6641_ad4e5f crossref_primary_10_1088_2053_1583_ab5915 crossref_primary_10_1002_pssb_202300260 crossref_primary_10_1103_PhysRevLett_127_097401 crossref_primary_10_35848_1882_0786_ab7485 crossref_primary_10_1002_nano_202000032 crossref_primary_10_1021_acsnano_0c01815 crossref_primary_10_1039_D4NR01577K crossref_primary_10_1021_acs_nanolett_3c03216 crossref_primary_10_1103_PhysRevB_105_014443 crossref_primary_10_1103_PhysRevLett_124_197401 crossref_primary_10_1038_s41699_020_0140_4 crossref_primary_10_1088_1367_2630_abc2e6 crossref_primary_10_1557_adv_2019_241 crossref_primary_10_1088_1674_1056_ac1e1d crossref_primary_10_1039_D0NR06268E crossref_primary_10_1088_1674_1056_ad09d2 crossref_primary_10_1021_acs_jpcc_9b06496 crossref_primary_10_1021_acs_nanolett_2c02931 crossref_primary_10_1039_C8CP03599G crossref_primary_10_1103_PhysRevLett_124_166803 crossref_primary_10_1103_PhysRevB_109_035408 crossref_primary_10_1038_s41467_023_40967_7 crossref_primary_10_1103_PhysRevB_101_085406 crossref_primary_10_1088_1674_1056_28_5_056301 crossref_primary_10_1063_5_0147092 crossref_primary_10_1088_1361_6463_abaa15 crossref_primary_10_1103_PhysRevMaterials_6_054006 crossref_primary_10_1002_aelm_201900701 crossref_primary_10_1103_PhysRevB_101_245401 crossref_primary_10_1016_j_apsusc_2021_149858 crossref_primary_10_1103_PhysRevLett_122_127401 crossref_primary_10_1063_5_0067098 crossref_primary_10_1007_s12274_023_5865_x crossref_primary_10_1021_acs_nanolett_8b01105 crossref_primary_10_1016_j_diamond_2020_107851 crossref_primary_10_1021_acs_jpclett_2c01937 crossref_primary_10_1021_acs_nanolett_9b01317 crossref_primary_10_1021_acs_jpcc_2c05113 crossref_primary_10_1116_6_0000831 crossref_primary_10_1002_adom_202200898 crossref_primary_10_1063_PT_3_3613 crossref_primary_10_1038_s41467_020_19262_2 crossref_primary_10_1016_j_apsusc_2019_05_191 crossref_primary_10_1002_sstr_202100077 crossref_primary_10_1002_adma_201900065 crossref_primary_10_1103_PhysRevB_97_035404 crossref_primary_10_1038_s41467_022_30772_z crossref_primary_10_1038_s41524_020_00397_1 crossref_primary_10_1103_PhysRevB_101_245416 crossref_primary_10_1039_D1CP02577E crossref_primary_10_1002_adfm_202214203 crossref_primary_10_1007_s11467_022_1217_7 crossref_primary_10_1038_s41467_020_17566_x crossref_primary_10_1088_1674_1056_acf9e3 crossref_primary_10_1021_acsnano_1c09150 crossref_primary_10_1103_PhysRevB_106_245111 crossref_primary_10_1021_acs_jpclett_2c01925 crossref_primary_10_1021_acsnano_3c10665 crossref_primary_10_1116_1_5139905 crossref_primary_10_1103_PhysRevB_105_165302 crossref_primary_10_1088_1361_6528_ab37a4 crossref_primary_10_1039_D3CP04847K crossref_primary_10_1016_j_apmt_2021_100975 crossref_primary_10_1063_5_0227506 crossref_primary_10_1021_acsami_3c02446 crossref_primary_10_1080_14686996_2022_2030652 crossref_primary_10_1039_D3NR03086E crossref_primary_10_1103_PhysRevB_104_075421 crossref_primary_10_1002_adma_201900056 crossref_primary_10_1103_PhysRevB_100_165141 crossref_primary_10_1021_acsanm_2c01713 crossref_primary_10_1021_acs_jpclett_1c01869 crossref_primary_10_1088_1674_1056_ace160 crossref_primary_10_1088_2515_7639_abf884 crossref_primary_10_1038_nmat5017 crossref_primary_10_1038_s41467_018_04953_8 crossref_primary_10_1002_adma_202312935 crossref_primary_10_1088_2053_1591_ab1a93 crossref_primary_10_1021_acs_nanolett_2c04246 crossref_primary_10_1088_1674_1056_ad1c59 crossref_primary_10_1088_1674_1056_ac1338 crossref_primary_10_1039_D1NR00822F crossref_primary_10_1103_PhysRevMaterials_7_L061001 crossref_primary_10_1021_jacs_2c12848 crossref_primary_10_1126_science_aar4851 crossref_primary_10_1088_1361_648X_aaec55 crossref_primary_10_1002_adfm_201904734 crossref_primary_10_1021_acs_nanolett_8b01552 crossref_primary_10_1038_s41565_023_01354_x crossref_primary_10_1088_1361_648X_ac2c3c crossref_primary_10_1016_j_jmmm_2025_172857 crossref_primary_10_1016_j_nantod_2020_100902 crossref_primary_10_1103_PhysRevB_108_024427 crossref_primary_10_1021_acsanm_2c01966 crossref_primary_10_1016_j_isci_2022_103942 crossref_primary_10_1088_2053_1591_ab5d45 crossref_primary_10_1103_PhysRevB_103_125304 crossref_primary_10_1063_5_0025658 crossref_primary_10_1007_s40843_019_1214_y crossref_primary_10_1002_adma_201801325 crossref_primary_10_1038_s41928_024_01167_3 crossref_primary_10_2139_ssrn_4185556 crossref_primary_10_1038_s41586_018_0631_z crossref_primary_10_1088_2053_1583_ac2ab3 crossref_primary_10_1103_PhysRevApplied_13_014064 crossref_primary_10_1103_PhysRevB_101_201108 crossref_primary_10_1103_PhysRevB_98_115432 crossref_primary_10_1021_acsaelm_2c01479 crossref_primary_10_1103_PhysRevB_105_075405 crossref_primary_10_1002_adma_201906536 crossref_primary_10_3390_molecules28247945 crossref_primary_10_1126_science_aar3617 crossref_primary_10_1007_s11432_021_3432_6 crossref_primary_10_1021_acsnano_1c08375 crossref_primary_10_1002_smll_202404346 crossref_primary_10_1016_j_physe_2021_114976 crossref_primary_10_1103_PhysRevB_104_L201403 crossref_primary_10_1088_1361_648X_abd9ee crossref_primary_10_1103_PhysRevB_105_205436 crossref_primary_10_1103_PhysRevResearch_3_013027 crossref_primary_10_1021_acs_jpclett_0c00863 crossref_primary_10_1038_s41699_020_00195_9 crossref_primary_10_1103_PhysRevB_107_035112 crossref_primary_10_1063_5_0058583 crossref_primary_10_1103_PhysRevApplied_11_064047 crossref_primary_10_1002_adma_202413484 crossref_primary_10_1088_1361_6463_ab35a2 crossref_primary_10_1103_PhysRevB_107_235403 crossref_primary_10_1103_PhysRevB_111_L060505 crossref_primary_10_1103_PhysRevB_99_180407 crossref_primary_10_1038_s41467_021_22777_x crossref_primary_10_1002_adfm_202401684 crossref_primary_10_1038_s41524_022_00932_2 crossref_primary_10_1007_s44214_023_00037_x crossref_primary_10_1021_acs_nanolett_8b00683 crossref_primary_10_1016_j_physe_2020_114205 crossref_primary_10_3390_ma15124084 crossref_primary_10_1002_adfm_202204779 crossref_primary_10_1103_PhysRevB_108_184423 crossref_primary_10_1039_D3TC04255C crossref_primary_10_1103_PhysRevB_101_214413 crossref_primary_10_1126_science_aav4450 crossref_primary_10_1021_jacs_8b13584 crossref_primary_10_1063_5_0015566 crossref_primary_10_1007_s11467_022_1228_4 crossref_primary_10_1103_PhysRevResearch_4_023256 crossref_primary_10_1002_adma_202212087 crossref_primary_10_1016_j_mssp_2023_107361 crossref_primary_10_1021_acsami_1c08805 crossref_primary_10_1186_s11671_020_03458_y crossref_primary_10_1021_acsaelm_0c00384 crossref_primary_10_1002_advs_201903076 crossref_primary_10_1039_C9MH00444K crossref_primary_10_1021_acsami_3c14114 crossref_primary_10_1038_s41565_018_0195_y crossref_primary_10_1007_s12274_020_3036_x crossref_primary_10_1103_PhysRevApplied_19_014040 crossref_primary_10_1038_s41524_020_00356_w crossref_primary_10_1002_adma_201807075 crossref_primary_10_1103_PhysRevB_104_085119 crossref_primary_10_1038_s41467_023_39002_6 crossref_primary_10_7498_aps_70_20201419 crossref_primary_10_1002_aelm_202300646 crossref_primary_10_1103_PhysRevMaterials_4_104005 crossref_primary_10_1021_acs_jpclett_2c00620 crossref_primary_10_1002_smll_201801483 crossref_primary_10_1002_adma_201905896 crossref_primary_10_1007_s11467_018_0795_x crossref_primary_10_1002_advs_202407625 crossref_primary_10_1021_acsaelm_1c00363 crossref_primary_10_1063_5_0223592 crossref_primary_10_1038_s42005_023_01314_w crossref_primary_10_1038_s41565_019_0438_6 crossref_primary_10_1103_PhysRevB_98_115424 crossref_primary_10_7566_JPSJ_93_044710 crossref_primary_10_1038_s41467_018_07547_6 crossref_primary_10_1039_D3CP03507G crossref_primary_10_1021_acs_nanolett_9b01506 crossref_primary_10_1103_PhysRevB_109_054428 crossref_primary_10_1063_5_0039979 crossref_primary_10_1038_s41467_019_09490_6 crossref_primary_10_1103_RevModPhys_90_021001 crossref_primary_10_1039_C8TC05530K crossref_primary_10_1103_PhysRevApplied_12_014020 crossref_primary_10_1063_1_5046166 crossref_primary_10_1088_2053_1583_ac1eaa crossref_primary_10_1088_2053_1583_ab9dd5 crossref_primary_10_1038_s41524_019_0208_x crossref_primary_10_1021_acsaelm_4c02276 crossref_primary_10_1021_acsnano_0c05534 crossref_primary_10_1103_PhysRevMaterials_2_074007 crossref_primary_10_1038_s42254_019_0110_y crossref_primary_10_1063_5_0041531 crossref_primary_10_1103_PhysRevB_111_045416 crossref_primary_10_7498_aps_71_20212033 crossref_primary_10_1016_j_cjph_2020_03_035 crossref_primary_10_1039_C8NH00234G crossref_primary_10_1038_s41598_020_72203_3 crossref_primary_10_1016_j_mtphys_2023_101251 crossref_primary_10_1039_D4TC03757J crossref_primary_10_1088_1361_6463_ad6a20 crossref_primary_10_1103_PhysRevB_103_174401 crossref_primary_10_1103_PhysRevB_98_235419 crossref_primary_10_1016_j_jmmm_2024_172271 crossref_primary_10_1016_j_jmmm_2024_172392 crossref_primary_10_1038_s41467_019_10400_z crossref_primary_10_1021_acs_nanolett_9b02920 crossref_primary_10_1021_acs_jpclett_2c00443 crossref_primary_10_1021_acsnano_9b08336 crossref_primary_10_1103_PhysRevB_106_085410 crossref_primary_10_1038_s41467_021_26802_x crossref_primary_10_1103_PhysRevLett_127_217203 crossref_primary_10_1016_j_jmmm_2019_165269 crossref_primary_10_1021_acsnano_4c08185 crossref_primary_10_1103_PhysRevApplied_16_014032 crossref_primary_10_1016_j_commatsci_2023_112668 crossref_primary_10_1038_s41467_019_10325_7 crossref_primary_10_1557_s43577_024_00754_1 crossref_primary_10_1103_PhysRevB_103_115410 crossref_primary_10_1038_s44287_024_00108_8 crossref_primary_10_2139_ssrn_4196387 crossref_primary_10_1021_acs_nanolett_0c03466 crossref_primary_10_1038_s41467_021_26946_w crossref_primary_10_1021_acsami_0c20110 crossref_primary_10_1103_PhysRevB_103_174410 crossref_primary_10_1021_acs_nanolett_0c02381 crossref_primary_10_1103_PhysRevB_103_035423 crossref_primary_10_1103_PhysRevB_103_125121 crossref_primary_10_1063_5_0145401 crossref_primary_10_1016_j_jmmm_2022_169657 crossref_primary_10_1103_PhysRevB_98_144411 crossref_primary_10_1063_5_0031870 crossref_primary_10_1109_TNANO_2019_2954274 crossref_primary_10_1021_acsnano_4c14733 crossref_primary_10_1021_acsnano_0c05310 crossref_primary_10_1039_D4TC00115J crossref_primary_10_1039_D0TC01680B crossref_primary_10_1039_D0CP02072A crossref_primary_10_1103_PhysRevLett_125_157402 crossref_primary_10_1039_D2CP04713F crossref_primary_10_1007_s10853_021_06723_2 crossref_primary_10_1002_adma_201908061 crossref_primary_10_1039_D0NR06449A crossref_primary_10_1063_1_5118327 crossref_primary_10_1103_PhysRevB_107_035416 crossref_primary_10_1016_j_matt_2022_11_017 crossref_primary_10_1088_1674_4926_40_8_081508 crossref_primary_10_1103_PhysRevB_109_075434 crossref_primary_10_1088_2053_1583_aa75ed crossref_primary_10_1002_qute_201800111 crossref_primary_10_1007_s12274_020_2860_3 crossref_primary_10_1088_0256_307X_39_4_047601 crossref_primary_10_1103_PhysRevB_101_085112 crossref_primary_10_1002_adma_202413438 crossref_primary_10_1021_acsnano_0c05300 crossref_primary_10_1016_j_matdes_2021_110235 crossref_primary_10_1038_s41467_022_30738_1 crossref_primary_10_1039_D4RA01013B crossref_primary_10_1103_PhysRevB_107_094416 crossref_primary_10_1021_acsnano_4c01526 crossref_primary_10_1103_PhysRevX_7_041040 crossref_primary_10_1080_14686996_2022_2062576 crossref_primary_10_1103_PhysRevB_104_205421 crossref_primary_10_1039_D2NR00331G crossref_primary_10_1038_s41565_019_0629_1 crossref_primary_10_1021_acs_chemrev_4c00174 crossref_primary_10_1002_aelm_202300738 crossref_primary_10_1016_j_mattod_2018_05_003 crossref_primary_10_1039_C9RA01825E crossref_primary_10_1063_5_0075554 crossref_primary_10_1016_j_cplett_2021_138461 crossref_primary_10_1103_PhysRevB_107_125148 crossref_primary_10_1039_D0NR06632J crossref_primary_10_1088_1361_648X_acee3f crossref_primary_10_1016_j_mtadv_2024_100525 crossref_primary_10_1103_PhysRevB_100_054420 crossref_primary_10_1103_PhysRevLett_120_066402 crossref_primary_10_1103_PhysRevB_108_L201403 crossref_primary_10_1038_s41598_020_80290_5 crossref_primary_10_1039_D0CP02163F crossref_primary_10_1038_s41598_019_47685_5 crossref_primary_10_1021_acsami_9b02493 crossref_primary_10_1016_j_mser_2025_100951 crossref_primary_10_1021_acs_nanolett_2c02124 crossref_primary_10_1103_PhysRevResearch_3_033276 crossref_primary_10_1088_1367_2630_ab1ae9 crossref_primary_10_1103_PhysRevB_104_195424 crossref_primary_10_1088_1674_1056_ac0cd9 crossref_primary_10_1103_PhysRevB_99_085421 crossref_primary_10_1038_s41467_018_04012_2 crossref_primary_10_1088_0256_307X_41_10_107503 crossref_primary_10_1103_PhysRevMaterials_1_064001 crossref_primary_10_1021_acs_nanolett_2c02369 crossref_primary_10_1038_s42254_021_00403_5 crossref_primary_10_1088_2516_1075_abbb25 crossref_primary_10_1103_PhysRevB_100_054430 crossref_primary_10_1039_D4CP02486A crossref_primary_10_7498_aps_70_20202146 crossref_primary_10_1039_C8NR07692H crossref_primary_10_1039_D0NR07290G crossref_primary_10_1088_2053_1583_ab6781 crossref_primary_10_1002_advs_202200186 crossref_primary_10_1088_1361_6528_abe895 crossref_primary_10_1021_acs_nanolett_8b01131 crossref_primary_10_1088_1674_1056_ad0713 crossref_primary_10_1021_accountsmr_1c00246 crossref_primary_10_1016_j_isci_2021_103623 crossref_primary_10_1016_j_pnsc_2022_09_017 crossref_primary_10_1088_1361_648X_ab071f crossref_primary_10_1103_PhysRevResearch_2_013013 crossref_primary_10_1021_acs_nanolett_2c03562 crossref_primary_10_1038_s41563_023_01645_7 crossref_primary_10_1063_5_0130037 crossref_primary_10_1557_s43577_024_00668_y crossref_primary_10_1038_s41467_019_11966_4 crossref_primary_10_1016_j_jmmm_2020_167719 crossref_primary_10_1088_1367_2630_ab43a2 crossref_primary_10_1103_PhysRevB_107_184403 crossref_primary_10_1103_PhysRevLett_122_086401 crossref_primary_10_1088_0256_307X_37_7_077502 crossref_primary_10_1103_PhysRevB_102_144525 crossref_primary_10_1103_PhysRevB_108_125304 crossref_primary_10_1016_j_fmre_2023_12_001 crossref_primary_10_1103_PhysRevB_102_081107 crossref_primary_10_1088_1361_6633_abdb98 crossref_primary_10_1109_TED_2022_3141035 crossref_primary_10_1103_PhysRevB_105_214405 crossref_primary_10_1021_acs_nanolett_8b01125 crossref_primary_10_1063_5_0231129 crossref_primary_10_1039_C9NR00315K crossref_primary_10_1103_PhysRevB_103_024436 crossref_primary_10_1116_6_0004262 crossref_primary_10_1021_acsnano_4c01436 crossref_primary_10_1002_adma_202209513 crossref_primary_10_1021_acsami_1c11132 crossref_primary_10_1088_1361_648X_ac8037 crossref_primary_10_1016_j_chphma_2023_04_001 crossref_primary_10_1126_science_aav6926 crossref_primary_10_7567_1347_4065_aaf222 crossref_primary_10_1039_D3CP02043F crossref_primary_10_1038_s41467_022_33343_4 crossref_primary_10_1021_acsami_3c09270 crossref_primary_10_1016_j_vacuum_2023_111941 crossref_primary_10_1088_1361_6463_ac16f9 crossref_primary_10_1103_PhysRevB_101_235141 crossref_primary_10_1038_s41563_020_0620_0 crossref_primary_10_1002_adpr_202000104 crossref_primary_10_1002_adma_201901694 crossref_primary_10_1088_2053_1583_ada040 crossref_primary_10_1002_qute_202000104 crossref_primary_10_1021_acs_jpcc_2c00646 crossref_primary_10_1103_PhysRevB_101_085415 crossref_primary_10_1103_PhysRevB_99_115441 crossref_primary_10_1021_acsnano_0c00291 crossref_primary_10_1103_PhysRevLett_121_067701 crossref_primary_10_1002_inf2_12048 crossref_primary_10_1016_j_pmatsci_2022_101036 crossref_primary_10_1103_PhysRevResearch_4_L022040 crossref_primary_10_1103_PhysRevB_101_041402 crossref_primary_10_1038_s41699_019_0086_6 crossref_primary_10_1021_acs_nanolett_1c00520 crossref_primary_10_1063_5_0094013 crossref_primary_10_1088_2053_1583_ab0902 crossref_primary_10_1002_aelm_202200164 crossref_primary_10_1063_5_0069088 crossref_primary_10_1021_acs_jpcc_9b04631 crossref_primary_10_1039_D3NR05643K crossref_primary_10_1038_nmat4979 crossref_primary_10_1103_PhysRevB_100_085128 crossref_primary_10_1103_PhysRevLett_126_056803 crossref_primary_10_1021_acsnano_9b06682 crossref_primary_10_1103_PhysRevB_102_064429 crossref_primary_10_1038_s41467_023_37918_7 crossref_primary_10_1039_C9CP02404B crossref_primary_10_1016_j_flatc_2023_100536 crossref_primary_10_1126_sciadv_abn1401 crossref_primary_10_1038_s41566_018_0204_6 crossref_primary_10_1038_s41467_020_19816_4 crossref_primary_10_1088_2515_7639_ad3b6e crossref_primary_10_1038_s41565_018_0135_x crossref_primary_10_1103_PhysRevApplied_13_044006 crossref_primary_10_1038_s41467_022_31786_3 crossref_primary_10_1038_s41586_018_0626_9 crossref_primary_10_1038_s42005_022_01044_5 crossref_primary_10_1021_acs_nanolett_8b04160 crossref_primary_10_1039_D0CP03406A crossref_primary_10_1016_j_jallcom_2022_168375 crossref_primary_10_1021_acs_nanolett_4c00503 crossref_primary_10_1088_1361_6641_ad22fd crossref_primary_10_1103_PhysRevB_101_125401 crossref_primary_10_1103_PhysRevB_109_085407 crossref_primary_10_1016_j_sse_2019_03_015 crossref_primary_10_1063_1_5112171 crossref_primary_10_3390_nano13071187 crossref_primary_10_1103_PhysRevB_102_144443 crossref_primary_10_1016_j_scib_2017_08_007 crossref_primary_10_1103_PhysRevB_104_094405 crossref_primary_10_3390_nano10091642 crossref_primary_10_1103_PhysRevB_111_035446 crossref_primary_10_1088_2053_1583_ad3b12 crossref_primary_10_1088_1361_6501_ad128e crossref_primary_10_1103_PhysRevLett_125_036802 crossref_primary_10_1016_j_ssc_2020_113949 crossref_primary_10_1140_epjb_s10051_023_00516_z crossref_primary_10_1557_s43577_021_00193_2 crossref_primary_10_1007_s11467_024_1435_2 crossref_primary_10_1039_D2CP01492K crossref_primary_10_1103_PhysRevResearch_3_043024 crossref_primary_10_1063_1_5019286 crossref_primary_10_1103_PhysRevB_100_195435 crossref_primary_10_1103_PhysRevB_105_045413 crossref_primary_10_1103_PhysRevMaterials_6_014008 crossref_primary_10_1021_acs_jpclett_7b03276 crossref_primary_10_1002_lpor_202100431 crossref_primary_10_1021_acs_nanolett_3c00417 crossref_primary_10_1103_PhysRevB_111_024410 crossref_primary_10_1038_s41598_023_31342_z crossref_primary_10_1103_PhysRevB_101_045408 crossref_primary_10_1021_acs_nanolett_8b05121 crossref_primary_10_1039_C9SC01144G crossref_primary_10_1103_PhysRevB_103_014432 crossref_primary_10_1103_PhysRevB_107_205418 crossref_primary_10_1021_acsnano_3c03455 crossref_primary_10_1155_2023_7601146 crossref_primary_10_1103_PhysRevB_106_125136 crossref_primary_10_1103_PhysRevB_99_184428 crossref_primary_10_1021_acs_chemrev_3c00170 crossref_primary_10_1038_s41563_018_0149_7 crossref_primary_10_1038_s41563_020_0713_9 crossref_primary_10_1016_j_commatsci_2022_111670 crossref_primary_10_1103_PhysRevB_98_085409 crossref_primary_10_1021_acsami_2c09655 crossref_primary_10_1038_s41586_022_05031_2 crossref_primary_10_1103_PhysRevB_108_064401 crossref_primary_10_3389_fmats_2022_887864 crossref_primary_10_1103_PhysRevMaterials_4_094003 crossref_primary_10_1039_D3TC00001J crossref_primary_10_1021_acs_nanolett_3c02727 crossref_primary_10_1088_2053_1583_aac17f crossref_primary_10_1002_aisy_201900167 crossref_primary_10_1088_2053_1583_ac2e7a crossref_primary_10_1088_2053_1583_ace5bc crossref_primary_10_1109_JSTQE_2025_3534663 crossref_primary_10_1016_j_mtphys_2019_100174 crossref_primary_10_1016_j_physe_2022_115520 crossref_primary_10_1039_C9NR10171C crossref_primary_10_1063_5_0223945 crossref_primary_10_1103_PhysRevLett_121_126802 crossref_primary_10_1103_PhysRevB_103_214114 crossref_primary_10_1103_PhysRevB_106_054408 crossref_primary_10_1038_s41467_022_34812_6 crossref_primary_10_1002_andp_201900452 crossref_primary_10_1142_S0217979225500407 crossref_primary_10_1088_1361_648X_ad8f81 crossref_primary_10_1021_acs_jpclett_2c00091 crossref_primary_10_1021_acs_nanolett_0c01493 crossref_primary_10_1103_PhysRevB_109_155403 crossref_primary_10_1007_s11433_022_2055_8 crossref_primary_10_1360_TB_2023_0074 crossref_primary_10_1039_C9NR03315G crossref_primary_10_1002_advs_202002488 crossref_primary_10_1039_D1CP05135K crossref_primary_10_1088_1674_1056_ac2808 crossref_primary_10_1002_inf2_12096 crossref_primary_10_1016_j_jallcom_2024_177443 crossref_primary_10_1016_j_mtelec_2023_100051 crossref_primary_10_1002_advs_202400893 crossref_primary_10_1103_PhysRevB_100_195307 crossref_primary_10_1103_PhysRevB_97_085401 crossref_primary_10_1039_D0MH01480J crossref_primary_10_1007_s12598_022_02004_2 crossref_primary_10_1038_s41586_021_03979_1 crossref_primary_10_1038_s42254_020_00276_0 crossref_primary_10_1103_PhysRevMaterials_8_044407 crossref_primary_10_1002_adma_202209365 crossref_primary_10_1007_s11082_018_1716_5 crossref_primary_10_1103_PhysRevMaterials_5_073401 crossref_primary_10_1063_1_5112130 crossref_primary_10_1103_PhysRevB_101_241409 crossref_primary_10_1016_j_mssp_2024_109171 crossref_primary_10_1021_acs_nanolett_4c02849 crossref_primary_10_1063_5_0042683 crossref_primary_10_1063_5_0204185 crossref_primary_10_1021_acs_nanolett_1c01232 crossref_primary_10_1103_PhysRevB_103_L121108 crossref_primary_10_1103_PhysRevB_104_174434 crossref_primary_10_1103_PhysRevB_104_174433 crossref_primary_10_1039_D1NR04063D crossref_primary_10_1103_PhysRevB_104_014408 crossref_primary_10_1103_PhysRevApplied_12_024031 crossref_primary_10_1103_PhysRevB_106_054426 crossref_primary_10_1021_acs_inorgchem_8b02384 crossref_primary_10_1103_PhysRevB_97_085410 crossref_primary_10_1103_PhysRevB_103_214411 crossref_primary_10_1038_s41467_020_20376_w crossref_primary_10_1088_1674_1056_abfbd2 crossref_primary_10_1063_5_0055764 crossref_primary_10_1088_1402_4896_ad5a51 crossref_primary_10_1016_j_matchemphys_2023_128149 crossref_primary_10_1088_1361_6463_acb801 crossref_primary_10_1002_adma_201903800 crossref_primary_10_1103_PhysRevB_107_075421 crossref_primary_10_1002_adma_201908498 crossref_primary_10_1021_acsami_9b04843 crossref_primary_10_1021_acsami_0c13988 crossref_primary_10_1021_acsami_4c07233 crossref_primary_10_1063_1_5033554 crossref_primary_10_1088_2053_1583_ab2c43 crossref_primary_10_3390_physchem2040025 crossref_primary_10_1088_1361_648X_ab8986 crossref_primary_10_1021_jacs_3c13267 crossref_primary_10_1038_s41467_018_04018_w crossref_primary_10_1063_5_0023729 crossref_primary_10_1021_acs_jpcc_9b08706 crossref_primary_10_1039_D0NR06813F crossref_primary_10_1063_5_0077669 crossref_primary_10_1021_acsaom_4c00510 crossref_primary_10_1002_pssr_202000008 crossref_primary_10_1103_PhysRevB_105_125139 crossref_primary_10_1103_PhysRevMaterials_8_104403 crossref_primary_10_1021_acsnano_0c05343 crossref_primary_10_1088_1402_4896_ad6b51 crossref_primary_10_1002_adma_202003501 crossref_primary_10_1063_5_0076332 crossref_primary_10_1038_s41467_022_32810_2 crossref_primary_10_1016_j_mtphys_2024_101389 crossref_primary_10_1007_s11467_023_1320_4 crossref_primary_10_1109_JXCDC_2018_2809640 crossref_primary_10_1016_j_apsusc_2024_160443 crossref_primary_10_1021_acsami_4c12946 crossref_primary_10_1063_5_0193656 crossref_primary_10_1039_D3DT03031H crossref_primary_10_1088_1361_6528_ad3d64 crossref_primary_10_1103_PhysRevB_107_075430 crossref_primary_10_1038_s41928_019_0302_6 crossref_primary_10_1021_acsami_2c21688 crossref_primary_10_1063_1_5036924 crossref_primary_10_1103_PhysRevB_104_014421 crossref_primary_10_1002_smll_202106029 crossref_primary_10_1016_j_cplett_2022_139370 crossref_primary_10_1021_acs_nanolett_3c03970 crossref_primary_10_1038_s41467_024_51287_9 crossref_primary_10_1088_1361_648X_ab03ec crossref_primary_10_1039_D1NR02842A |
Cites_doi | 10.1016/S1369-7021(06)71693-5 10.1038/nature17635 10.1103/PhysRevLett.61.2472 10.1103/PhysRevB.82.161414 10.1103/PhysRevLett.108.196802 10.1038/nnano.2016.49 10.1021/acs.nanolett.5b00626 10.1038/nphys3203 10.1002/jcc.21112 10.1038/nnano.2014.214 10.1016/0022-3697(66)90148-X 10.1103/PhysRevLett.113.266804 10.1103/PhysRevB.67.174409 10.1088/2053-1583/2/3/034002 10.2478/v10155-010-0086-8 10.1038/nphys2942 10.1126/science.250.4984.1092 10.1103/PhysRevB.69.161305 10.1038/nature12385 10.1016/S0304-8853(99)00453-9 10.1103/PhysRevLett.110.046603 10.1063/1.4886096 10.1038/nmat1325 10.1103/PhysRevLett.112.116404 10.1103/PhysRevLett.78.1396 10.1103/PhysRevLett.77.3865 10.1088/0953-8984/21/39/395502 10.1021/acs.nanolett.6b02527 10.1103/PhysRevLett.91.197203 10.1038/nphys3201 10.1021/cm504242t 10.1103/RevModPhys.77.935 10.1103/PhysRevB.92.121403 10.1126/science.aac9439 10.1103/PhysRevLett.114.016603 10.1016/S0304-8853(99)00334-0 10.1038/ncomms12014 10.1038/nphys3497 10.1103/PhysRevB.77.115406 10.1103/PhysRevB.39.4828 10.1002/adma.201502585 10.1002/jcc.20495 10.1038/nnano.2013.151 10.7567/JJAPS.15S1.93 10.1103/PhysRevLett.114.037401 10.1038/ncomms1957 10.1038/nmat806 10.1038/nmat4603 10.1103/PhysRevB.92.165418 |
ContentType | Journal Article |
Copyright | Copyright © 2017, The Authors 2017 The Authors |
Copyright_xml | – notice: Copyright © 2017, The Authors 2017 The Authors |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI 5PM |
DOI | 10.1126/sciadv.1603113 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering |
EISSN | 2375-2548 |
ExternalDocumentID | PMC5451195 1376521 28580423 10_1126_sciadv_1603113 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: ID0EOBDI17420; DE-SC0012509 – fundername: ; grantid: ID0EPIDI17421; HKU17305914P – fundername: ; grantid: ID0EP1CI17419; DE-SC0008145 |
GroupedDBID | 53G 5VS AAFWJ AAYXX ACGFS ADAXU ADBBV ADRAZ AENVI AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BKF CITATION EBS EJD FRP GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 OVD RHI RPM TEORI ADPDF BBORY BCGUY NPM OVEED 7X8 OIOZB OTOTI RHF 5PM |
ID | FETCH-LOGICAL-c417t-41f0c03118586598f97d42354511f4798f6e2594e87fc4318b9524cbbb30bffe3 |
IEDL.DBID | M48 |
ISSN | 2375-2548 |
IngestDate | Thu Aug 21 18:13:37 EDT 2025 Mon Jul 03 03:58:47 EDT 2023 Fri Jul 11 09:47:14 EDT 2025 Thu Apr 03 07:11:42 EDT 2025 Thu Apr 24 23:08:48 EDT 2025 Tue Jul 01 03:52:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | magnetic proximity effect van der Waals heterostructure Exchange interaction 2D materials ultrafast charge transfer Valleytronics ferromagnetic semiconductor monolayer semiconductor Spintronics |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-41f0c03118586598f97d42354511f4798f6e2594e87fc4318b9524cbbb30bffe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) AC05-00OR22725 These authors contributed equally to this work. |
ORCID | 0000-0003-3149-2071 0000-0003-0166-2172 0000-0003-3701-8119 0000-0003-2883-4528 0000-0001-6809-1808 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.1603113 |
PMID | 28580423 |
PQID | 1906138165 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5451195 osti_scitechconnect_1376521 proquest_miscellaneous_1906138165 pubmed_primary_28580423 crossref_primary_10_1126_sciadv_1603113 crossref_citationtrail_10_1126_sciadv_1603113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science advances |
PublicationTitleAlternate | Sci Adv |
PublicationYear | 2017 |
Publisher | AAAS American Association for the Advancement of Science |
Publisher_xml | – name: AAAS – name: American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 Dzhioev R. I. (e_1_3_2_13_2) 1994; 60 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_36_2 e_1_3_2_2_2 21832390 - J Phys Condens Matter. 2009 Sep 30;21(39):395502 27575518 - Nano Lett. 2016 Sep 14;16(9):5792-7 26065723 - Nano Lett. 2015 Jul 8;15(7):4387-92 24702394 - Phys Rev Lett. 2014 Mar 21;112(11):116404 26639918 - Adv Mater. 2016 Feb 3;28(5):959-66 25166184 - Phys Rev Lett. 2013 Jan 25;110(4):046603 17840191 - Science. 1990 Nov 23;250(4984):1092-7 27225124 - Nature. 2016 May 09;533(7604):513-6 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 22805566 - Nat Commun. 2012 Jul 17;3:959 23934096 - Nat Nanotechnol. 2013 Sep;8(9):634-8 27344976 - Nat Commun. 2016 Jun 27;7:12014 9948867 - Phys Rev B Condens Matter. 1989 Mar 1;39(7):4828-4830 23003071 - Phys Rev Lett. 2012 May 11;108(19):196802 27471306 - Science. 2016 Jul 29;353(6298):aac9439 23887427 - Nature. 2013 Jul 25;499(7459):419-25 25286274 - Nat Nanotechnol. 2014 Oct;9(10):794-807 27043196 - Nat Nanotechnol. 2016 Jul;11(7):598-602 14611609 - Phys Rev Lett. 2003 Nov 7;91(19):197203 25659021 - Phys Rev Lett. 2015 Jan 23;114(3):037401 27019382 - Nat Mater. 2016 Jul;15(7):711-6 25615490 - Phys Rev Lett. 2015 Jan 9;114(1):016603 16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99 10039127 - Phys Rev Lett. 1988 Nov 21;61(21):2472-2475 12612696 - Nat Mater. 2003 Feb;2(2):112-6 18785153 - J Comput Chem. 2009 Apr 30;30(6):934-9 25615372 - Phys Rev Lett. 2014 Dec 31;113(26):266804 |
References_xml | – ident: e_1_3_2_6_2 doi: 10.1016/S1369-7021(06)71693-5 – ident: e_1_3_2_9_2 doi: 10.1038/nature17635 – ident: e_1_3_2_3_2 doi: 10.1103/PhysRevLett.61.2472 – ident: e_1_3_2_18_2 doi: 10.1103/PhysRevB.82.161414 – ident: e_1_3_2_30_2 doi: 10.1103/PhysRevLett.108.196802 – ident: e_1_3_2_26_2 doi: 10.1038/nnano.2016.49 – ident: e_1_3_2_39_2 doi: 10.1021/acs.nanolett.5b00626 – ident: e_1_3_2_33_2 doi: 10.1038/nphys3203 – ident: e_1_3_2_49_2 doi: 10.1002/jcc.21112 – ident: e_1_3_2_22_2 doi: 10.1038/nnano.2014.214 – ident: e_1_3_2_36_2 doi: 10.1016/0022-3697(66)90148-X – ident: e_1_3_2_35_2 doi: 10.1103/PhysRevLett.113.266804 – ident: e_1_3_2_43_2 doi: 10.1103/PhysRevB.67.174409 – ident: e_1_3_2_38_2 doi: 10.1088/2053-1583/2/3/034002 – ident: e_1_3_2_11_2 doi: 10.2478/v10155-010-0086-8 – ident: e_1_3_2_31_2 doi: 10.1038/nphys2942 – ident: e_1_3_2_12_2 doi: 10.1126/science.250.4984.1092 – ident: e_1_3_2_15_2 doi: 10.1103/PhysRevB.69.161305 – ident: e_1_3_2_27_2 doi: 10.1038/nature12385 – ident: e_1_3_2_5_2 doi: 10.1016/S0304-8853(99)00453-9 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevLett.110.046603 – ident: e_1_3_2_44_2 doi: 10.1063/1.4886096 – ident: e_1_3_2_10_2 doi: 10.1038/nmat1325 – ident: e_1_3_2_19_2 doi: 10.1103/PhysRevLett.112.116404 – ident: e_1_3_2_46_2 doi: 10.1103/PhysRevLett.78.1396 – ident: e_1_3_2_45_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_3_2_47_2 doi: 10.1088/0953-8984/21/39/395502 – ident: e_1_3_2_25_2 doi: 10.1021/acs.nanolett.6b02527 – ident: e_1_3_2_42_2 doi: 10.1103/PhysRevLett.91.197203 – ident: e_1_3_2_32_2 doi: 10.1038/nphys3201 – ident: e_1_3_2_37_2 doi: 10.1021/cm504242t – ident: e_1_3_2_7_2 doi: 10.1103/RevModPhys.77.935 – ident: e_1_3_2_20_2 doi: 10.1103/PhysRevB.92.121403 – ident: e_1_3_2_28_2 doi: 10.1126/science.aac9439 – ident: e_1_3_2_24_2 doi: 10.1103/PhysRevLett.114.016603 – ident: e_1_3_2_2_2 doi: 10.1016/S0304-8853(99)00334-0 – ident: e_1_3_2_8_2 doi: 10.1038/ncomms12014 – ident: e_1_3_2_14_2 doi: 10.1038/nphys3497 – ident: e_1_3_2_17_2 doi: 10.1103/PhysRevB.77.115406 – ident: e_1_3_2_4_2 doi: 10.1103/PhysRevB.39.4828 – ident: e_1_3_2_21_2 doi: 10.1002/adma.201502585 – ident: e_1_3_2_48_2 doi: 10.1002/jcc.20495 – ident: e_1_3_2_50_2 doi: 10.1038/nnano.2013.151 – ident: e_1_3_2_51_2 doi: 10.7567/JJAPS.15S1.93 – ident: e_1_3_2_34_2 doi: 10.1103/PhysRevLett.114.037401 – ident: e_1_3_2_40_2 doi: 10.1038/ncomms1957 – ident: e_1_3_2_41_2 doi: 10.1038/nmat806 – volume: 60 start-page: 650 year: 1994 ident: e_1_3_2_13_2 article-title: Detection of the magnetization of a ferromagnetic film in a Ni/GaAs structure from the polarization of electrons of the semiconductor publication-title: JETP Lett. – ident: e_1_3_2_23_2 doi: 10.1038/nmat4603 – ident: e_1_3_2_29_2 doi: 10.1103/PhysRevB.92.165418 – reference: 25286274 - Nat Nanotechnol. 2014 Oct;9(10):794-807 – reference: 16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99 – reference: 27344976 - Nat Commun. 2016 Jun 27;7:12014 – reference: 26065723 - Nano Lett. 2015 Jul 8;15(7):4387-92 – reference: 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 – reference: 23003071 - Phys Rev Lett. 2012 May 11;108(19):196802 – reference: 27471306 - Science. 2016 Jul 29;353(6298):aac9439 – reference: 17840191 - Science. 1990 Nov 23;250(4984):1092-7 – reference: 9948867 - Phys Rev B Condens Matter. 1989 Mar 1;39(7):4828-4830 – reference: 25166184 - Phys Rev Lett. 2013 Jan 25;110(4):046603 – reference: 22805566 - Nat Commun. 2012 Jul 17;3:959 – reference: 12612696 - Nat Mater. 2003 Feb;2(2):112-6 – reference: 25615372 - Phys Rev Lett. 2014 Dec 31;113(26):266804 – reference: 10039127 - Phys Rev Lett. 1988 Nov 21;61(21):2472-2475 – reference: 24702394 - Phys Rev Lett. 2014 Mar 21;112(11):116404 – reference: 23934096 - Nat Nanotechnol. 2013 Sep;8(9):634-8 – reference: 23887427 - Nature. 2013 Jul 25;499(7459):419-25 – reference: 27043196 - Nat Nanotechnol. 2016 Jul;11(7):598-602 – reference: 27575518 - Nano Lett. 2016 Sep 14;16(9):5792-7 – reference: 27225124 - Nature. 2016 May 09;533(7604):513-6 – reference: 14611609 - Phys Rev Lett. 2003 Nov 7;91(19):197203 – reference: 26639918 - Adv Mater. 2016 Feb 3;28(5):959-66 – reference: 21832390 - J Phys Condens Matter. 2009 Sep 30;21(39):395502 – reference: 18785153 - J Comput Chem. 2009 Apr 30;30(6):934-9 – reference: 25615490 - Phys Rev Lett. 2015 Jan 9;114(1):016603 – reference: 25659021 - Phys Rev Lett. 2015 Jan 23;114(3):037401 – reference: 27019382 - Nat Mater. 2016 Jul;15(7):711-6 |
SSID | ssj0001466519 |
Score | 2.578551 |
Snippet | A van der Waals heterostructure of monolayer WSe
2
and ferromagnetic CrI
3
enables exceptional control of valley pseudospin.
The integration of magnetic... The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the... |
SourceID | pubmedcentral osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1603113 |
SubjectTerms | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Engineering SciAdv r-articles |
Title | Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28580423 https://www.proquest.com/docview/1906138165 https://www.osti.gov/servlets/purl/1376521 https://pubmed.ncbi.nlm.nih.gov/PMC5451195 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-UwEA_y9uJF_FqtX2RBcPdQsWmStgdZlkVXBD359N1KmqQqaKrtU_S_dyaNT9-uwl56SENDZjKd3yST3xCyrQBVMM0gTBU8RVLtAmxOsdiAu8_xoEwWeFH45FQeDfnxSIze8p-CALsPQzusJzVsb3af7p9_gsHvv7sAo8zjri-YjAVsv4BXytBITwLU9_stXErh63ywNBMxxEV54HD89xNTPmrQgK19hD__TqN855cO58lcAJT0V78CFsiMdYtkIZhsR78HXukfS8ScK0eNbemFgrlT-8ZESJua1rZtm1t16fBWI-0wZ75xSAbbtPQKc2aanmr2AeJzCkiXdnfXjipn6COWY3nua-l0y2R4eHD2-ygORRZiDVIaxzyp9zTOOhe5FEVeF5kBiCWQt6zmGTRICyESt3lWa0AbeVUIxnVVVeleVdc2_UoGrnF2lVDLU5kl2gKkktwIVRWWa2YqLkzBmNERiV_FWurAQI6FMG5KH4kwWfZqKIMaIrIz6X_Xc2982nMdtYStSH2rMUdIj8sE_p4ATyLy7VV5JRgPnogoZ5uHrgQ0BHAmT6SIyEqvzMlIDASCSUMRyabUPOmAxNzTb9z1lSfo9sIrxNp_jLtOZhkCBZ9CuUEGoEm7CTBnXG357QF4_hklW34tvwD29v6s |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Van+der+Waals+engineering+of+ferromagnetic+semiconductor+heterostructures+for+spin+and+valleytronics&rft.jtitle=Science+advances&rft.au=Zhong%2C+Ding&rft.au=Seyler%2C+Kyle+L&rft.au=Linpeng%2C+Xiayu&rft.au=Cheng%2C+Ran&rft.date=2017-05-01&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=3&rft.issue=5&rft.spage=e1603113&rft_id=info:doi/10.1126%2Fsciadv.1603113&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon |