Imbalanced Deep Learning by Minority Class Incremental Rectification
Model learning from class imbalanced training data is a long-standing and significant challenge for machine learning. In particular, existing deep learning methods consider mostly either class balanced data or moderately imbalanced data in model training, and ignore the challenge of learning from si...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 41; no. 6; pp. 1367 - 1381 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Model learning from class imbalanced training data is a long-standing and significant challenge for machine learning. In particular, existing deep learning methods consider mostly either class balanced data or moderately imbalanced data in model training, and ignore the challenge of learning from significantly imbalanced training data. To address this problem, we formulate a class imbalanced deep learning model based on batch-wise incremental minority (sparsely sampled) class rectification by hard sample mining in majority (frequently sampled) classes during model training. This model is designed to minimise the dominant effect of majority classes by discovering sparsely sampled boundaries of minority classes in an iterative batch-wise learning process. To that end, we introduce a Class Rectification Loss (CRL) function that can be deployed readily in deep network architectures. Extensive experimental evaluations are conducted on three imbalanced person attribute benchmark datasets (CelebA, X-Domain, DeepFashion) and one balanced object category benchmark dataset (CIFAR-100). These experimental results demonstrate the performance advantages and model scalability of the proposed batch-wise incremental minority class rectification model over the existing state-of-the-art models for addressing the problem of imbalanced data learning. |
---|---|
AbstractList | Model learning from class imbalanced training data is a long-standing and significant challenge for machine learning. In particular, existing deep learning methods consider mostly either class balanced data or moderately imbalanced data in model training, and ignore the challenge of learning from significantly imbalanced training data. To address this problem, we formulate a class imbalanced deep learning model based on batch-wise incremental minority (sparsely sampled) class rectification by hard sample mining in majority (frequently sampled) classes during model training. This model is designed to minimise the dominant effect of majority classes by discovering sparsely sampled boundaries of minority classes in an iterative batch-wise learning process. To that end, we introduce a Class Rectification Loss (CRL) function that can be deployed readily in deep network architectures. Extensive experimental evaluations are conducted on three imbalanced person attribute benchmark datasets (CelebA, X-Domain, DeepFashion) and one balanced object category benchmark dataset (CIFAR-100). These experimental results demonstrate the performance advantages and model scalability of the proposed batch-wise incremental minority class rectification model over the existing state-of-the-art models for addressing the problem of imbalanced data learning. Model learning from class imbalanced training data is a long-standing and significant challenge for machine learning. In particular, existing deep learning methods consider