Imbalanced Deep Learning by Minority Class Incremental Rectification

Model learning from class imbalanced training data is a long-standing and significant challenge for machine learning. In particular, existing deep learning methods consider mostly either class balanced data or moderately imbalanced data in model training, and ignore the challenge of learning from si...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 41; no. 6; pp. 1367 - 1381
Main Authors Dong, Qi, Gong, Shaogang, Zhu, Xiatian
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Model learning from class imbalanced training data is a long-standing and significant challenge for machine learning. In particular, existing deep learning methods consider mostly either class balanced data or moderately imbalanced data in model training, and ignore the challenge of learning from significantly imbalanced training data. To address this problem, we formulate a class imbalanced deep learning model based on batch-wise incremental minority (sparsely sampled) class rectification by hard sample mining in majority (frequently sampled) classes during model training. This model is designed to minimise the dominant effect of majority classes by discovering sparsely sampled boundaries of minority classes in an iterative batch-wise learning process. To that end, we introduce a Class Rectification Loss (CRL) function that can be deployed readily in deep network architectures. Extensive experimental evaluations are conducted on three imbalanced person attribute benchmark datasets (CelebA, X-Domain, DeepFashion) and one balanced object category benchmark dataset (CIFAR-100). These experimental results demonstrate the performance advantages and model scalability of the proposed batch-wise incremental minority class rectification model over the existing state-of-the-art models for addressing the problem of imbalanced data learning.
AbstractList Model learning from class imbalanced training data is a long-standing and significant challenge for machine learning. In particular, existing deep learning methods consider mostly either class balanced data or moderately imbalanced data in model training, and ignore the challenge of learning from significantly imbalanced training data. To address this problem, we formulate a class imbalanced deep learning model based on batch-wise incremental minority (sparsely sampled) class rectification by hard sample mining in majority (frequently sampled) classes during model training. This model is designed to minimise the dominant effect of majority classes by discovering sparsely sampled boundaries of minority classes in an iterative batch-wise learning process. To that end, we introduce a Class Rectification Loss (CRL) function that can be deployed readily in deep network architectures. Extensive experimental evaluations are conducted on three imbalanced person attribute benchmark datasets (CelebA, X-Domain, DeepFashion) and one balanced object category benchmark dataset (CIFAR-100). These experimental results demonstrate the performance advantages and model scalability of the proposed batch-wise incremental minority class rectification model over the existing state-of-the-art models for addressing the problem of imbalanced data learning.
Model learning from class imbalanced training data is a long-standing and significant challenge for machine learning. In particular, existing deep learning methods consider mostly either class balanced data or moderately imbalanced data in model training, and ignore the challenge of learning from significantly imbalanced training data. To address this problem, we formulate a class imbalanced deep learning model based on batch-wise incremental minority (sparsely sampled) class rectification by hard sample mining in majority (frequently sampled) classes during model training. This model is designed to minimise the dominant effect of majority classes by discovering sparsely sampled boundaries of minority classes in an iterative batch-wise learning process. To that end, we introduce a Class Rectification Loss (CRL) function that can be deployed readily in deep network architectures. Extensive experimental evaluations are conducted on three imbalanced person attribute benchmark datasets (CelebA, X-Domain, DeepFashion) and one balanced object category benchmark dataset (CIFAR-100). These experimental results demonstrate the performance advantages and model scalability of the proposed batch-wise incremental minority class rectification model over the existing state-of-the-art models for addressing the problem of imbalanced data learning.Model learning from class imbalanced training data is a long-standing and significant challenge for machine learning. In particular, existing deep learning methods consider mostly either class balanced data or moderately imbalanced data in model training, and ignore the challenge of learning from significantly imbalanced training data. To address this problem, we formulate a class imbalanced deep learning model based on batch-wise incremental minority (sparsely sampled) class rectification by hard sample mining in majority (frequently sampled) classes during model training. This model is designed to minimise the dominant effect of majority classes by discovering sparsely sampled boundaries of minority classes in an iterative batch-wise learning process. To that end, we introduce a Class Rectification Loss (CRL) function that can be deployed readily in deep network architectures. Extensive experimental evaluations are conducted on three imbalanced person attribute benchmark datasets (CelebA, X-Domain, DeepFashion) and one balanced object category benchmark dataset (CIFAR-100). These experimental results demonstrate the performance advantages and model scalability of the proposed batch-wise incremental minority class rectification model over the existing state-of-the-art models for addressing the problem of imbalanced data learning.
Author Dong, Qi
Gong, Shaogang
Zhu, Xiatian
Author_xml – sequence: 1
  givenname: Qi
  orcidid: 0000-0002-3376-5654
  surname: Dong
  fullname: Dong, Qi
  email: q.dong@qmul.ac.uk
  organization: Queen Mary University of London, London, United Kingdom
– sequence: 2
  givenname: Shaogang
  orcidid: 0000-0001-8156-2299
  surname: Gong
  fullname: Gong, Shaogang
  email: s.gong@qmul.ac.uk
  organization: Queen Mary University of London, London, United Kingdom
– sequence: 3
  givenname: Xiatian
  orcidid: 0000-0002-9284-2955
  surname: Zhu
  fullname: Zhu, Xiatian
  email: eddy@visionsemantics.com
  organization: Vision Semantics Ltd., London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29993438$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLcLXwAkFIlLL1nG4yS2j9UWykpbgVA5R449Rq4SZ7Gzh_32ZLtLDz0gjTSX35s_712xizhGYuw9hxXnoD8__Li536wQuFqhEtigfsUWyBsoNWq8YAvgDZZKobpkVzk_AvCqBvGGXaLWWlRCLdjtZuhMb6IlV9wS7YotmRRD_F10h-I-xDGF6VCse5NzsYk20UBxMn3xk-wUfLBmCmN8y15702d6d-5L9uvrl4f1t3L7_W6zvtmWtuJyKitupZXUudo0mqT3rqrQ2VpVApwVDaBWzotGcIkWwHvtvAMPnZdSgKzFkl2f5u7S-GdPeWqHkC318_007nOL0Kj5LdBiRj-9QB_HfYrzdS0igtD1sZbs45nadwO5dpfCYNKh_efPDOAJsGnMOZF_Rji0xxDapxDaYwjtOYRZpF6IbJiejJqSCf3_pR9O0kBEz7uUqIXkSvwFnamSxQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_3390_life11101013
crossref_primary_10_1109_ACCESS_2020_2985097
crossref_primary_10_1007_s10115_021_01546_8
crossref_primary_10_1109_TII_2022_3168029
crossref_primary_10_1007_s40747_022_00815_5
crossref_primary_10_3390_s22114075
crossref_primary_10_1109_TCYB_2022_3173356
crossref_primary_10_1016_j_eswa_2021_116364
crossref_primary_10_1016_j_neunet_2021_06_016
crossref_primary_10_1038_s41598_020_64206_x
crossref_primary_10_1016_j_bspc_2021_103218
crossref_primary_10_1007_s11042_023_17864_8
crossref_primary_10_1016_j_ecoinf_2023_102361
crossref_primary_10_1109_TCYB_2020_3032958
crossref_primary_10_4236_ojapps_2022_124029
crossref_primary_10_1109_JBHI_2022_3162748
crossref_primary_10_1016_j_jor_2023_03_001
crossref_primary_10_1016_j_patrec_2023_05_035
crossref_primary_10_1007_s11263_022_01622_8
crossref_primary_10_1186_s40537_019_0181_8
crossref_primary_10_1016_j_eswa_2021_115492
crossref_primary_10_1007_s00521_023_08217_5
crossref_primary_10_1109_TPAMI_2024_3421300
crossref_primary_10_3390_app11083331
crossref_primary_10_1007_s10994_023_06397_8
crossref_primary_10_3390_mi13101678
crossref_primary_10_3390_s21165317
crossref_primary_10_31742_ISGPB_84_1_8
crossref_primary_10_1002_qre_2983
crossref_primary_10_1177_13548166251318768
crossref_primary_10_1016_j_artmed_2023_102654
crossref_primary_10_1109_TAI_2022_3160658
crossref_primary_10_1109_TFUZZ_2019_2939989
crossref_primary_10_1016_j_inffus_2022_12_010
crossref_primary_10_1186_s40537_019_0225_0
crossref_primary_10_3390_rs12183106
crossref_primary_10_1109_ACCESS_2022_3194068
crossref_primary_10_1016_j_ecoinf_2024_102510
crossref_primary_10_1016_j_cviu_2025_104291
crossref_primary_10_1016_j_neucom_2020_01_119
crossref_primary_10_1109_ACCESS_2019_2954626
crossref_primary_10_1088_2632_2153_ad4768
crossref_primary_10_1109_TIFS_2020_2998956
crossref_primary_10_1016_j_bspc_2023_105068
crossref_primary_10_3390_sym13010004
crossref_primary_10_1186_s40537_019_0192_5
crossref_primary_10_1016_j_patter_2023_100780
crossref_primary_10_1080_01431161_2023_2232552
crossref_primary_10_7717_peerj_cs_2064
crossref_primary_10_1109_ACCESS_2020_2991231
crossref_primary_10_1016_j_chemolab_2025_105338
crossref_primary_10_1109_TSE_2023_3235942
crossref_primary_10_1109_TKDE_2024_3392953
crossref_primary_10_1109_TMI_2020_3046692
crossref_primary_10_1016_j_patcog_2024_111337
crossref_primary_10_1007_s00521_022_07300_7
crossref_primary_10_1007_s11042_023_16507_2
crossref_primary_10_1016_j_eswa_2023_122192
crossref_primary_10_1109_TAI_2023_3275133
crossref_primary_10_1145_3718734
crossref_primary_10_1109_TETCI_2022_3150757
crossref_primary_10_1038_s41591_022_01709_2
crossref_primary_10_1016_j_eswa_2024_124718
crossref_primary_10_1016_j_ins_2024_121280
crossref_primary_10_1016_j_imavis_2024_105288
crossref_primary_10_1109_TNNLS_2021_3105104
crossref_primary_10_1016_j_procs_2024_10_173
crossref_primary_10_1016_j_ibmed_2024_100151
crossref_primary_10_1109_ACCESS_2022_3199613
crossref_primary_10_1109_TMI_2024_3377552
crossref_primary_10_1109_TNNLS_2021_3136503
crossref_primary_10_1007_s11227_022_05037_7
crossref_primary_10_1016_j_solener_2021_05_095
crossref_primary_10_1186_s12911_019_0938_1
crossref_primary_10_3390_rs12132121
crossref_primary_10_1016_j_ins_2022_08_074
crossref_primary_10_3390_e26100839
crossref_primary_10_1016_j_asoc_2021_107783
crossref_primary_10_1007_s11063_020_10366_w
crossref_primary_10_1049_ipr2_12410
crossref_primary_10_3233_IDA_215735
crossref_primary_10_1016_j_knosys_2022_108538
crossref_primary_10_1109_LGRS_2024_3362832
crossref_primary_10_1002_cam4_3957
crossref_primary_10_1109_TNNLS_2021_3053245
crossref_primary_10_1109_TPAMI_2020_3046439
crossref_primary_10_3390_make5010019
crossref_primary_10_1007_s00521_022_08135_y
crossref_primary_10_1016_j_neucom_2024_128617
crossref_primary_10_1007_s11042_024_20153_7
crossref_primary_10_1016_j_knosys_2020_106598
crossref_primary_10_1109_ACCESS_2022_3233411
crossref_primary_10_1016_j_eswa_2021_115067
crossref_primary_10_1109_TNSRE_2023_3305363
crossref_primary_10_1186_s12911_024_02561_9
crossref_primary_10_3390_app13010600
crossref_primary_10_1094_PHYTO_08_18_0288_R
crossref_primary_10_1109_JIOT_2024_3446551
crossref_primary_10_3389_fpubh_2022_1032467
crossref_primary_10_1109_TII_2021_3084132
crossref_primary_10_1109_TII_2022_3170149
crossref_primary_10_1109_TNNLS_2021_3072041
crossref_primary_10_1109_TMI_2021_3080991
crossref_primary_10_1016_j_engappai_2022_105080
crossref_primary_10_1109_TPAMI_2019_2929166
crossref_primary_10_1007_s11263_023_01956_x
crossref_primary_10_1109_ACCESS_2023_3308998
crossref_primary_10_1016_j_rse_2021_112603
crossref_primary_10_1007_s41870_023_01609_9
crossref_primary_10_1093_neuonc_noae093
crossref_primary_10_1109_JSTARS_2024_3509712
crossref_primary_10_1109_JSTARS_2020_2995703
crossref_primary_10_1016_j_compbiomed_2022_105339
crossref_primary_10_1016_j_tele_2023_101948
crossref_primary_10_1016_j_engappai_2023_106738
crossref_primary_10_1109_ACCESS_2019_2953085
crossref_primary_10_1016_j_neucom_2021_10_021
crossref_primary_10_1109_TPAMI_2022_3178914
crossref_primary_10_1109_ACCESS_2024_3426955
crossref_primary_10_1007_s10278_022_00633_8
crossref_primary_10_1016_j_inffus_2023_101845
crossref_primary_10_1016_j_neucom_2025_129427
crossref_primary_10_1109_TNNLS_2021_3071122
crossref_primary_10_1007_s10489_023_04935_4
crossref_primary_10_1016_j_compbiomed_2023_106840
crossref_primary_10_1109_ACCESS_2019_2924060
crossref_primary_10_1155_2022_7839840
crossref_primary_10_1109_TNNLS_2020_3047335
crossref_primary_10_1109_TGRS_2021_3071559
crossref_primary_10_1016_j_eswa_2023_122695
crossref_primary_10_1007_s11042_024_19303_8
crossref_primary_10_1007_s11424_021_1038_8
crossref_primary_10_1016_j_geoen_2025_213762
crossref_primary_10_1038_s41598_022_22506_4
crossref_primary_10_1016_j_jag_2022_102690
crossref_primary_10_1007_s41870_022_00987_w
crossref_primary_10_1007_s00330_023_09668_z
crossref_primary_10_1109_TCYB_2020_3016972
crossref_primary_10_1109_ACCESS_2023_3279732
crossref_primary_10_1007_s41870_025_02459_3
crossref_primary_10_1016_j_neunet_2023_04_027
crossref_primary_10_1109_JBHI_2021_3102612
crossref_primary_10_1109_TNNLS_2021_3051721
crossref_primary_10_1016_j_asoc_2022_109271
crossref_primary_10_1016_j_asoc_2023_110810
crossref_primary_10_1186_s40537_021_00414_0
crossref_primary_10_1002_acm2_70061
crossref_primary_10_1016_j_media_2021_102272
crossref_primary_10_18466_cbayarfbe_1513945
crossref_primary_10_1080_07038992_2021_1915756
crossref_primary_10_1109_TNNLS_2022_3197156
crossref_primary_10_1016_j_eswa_2024_123783
crossref_primary_10_1016_j_compbiolchem_2023_107929
crossref_primary_10_1016_j_neunet_2023_07_030
crossref_primary_10_1016_j_oooo_2024_07_010
crossref_primary_10_1016_j_ins_2021_11_058
crossref_primary_10_1016_j_patcog_2022_108564
crossref_primary_10_1016_j_engappai_2020_103500
crossref_primary_10_1002_cem_3515
crossref_primary_10_1080_0952813X_2023_2166130
crossref_primary_10_1016_j_neunet_2023_02_017
crossref_primary_10_1007_s10489_020_01637_z
crossref_primary_10_1016_j_asoc_2019_02_028
crossref_primary_10_1016_j_imu_2024_101575
crossref_primary_10_1109_JBHI_2023_3325540
crossref_primary_10_1061__ASCE_CP_1943_5487_0001018
crossref_primary_10_3390_rs13081420
crossref_primary_10_1109_TASLP_2022_3221008
Cites_doi 10.1016/j.patcog.2011.02.019
10.1561/1500000016
10.1109/WACV.2017.64
10.1109/CVPR.2005.177
10.1023/A:1012406528296
10.1145/1014052.1014067
10.1016/j.neunet.2007.12.031
10.1109/IJCNN.2016.7727770
10.1109/ICCV.2015.127
10.1109/TKDE.2011.231
10.1109/CVPR.2015.7298682
10.1109/ISM.2015.126
10.1109/CVPR.2013.319
10.1016/j.knosys.2015.10.012
10.1016/j.knosys.2015.05.027
10.3233/IDA-2002-6504
10.1016/j.inffus.2013.04.006
10.1109/CVPR.2016.89
10.1109/CVPR.2017.243
10.1109/CVPR.2015.7299169
10.1109/ICCV.2015.425
10.1007/3-540-45372-5_58
10.1016/S0031-3203(02)00257-1
10.1109/TNN.2010.2042730
10.1145/2578726.2578732
10.1109/CVPR.2014.212
10.1109/TPAMI.2013.50
10.1613/jair.953
10.1109/TKDE.2008.239
10.1007/s11263-015-0816-y
10.1007/11875581_56
10.1145/1007730.1007734
10.1109/CIDM.2011.5949434
10.1109/TSMCB.2008.2002909
10.1145/502512.502540
10.1109/CVPR.2014.180
10.1109/CVPR.2016.90
10.1080/10659360600787700
10.1007/BF00153762
10.1145/1137856.1137880
10.1016/j.dss.2009.11.008
10.1109/CIC.2015.40
10.1109/CVPR.2016.434
10.1109/CVPR.2016.580
10.1109/CVPRW.2014.131
10.1016/j.nonrwa.2005.04.006
10.1109/TKDE.2006.17
10.1109/TPAMI.2009.167
10.1007/s11263-014-0733-5
10.1109/CVPR.2005.202
10.1109/ICCV.2015.320
10.1007/s13748-016-0094-0
10.1007/978-1-4471-6296-4
10.1109/CVPR.2014.222
10.1109/5.726791
10.1109/TKDE.2005.95
10.1109/TNNLS.2013.2246188
10.1109/CVPR.2016.124
10.1109/ICDM.2003.1250950
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2018.2832629
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1381
ExternalDocumentID 29993438
10_1109_TPAMI_2018_2832629
8353718
Genre orig-research
Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 10.13039/501100004543
– fundername: Society Newton Advanced Fellowship Programme
  grantid: NA150459
– fundername: Developing and Commercialising Intelligent Video Analytics Solutions for Public Safety
  grantid: 98111-571149
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
RIG
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c417t-41c7c7ebd5a69e7ffd442dc58430dc360298df363172c00ff9dfd0f0bf7730753
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Thu Jul 10 18:31:17 EDT 2025
Mon Jun 30 04:46:44 EDT 2025
Thu Apr 03 06:58:40 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Tue Jul 01 03:18:23 EDT 2025
Wed Aug 27 02:46:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-41c7c7ebd5a69e7ffd442dc58430dc360298df363172c00ff9dfd0f0bf7730753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3376-5654
0000-0001-8156-2299
0000-0002-9284-2955
PMID 29993438
PQID 2220395395
PQPubID 85458
PageCount 15
ParticipantIDs crossref_primary_10_1109_TPAMI_2018_2832629
pubmed_primary_29993438
proquest_miscellaneous_2068343093
ieee_primary_8353718
crossref_citationtrail_10_1109_TPAMI_2018_2832629
proquest_journals_2220395395
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref59
ref15
ref58
wozniak (ref55) 2013; 519
ref14
ref53
ref11
ref54
ustinova (ref71) 2016
khan (ref62) 2018
ref17
chen (ref44) 2004
ref16
ref19
ref18
provost (ref51) 2000
ref50
griffin (ref35) 2007
ref45
ref48
ref47
ref41
ref43
vedaldi (ref80) 2008
ref49
ref7
ref9
ref4
ref3
ref6
ting (ref8) 2000
japkowicz (ref42) 2000
ref82
krizhevsky (ref34) 2009
lin (ref31) 2014
ref83
akbani (ref10) 2004
ando (ref79) 2005; 6
ref78
ref37
krizhevsky (ref22) 2012
ref36
ref75
ref74
ref30
ioffe (ref76) 2015
ref33
ref32
wang (ref56) 2012
drummond (ref5) 2003
ref2
ref1
ref39
jeatrakul (ref25) 2010
ref38
han (ref40) 2005
shen (ref63) 2015
ref70
ref73
ref72
ref68
simonyan (ref20) 2015
ref24
krawczyk (ref52) 2015
ref67
ref23
ref26
ref69
ref64
ref66
ref65
ref21
sun (ref77) 2014
ref28
ref27
ref29
liu (ref46) 2000
ref60
lin (ref81) 2014
ref61
References_xml – start-page: 10
  year: 2000
  ident: ref42
  article-title: Learning from imbalanced data sets: A comparison of various strategies
  publication-title: Proc Conf Artif Intell
– ident: ref60
  doi: 10.1016/j.patcog.2011.02.019
– ident: ref73
  doi: 10.1561/1500000016
– ident: ref37
  doi: 10.1109/WACV.2017.64
– ident: ref83
  doi: 10.1109/CVPR.2005.177
– ident: ref45
  doi: 10.1023/A:1012406528296
– ident: ref78
  doi: 10.1145/1014052.1014067
– ident: ref28
  doi: 10.1016/j.neunet.2007.12.031
– volume: 519
  year: 2013
  ident: ref55
  publication-title: Hybrid Classifiers Methods of Data Knowledge and Classifier Combination
– start-page: 1
  year: 2003
  ident: ref5
  article-title: C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling
  publication-title: Proc Int Conf Mach Learn
– start-page: 1988
  year: 2014
  ident: ref77
  article-title: Deep learning face representation by joint identification-verification
  publication-title: Proc 27th Int Conf Neural Inf Process Syst
– ident: ref64
  doi: 10.1109/IJCNN.2016.7727770
– year: 2015
  ident: ref76
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– ident: ref29
  doi: 10.1109/ICCV.2015.127
– ident: ref4
  doi: 10.1109/TKDE.2011.231
– ident: ref39
  doi: 10.1109/CVPR.2015.7298682
– ident: ref66
  doi: 10.1109/ISM.2015.126
– start-page: 1097
  year: 2012
  ident: ref22
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc 25th Int Conf Neural Inf Process Syst
– ident: ref16
  doi: 10.1109/CVPR.2013.319
– start-page: 152
  year: 2010
  ident: ref25
  article-title: Classification of imbalanced data by combining the complementary neural network and smote algorithm
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref53
  doi: 10.1016/j.knosys.2015.10.012
– ident: ref19
  doi: 10.1016/j.knosys.2015.05.027
– ident: ref1
  doi: 10.3233/IDA-2002-6504
– ident: ref57
  doi: 10.1016/j.inffus.2013.04.006
– ident: ref68
  doi: 10.1109/CVPR.2016.89
– ident: ref82
  doi: 10.1109/CVPR.2017.243
– ident: ref11
  doi: 10.1109/CVPR.2015.7299169
– start-page: 1
  year: 2018
  ident: ref62
  article-title: Cost-sensitive learning of deep feature representations from imbalanced data
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref12
  doi: 10.1109/ICCV.2015.425
– start-page: 504
  year: 2000
  ident: ref46
  article-title: Improving an association rule based classifier
  publication-title: Proc Conf Principles Knowledge Discovery Data Mining
  doi: 10.1007/3-540-45372-5_58
– ident: ref43
  doi: 10.1016/S0031-3203(02)00257-1
– year: 2014
  ident: ref81
  article-title: Network in network
  publication-title: Proc Int Conf Learn Representations
– ident: ref27
  doi: 10.1109/TNN.2010.2042730
– year: 2009
  ident: ref34
  article-title: Learning multiple layers of features from tiny images
– start-page: 740
  year: 2014
  ident: ref31
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc Eur Conf Comput Vis
– ident: ref15
  doi: 10.1145/2578726.2578732
– ident: ref18
  doi: 10.1109/CVPR.2014.212
– ident: ref23
  doi: 10.1109/TPAMI.2013.50
– year: 2008
  ident: ref80
  article-title: VLFeat: An open and portable library of computer vision algorithms
– ident: ref6
  doi: 10.1613/jair.953
– ident: ref3
  doi: 10.1109/TKDE.2008.239
– ident: ref32
  doi: 10.1007/s11263-015-0816-y
– year: 2007
  ident: ref35
  article-title: Caltech-256 object category dataset
– ident: ref26
  doi: 10.1007/11875581_56
– start-page: 1
  year: 2000
  ident: ref51
  article-title: Machine learning from imbalanced data sets 101
  publication-title: Proc Conf Artif Intell
– ident: ref2
  doi: 10.1145/1007730.1007734
– ident: ref7
  doi: 10.1109/CIDM.2011.5949434
– start-page: 4177
  year: 2016
  ident: ref71
  article-title: Learning deep embeddings with histogram loss
  publication-title: Proc 30th Int Conf Neural Inf Process Syst
– ident: ref9
  doi: 10.1109/TSMCB.2008.2002909
– ident: ref47
  doi: 10.1145/502512.502540
– start-page: 983
  year: 2000
  ident: ref8
  article-title: A comparative study of cost-sensitive boosting algorithms
  publication-title: Proc 17th Int Conf Mach Learn
– ident: ref72
  doi: 10.1109/CVPR.2014.180
– year: 2015
  ident: ref20
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Representations
– ident: ref36
  doi: 10.1109/CVPR.2016.90
– ident: ref54
  doi: 10.1080/10659360600787700
– ident: ref48
  doi: 10.1007/BF00153762
– year: 2004
  ident: ref44
  article-title: Using random forest to learn imbalanced data
– ident: ref38
  doi: 10.1145/1137856.1137880
– ident: ref58
  doi: 10.1016/j.dss.2009.11.008
– start-page: 1
  year: 2012
  ident: ref56
  article-title: Applying adaptive over-sampling technique based on data density and cost-sensitive svm to imbalanced learning
  publication-title: Proc Int Joint Conf Neural Netw
– ident: ref65
  doi: 10.1109/CIC.2015.40
– ident: ref69
  doi: 10.1109/CVPR.2016.434
– ident: ref17
  doi: 10.1109/CVPR.2016.580
– ident: ref21
  doi: 10.1109/CVPRW.2014.131
– ident: ref59
  doi: 10.1016/j.nonrwa.2005.04.006
– start-page: 878
  year: 2005
  ident: ref40
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
  publication-title: Proc Int Conf Intell Comput
– ident: ref24
  doi: 10.1109/TKDE.2006.17
– start-page: 45
  year: 2015
  ident: ref52
  article-title: Cost-sensitive neural network with ROC-based moving threshold for imbalanced classification
  publication-title: Proc 5th Int Conf Intell Data Eng Autom Learn
– volume: 6
  start-page: 1817
  year: 2005
  ident: ref79
  article-title: A framework for learning predictive structures from multiple tasks and unlabeled data
  publication-title: J Mach Learn Res
– ident: ref67
  doi: 10.1109/TPAMI.2009.167
– ident: ref33
  doi: 10.1007/s11263-014-0733-5
– ident: ref74
  doi: 10.1109/CVPR.2005.202
– ident: ref70
  doi: 10.1109/ICCV.2015.320
– ident: ref13
  doi: 10.1007/s13748-016-0094-0
– ident: ref14
  doi: 10.1007/978-1-4471-6296-4
– ident: ref41
  doi: 10.1109/CVPR.2014.222
– ident: ref75
  doi: 10.1109/5.726791
– ident: ref49
  doi: 10.1109/TKDE.2005.95
– ident: ref61
  doi: 10.1109/TNNLS.2013.2246188
– start-page: 3982
  year: 2015
  ident: ref63
  article-title: DeepContour: A deep convolutional feature learned by positive-sharing loss for contour detection
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 39
  year: 2004
  ident: ref10
  article-title: Applying support vector machines to imbalanced datasets
  publication-title: Proc 15th Eur Conf Mach Learn
– ident: ref30
  doi: 10.1109/CVPR.2016.124
– ident: ref50
  doi: 10.1109/ICDM.2003.1250950
SSID ssj0014503
Score 2.664442
Snippet Model learning from class imbalanced training data is a long-standing and significant challenge for machine learning. In particular, existing deep learning...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1367
SubjectTerms Benchmark testing
Benchmarks
Class imbalanced deep learning
clothing attribute recognition
Computational modeling
Data mining
Data models
Deep learning
facial attribute recognition
hard sample mining
inter-class boundary rectification
Iterative methods
Machine learning
multi-label learning
person attribute recognition
Training
Training data
Title Imbalanced Deep Learning by Minority Class Incremental Rectification
URI https://ieeexplore.ieee.org/document/8353718
https://www.ncbi.nlm.nih.gov/pubmed/29993438
https://www.proquest.com/docview/2220395395
https://www.proquest.com/docview/2068343093
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp3IACi2Ej8qVemuzOInjxEcERVBpEapA4hat7XGFgCyC3QP8esaOE6EKqko5RIoTO57x-I09ngfwLbO1MDov00yLIhVaZGQH60mqtEQUmjBC4Iwcn8mTS_HrqrxagB_DWRhEDMFnOPK3YS_fTs3cL5XtE1ooyJYuwiI5bt1ZrWHHQJSBBZkQDI1wciP6AzJc7V-cH4xPfRRXPfLEPDL3qULJDKtC-GMpr-ajQLDyPtYMc87xKoz71nahJjej-UyPzPNfiRz_93fWYCWCT3bQactHWMB2HVZ7YgcWx_k6LL_KUrgBR6d32gdAGrTsCPGexZysf5h-YuPrdur571hg12RkbroFR6rmt7elLq4JfoLL458XhydpJF9IjciqWSoyU5kKtS0nUmHlnBUit4bwSsGtKaRP3W5dIQl_5IZz55R1ljuuXUVGg5ygz7DUTlvcAlbm1icGxLJ2UpD7RTIQDjPUtZJljpMEsl4EjYmZyT1Bxm0TPBSumiDBxkuwiRJM4Pvwzn2Xl-OfpTd89w8lY88nsNtLuolD97EhwMQLVdKVwNfhMQ06v5MyaXE6pzJc1qQ8XBUJbHYaMny7V6ztt-vcgQ_UMtVFm-3C0uxhjnuEa2b6S1DoF3LB7ww
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB1V7QE4UGihTSlgJDihbJ3E-fCBQ8VS7dJuhdBW6i2s7TFChWxFd4XKb-Gv9L917DhRhYBbJaQcIsX5nJc3Y3s8D-BlYiqhVZrHiRJZLJRIiAerWSxVgSgUxQheM3JyXIxOxPvT_HQFfvVrYRDRJ5_hwO36uXwz10s3VLZH0UJGXBpSKA_x8gd10C7ejIdkzVdpevBu-nYUBw2BWIukXMQi0aUuUZl8VkgsrTVCpEaT28240VnhKpAbmxXkRlPNubXSWMMtV7Yk7JdOE4IIfo3ijDxtV4f1cxQi97rLFDMRp1DHpVuSw-Xe9MP-ZOzyxqqBkwIqUleclIhfZsIthLnhAb2ky9-jW-_lDtbhqvs-bXLL2WC5UAP987fSkf_rB3wA90N4zfbb_-EhrGCzAeuddAULTLYB927UYdyE4fibcimeGg0bIp6zUHX2M1OXbPKlmTuFP-b1QxkRajukSrf56LyFDaOej-DkVt7sMaw28wa3geWpcaUPMa9sIaiDSTYXFhNUlSzyFGcRJJ3Jax1qrzsJkK-174NxWXvE1A4xdUBMBK_7c87byiP_bL3pzN23DJaOYLdDVh3I6aKmkJBnMqctghf9YaIVN1c0a3C-pDa8qAisXGYRbLWI7K_dAXnnz_d8DndG08lRfTQ-PnwCd-kpZZtbtwuri-9LfEpR3EI98z8Tg0-3Db5rL8tM8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imbalanced+Deep+Learning+by+Minority+Class+Incremental+Rectification&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.date=2019-06-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=41&rft.issue=6&rft.spage=1367&rft_id=info:doi/10.1109%2FTPAMI.2018.2832629&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon