Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

A van der Waals heterostructure of monolayer WSe 2 and ferromagnetic CrI 3 enables exceptional control of valley pseudospin. The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration...

Full description

Saved in:
Bibliographic Details
Published inScience advances Vol. 3; no. 5; p. e1603113
Main Authors Zhong, Ding, Seyler, Kyle L., Linpeng, Xiayu, Cheng, Ran, Sivadas, Nikhil, Huang, Bevin, Schmidgall, Emma, Taniguchi, Takashi, Watanabe, Kenji, McGuire, Michael A., Yao, Wang, Xiao, Di, Fu, Kai-Mei C., Xu, Xiaodong
Format Journal Article
LanguageEnglish
Published United States AAAS 01.05.2017
American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A van der Waals heterostructure of monolayer WSe 2 and ferromagnetic CrI 3 enables exceptional control of valley pseudospin. The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2 . We observe unprecedented control of the spin and valley pseudospin in WSe 2 , where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe 2 photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.
AbstractList The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI and a monolayer of WSe . We observe unprecedented control of the spin and valley pseudospin in WSe , where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe valley splitting and polarization via flipping of the CrI magnetization. The WSe photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe and the CrI magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.
A van der Waals heterostructure of monolayer WSe 2 and ferromagnetic CrI 3 enables exceptional control of valley pseudospin. The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI 3 and a monolayer of WSe 2 . We observe unprecedented control of the spin and valley pseudospin in WSe 2 , where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe 2 valley splitting and polarization via flipping of the CrI 3 magnetization. The WSe 2 photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe 2 and the CrI 3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.
The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI3 and a monolayer of WSe2. We observe unprecedented control of the spin and valley pseudospin in WSe2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe2 valley splitting and polarization via flipping of the CrI3 magnetization. The WSe2 photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe2 and the CrI3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.
The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI3 and a monolayer of WSe2. We observe unprecedented control of the spin and valley pseudospin in WSe2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe2 valley splitting and polarization via flipping of the CrI3 magnetization. The WSe2 photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe2 and the CrI3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI3 and a monolayer of WSe2. We observe unprecedented control of the spin and valley pseudospin in WSe2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe2 valley splitting and polarization via flipping of the CrI3 magnetization. The WSe2 photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe2 and the CrI3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.
Author Sivadas, Nikhil
Taniguchi, Takashi
Fu, Kai-Mei C.
Zhong, Ding
Yao, Wang
Linpeng, Xiayu
Xiao, Di
Schmidgall, Emma
Huang, Bevin
Cheng, Ran
Watanabe, Kenji
Seyler, Kyle L.
McGuire, Michael A.
Xu, Xiaodong
Author_xml – sequence: 1
  givenname: Ding
  orcidid: 0000-0003-3149-2071
  surname: Zhong
  fullname: Zhong, Ding
  organization: Department of Physics, University of Washington, Seattle, WA 98195, USA
– sequence: 2
  givenname: Kyle L.
  surname: Seyler
  fullname: Seyler, Kyle L.
  organization: Department of Physics, University of Washington, Seattle, WA 98195, USA
– sequence: 3
  givenname: Xiayu
  surname: Linpeng
  fullname: Linpeng, Xiayu
  organization: Department of Physics, University of Washington, Seattle, WA 98195, USA
– sequence: 4
  givenname: Ran
  orcidid: 0000-0003-0166-2172
  surname: Cheng
  fullname: Cheng, Ran
  organization: Department of Physics, Carnegie Mellon University, Pittsburg, PA 15213, USA
– sequence: 5
  givenname: Nikhil
  surname: Sivadas
  fullname: Sivadas, Nikhil
  organization: Department of Physics, Carnegie Mellon University, Pittsburg, PA 15213, USA
– sequence: 6
  givenname: Bevin
  surname: Huang
  fullname: Huang, Bevin
  organization: Department of Physics, University of Washington, Seattle, WA 98195, USA
– sequence: 7
  givenname: Emma
  orcidid: 0000-0001-6809-1808
  surname: Schmidgall
  fullname: Schmidgall, Emma
  organization: Department of Physics, University of Washington, Seattle, WA 98195, USA
– sequence: 8
  givenname: Takashi
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
– sequence: 9
  givenname: Kenji
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
– sequence: 10
  givenname: Michael A.
  surname: McGuire
  fullname: McGuire, Michael A.
  organization: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
– sequence: 11
  givenname: Wang
  orcidid: 0000-0003-2883-4528
  surname: Yao
  fullname: Yao, Wang
  organization: Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Hong Kong, China
– sequence: 12
  givenname: Di
  surname: Xiao
  fullname: Xiao, Di
  organization: Department of Physics, Carnegie Mellon University, Pittsburg, PA 15213, USA
– sequence: 13
  givenname: Kai-Mei C.
  surname: Fu
  fullname: Fu, Kai-Mei C.
  organization: Department of Physics, University of Washington, Seattle, WA 98195, USA., Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA
– sequence: 14
  givenname: Xiaodong
  surname: Xu
  fullname: Xu, Xiaodong
  organization: Department of Physics, University of Washington, Seattle, WA 98195, USA., Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28580423$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1376521$$D View this record in Osti.gov
BookMark eNp1UU2LFDEQDbLifrhXjxI8eZkx1fno7osgi67Cghc_jiGdrsxEupMxSQ_svzfjjMsqeEpSefXqvVeX5CzEgIS8ALYGaNSbbL0Z92tQjAPwJ-Si4a1cNVJ0Z4_u5-Q65x-MMRBKSeifkfOmkx0TDb8g4zcT6IiJfjdmyhTDxgfE5MOGRkcdphRnswlYvKUZZ29jGBdbYqJbLJhiLqk-l4SZulrMOx-oCSPdm2nC-5Ji8DY_J09dZcfr03lFvn54_-Xm4-ru8-2nm3d3KyugLSsBjtmDlapOyb5zfTtWkVJIACfaWlDYyF5g1zorOHRDLxthh2HgbHAO-RV5e-TdLcOMo8VQkpn0LvnZpHsdjdd__wS_1Zu4179H9LISvDoSVF9e13gL2m21HNAWDbxVsoEKen2akuLPBXPRs88Wp8kEjEvW0DMFvAN14Hv5WNCDkj_5V8D6CLA1ypzQPUCA6cOO9XHH-rTj2iD-aagiTfHxYMhP_2v7Bf-drb0
CitedBy_id crossref_primary_10_1038_s41524_022_00715_9
crossref_primary_10_1039_D1MA01196K
crossref_primary_10_1039_D2NR03026H
crossref_primary_10_1002_adfm_202102560
crossref_primary_10_1038_s41467_019_12128_2
crossref_primary_10_1002_adma_202200117
crossref_primary_10_7498_aps_71_20221424
crossref_primary_10_1103_PhysRevB_98_241410
crossref_primary_10_1103_PhysRevB_101_024412
crossref_primary_10_3390_cryst11050500
crossref_primary_10_1088_1361_648X_ab28d1
crossref_primary_10_1103_PhysRevMaterials_3_031001
crossref_primary_10_1021_acsanm_3c03298
crossref_primary_10_1088_2053_1583_acd12a
crossref_primary_10_1103_PhysRevB_105_115305
crossref_primary_10_1103_PhysRevB_109_115434
crossref_primary_10_1038_s41524_022_00802_x
crossref_primary_10_1038_s41578_024_00671_4
crossref_primary_10_1021_acs_jpclett_0c01911
crossref_primary_10_1039_C9NR08890C
crossref_primary_10_1016_j_nanoso_2019_100324
crossref_primary_10_1016_j_physc_2018_02_049
crossref_primary_10_1039_D0TC03065A
crossref_primary_10_1088_0256_307X_38_9_096101
crossref_primary_10_1002_adfm_202400552
crossref_primary_10_1038_s41699_023_00400_5
crossref_primary_10_1021_acs_nanolett_0c00756
crossref_primary_10_1038_s42254_020_00259_1
crossref_primary_10_1002_adma_202105079
crossref_primary_10_1021_acsami_4c00640
crossref_primary_10_1002_adom_201800420
crossref_primary_10_1088_1674_1056_acd10a
crossref_primary_10_1038_s41565_021_00936_x
crossref_primary_10_1088_1674_1056_ac041f
crossref_primary_10_1103_PhysRevB_109_205101
crossref_primary_10_1016_j_ssc_2019_113662
crossref_primary_10_1021_acsnano_7b06551
crossref_primary_10_1063_5_0021237
crossref_primary_10_1103_PhysRevB_107_245133
crossref_primary_10_1088_1674_1056_acf660
crossref_primary_10_1103_PhysRevResearch_2_033001
crossref_primary_10_1016_j_mattod_2022_04_011
crossref_primary_10_1103_PhysRevB_110_214412
crossref_primary_10_1088_1361_6528_ab0a37
crossref_primary_10_1109_LMAG_2018_2867339
crossref_primary_10_1109_TNANO_2020_3025481
crossref_primary_10_1021_acs_jpclett_2c03148
crossref_primary_10_1002_advs_202301243
crossref_primary_10_1038_s41567_019_0651_0
crossref_primary_10_1039_D2CP05228H
crossref_primary_10_1103_PhysRevMaterials_7_L121002
crossref_primary_10_1038_s41565_018_0128_9
crossref_primary_10_1103_PhysRevB_101_035204
crossref_primary_10_1088_1361_6528_aba0f4
crossref_primary_10_1039_D0NR08248A
crossref_primary_10_1002_aelm_201800270
crossref_primary_10_1016_j_physe_2023_115774
crossref_primary_10_1039_D1TC00096A
crossref_primary_10_1021_acs_nanolett_9b03316
crossref_primary_10_1088_2053_1583_ab8b48
crossref_primary_10_1002_adma_202301197
crossref_primary_10_1002_smm2_1013
crossref_primary_10_1039_D3TC02877A
crossref_primary_10_1016_j_carbon_2024_119437
crossref_primary_10_1021_acsnano_1c06864
crossref_primary_10_1063_5_0055054
crossref_primary_10_7498_aps_71_20220326
crossref_primary_10_1088_1674_1056_ab8215
crossref_primary_10_1021_acsnano_8b09230
crossref_primary_10_1103_PhysRevB_109_115425
crossref_primary_10_1021_acs_nanolett_8b00987
crossref_primary_10_1002_aelm_202100941
crossref_primary_10_1039_D3CP02466K
crossref_primary_10_1021_acs_nanolett_1c04403
crossref_primary_10_1038_s41563_022_01459_z
crossref_primary_10_1038_s41524_022_00748_0
crossref_primary_10_1021_acsnano_8b08051
crossref_primary_10_1360_nso_20220034
crossref_primary_10_1021_acsphotonics_8b01306
crossref_primary_10_1002_adma_202004469
crossref_primary_10_1039_D2NR05455H
crossref_primary_10_1038_s41565_019_0543_6
crossref_primary_10_1002_adma_202410816
crossref_primary_10_1088_1361_6528_ac17fd
crossref_primary_10_1038_s41467_020_18627_x
crossref_primary_10_1103_PhysRevB_101_205425
crossref_primary_10_1063_1_5143387
crossref_primary_10_1038_s41467_021_23127_7
crossref_primary_10_1021_jacs_1c08906
crossref_primary_10_1038_s41563_022_01424_w
crossref_primary_10_1007_s40843_022_2298_0
crossref_primary_10_1088_1674_1056_ac6eed
crossref_primary_10_1063_5_0239431
crossref_primary_10_1103_PhysRevB_101_195422
crossref_primary_10_1103_PhysRevX_14_040501
crossref_primary_10_1038_s41598_021_02918_4
crossref_primary_10_1021_acsami_4c01437
crossref_primary_10_1039_D0TC03712E
crossref_primary_10_1038_s41563_018_0040_6
crossref_primary_10_1103_PhysRevMaterials_5_064413
crossref_primary_10_1007_s11467_018_0835_6
crossref_primary_10_1016_j_trechm_2019_11_007
crossref_primary_10_1021_acsaelm_2c01749
crossref_primary_10_1002_adma_202002032
crossref_primary_10_1021_acs_nanolett_4c04184
crossref_primary_10_1038_s41699_024_00463_y
crossref_primary_10_1016_j_ssc_2024_115481
crossref_primary_10_1021_acsaelm_2c00419
crossref_primary_10_1002_advs_202304792
crossref_primary_10_1103_PhysRevMaterials_5_025202
crossref_primary_10_1002_adfm_201910036
crossref_primary_10_1038_s41586_024_07858_3
crossref_primary_10_1103_PhysRevB_109_184405
crossref_primary_10_1002_adma_201801586
crossref_primary_10_1016_j_actamat_2023_118731
crossref_primary_10_1016_j_jssc_2022_123580
crossref_primary_10_1002_adma_202003240
crossref_primary_10_1021_acs_nanolett_3c03431
crossref_primary_10_1063_9_0000074
crossref_primary_10_1103_PhysRevB_101_205409
crossref_primary_10_1039_D1TC02837E
crossref_primary_10_1103_PhysRevMaterials_7_033402
crossref_primary_10_1103_PhysRevB_101_205404
crossref_primary_10_1016_j_jmmm_2020_167171
crossref_primary_10_1063_1_5142077
crossref_primary_10_1103_PhysRevMaterials_1_014001
crossref_primary_10_1002_cphc_202300726
crossref_primary_10_1103_PhysRevB_106_205416
crossref_primary_10_1002_adfm_202308733
crossref_primary_10_1016_j_apsusc_2021_151478
crossref_primary_10_3390_cryst7050121
crossref_primary_10_1038_s41467_024_47294_5
crossref_primary_10_1103_PhysRevResearch_5_L042023
crossref_primary_10_1016_j_matlet_2021_131478
crossref_primary_10_1021_acs_jpclett_1c00454
crossref_primary_10_1038_s41563_020_0791_8
crossref_primary_10_1088_2053_1583_ac3887
crossref_primary_10_1103_PhysRevB_100_195126
crossref_primary_10_1364_OE_394113
crossref_primary_10_1007_s12274_021_3288_0
crossref_primary_10_1038_s41699_021_00233_0
crossref_primary_10_1002_advs_202206191
crossref_primary_10_1039_C9CP05638F
crossref_primary_10_1103_PhysRevMaterials_8_104801
crossref_primary_10_3389_fphy_2022_1021192
crossref_primary_10_1021_acsami_2c22494
crossref_primary_10_1038_s41467_023_39529_8
crossref_primary_10_1038_s41524_021_00663_w
crossref_primary_10_1002_adma_202006850
crossref_primary_10_1038_s41598_022_08785_x
crossref_primary_10_1088_1361_6641_ad4e5f
crossref_primary_10_1088_2053_1583_ab5915
crossref_primary_10_1002_pssb_202300260
crossref_primary_10_1103_PhysRevLett_127_097401
crossref_primary_10_35848_1882_0786_ab7485
crossref_primary_10_1002_nano_202000032
crossref_primary_10_1021_acsnano_0c01815
crossref_primary_10_1039_D4NR01577K
crossref_primary_10_1021_acs_nanolett_3c03216
crossref_primary_10_1103_PhysRevB_105_014443
crossref_primary_10_1103_PhysRevLett_124_197401
crossref_primary_10_1038_s41699_020_0140_4
crossref_primary_10_1088_1367_2630_abc2e6
crossref_primary_10_1557_adv_2019_241
crossref_primary_10_1088_1674_1056_ac1e1d
crossref_primary_10_1039_D0NR06268E
crossref_primary_10_1088_1674_1056_ad09d2
crossref_primary_10_1021_acs_jpcc_9b06496
crossref_primary_10_1021_acs_nanolett_2c02931
crossref_primary_10_1039_C8CP03599G
crossref_primary_10_1103_PhysRevLett_124_166803
crossref_primary_10_1103_PhysRevB_109_035408
crossref_primary_10_1038_s41467_023_40967_7
crossref_primary_10_1103_PhysRevB_101_085406
crossref_primary_10_1088_1674_1056_28_5_056301
crossref_primary_10_1063_5_0147092
crossref_primary_10_1088_1361_6463_abaa15
crossref_primary_10_1103_PhysRevMaterials_6_054006
crossref_primary_10_1002_aelm_201900701
crossref_primary_10_1103_PhysRevB_101_245401
crossref_primary_10_1016_j_apsusc_2021_149858
crossref_primary_10_1103_PhysRevLett_122_127401
crossref_primary_10_1063_5_0067098
crossref_primary_10_1007_s12274_023_5865_x
crossref_primary_10_1021_acs_nanolett_8b01105
crossref_primary_10_1016_j_diamond_2020_107851
crossref_primary_10_1021_acs_jpclett_2c01937
crossref_primary_10_1021_acs_nanolett_9b01317
crossref_primary_10_1021_acs_jpcc_2c05113
crossref_primary_10_1116_6_0000831
crossref_primary_10_1002_adom_202200898
crossref_primary_10_1063_PT_3_3613
crossref_primary_10_1038_s41467_020_19262_2
crossref_primary_10_1016_j_apsusc_2019_05_191
crossref_primary_10_1002_sstr_202100077
crossref_primary_10_1002_adma_201900065
crossref_primary_10_1103_PhysRevB_97_035404
crossref_primary_10_1038_s41467_022_30772_z
crossref_primary_10_1038_s41524_020_00397_1
crossref_primary_10_1103_PhysRevB_101_245416
crossref_primary_10_1039_D1CP02577E
crossref_primary_10_1002_adfm_202214203
crossref_primary_10_1007_s11467_022_1217_7
crossref_primary_10_1038_s41467_020_17566_x
crossref_primary_10_1088_1674_1056_acf9e3
crossref_primary_10_1021_acsnano_1c09150
crossref_primary_10_1103_PhysRevB_106_245111
crossref_primary_10_1021_acs_jpclett_2c01925
crossref_primary_10_1021_acsnano_3c10665
crossref_primary_10_1116_1_5139905
crossref_primary_10_1103_PhysRevB_105_165302
crossref_primary_10_1088_1361_6528_ab37a4
crossref_primary_10_1039_D3CP04847K
crossref_primary_10_1016_j_apmt_2021_100975
crossref_primary_10_1063_5_0227506
crossref_primary_10_1021_acsami_3c02446
crossref_primary_10_1080_14686996_2022_2030652
crossref_primary_10_1039_D3NR03086E
crossref_primary_10_1103_PhysRevB_104_075421
crossref_primary_10_1002_adma_201900056
crossref_primary_10_1103_PhysRevB_100_165141
crossref_primary_10_1021_acsanm_2c01713
crossref_primary_10_1021_acs_jpclett_1c01869
crossref_primary_10_1088_1674_1056_ace160
crossref_primary_10_1088_2515_7639_abf884
crossref_primary_10_1038_nmat5017
crossref_primary_10_1038_s41467_018_04953_8
crossref_primary_10_1002_adma_202312935
crossref_primary_10_1088_2053_1591_ab1a93
crossref_primary_10_1021_acs_nanolett_2c04246
crossref_primary_10_1088_1674_1056_ad1c59
crossref_primary_10_1088_1674_1056_ac1338
crossref_primary_10_1039_D1NR00822F
crossref_primary_10_1103_PhysRevMaterials_7_L061001
crossref_primary_10_1021_jacs_2c12848
crossref_primary_10_1126_science_aar4851
crossref_primary_10_1088_1361_648X_aaec55
crossref_primary_10_1002_adfm_201904734
crossref_primary_10_1021_acs_nanolett_8b01552
crossref_primary_10_1038_s41565_023_01354_x
crossref_primary_10_1088_1361_648X_ac2c3c
crossref_primary_10_1016_j_jmmm_2025_172857
crossref_primary_10_1016_j_nantod_2020_100902
crossref_primary_10_1103_PhysRevB_108_024427
crossref_primary_10_1021_acsanm_2c01966
crossref_primary_10_1016_j_isci_2022_103942
crossref_primary_10_1088_2053_1591_ab5d45
crossref_primary_10_1103_PhysRevB_103_125304
crossref_primary_10_1063_5_0025658
crossref_primary_10_1007_s40843_019_1214_y
crossref_primary_10_1002_adma_201801325
crossref_primary_10_1038_s41928_024_01167_3
crossref_primary_10_2139_ssrn_4185556
crossref_primary_10_1038_s41586_018_0631_z
crossref_primary_10_1088_2053_1583_ac2ab3
crossref_primary_10_1103_PhysRevApplied_13_014064
crossref_primary_10_1103_PhysRevB_101_201108
crossref_primary_10_1103_PhysRevB_98_115432
crossref_primary_10_1021_acsaelm_2c01479
crossref_primary_10_1103_PhysRevB_105_075405
crossref_primary_10_1002_adma_201906536
crossref_primary_10_3390_molecules28247945
crossref_primary_10_1126_science_aar3617
crossref_primary_10_1007_s11432_021_3432_6
crossref_primary_10_1021_acsnano_1c08375
crossref_primary_10_1002_smll_202404346
crossref_primary_10_1016_j_physe_2021_114976
crossref_primary_10_1103_PhysRevB_104_L201403
crossref_primary_10_1088_1361_648X_abd9ee
crossref_primary_10_1103_PhysRevB_105_205436
crossref_primary_10_1103_PhysRevResearch_3_013027
crossref_primary_10_1021_acs_jpclett_0c00863
crossref_primary_10_1038_s41699_020_00195_9
crossref_primary_10_1103_PhysRevB_107_035112
crossref_primary_10_1063_5_0058583
crossref_primary_10_1103_PhysRevApplied_11_064047
crossref_primary_10_1002_adma_202413484
crossref_primary_10_1088_1361_6463_ab35a2
crossref_primary_10_1103_PhysRevB_107_235403
crossref_primary_10_1103_PhysRevB_111_L060505
crossref_primary_10_1103_PhysRevB_99_180407
crossref_primary_10_1038_s41467_021_22777_x
crossref_primary_10_1002_adfm_202401684
crossref_primary_10_1038_s41524_022_00932_2
crossref_primary_10_1007_s44214_023_00037_x
crossref_primary_10_1021_acs_nanolett_8b00683
crossref_primary_10_1016_j_physe_2020_114205
crossref_primary_10_3390_ma15124084
crossref_primary_10_1002_adfm_202204779
crossref_primary_10_1103_PhysRevB_108_184423
crossref_primary_10_1039_D3TC04255C
crossref_primary_10_1103_PhysRevB_101_214413
crossref_primary_10_1126_science_aav4450
crossref_primary_10_1021_jacs_8b13584
crossref_primary_10_1063_5_0015566
crossref_primary_10_1007_s11467_022_1228_4
crossref_primary_10_1103_PhysRevResearch_4_023256
crossref_primary_10_1002_adma_202212087
crossref_primary_10_1016_j_mssp_2023_107361
crossref_primary_10_1021_acsami_1c08805
crossref_primary_10_1186_s11671_020_03458_y
crossref_primary_10_1021_acsaelm_0c00384
crossref_primary_10_1002_advs_201903076
crossref_primary_10_1039_C9MH00444K
crossref_primary_10_1021_acsami_3c14114
crossref_primary_10_1038_s41565_018_0195_y
crossref_primary_10_1007_s12274_020_3036_x
crossref_primary_10_1103_PhysRevApplied_19_014040
crossref_primary_10_1038_s41524_020_00356_w
crossref_primary_10_1002_adma_201807075
crossref_primary_10_1103_PhysRevB_104_085119
crossref_primary_10_1038_s41467_023_39002_6
crossref_primary_10_7498_aps_70_20201419
crossref_primary_10_1002_aelm_202300646
crossref_primary_10_1103_PhysRevMaterials_4_104005
crossref_primary_10_1021_acs_jpclett_2c00620
crossref_primary_10_1002_smll_201801483
crossref_primary_10_1002_adma_201905896
crossref_primary_10_1007_s11467_018_0795_x
crossref_primary_10_1002_advs_202407625
crossref_primary_10_1021_acsaelm_1c00363
crossref_primary_10_1063_5_0223592
crossref_primary_10_1038_s42005_023_01314_w
crossref_primary_10_1038_s41565_019_0438_6
crossref_primary_10_1103_PhysRevB_98_115424
crossref_primary_10_7566_JPSJ_93_044710
crossref_primary_10_1038_s41467_018_07547_6
crossref_primary_10_1039_D3CP03507G
crossref_primary_10_1021_acs_nanolett_9b01506
crossref_primary_10_1103_PhysRevB_109_054428
crossref_primary_10_1063_5_0039979
crossref_primary_10_1038_s41467_019_09490_6
crossref_primary_10_1103_RevModPhys_90_021001
crossref_primary_10_1039_C8TC05530K
crossref_primary_10_1103_PhysRevApplied_12_014020
crossref_primary_10_1063_1_5046166
crossref_primary_10_1088_2053_1583_ac1eaa
crossref_primary_10_1088_2053_1583_ab9dd5
crossref_primary_10_1038_s41524_019_0208_x
crossref_primary_10_1021_acsaelm_4c02276
crossref_primary_10_1021_acsnano_0c05534
crossref_primary_10_1103_PhysRevMaterials_2_074007
crossref_primary_10_1038_s42254_019_0110_y
crossref_primary_10_1063_5_0041531
crossref_primary_10_1103_PhysRevB_111_045416
crossref_primary_10_7498_aps_71_20212033
crossref_primary_10_1016_j_cjph_2020_03_035
crossref_primary_10_1039_C8NH00234G
crossref_primary_10_1038_s41598_020_72203_3
crossref_primary_10_1016_j_mtphys_2023_101251
crossref_primary_10_1039_D4TC03757J
crossref_primary_10_1088_1361_6463_ad6a20
crossref_primary_10_1103_PhysRevB_103_174401
crossref_primary_10_1103_PhysRevB_98_235419
crossref_primary_10_1016_j_jmmm_2024_172271
crossref_primary_10_1016_j_jmmm_2024_172392
crossref_primary_10_1038_s41467_019_10400_z
crossref_primary_10_1021_acs_nanolett_9b02920
crossref_primary_10_1021_acs_jpclett_2c00443
crossref_primary_10_1021_acsnano_9b08336
crossref_primary_10_1103_PhysRevB_106_085410
crossref_primary_10_1038_s41467_021_26802_x
crossref_primary_10_1103_PhysRevLett_127_217203
crossref_primary_10_1016_j_jmmm_2019_165269
crossref_primary_10_1021_acsnano_4c08185
crossref_primary_10_1103_PhysRevApplied_16_014032
crossref_primary_10_1016_j_commatsci_2023_112668
crossref_primary_10_1038_s41467_019_10325_7
crossref_primary_10_1557_s43577_024_00754_1
crossref_primary_10_1103_PhysRevB_103_115410
crossref_primary_10_1038_s44287_024_00108_8
crossref_primary_10_2139_ssrn_4196387
crossref_primary_10_1021_acs_nanolett_0c03466
crossref_primary_10_1038_s41467_021_26946_w
crossref_primary_10_1021_acsami_0c20110
crossref_primary_10_1103_PhysRevB_103_174410
crossref_primary_10_1021_acs_nanolett_0c02381
crossref_primary_10_1103_PhysRevB_103_035423
crossref_primary_10_1103_PhysRevB_103_125121
crossref_primary_10_1063_5_0145401
crossref_primary_10_1016_j_jmmm_2022_169657
crossref_primary_10_1103_PhysRevB_98_144411
crossref_primary_10_1063_5_0031870
crossref_primary_10_1109_TNANO_2019_2954274
crossref_primary_10_1021_acsnano_4c14733
crossref_primary_10_1021_acsnano_0c05310
crossref_primary_10_1039_D4TC00115J
crossref_primary_10_1039_D0TC01680B
crossref_primary_10_1039_D0CP02072A
crossref_primary_10_1103_PhysRevLett_125_157402
crossref_primary_10_1039_D2CP04713F
crossref_primary_10_1007_s10853_021_06723_2
crossref_primary_10_1002_adma_201908061
crossref_primary_10_1039_D0NR06449A
crossref_primary_10_1063_1_5118327
crossref_primary_10_1103_PhysRevB_107_035416
crossref_primary_10_1016_j_matt_2022_11_017
crossref_primary_10_1088_1674_4926_40_8_081508
crossref_primary_10_1103_PhysRevB_109_075434
crossref_primary_10_1088_2053_1583_aa75ed
crossref_primary_10_1002_qute_201800111
crossref_primary_10_1007_s12274_020_2860_3
crossref_primary_10_1088_0256_307X_39_4_047601
crossref_primary_10_1103_PhysRevB_101_085112
crossref_primary_10_1002_adma_202413438
crossref_primary_10_1021_acsnano_0c05300
crossref_primary_10_1016_j_matdes_2021_110235
crossref_primary_10_1038_s41467_022_30738_1
crossref_primary_10_1039_D4RA01013B
crossref_primary_10_1103_PhysRevB_107_094416
crossref_primary_10_1021_acsnano_4c01526
crossref_primary_10_1103_PhysRevX_7_041040
crossref_primary_10_1080_14686996_2022_2062576
crossref_primary_10_1103_PhysRevB_104_205421
crossref_primary_10_1039_D2NR00331G
crossref_primary_10_1038_s41565_019_0629_1
crossref_primary_10_1021_acs_chemrev_4c00174
crossref_primary_10_1002_aelm_202300738
crossref_primary_10_1016_j_mattod_2018_05_003
crossref_primary_10_1039_C9RA01825E
crossref_primary_10_1063_5_0075554
crossref_primary_10_1016_j_cplett_2021_138461
crossref_primary_10_1103_PhysRevB_107_125148
crossref_primary_10_1039_D0NR06632J
crossref_primary_10_1088_1361_648X_acee3f
crossref_primary_10_1016_j_mtadv_2024_100525
crossref_primary_10_1103_PhysRevB_100_054420
crossref_primary_10_1103_PhysRevLett_120_066402
crossref_primary_10_1103_PhysRevB_108_L201403
crossref_primary_10_1038_s41598_020_80290_5
crossref_primary_10_1039_D0CP02163F
crossref_primary_10_1038_s41598_019_47685_5
crossref_primary_10_1021_acsami_9b02493
crossref_primary_10_1016_j_mser_2025_100951
crossref_primary_10_1021_acs_nanolett_2c02124
crossref_primary_10_1103_PhysRevResearch_3_033276
crossref_primary_10_1088_1367_2630_ab1ae9
crossref_primary_10_1103_PhysRevB_104_195424
crossref_primary_10_1088_1674_1056_ac0cd9
crossref_primary_10_1103_PhysRevB_99_085421
crossref_primary_10_1038_s41467_018_04012_2
crossref_primary_10_1088_0256_307X_41_10_107503
crossref_primary_10_1103_PhysRevMaterials_1_064001
crossref_primary_10_1021_acs_nanolett_2c02369
crossref_primary_10_1038_s42254_021_00403_5
crossref_primary_10_1088_2516_1075_abbb25
crossref_primary_10_1103_PhysRevB_100_054430
crossref_primary_10_1039_D4CP02486A
crossref_primary_10_7498_aps_70_20202146
crossref_primary_10_1039_C8NR07692H
crossref_primary_10_1039_D0NR07290G
crossref_primary_10_1088_2053_1583_ab6781
crossref_primary_10_1002_advs_202200186
crossref_primary_10_1088_1361_6528_abe895
crossref_primary_10_1021_acs_nanolett_8b01131
crossref_primary_10_1088_1674_1056_ad0713
crossref_primary_10_1021_accountsmr_1c00246
crossref_primary_10_1016_j_isci_2021_103623
crossref_primary_10_1016_j_pnsc_2022_09_017
crossref_primary_10_1088_1361_648X_ab071f
crossref_primary_10_1103_PhysRevResearch_2_013013
crossref_primary_10_1021_acs_nanolett_2c03562
crossref_primary_10_1038_s41563_023_01645_7
crossref_primary_10_1063_5_0130037
crossref_primary_10_1557_s43577_024_00668_y
crossref_primary_10_1038_s41467_019_11966_4
crossref_primary_10_1016_j_jmmm_2020_167719
crossref_primary_10_1088_1367_2630_ab43a2
crossref_primary_10_1103_PhysRevB_107_184403
crossref_primary_10_1103_PhysRevLett_122_086401
crossref_primary_10_1088_0256_307X_37_7_077502
crossref_primary_10_1103_PhysRevB_102_144525
crossref_primary_10_1103_PhysRevB_108_125304
crossref_primary_10_1016_j_fmre_2023_12_001
crossref_primary_10_1103_PhysRevB_102_081107
crossref_primary_10_1088_1361_6633_abdb98
crossref_primary_10_1109_TED_2022_3141035
crossref_primary_10_1103_PhysRevB_105_214405
crossref_primary_10_1021_acs_nanolett_8b01125
crossref_primary_10_1063_5_0231129
crossref_primary_10_1039_C9NR00315K
crossref_primary_10_1103_PhysRevB_103_024436
crossref_primary_10_1116_6_0004262
crossref_primary_10_1021_acsnano_4c01436
crossref_primary_10_1002_adma_202209513
crossref_primary_10_1021_acsami_1c11132
crossref_primary_10_1088_1361_648X_ac8037
crossref_primary_10_1016_j_chphma_2023_04_001
crossref_primary_10_1126_science_aav6926
crossref_primary_10_7567_1347_4065_aaf222
crossref_primary_10_1039_D3CP02043F
crossref_primary_10_1038_s41467_022_33343_4
crossref_primary_10_1021_acsami_3c09270
crossref_primary_10_1016_j_vacuum_2023_111941
crossref_primary_10_1088_1361_6463_ac16f9
crossref_primary_10_1103_PhysRevB_101_235141
crossref_primary_10_1038_s41563_020_0620_0
crossref_primary_10_1002_adpr_202000104
crossref_primary_10_1002_adma_201901694
crossref_primary_10_1088_2053_1583_ada040
crossref_primary_10_1002_qute_202000104
crossref_primary_10_1021_acs_jpcc_2c00646
crossref_primary_10_1103_PhysRevB_101_085415
crossref_primary_10_1103_PhysRevB_99_115441
crossref_primary_10_1021_acsnano_0c00291
crossref_primary_10_1103_PhysRevLett_121_067701
crossref_primary_10_1002_inf2_12048
crossref_primary_10_1016_j_pmatsci_2022_101036
crossref_primary_10_1103_PhysRevResearch_4_L022040
crossref_primary_10_1103_PhysRevB_101_041402
crossref_primary_10_1038_s41699_019_0086_6
crossref_primary_10_1021_acs_nanolett_1c00520
crossref_primary_10_1063_5_0094013
crossref_primary_10_1088_2053_1583_ab0902
crossref_primary_10_1002_aelm_202200164
crossref_primary_10_1063_5_0069088
crossref_primary_10_1021_acs_jpcc_9b04631
crossref_primary_10_1039_D3NR05643K
crossref_primary_10_1038_nmat4979
crossref_primary_10_1103_PhysRevB_100_085128
crossref_primary_10_1103_PhysRevLett_126_056803
crossref_primary_10_1021_acsnano_9b06682
crossref_primary_10_1103_PhysRevB_102_064429
crossref_primary_10_1038_s41467_023_37918_7
crossref_primary_10_1039_C9CP02404B
crossref_primary_10_1016_j_flatc_2023_100536
crossref_primary_10_1126_sciadv_abn1401
crossref_primary_10_1038_s41566_018_0204_6
crossref_primary_10_1038_s41467_020_19816_4
crossref_primary_10_1088_2515_7639_ad3b6e
crossref_primary_10_1038_s41565_018_0135_x
crossref_primary_10_1103_PhysRevApplied_13_044006
crossref_primary_10_1038_s41467_022_31786_3
crossref_primary_10_1038_s41586_018_0626_9
crossref_primary_10_1038_s42005_022_01044_5
crossref_primary_10_1021_acs_nanolett_8b04160
crossref_primary_10_1039_D0CP03406A
crossref_primary_10_1016_j_jallcom_2022_168375
crossref_primary_10_1021_acs_nanolett_4c00503
crossref_primary_10_1088_1361_6641_ad22fd
crossref_primary_10_1103_PhysRevB_101_125401
crossref_primary_10_1103_PhysRevB_109_085407
crossref_primary_10_1016_j_sse_2019_03_015
crossref_primary_10_1063_1_5112171
crossref_primary_10_3390_nano13071187
crossref_primary_10_1103_PhysRevB_102_144443
crossref_primary_10_1016_j_scib_2017_08_007
crossref_primary_10_1103_PhysRevB_104_094405
crossref_primary_10_3390_nano10091642
crossref_primary_10_1103_PhysRevB_111_035446
crossref_primary_10_1088_2053_1583_ad3b12
crossref_primary_10_1088_1361_6501_ad128e
crossref_primary_10_1103_PhysRevLett_125_036802
crossref_primary_10_1016_j_ssc_2020_113949
crossref_primary_10_1140_epjb_s10051_023_00516_z
crossref_primary_10_1557_s43577_021_00193_2
crossref_primary_10_1007_s11467_024_1435_2
crossref_primary_10_1039_D2CP01492K
crossref_primary_10_1103_PhysRevResearch_3_043024
crossref_primary_10_1063_1_5019286
crossref_primary_10_1103_PhysRevB_100_195435
crossref_primary_10_1103_PhysRevB_105_045413
crossref_primary_10_1103_PhysRevMaterials_6_014008
crossref_primary_10_1021_acs_jpclett_7b03276
crossref_primary_10_1002_lpor_202100431
crossref_primary_10_1021_acs_nanolett_3c00417
crossref_primary_10_1103_PhysRevB_111_024410
crossref_primary_10_1038_s41598_023_31342_z
crossref_primary_10_1103_PhysRevB_101_045408
crossref_primary_10_1021_acs_nanolett_8b05121
crossref_primary_10_1039_C9SC01144G
crossref_primary_10_1103_PhysRevB_103_014432
crossref_primary_10_1103_PhysRevB_107_205418
crossref_primary_10_1021_acsnano_3c03455
crossref_primary_10_1155_2023_7601146
crossref_primary_10_1103_PhysRevB_106_125136
crossref_primary_10_1103_PhysRevB_99_184428
crossref_primary_10_1021_acs_chemrev_3c00170
crossref_primary_10_1038_s41563_018_0149_7
crossref_primary_10_1038_s41563_020_0713_9
crossref_primary_10_1016_j_commatsci_2022_111670
crossref_primary_10_1103_PhysRevB_98_085409
crossref_primary_10_1021_acsami_2c09655
crossref_primary_10_1038_s41586_022_05031_2
crossref_primary_10_1103_PhysRevB_108_064401
crossref_primary_10_3389_fmats_2022_887864
crossref_primary_10_1103_PhysRevMaterials_4_094003
crossref_primary_10_1039_D3TC00001J
crossref_primary_10_1021_acs_nanolett_3c02727
crossref_primary_10_1088_2053_1583_aac17f
crossref_primary_10_1002_aisy_201900167
crossref_primary_10_1088_2053_1583_ac2e7a
crossref_primary_10_1088_2053_1583_ace5bc
crossref_primary_10_1109_JSTQE_2025_3534663
crossref_primary_10_1016_j_mtphys_2019_100174
crossref_primary_10_1016_j_physe_2022_115520
crossref_primary_10_1039_C9NR10171C
crossref_primary_10_1063_5_0223945
crossref_primary_10_1103_PhysRevLett_121_126802
crossref_primary_10_1103_PhysRevB_103_214114
crossref_primary_10_1103_PhysRevB_106_054408
crossref_primary_10_1038_s41467_022_34812_6
crossref_primary_10_1002_andp_201900452
crossref_primary_10_1142_S0217979225500407
crossref_primary_10_1088_1361_648X_ad8f81
crossref_primary_10_1021_acs_jpclett_2c00091
crossref_primary_10_1021_acs_nanolett_0c01493
crossref_primary_10_1103_PhysRevB_109_155403
crossref_primary_10_1007_s11433_022_2055_8
crossref_primary_10_1360_TB_2023_0074
crossref_primary_10_1039_C9NR03315G
crossref_primary_10_1002_advs_202002488
crossref_primary_10_1039_D1CP05135K
crossref_primary_10_1088_1674_1056_ac2808
crossref_primary_10_1002_inf2_12096
crossref_primary_10_1016_j_jallcom_2024_177443
crossref_primary_10_1016_j_mtelec_2023_100051
crossref_primary_10_1002_advs_202400893
crossref_primary_10_1103_PhysRevB_100_195307
crossref_primary_10_1103_PhysRevB_97_085401
crossref_primary_10_1039_D0MH01480J
crossref_primary_10_1007_s12598_022_02004_2
crossref_primary_10_1038_s41586_021_03979_1
crossref_primary_10_1038_s42254_020_00276_0
crossref_primary_10_1103_PhysRevMaterials_8_044407
crossref_primary_10_1002_adma_202209365
crossref_primary_10_1007_s11082_018_1716_5
crossref_primary_10_1103_PhysRevMaterials_5_073401
crossref_primary_10_1063_1_5112130
crossref_primary_10_1103_PhysRevB_101_241409
crossref_primary_10_1016_j_mssp_2024_109171
crossref_primary_10_1021_acs_nanolett_4c02849
crossref_primary_10_1063_5_0042683
crossref_primary_10_1063_5_0204185
crossref_primary_10_1021_acs_nanolett_1c01232
crossref_primary_10_1103_PhysRevB_103_L121108
crossref_primary_10_1103_PhysRevB_104_174434
crossref_primary_10_1103_PhysRevB_104_174433
crossref_primary_10_1039_D1NR04063D
crossref_primary_10_1103_PhysRevB_104_014408
crossref_primary_10_1103_PhysRevApplied_12_024031
crossref_primary_10_1103_PhysRevB_106_054426
crossref_primary_10_1021_acs_inorgchem_8b02384
crossref_primary_10_1103_PhysRevB_97_085410
crossref_primary_10_1103_PhysRevB_103_214411
crossref_primary_10_1038_s41467_020_20376_w
crossref_primary_10_1088_1674_1056_abfbd2
crossref_primary_10_1063_5_0055764
crossref_primary_10_1088_1402_4896_ad5a51
crossref_primary_10_1016_j_matchemphys_2023_128149
crossref_primary_10_1088_1361_6463_acb801
crossref_primary_10_1002_adma_201903800
crossref_primary_10_1103_PhysRevB_107_075421
crossref_primary_10_1002_adma_201908498
crossref_primary_10_1021_acsami_9b04843
crossref_primary_10_1021_acsami_0c13988
crossref_primary_10_1021_acsami_4c07233
crossref_primary_10_1063_1_5033554
crossref_primary_10_1088_2053_1583_ab2c43
crossref_primary_10_3390_physchem2040025
crossref_primary_10_1088_1361_648X_ab8986
crossref_primary_10_1021_jacs_3c13267
crossref_primary_10_1038_s41467_018_04018_w
crossref_primary_10_1063_5_0023729
crossref_primary_10_1021_acs_jpcc_9b08706
crossref_primary_10_1039_D0NR06813F
crossref_primary_10_1063_5_0077669
crossref_primary_10_1021_acsaom_4c00510
crossref_primary_10_1002_pssr_202000008
crossref_primary_10_1103_PhysRevB_105_125139
crossref_primary_10_1103_PhysRevMaterials_8_104403
crossref_primary_10_1021_acsnano_0c05343
crossref_primary_10_1088_1402_4896_ad6b51
crossref_primary_10_1002_adma_202003501
crossref_primary_10_1063_5_0076332
crossref_primary_10_1038_s41467_022_32810_2
crossref_primary_10_1016_j_mtphys_2024_101389
crossref_primary_10_1007_s11467_023_1320_4
crossref_primary_10_1109_JXCDC_2018_2809640
crossref_primary_10_1016_j_apsusc_2024_160443
crossref_primary_10_1021_acsami_4c12946
crossref_primary_10_1063_5_0193656
crossref_primary_10_1039_D3DT03031H
crossref_primary_10_1088_1361_6528_ad3d64
crossref_primary_10_1103_PhysRevB_107_075430
crossref_primary_10_1038_s41928_019_0302_6
crossref_primary_10_1021_acsami_2c21688
crossref_primary_10_1063_1_5036924
crossref_primary_10_1103_PhysRevB_104_014421
crossref_primary_10_1002_smll_202106029
crossref_primary_10_1016_j_cplett_2022_139370
crossref_primary_10_1021_acs_nanolett_3c03970
crossref_primary_10_1038_s41467_024_51287_9
crossref_primary_10_1088_1361_648X_ab03ec
crossref_primary_10_1039_D1NR02842A
Cites_doi 10.1016/S1369-7021(06)71693-5
10.1038/nature17635
10.1103/PhysRevLett.61.2472
10.1103/PhysRevB.82.161414
10.1103/PhysRevLett.108.196802
10.1038/nnano.2016.49
10.1021/acs.nanolett.5b00626
10.1038/nphys3203
10.1002/jcc.21112
10.1038/nnano.2014.214
10.1016/0022-3697(66)90148-X
10.1103/PhysRevLett.113.266804
10.1103/PhysRevB.67.174409
10.1088/2053-1583/2/3/034002
10.2478/v10155-010-0086-8
10.1038/nphys2942
10.1126/science.250.4984.1092
10.1103/PhysRevB.69.161305
10.1038/nature12385
10.1016/S0304-8853(99)00453-9
10.1103/PhysRevLett.110.046603
10.1063/1.4886096
10.1038/nmat1325
10.1103/PhysRevLett.112.116404
10.1103/PhysRevLett.78.1396
10.1103/PhysRevLett.77.3865
10.1088/0953-8984/21/39/395502
10.1021/acs.nanolett.6b02527
10.1103/PhysRevLett.91.197203
10.1038/nphys3201
10.1021/cm504242t
10.1103/RevModPhys.77.935
10.1103/PhysRevB.92.121403
10.1126/science.aac9439
10.1103/PhysRevLett.114.016603
10.1016/S0304-8853(99)00334-0
10.1038/ncomms12014
10.1038/nphys3497
10.1103/PhysRevB.77.115406
10.1103/PhysRevB.39.4828
10.1002/adma.201502585
10.1002/jcc.20495
10.1038/nnano.2013.151
10.7567/JJAPS.15S1.93
10.1103/PhysRevLett.114.037401
10.1038/ncomms1957
10.1038/nmat806
10.1038/nmat4603
10.1103/PhysRevB.92.165418
ContentType Journal Article
Copyright Copyright © 2017, The Authors 2017 The Authors
Copyright_xml – notice: Copyright © 2017, The Authors 2017 The Authors
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
5PM
DOI 10.1126/sciadv.1603113
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
EISSN 2375-2548
ExternalDocumentID PMC5451195
1376521
28580423
10_1126_sciadv_1603113
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: ID0EOBDI17420; DE-SC0012509
– fundername: ;
  grantid: ID0EPIDI17421; HKU17305914P
– fundername: ;
  grantid: ID0EP1CI17419; DE-SC0008145
GroupedDBID 53G
5VS
AAFWJ
AAYXX
ACGFS
ADAXU
ADBBV
ADRAZ
AENVI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BKF
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
OVD
RHI
RPM
TEORI
ADPDF
BBORY
BCGUY
NPM
OVEED
7X8
OIOZB
OTOTI
RHF
5PM
ID FETCH-LOGICAL-c417t-41f0c03118586598f97d42354511f4798f6e2594e87fc4318b9524cbbb30bffe3
IEDL.DBID M48
ISSN 2375-2548
IngestDate Thu Aug 21 18:13:37 EDT 2025
Mon Jul 03 03:58:47 EDT 2023
Fri Jul 11 09:47:14 EDT 2025
Thu Apr 03 07:11:42 EDT 2025
Thu Apr 24 23:08:48 EDT 2025
Tue Jul 01 03:52:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords magnetic proximity effect
van der Waals heterostructure
Exchange interaction
2D materials
ultrafast charge transfer
Valleytronics
ferromagnetic semiconductor
monolayer semiconductor
Spintronics
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-41f0c03118586598f97d42354511f4798f6e2594e87fc4318b9524cbbb30bffe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC05-00OR22725
These authors contributed equally to this work.
ORCID 0000-0003-3149-2071
0000-0003-0166-2172
0000-0003-3701-8119
0000-0003-2883-4528
0000-0001-6809-1808
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1126/sciadv.1603113
PMID 28580423
PQID 1906138165
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5451195
osti_scitechconnect_1376521
proquest_miscellaneous_1906138165
pubmed_primary_28580423
crossref_primary_10_1126_sciadv_1603113
crossref_citationtrail_10_1126_sciadv_1603113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science advances
PublicationTitleAlternate Sci Adv
PublicationYear 2017
Publisher AAAS
American Association for the Advancement of Science
Publisher_xml – name: AAAS
– name: American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
Dzhioev R. I. (e_1_3_2_13_2) 1994; 60
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_36_2
e_1_3_2_2_2
21832390 - J Phys Condens Matter. 2009 Sep 30;21(39):395502
27575518 - Nano Lett. 2016 Sep 14;16(9):5792-7
26065723 - Nano Lett. 2015 Jul 8;15(7):4387-92
24702394 - Phys Rev Lett. 2014 Mar 21;112(11):116404
26639918 - Adv Mater. 2016 Feb 3;28(5):959-66
25166184 - Phys Rev Lett. 2013 Jan 25;110(4):046603
17840191 - Science. 1990 Nov 23;250(4984):1092-7
27225124 - Nature. 2016 May 09;533(7604):513-6
10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
22805566 - Nat Commun. 2012 Jul 17;3:959
23934096 - Nat Nanotechnol. 2013 Sep;8(9):634-8
27344976 - Nat Commun. 2016 Jun 27;7:12014
9948867 - Phys Rev B Condens Matter. 1989 Mar 1;39(7):4828-4830
23003071 - Phys Rev Lett. 2012 May 11;108(19):196802
27471306 - Science. 2016 Jul 29;353(6298):aac9439
23887427 - Nature. 2013 Jul 25;499(7459):419-25
25286274 - Nat Nanotechnol. 2014 Oct;9(10):794-807
27043196 - Nat Nanotechnol. 2016 Jul;11(7):598-602
14611609 - Phys Rev Lett. 2003 Nov 7;91(19):197203
25659021 - Phys Rev Lett. 2015 Jan 23;114(3):037401
27019382 - Nat Mater. 2016 Jul;15(7):711-6
25615490 - Phys Rev Lett. 2015 Jan 9;114(1):016603
16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99
10039127 - Phys Rev Lett. 1988 Nov 21;61(21):2472-2475
12612696 - Nat Mater. 2003 Feb;2(2):112-6
18785153 - J Comput Chem. 2009 Apr 30;30(6):934-9
25615372 - Phys Rev Lett. 2014 Dec 31;113(26):266804
References_xml – ident: e_1_3_2_6_2
  doi: 10.1016/S1369-7021(06)71693-5
– ident: e_1_3_2_9_2
  doi: 10.1038/nature17635
– ident: e_1_3_2_3_2
  doi: 10.1103/PhysRevLett.61.2472
– ident: e_1_3_2_18_2
  doi: 10.1103/PhysRevB.82.161414
– ident: e_1_3_2_30_2
  doi: 10.1103/PhysRevLett.108.196802
– ident: e_1_3_2_26_2
  doi: 10.1038/nnano.2016.49
– ident: e_1_3_2_39_2
  doi: 10.1021/acs.nanolett.5b00626
– ident: e_1_3_2_33_2
  doi: 10.1038/nphys3203
– ident: e_1_3_2_49_2
  doi: 10.1002/jcc.21112
– ident: e_1_3_2_22_2
  doi: 10.1038/nnano.2014.214
– ident: e_1_3_2_36_2
  doi: 10.1016/0022-3697(66)90148-X
– ident: e_1_3_2_35_2
  doi: 10.1103/PhysRevLett.113.266804
– ident: e_1_3_2_43_2
  doi: 10.1103/PhysRevB.67.174409
– ident: e_1_3_2_38_2
  doi: 10.1088/2053-1583/2/3/034002
– ident: e_1_3_2_11_2
  doi: 10.2478/v10155-010-0086-8
– ident: e_1_3_2_31_2
  doi: 10.1038/nphys2942
– ident: e_1_3_2_12_2
  doi: 10.1126/science.250.4984.1092
– ident: e_1_3_2_15_2
  doi: 10.1103/PhysRevB.69.161305
– ident: e_1_3_2_27_2
  doi: 10.1038/nature12385
– ident: e_1_3_2_5_2
  doi: 10.1016/S0304-8853(99)00453-9
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevLett.110.046603
– ident: e_1_3_2_44_2
  doi: 10.1063/1.4886096
– ident: e_1_3_2_10_2
  doi: 10.1038/nmat1325
– ident: e_1_3_2_19_2
  doi: 10.1103/PhysRevLett.112.116404
– ident: e_1_3_2_46_2
  doi: 10.1103/PhysRevLett.78.1396
– ident: e_1_3_2_45_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_3_2_47_2
  doi: 10.1088/0953-8984/21/39/395502
– ident: e_1_3_2_25_2
  doi: 10.1021/acs.nanolett.6b02527
– ident: e_1_3_2_42_2
  doi: 10.1103/PhysRevLett.91.197203
– ident: e_1_3_2_32_2
  doi: 10.1038/nphys3201
– ident: e_1_3_2_37_2
  doi: 10.1021/cm504242t
– ident: e_1_3_2_7_2
  doi: 10.1103/RevModPhys.77.935
– ident: e_1_3_2_20_2
  doi: 10.1103/PhysRevB.92.121403
– ident: e_1_3_2_28_2
  doi: 10.1126/science.aac9439
– ident: e_1_3_2_24_2
  doi: 10.1103/PhysRevLett.114.016603
– ident: e_1_3_2_2_2
  doi: 10.1016/S0304-8853(99)00334-0
– ident: e_1_3_2_8_2
  doi: 10.1038/ncomms12014
– ident: e_1_3_2_14_2
  doi: 10.1038/nphys3497
– ident: e_1_3_2_17_2
  doi: 10.1103/PhysRevB.77.115406
– ident: e_1_3_2_4_2
  doi: 10.1103/PhysRevB.39.4828
– ident: e_1_3_2_21_2
  doi: 10.1002/adma.201502585
– ident: e_1_3_2_48_2
  doi: 10.1002/jcc.20495
– ident: e_1_3_2_50_2
  doi: 10.1038/nnano.2013.151
– ident: e_1_3_2_51_2
  doi: 10.7567/JJAPS.15S1.93
– ident: e_1_3_2_34_2
  doi: 10.1103/PhysRevLett.114.037401
– ident: e_1_3_2_40_2
  doi: 10.1038/ncomms1957
– ident: e_1_3_2_41_2
  doi: 10.1038/nmat806
– volume: 60
  start-page: 650
  year: 1994
  ident: e_1_3_2_13_2
  article-title: Detection of the magnetization of a ferromagnetic film in a Ni/GaAs structure from the polarization of electrons of the semiconductor
  publication-title: JETP Lett.
– ident: e_1_3_2_23_2
  doi: 10.1038/nmat4603
– ident: e_1_3_2_29_2
  doi: 10.1103/PhysRevB.92.165418
– reference: 25286274 - Nat Nanotechnol. 2014 Oct;9(10):794-807
– reference: 16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99
– reference: 27344976 - Nat Commun. 2016 Jun 27;7:12014
– reference: 26065723 - Nano Lett. 2015 Jul 8;15(7):4387-92
– reference: 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
– reference: 23003071 - Phys Rev Lett. 2012 May 11;108(19):196802
– reference: 27471306 - Science. 2016 Jul 29;353(6298):aac9439
– reference: 17840191 - Science. 1990 Nov 23;250(4984):1092-7
– reference: 9948867 - Phys Rev B Condens Matter. 1989 Mar 1;39(7):4828-4830
– reference: 25166184 - Phys Rev Lett. 2013 Jan 25;110(4):046603
– reference: 22805566 - Nat Commun. 2012 Jul 17;3:959
– reference: 12612696 - Nat Mater. 2003 Feb;2(2):112-6
– reference: 25615372 - Phys Rev Lett. 2014 Dec 31;113(26):266804
– reference: 10039127 - Phys Rev Lett. 1988 Nov 21;61(21):2472-2475
– reference: 24702394 - Phys Rev Lett. 2014 Mar 21;112(11):116404
– reference: 23934096 - Nat Nanotechnol. 2013 Sep;8(9):634-8
– reference: 23887427 - Nature. 2013 Jul 25;499(7459):419-25
– reference: 27043196 - Nat Nanotechnol. 2016 Jul;11(7):598-602
– reference: 27575518 - Nano Lett. 2016 Sep 14;16(9):5792-7
– reference: 27225124 - Nature. 2016 May 09;533(7604):513-6
– reference: 14611609 - Phys Rev Lett. 2003 Nov 7;91(19):197203
– reference: 26639918 - Adv Mater. 2016 Feb 3;28(5):959-66
– reference: 21832390 - J Phys Condens Matter. 2009 Sep 30;21(39):395502
– reference: 18785153 - J Comput Chem. 2009 Apr 30;30(6):934-9
– reference: 25615490 - Phys Rev Lett. 2015 Jan 9;114(1):016603
– reference: 25659021 - Phys Rev Lett. 2015 Jan 23;114(3):037401
– reference: 27019382 - Nat Mater. 2016 Jul;15(7):711-6
SSID ssj0001466519
Score 2.578551
Snippet A van der Waals heterostructure of monolayer WSe 2 and ferromagnetic CrI 3 enables exceptional control of valley pseudospin. The integration of magnetic...
The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1603113
SubjectTerms CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Engineering
SciAdv r-articles
Title Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
URI https://www.ncbi.nlm.nih.gov/pubmed/28580423
https://www.proquest.com/docview/1906138165
https://www.osti.gov/servlets/purl/1376521
https://pubmed.ncbi.nlm.nih.gov/PMC5451195
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-UwEA_y9uJF_FqtX2RBcPdQsWmStgdZlkVXBD359N1KmqQqaKrtU_S_dyaNT9-uwl56SENDZjKd3yST3xCyrQBVMM0gTBU8RVLtAmxOsdiAu8_xoEwWeFH45FQeDfnxSIze8p-CALsPQzusJzVsb3af7p9_gsHvv7sAo8zjri-YjAVsv4BXytBITwLU9_stXErh63ywNBMxxEV54HD89xNTPmrQgK19hD__TqN855cO58lcAJT0V78CFsiMdYtkIZhsR78HXukfS8ScK0eNbemFgrlT-8ZESJua1rZtm1t16fBWI-0wZ75xSAbbtPQKc2aanmr2AeJzCkiXdnfXjipn6COWY3nua-l0y2R4eHD2-ygORRZiDVIaxzyp9zTOOhe5FEVeF5kBiCWQt6zmGTRICyESt3lWa0AbeVUIxnVVVeleVdc2_UoGrnF2lVDLU5kl2gKkktwIVRWWa2YqLkzBmNERiV_FWurAQI6FMG5KH4kwWfZqKIMaIrIz6X_Xc2982nMdtYStSH2rMUdIj8sE_p4ATyLy7VV5JRgPnogoZ5uHrgQ0BHAmT6SIyEqvzMlIDASCSUMRyabUPOmAxNzTb9z1lSfo9sIrxNp_jLtOZhkCBZ9CuUEGoEm7CTBnXG357QF4_hklW34tvwD29v6s
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Van+der+Waals+engineering+of+ferromagnetic+semiconductor+heterostructures+for+spin+and+valleytronics&rft.jtitle=Science+advances&rft.au=Zhong%2C+Ding&rft.au=Seyler%2C+Kyle+L&rft.au=Linpeng%2C+Xiayu&rft.au=Cheng%2C+Ran&rft.date=2017-05-01&rft.issn=2375-2548&rft.eissn=2375-2548&rft.volume=3&rft.issue=5&rft.spage=e1603113&rft_id=info:doi/10.1126%2Fsciadv.1603113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2375-2548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2375-2548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2375-2548&client=summon