mostly either class balanced data or moderately imbalanced data in model training, and ignore the challenge of learning from significantly imbalanced training data. To address this problem, we formulate a class imbalanced deep learning model based on batch-wise incremental minority (sparsely sampled) class rectification by hard sample mining in majority (frequently sampled) classes during model training. This model is designed to minimise the dominant effect of majority classes by discovering sparsely sampled boundaries of minority classes in an iterative batch-wise learning process. To that end, we introduce a Class Rectification Loss (CRL) function that can be deployed readily in deep network architectures. Extensive experimental evaluations are conducted on three imbalanced person attribute benchmark datasets (CelebA, X-Domain, DeepFashion) and one balanced object category benchmark dataset (CIFAR-100). These experimental results demonstrate the performance advantages and model scalability of the proposed batch-wise incremental minority class rectification model over the existing state-of-the-art models for addressing the problem of imbalanced data learning.Model learning from class imbalanced training data is a long-standing and significant challenge for machine learning. In particular, existing deep learning methods consider mostly either class balanced data or moderately imbalanced data in model training, and ignore the challenge of learning from significantly imbalanced training data. To address this problem, we formulate a class imbalanced deep learning model based on batch-wise incremental minority (sparsely sampled) class rectification by hard sample mining in majority (frequently sampled) classes during model training. This model is designed to minimise the dominant effect of majority classes by discovering sparsely sampled boundaries of minority classes in an iterative batch-wise learning process. To that end, we introduce a Class Rectification Loss (CRL) function that can be deployed readily in deep network architectures. Extensive experimental evaluations are conducted on three imbalanced person attribute benchmark datasets (CelebA, X-Domain, DeepFashion) and one balanced object category benchmark dataset (CIFAR-100). These experimental results demonstrate the performance advantages and model scalability of the proposed batch-wise incremental minority class rectification model over the existing state-of-the-art models for addressing the problem of imbalanced data learning. |
Author | Dong, Qi Gong, Shaogang Zhu, Xiatian |
Author_xml | – sequence: 1 givenname: Qi orcidid: 0000-0002-3376-5654 surname: Dong fullname: Dong, Qi email: q.dong@qmul.ac.uk organization: Queen Mary University of London, London, United Kingdom – sequence: 2 givenname: Shaogang orcidid: 0000-0001-8156-2299 surname: Gong fullname: Gong, Shaogang email: s.gong@qmul.ac.uk organization: Queen Mary University of London, London, United Kingdom – sequence: 3 givenname: Xiatian orcidid: 0000-0002-9284-2955 surname: Zhu fullname: Zhu, Xiatian email: eddy@visionsemantics.com organization: Vision Semantics Ltd., London, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29993438$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URLcLXwAkFIlLL1nG4yS2j9UWykpbgVA5R449Rq4SZ7Gzh_32ZLtLDz0gjTSX35s_712xizhGYuw9hxXnoD8__Li536wQuFqhEtigfsUWyBsoNWq8YAvgDZZKobpkVzk_AvCqBvGGXaLWWlRCLdjtZuhMb6IlV9wS7YotmRRD_F10h-I-xDGF6VCse5NzsYk20UBxMn3xk-wUfLBmCmN8y15702d6d-5L9uvrl4f1t3L7_W6zvtmWtuJyKitupZXUudo0mqT3rqrQ2VpVApwVDaBWzotGcIkWwHvtvAMPnZdSgKzFkl2f5u7S-GdPeWqHkC318_007nOL0Kj5LdBiRj-9QB_HfYrzdS0igtD1sZbs45nadwO5dpfCYNKh_efPDOAJsGnMOZF_Rji0xxDapxDaYwjtOYRZpF6IbJiejJqSCf3_pR9O0kBEz7uUqIXkSvwFnamSxQ |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_3390_life11101013 crossref_primary_10_1109_ACCESS_2020_2985097 crossref_primary_10_1007_s10115_021_01546_8 crossref_primary_10_1109_TII_2022_3168029 crossref_primary_10_1007_s40747_022_00815_5 crossref_primary_10_3390_s22114075 crossref_primary_10_1109_TCYB_2022_3173356 crossref_primary_10_1016_j_eswa_2021_116364 crossref_primary_10_1016_j_neunet_2021_06_016 crossref_primary_10_1038_s41598_020_64206_x crossref_primary_10_1016_j_bspc_2021_103218 crossref_primary_10_1007_s11042_023_17864_8 crossref_primary_10_1016_j_ecoinf_2023_102361 crossref_primary_10_1109_TCYB_2020_3032958 crossref_primary_10_4236_ojapps_2022_124029 crossref_primary_10_1109_JBHI_2022_3162748 crossref_primary_10_1016_j_jor_2023_03_001 crossref_primary_10_1016_j_patrec_2023_05_035 crossref_primary_10_1007_s11263_022_01622_8 crossref_primary_10_1186_s40537_019_0181_8 crossref_primary_10_1016_j_eswa_2021_115492 crossref_primary_10_1007_s00521_023_08217_5 crossref_primary_10_1109_TPAMI_2024_3421300 crossref_primary_10_3390_app11083331 crossref_primary_10_1007_s10994_023_06397_8 crossref_primary_10_3390_mi13101678 crossref_primary_10_3390_s21165317 crossref_primary_10_31742_ISGPB_84_1_8 crossref_primary_10_1002_qre_2983 crossref_primary_10_1177_13548166251318768 crossref_primary_10_1016_j_artmed_2023_102654 crossref_primary_10_1109_TAI_2022_3160658 crossref_primary_10_1109_TFUZZ_2019_2939989 crossref_primary_10_1016_j_inffus_2022_12_010 crossref_primary_10_1186_s40537_019_0225_0 crossref_primary_10_3390_rs12183106 crossref_primary_10_1109_ACCESS_2022_3194068 crossref_primary_10_1016_j_ecoinf_2024_102510 crossref_primary_10_1016_j_cviu_2025_104291 crossref_primary_10_1016_j_neucom_2020_01_119 crossref_primary_10_1109_ACCESS_2019_2954626 crossref_primary_10_1088_2632_2153_ad4768 crossref_primary_10_1109_TIFS_2020_2998956 crossref_primary_10_1016_j_bspc_2023_105068 crossref_primary_10_3390_sym13010004 crossref_primary_10_1186_s40537_019_0192_5 crossref_primary_10_1016_j_patter_2023_100780 crossref_primary_10_1080_01431161_2023_2232552 crossref_primary_10_7717_peerj_cs_2064 crossref_primary_10_1109_ACCESS_2020_2991231 crossref_primary_10_1016_j_chemolab_2025_105338 crossref_primary_10_1109_TSE_2023_3235942 crossref_primary_10_1109_TKDE_2024_3392953 crossref_primary_10_1109_TMI_2020_3046692 crossref_primary_10_1016_j_patcog_2024_111337 crossref_primary_10_1007_s00521_022_07300_7 crossref_primary_10_1007_s11042_023_16507_2 crossref_primary_10_1016_j_eswa_2023_122192 crossref_primary_10_1109_TAI_2023_3275133 crossref_primary_10_1145_3718734 crossref_primary_10_1109_TETCI_2022_3150757 crossref_primary_10_1038_s41591_022_01709_2 crossref_primary_10_1016_j_eswa_2024_124718 crossref_primary_10_1016_j_ins_2024_121280 crossref_primary_10_1016_j_imavis_2024_105288 crossref_primary_10_1109_TNNLS_2021_3105104 crossref_primary_10_1016_j_procs_2024_10_173 crossref_primary_10_1016_j_ibmed_2024_100151 crossref_primary_10_1109_ACCESS_2022_3199613 crossref_primary_10_1109_TMI_2024_3377552 crossref_primary_10_1109_TNNLS_2021_3136503 crossref_primary_10_1007_s11227_022_05037_7 crossref_primary_10_1016_j_solener_2021_05_095 crossref_primary_10_1186_s12911_019_0938_1 crossref_primary_10_3390_rs12132121 crossref_primary_10_1016_j_ins_2022_08_074 crossref_primary_10_3390_e26100839 crossref_primary_10_1016_j_asoc_2021_107783 crossref_primary_10_1007_s11063_020_10366_w crossref_primary_10_1049_ipr2_12410 crossref_primary_10_3233_IDA_215735 crossref_primary_10_1016_j_knosys_2022_108538 crossref_primary_10_1109_LGRS_2024_3362832 crossref_primary_10_1002_cam4_3957 crossref_primary_10_1109_TNNLS_2021_3053245 crossref_primary_10_1109_TPAMI_2020_3046439 crossref_primary_10_3390_make5010019 crossref_primary_10_1007_s00521_022_08135_y crossref_primary_10_1016_j_neucom_2024_128617 crossref_primary_10_1007_s11042_024_20153_7 crossref_primary_10_1016_j_knosys_2020_106598 crossref_primary_10_1109_ACCESS_2022_3233411 crossref_primary_10_1016_j_eswa_2021_115067 crossref_primary_10_1109_TNSRE_2023_3305363 crossref_primary_10_1186_s12911_024_02561_9 crossref_primary_10_3390_app13010600 crossref_primary_10_1094_PHYTO_08_18_0288_R crossref_primary_10_1109_JIOT_2024_3446551 crossref_primary_10_3389_fpubh_2022_1032467 crossref_primary_10_1109_TII_2021_3084132 crossref_primary_10_1109_TII_2022_3170149 crossref_primary_10_1109_TNNLS_2021_3072041 crossref_primary_10_1109_TMI_2021_3080991 crossref_primary_10_1016_j_engappai_2022_105080 crossref_primary_10_1109_TPAMI_2019_2929166 crossref_primary_10_1007_s11263_023_01956_x crossref_primary_10_1109_ACCESS_2023_3308998 crossref_primary_10_1016_j_rse_2021_112603 crossref_primary_10_1007_s41870_023_01609_9 crossref_primary_10_1093_neuonc_noae093 crossref_primary_10_1109_JSTARS_2024_3509712 crossref_primary_10_1109_JSTARS_2020_2995703 crossref_primary_10_1016_j_compbiomed_2022_105339 crossref_primary_10_1016_j_tele_2023_101948 crossref_primary_10_1016_j_engappai_2023_106738 crossref_primary_10_1109_ACCESS_2019_2953085 crossref_primary_10_1016_j_neucom_2021_10_021 crossref_primary_10_1109_TPAMI_2022_3178914 crossref_primary_10_1109_ACCESS_2024_3426955 crossref_primary_10_1007_s10278_022_00633_8 crossref_primary_10_1016_j_inffus_2023_101845 crossref_primary_10_1016_j_neucom_2025_129427 crossref_primary_10_1109_TNNLS_2021_3071122 crossref_primary_10_1007_s10489_023_04935_4 crossref_primary_10_1016_j_compbiomed_2023_106840 crossref_primary_10_1109_ACCESS_2019_2924060 crossref_primary_10_1155_2022_7839840 crossref_primary_10_1109_TNNLS_2020_3047335 crossref_primary_10_1109_TGRS_2021_3071559 crossref_primary_10_1016_j_eswa_2023_122695 crossref_primary_10_1007_s11042_024_19303_8 crossref_primary_10_1007_s11424_021_1038_8 crossref_primary_10_1016_j_geoen_2025_213762 crossref_primary_10_1038_s41598_022_22506_4 crossref_primary_10_1016_j_jag_2022_102690 crossref_primary_10_1007_s41870_022_00987_w crossref_primary_10_1007_s00330_023_09668_z crossref_primary_10_1109_TCYB_2020_3016972 crossref_primary_10_1109_ACCESS_2023_3279732 crossref_primary_10_1007_s41870_025_02459_3 crossref_primary_10_1016_j_neunet_2023_04_027 crossref_primary_10_1109_JBHI_2021_3102612 crossref_primary_10_1109_TNNLS_2021_3051721 crossref_primary_10_1016_j_asoc_2022_109271 crossref_primary_10_1016_j_asoc_2023_110810 crossref_primary_10_1186_s40537_021_00414_0 crossref_primary_10_1002_acm2_70061 crossref_primary_10_1016_j_media_2021_102272 crossref_primary_10_18466_cbayarfbe_1513945 crossref_primary_10_1080_07038992_2021_1915756 crossref_primary_10_1109_TNNLS_2022_3197156 crossref_primary_10_1016_j_eswa_2024_123783 crossref_primary_10_1016_j_compbiolchem_2023_107929 crossref_primary_10_1016_j_neunet_2023_07_030 crossref_primary_10_1016_j_oooo_2024_07_010 crossref_primary_10_1016_j_ins_2021_11_058 crossref_primary_10_1016_j_patcog_2022_108564 crossref_primary_10_1016_j_engappai_2020_103500 crossref_primary_10_1002_cem_3515 crossref_primary_10_1080_0952813X_2023_2166130 crossref_primary_10_1016_j_neunet_2023_02_017 crossref_primary_10_1007_s10489_020_01637_z crossref_primary_10_1016_j_asoc_2019_02_028 crossref_primary_10_1016_j_imu_2024_101575 crossref_primary_10_1109_JBHI_2023_3325540 crossref_primary_10_1061__ASCE_CP_1943_5487_0001018 crossref_primary_10_3390_rs13081420 crossref_primary_10_1109_TASLP_2022_3221008 |
Cites_doi | 10.1016/j.patcog.2011.02.019 10.1561/1500000016 10.1109/WACV.2017.64 10.1109/CVPR.2005.177 10.1023/A:1012406528296 10.1145/1014052.1014067 10.1016/j.neunet.2007.12.031 10.1109/IJCNN.2016.7727770 10.1109/ICCV.2015.127 10.1109/TKDE.2011.231 10.1109/CVPR.2015.7298682 10.1109/ISM.2015.126 10.1109/CVPR.2013.319 10.1016/j.knosys.2015.10.012 10.1016/j.knosys.2015.05.027 10.3233/IDA-2002-6504 10.1016/j.inffus.2013.04.006 10.1109/CVPR.2016.89 10.1109/CVPR.2017.243 10.1109/CVPR.2015.7299169 10.1109/ICCV.2015.425 10.1007/3-540-45372-5_58 10.1016/S0031-3203(02)00257-1 10.1109/TNN.2010.2042730 10.1145/2578726.2578732 10.1109/CVPR.2014.212 10.1109/TPAMI.2013.50 10.1613/jair.953 10.1109/TKDE.2008.239 10.1007/s11263-015-0816-y 10.1007/11875581_56 10.1145/1007730.1007734 10.1109/CIDM.2011.5949434 10.1109/TSMCB.2008.2002909 10.1145/502512.502540 10.1109/CVPR.2014.180 10.1109/CVPR.2016.90 10.1080/10659360600787700 10.1007/BF00153762 10.1145/1137856.1137880 10.1016/j.dss.2009.11.008 10.1109/CIC.2015.40 10.1109/CVPR.2016.434 10.1109/CVPR.2016.580 10.1109/CVPRW.2014.131 10.1016/j.nonrwa.2005.04.006 10.1109/TKDE.2006.17 10.1109/TPAMI.2009.167 10.1007/s11263-014-0733-5 10.1109/CVPR.2005.202 10.1109/ICCV.2015.320 10.1007/s13748-016-0094-0 10.1007/978-1-4471-6296-4 10.1109/CVPR.2014.222 10.1109/5.726791 10.1109/TKDE.2005.95 10.1109/TNNLS.2013.2246188 10.1109/CVPR.2016.124 10.1109/ICDM.2003.1250950 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2018.2832629 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 1381 |
ExternalDocumentID | 29993438 10_1109_TPAMI_2018_2832629 8353718 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 10.13039/501100004543 – fundername: Society Newton Advanced Fellowship Programme grantid: NA150459 – fundername: Developing and Commercialising Intelligent Video Analytics Solutions for Public Safety grantid: 98111-571149 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION RIG 5VS 9M8 AAYOK ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM RNI RZB VH1 XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c417t-41c7c7ebd5a69e7ffd442dc58430dc360298df363172c00ff9dfd0f0bf7730753 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Thu Jul 10 18:31:17 EDT 2025 Mon Jun 30 04:46:44 EDT 2025 Thu Apr 03 06:58:40 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Tue Jul 01 03:18:23 EDT 2025 Wed Aug 27 02:46:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-41c7c7ebd5a69e7ffd442dc58430dc360298df363172c00ff9dfd0f0bf7730753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3376-5654 0000-0001-8156-2299 0000-0002-9284-2955 |
PMID | 29993438 |
PQID | 2220395395 |
PQPubID | 85458 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TPAMI_2018_2832629 pubmed_primary_29993438 proquest_miscellaneous_2068343093 ieee_primary_8353718 crossref_citationtrail_10_1109_TPAMI_2018_2832629 proquest_journals_2220395395 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref12 ref59 ref15 ref58 wozniak (ref55) 2013; 519 ref14 ref53 ref11 ref54 ustinova (ref71) 2016 khan (ref62) 2018 ref17 chen (ref44) 2004 ref16 ref19 ref18 provost (ref51) 2000 ref50 griffin (ref35) 2007 ref45 ref48 ref47 ref41 ref43 vedaldi (ref80) 2008 ref49 ref7 ref9 ref4 ref3 ref6 ting (ref8) 2000 japkowicz (ref42) 2000 ref82 krizhevsky (ref34) 2009 lin (ref31) 2014 ref83 akbani (ref10) 2004 ando (ref79) 2005; 6 ref78 ref37 krizhevsky (ref22) 2012 ref36 ref75 ref74 ref30 ioffe (ref76) 2015 ref33 ref32 wang (ref56) 2012 drummond (ref5) 2003 ref2 ref1 ref39 jeatrakul (ref25) 2010 ref38 han (ref40) 2005 shen (ref63) 2015 ref70 ref73 ref72 ref68 simonyan (ref20) 2015 ref24 krawczyk (ref52) 2015 ref67 ref23 ref26 ref69 ref64 ref66 ref65 ref21 sun (ref77) 2014 ref28 ref27 ref29 liu (ref46) 2000 ref60 lin (ref81) 2014 ref61 |
References_xml | – start-page: 10 year: 2000 ident: ref42 article-title: Learning from imbalanced data sets: A comparison of various strategies publication-title: Proc Conf Artif Intell – ident: ref60 doi: 10.1016/j.patcog.2011.02.019 – ident: ref73 doi: 10.1561/1500000016 – ident: ref37 doi: 10.1109/WACV.2017.64 – ident: ref83 doi: 10.1109/CVPR.2005.177 – ident: ref45 doi: 10.1023/A:1012406528296 – ident: ref78 doi: 10.1145/1014052.1014067 – ident: ref28 doi: 10.1016/j.neunet.2007.12.031 – volume: 519 year: 2013 ident: ref55 publication-title: Hybrid Classifiers Methods of Data Knowledge and Classifier Combination – start-page: 1 year: 2003 ident: ref5 article-title: C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling publication-title: Proc Int Conf Mach Learn – start-page: 1988 year: 2014 ident: ref77 article-title: Deep learning face representation by joint identification-verification publication-title: Proc 27th Int Conf Neural Inf Process Syst – ident: ref64 doi: 10.1109/IJCNN.2016.7727770 – year: 2015 ident: ref76 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: Proc Int Conf Mach Learn – ident: ref29 doi: 10.1109/ICCV.2015.127 – ident: ref4 doi: 10.1109/TKDE.2011.231 – ident: ref39 doi: 10.1109/CVPR.2015.7298682 – ident: ref66 doi: 10.1109/ISM.2015.126 – start-page: 1097 year: 2012 ident: ref22 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc 25th Int Conf Neural Inf Process Syst – ident: ref16 doi: 10.1109/CVPR.2013.319 – start-page: 152 year: 2010 ident: ref25 article-title: Classification of imbalanced data by combining the complementary neural network and smote algorithm publication-title: Proc Int Conf Neural Inf Process – ident: ref53 doi: 10.1016/j.knosys.2015.10.012 – ident: ref19 doi: 10.1016/j.knosys.2015.05.027 – ident: ref1 doi: 10.3233/IDA-2002-6504 – ident: ref57 doi: 10.1016/j.inffus.2013.04.006 – ident: ref68 doi: 10.1109/CVPR.2016.89 – ident: ref82 doi: 10.1109/CVPR.2017.243 – ident: ref11 doi: 10.1109/CVPR.2015.7299169 – start-page: 1 year: 2018 ident: ref62 article-title: Cost-sensitive learning of deep feature representations from imbalanced data publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref12 doi: 10.1109/ICCV.2015.425 – start-page: 504 year: 2000 ident: ref46 article-title: Improving an association rule based classifier publication-title: Proc Conf Principles Knowledge Discovery Data Mining doi: 10.1007/3-540-45372-5_58 – ident: ref43 doi: 10.1016/S0031-3203(02)00257-1 – year: 2014 ident: ref81 article-title: Network in network publication-title: Proc Int Conf Learn Representations – ident: ref27 doi: 10.1109/TNN.2010.2042730 – year: 2009 ident: ref34 article-title: Learning multiple layers of features from tiny images – start-page: 740 year: 2014 ident: ref31 article-title: Microsoft COCO: Common objects in context publication-title: Proc Eur Conf Comput Vis – ident: ref15 doi: 10.1145/2578726.2578732 – ident: ref18 doi: 10.1109/CVPR.2014.212 – ident: ref23 doi: 10.1109/TPAMI.2013.50 – year: 2008 ident: ref80 article-title: VLFeat: An open and portable library of computer vision algorithms – ident: ref6 doi: 10.1613/jair.953 – ident: ref3 doi: 10.1109/TKDE.2008.239 – ident: ref32 doi: 10.1007/s11263-015-0816-y – year: 2007 ident: ref35 article-title: Caltech-256 object category dataset – ident: ref26 doi: 10.1007/11875581_56 – start-page: 1 year: 2000 ident: ref51 article-title: Machine learning from imbalanced data sets 101 publication-title: Proc Conf Artif Intell – ident: ref2 doi: 10.1145/1007730.1007734 – ident: ref7 doi: 10.1109/CIDM.2011.5949434 – start-page: 4177 year: 2016 ident: ref71 article-title: Learning deep embeddings with histogram loss publication-title: Proc 30th Int Conf Neural Inf Process Syst – ident: ref9 doi: 10.1109/TSMCB.2008.2002909 – ident: ref47 doi: 10.1145/502512.502540 – start-page: 983 year: 2000 ident: ref8 article-title: A comparative study of cost-sensitive boosting algorithms publication-title: Proc 17th Int Conf Mach Learn – ident: ref72 doi: 10.1109/CVPR.2014.180 – year: 2015 ident: ref20 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc Int Conf Learn Representations – ident: ref36 doi: 10.1109/CVPR.2016.90 – ident: ref54 doi: 10.1080/10659360600787700 – ident: ref48 doi: 10.1007/BF00153762 – year: 2004 ident: ref44 article-title: Using random forest to learn imbalanced data – ident: ref38 doi: 10.1145/1137856.1137880 – ident: ref58 doi: 10.1016/j.dss.2009.11.008 – start-page: 1 year: 2012 ident: ref56 article-title: Applying adaptive over-sampling technique based on data density and cost-sensitive svm to imbalanced learning publication-title: Proc Int Joint Conf Neural Netw – ident: ref65 doi: 10.1109/CIC.2015.40 – ident: ref69 doi: 10.1109/CVPR.2016.434 – ident: ref17 doi: 10.1109/CVPR.2016.580 – ident: ref21 doi: 10.1109/CVPRW.2014.131 – ident: ref59 doi: 10.1016/j.nonrwa.2005.04.006 – start-page: 878 year: 2005 ident: ref40 article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning publication-title: Proc Int Conf Intell Comput – ident: ref24 doi: 10.1109/TKDE.2006.17 – start-page: 45 year: 2015 ident: ref52 article-title: Cost-sensitive neural network with ROC-based moving threshold for imbalanced classification publication-title: Proc 5th Int Conf Intell Data Eng Autom Learn – volume: 6 start-page: 1817 year: 2005 ident: ref79 article-title: A framework for learning predictive structures from multiple tasks and unlabeled data publication-title: J Mach Learn Res – ident: ref67 doi: 10.1109/TPAMI.2009.167 – ident: ref33 doi: 10.1007/s11263-014-0733-5 – ident: ref74 doi: 10.1109/CVPR.2005.202 – ident: ref70 doi: 10.1109/ICCV.2015.320 – ident: ref13 doi: 10.1007/s13748-016-0094-0 – ident: ref14 doi: 10.1007/978-1-4471-6296-4 – ident: ref41 doi: 10.1109/CVPR.2014.222 – ident: ref75 doi: 10.1109/5.726791 – ident: ref49 doi: 10.1109/TKDE.2005.95 – ident: ref61 doi: 10.1109/TNNLS.2013.2246188 – start-page: 3982 year: 2015 ident: ref63 article-title: DeepContour: A deep convolutional feature learned by positive-sharing loss for contour detection publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – start-page: 39 year: 2004 ident: ref10 article-title: Applying support vector machines to imbalanced datasets publication-title: Proc 15th Eur Conf Mach Learn – ident: ref30 doi: 10.1109/CVPR.2016.124 – ident: ref50 doi: 10.1109/ICDM.2003.1250950 |
SSID | ssj0014503 |
Score | 2.664442 |
Snippet | Model learning from class imbalanced training data is a long-standing and significant challenge for machine learning. In particular, existing deep learning... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1367 |
SubjectTerms | Benchmark testing Benchmarks Class imbalanced deep learning clothing attribute recognition Computational modeling Data mining Data models Deep learning facial attribute recognition hard sample mining inter-class boundary rectification Iterative methods Machine learning multi-label learning person attribute recognition Training Training data |
Title | Imbalanced Deep Learning by Minority Class Incremental Rectification |
URI | https://ieeexplore.ieee.org/document/8353718 https://www.ncbi.nlm.nih.gov/pubmed/29993438 https://www.proquest.com/docview/2220395395 https://www.proquest.com/docview/2068343093 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp3IACi2Ej8qVemuzOInjxEcERVBpEapA4hat7XGFgCyC3QP8esaOE6EKqko5RIoTO57x-I09ngfwLbO1MDov00yLIhVaZGQH60mqtEQUmjBC4Iwcn8mTS_HrqrxagB_DWRhEDMFnOPK3YS_fTs3cL5XtE1ooyJYuwiI5bt1ZrWHHQJSBBZkQDI1wciP6AzJc7V-cH4xPfRRXPfLEPDL3qULJDKtC-GMpr-ajQLDyPtYMc87xKoz71nahJjej-UyPzPNfiRz_93fWYCWCT3bQactHWMB2HVZ7YgcWx_k6LL_KUrgBR6d32gdAGrTsCPGexZysf5h-YuPrdur571hg12RkbroFR6rmt7elLq4JfoLL458XhydpJF9IjciqWSoyU5kKtS0nUmHlnBUit4bwSsGtKaRP3W5dIQl_5IZz55R1ljuuXUVGg5ygz7DUTlvcAlbm1icGxLJ2UpD7RTIQDjPUtZJljpMEsl4EjYmZyT1Bxm0TPBSumiDBxkuwiRJM4Pvwzn2Xl-OfpTd89w8lY88nsNtLuolD97EhwMQLVdKVwNfhMQ06v5MyaXE6pzJc1qQ8XBUJbHYaMny7V6ztt-vcgQ_UMtVFm-3C0uxhjnuEa2b6S1DoF3LB7ww |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB1V7QE4UGihTSlgJDihbJ3E-fCBQ8VS7dJuhdBW6i2s7TFChWxFd4XKb-Gv9L917DhRhYBbJaQcIsX5nJc3Y3s8D-BlYiqhVZrHiRJZLJRIiAerWSxVgSgUxQheM3JyXIxOxPvT_HQFfvVrYRDRJ5_hwO36uXwz10s3VLZH0UJGXBpSKA_x8gd10C7ejIdkzVdpevBu-nYUBw2BWIukXMQi0aUuUZl8VkgsrTVCpEaT28240VnhKpAbmxXkRlPNubXSWMMtV7Yk7JdOE4IIfo3ijDxtV4f1cxQi97rLFDMRp1DHpVuSw-Xe9MP-ZOzyxqqBkwIqUleclIhfZsIthLnhAb2ky9-jW-_lDtbhqvs-bXLL2WC5UAP987fSkf_rB3wA90N4zfbb_-EhrGCzAeuddAULTLYB927UYdyE4fibcimeGg0bIp6zUHX2M1OXbPKlmTuFP-b1QxkRajukSrf56LyFDaOej-DkVt7sMaw28wa3geWpcaUPMa9sIaiDSTYXFhNUlSzyFGcRJJ3Jax1qrzsJkK-174NxWXvE1A4xdUBMBK_7c87byiP_bL3pzN23DJaOYLdDVh3I6aKmkJBnMqctghf9YaIVN1c0a3C-pDa8qAisXGYRbLWI7K_dAXnnz_d8DndG08lRfTQ-PnwCd-kpZZtbtwuri-9LfEpR3EI98z8Tg0-3Db5rL8tM8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imbalanced+Deep+Learning+by+Minority+Class+Incremental+Rectification&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.date=2019-06-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=41&rft.issue=6&rft.spage=1367&rft_id=info:doi/10.1109%2FTPAMI.2018.2832629&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |