Toward null-state equations in d > 2
A bstract In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe scalar has dimension h = − 1 2 ; the corresponding linear ordinary differential equation can be recast into a schematic form x 2 u xx +...
Saved in:
Published in | The journal of high energy physics Vol. 2023; no. 11; pp. 203 - 24 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
28.11.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe scalar has dimension
h
=
−
1
2
; the corresponding linear ordinary differential equation can be recast into a schematic form
x
2
u
xx
+
u
= 0. In this paper, we make an observation that in a class of four-dimensional CFTs with a large central charge, the heavy-light scalar correlator in the near-lightcone limit obeys a similar equation,
x
3
u
xxxy
+
u
= 0, when the light scalar has dimension ∆ = –1. We focus on the multi-stress tensor sector of the theory and also discuss the corresponding equations for the cases with ∆ = –2, –3. The solutions to these linear partial differential equations in higher dimensions are shown, after a suitable change of variables, to reproduce the near-lightcone correlators previously obtained via holography and the conformal bootstrap. |
---|---|
AbstractList | In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe scalar has dimension h = −12 ; the corresponding linear ordinary differential equation can be recast into a schematic form x2uxx + u = 0. In this paper, we make an observation that in a class of four-dimensional CFTs with a large central charge, the heavy-light scalar correlator in the near-lightcone limit obeys a similar equation, x3uxxxy + u = 0, when the light scalar has dimension ∆ = –1. We focus on the multi-stress tensor sector of the theory and also discuss the corresponding equations for the cases with ∆ = –2, –3. The solutions to these linear partial differential equations in higher dimensions are shown, after a suitable change of variables, to reproduce the near-lightcone correlators previously obtained via holography and the conformal bootstrap. In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe scalar has dimension h = $$ -\frac{1}{2} $$ − 1 2 ; the corresponding linear ordinary differential equation can be recast into a schematic form x 2 u xx + u = 0. In this paper, we make an observation that in a class of four-dimensional CFTs with a large central charge, the heavy-light scalar correlator in the near-lightcone limit obeys a similar equation, x 3 u xxxy + u = 0, when the light scalar has dimension ∆ = –1. We focus on the multi-stress tensor sector of the theory and also discuss the corresponding equations for the cases with ∆ = –2, –3. The solutions to these linear partial differential equations in higher dimensions are shown, after a suitable change of variables, to reproduce the near-lightcone correlators previously obtained via holography and the conformal bootstrap. A bstract In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe scalar has dimension h = − 1 2 ; the corresponding linear ordinary differential equation can be recast into a schematic form x 2 u xx + u = 0. In this paper, we make an observation that in a class of four-dimensional CFTs with a large central charge, the heavy-light scalar correlator in the near-lightcone limit obeys a similar equation, x 3 u xxxy + u = 0, when the light scalar has dimension ∆ = –1. We focus on the multi-stress tensor sector of the theory and also discuss the corresponding equations for the cases with ∆ = –2, –3. The solutions to these linear partial differential equations in higher dimensions are shown, after a suitable change of variables, to reproduce the near-lightcone correlators previously obtained via holography and the conformal bootstrap. Abstract In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe scalar has dimension h = − 1 2 $$ -\frac{1}{2} $$ ; the corresponding linear ordinary differential equation can be recast into a schematic form x 2 u xx + u = 0. In this paper, we make an observation that in a class of four-dimensional CFTs with a large central charge, the heavy-light scalar correlator in the near-lightcone limit obeys a similar equation, x 3 u xxxy + u = 0, when the light scalar has dimension ∆ = –1. We focus on the multi-stress tensor sector of the theory and also discuss the corresponding equations for the cases with ∆ = –2, –3. The solutions to these linear partial differential equations in higher dimensions are shown, after a suitable change of variables, to reproduce the near-lightcone correlators previously obtained via holography and the conformal bootstrap. |
ArticleNumber | 203 |
Author | Huang, Kuo-Wei |
Author_xml | – sequence: 1 givenname: Kuo-Wei surname: Huang fullname: Huang, Kuo-Wei email: K-W.Huang@soton.ac.uk organization: Mathematical Sciences, University of Southampton |
BookMark | eNp1kMFLwzAUxoNMcJuevRb0oIe6lzRJk4sgY7rJQA_zHNImHR212ZIW8b-3WxVF2OXlEb7fx_e-ERrUrrYIXWK4wwDp5Hk-e8X4hgBJbgkkJ2iIgchY0FQO_uxnaBTCBgAzLGGIrlfuQ3sT1W1VxaHRjY3srtVN6eoQlXVkovuInKPTQlfBXny_Y_T2OFtN5_Hy5WkxfVjGOcVpE1OcESGIFDpjWUYJ5wWWRJOCZgYbaTmntBAi0SbrhKm0mBFgPLeZpLnBLBmjRe9rnN6orS_ftf9UTpfq8OH8WmnflHlllcSJAMKpTE1BcwBBjAFimUkTWRBGO6-r3mvr3a61oVEb1_q6i6-IkAw4T7jsVKxX5d6F4G2h8rI5XN94XVYKg9qXq_py1b7cbiQdN_nH_aQ9TkBPhE5Zr63_zXMM-QKpR4hY |
CitedBy_id | crossref_primary_10_1103_PhysRevD_111_046016 crossref_primary_10_1007_JHEP09_2024_149 |
Cites_doi | 10.1007/JHEP02(2016)020 10.1103/PhysRevD.103.L121702 10.1007/JHEP07(2020)046 10.1103/PhysRevD.59.104001 10.21468/SciPostPhys.6.6.065 10.1007/JHEP06(2018)121 10.1007/JHEP11(2019)139 10.1007/JHEP08(2015)088 10.1007/JHEP04(2019)056 10.1103/PhysRevLett.69.1849 10.1016/0550-3213(84)90052-X 10.1016/S0370-2693(98)00377-3 10.1007/JHEP07(2011)023 10.1007/JHEP02(2016)072 10.1007/JHEP04(2019)018 10.1007/JHEP01(2020)109 10.1088/1742-5468/ab900b 10.1007/JHEP09(2022)053 10.1007/JHEP07(2017)092 10.1007/JHEP07(2020)019 10.1007/JHEP05(2016)070 10.1007/JHEP12(2013)004 10.1007/JHEP10(2019)107 10.1007/JHEP05(2016)075 10.1007/JHEP08(2014)145 10.1007/JHEP07(2021)148 10.1088/1751-8121/abec16 10.1103/PhysRevD.98.125015 10.1007/JHEP05(2015)020 10.1007/JHEP08(2019)032 10.1007/JHEP11(2020)060 10.1007/JHEP06(2017)117 10.1007/JHEP12(2017)013 10.4310/ATMP.1998.v2.n2.a2 10.21468/SciPostPhys.14.5.116 10.1007/JHEP06(2022)162 10.1007/JHEP07(2020)074 10.1007/JHEP05(2021)015 10.1007/s00220-018-3274-x 10.1007/JHEP07(2015)131 10.1007/JHEP01(2020)076 10.1007/JHEP10(2017)040 10.1007/JHEP05(2016)109 10.1088/1126-6708/2007/11/019 10.1007/JHEP08(2019)063 10.1007/BF01022967 10.1007/JHEP04(2019)022 10.1007/JHEP05(2016)099 10.1007/s00220-014-2272-x 10.1007/JHEP01(2019)025 10.1016/0550-3213(94)00408-7 10.1007/JHEP02(2019)079 10.1007/JHEP11(2019)102 10.1007/JHEP07(2018)157 10.1007/JHEP03(2019)068 10.1007/JHEP12(2011)071 10.1007/JHEP12(2017)049 10.1007/JHEP11(2018)102 10.1007/JHEP05(2015)017 10.1103/PhysRevD.102.021701 10.1007/JHEP07(2016)123 10.1140/epjc/s10052-017-5492-3 10.1007/JHEP05(2016)069 10.4310/ATMP.1998.v2.n2.a1 10.1007/JHEP05(2019)212 10.1007/JHEP11(2013)140 10.1007/JHEP11(2020)096 10.1007/s00220-023-04767-w 10.21468/SciPostPhys.7.1.003 10.1007/JHEP09(2017)102 10.1007/JHEP05(2016)127 10.1007/JHEP08(2018)161 10.1016/j.nuclphysb.2020.115018 10.1007/JHEP11(2021)164 10.1140/epjc/s10052-018-6522-5 10.1007/JHEP03(2017)167 10.1103/PhysRevLett.115.131603 10.1007/JHEP10(2016)110 10.1088/1126-6708/2009/10/079 10.1007/JHEP11(2020)010 10.1007/JHEP04(2023)143 10.1007/JHEP02(2022)140 10.1007/JHEP03(2019)096 10.1007/JHEP07(2018)085 10.1007/JHEP09(2017)078 10.1007/JHEP05(2021)029 10.1007/BF01214585 10.1007/JHEP05(2023)166 10.1103/PhysRevD.95.065011 10.1007/JHEP08(2019)138 10.1007/JHEP09(2021)205 10.1007/JHEP08(2020)002 10.1142/9789814304634_0015 10.1007/JHEP02(2015)171 10.1103/PhysRevD.100.061701 10.1088/1751-8121/aa7eaa 10.1007/JHEP05(2021)033 10.1007/JHEP11(2015)200 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1007/JHEP11(2023)203 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_9138026497df4c0082dd02e5d739f254 10_1007_JHEP11_2023_203 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c417t-41b288298ab5bb4266f192a2f4bd1d9e6644f883adbb2879e152056ceb94cd153 |
IEDL.DBID | C6C |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:08:30 EDT 2025 Sat Jul 26 00:38:46 EDT 2025 Tue Jul 01 01:02:02 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Fri Feb 21 02:41:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Scale and Conformal Symmetries AdS-CFT Correspondence Field Theories in Higher Dimensions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-41b288298ab5bb4266f192a2f4bd1d9e6644f883adbb2879e152056ceb94cd153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/JHEP11(2023)203 |
PQID | 2895066369 |
PQPubID | 2034718 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9138026497df4c0082dd02e5d739f254 proquest_journals_2895066369 crossref_citationtrail_10_1007_JHEP11_2023_203 crossref_primary_10_1007_JHEP11_2023_203 springer_journals_10_1007_JHEP11_2023_203 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-28 |
PublicationDateYYYYMMDD | 2023-11-28 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Afkhami-JeddiNKunduSTajdiniAA Bound on Massive Higher Spin ParticlesJHEP2019040562019JHEP...04..056A395541310.1007/JHEP04(2019)056[arXiv:1811.01952] [INSPIRE] LiDMeltzerDPolandDConformal Bootstrap in the Regge LimitJHEP2017120132017JHEP...12..013L375788310.1007/JHEP12(2017)013[arXiv:1705.03453] [INSPIRE] BeemCLemosMLiendoPPeelaersWRastelliLvan ReesBCInfinite Chiral Symmetry in Four DimensionsCommun. Math. Phys.201533613592015CMaPh.336.1359B332414710.1007/s00220-014-2272-x[arXiv:1312.5344] [INSPIRE] FitzpatrickALKaplanJWaltersMTWangJHawking from CatalanJHEP2016050692016JHEP...05..069F352178810.1007/JHEP05(2016)069[arXiv:1510.00014] [INSPIRE] NguyenKReparametrization modes in 2d CFT and the effective theory of stress tensor exchangesJHEP2021050292021JHEP...05..029N430177410.1007/JHEP05(2021)029[arXiv:2101.08800] [INSPIRE] BeşkenMDe BoerJMathysGOn local and integrated stress-tensor commutatorsJHEP2021071482021JHEP...07..148B431652310.1007/JHEP07(2021)148[arXiv:2012.15724] [INSPIRE] KusukiYLight Cone Bootstrap in General 2D CFTs and Entanglement from Light Cone SingularityJHEP2019010252019JHEP...01..025K393307610.1007/JHEP01(2019)025[arXiv:1810.01335] [INSPIRE] CasiniHTesteETorrobaGModular Hamiltonians on the null plane and the Markov property of the vacuum stateJ. Phys. A201750368810710.1088/1751-8121/aa7eaa[arXiv:1703.10656] [INSPIRE] KarlssonRParnachevATadićPThermalization in large-N CFTsJHEP2021092052021JHEP...09..205K432711110.1007/JHEP09(2021)205[arXiv:2102.04953] [INSPIRE] GonzoRPokrakaALight-ray operators, detectors and gravitational event shapesJHEP2021050152021JHEP...05..015G430178810.1007/JHEP05(2021)015[arXiv:2012.01406] [INSPIRE] Simmons-DuffinDStanfordDWittenEA spacetime derivation of the Lorentzian OPE inversion formulaJHEP2018070852018JHEP...07..085S386196810.1007/JHEP07(2018)085[arXiv:1711.03816] [INSPIRE] KravchukPSimmons-DuffinDLight-ray operators in conformal field theoryJHEP2018111022018JHEP...11..102K390847410.1007/JHEP11(2018)102[arXiv:1805.00098] [INSPIRE] AnousTHartmanTRovaiASonnerJBlack Hole Collapse in the 1/c ExpansionJHEP2016071232016JHEP...07..123A355021810.1007/JHEP07(2016)123[arXiv:1603.04856] [INSPIRE] Caron-HuotSAnalyticity in Spin in Conformal TheoriesJHEP2017090782017JHEP...09..078C371053610.1007/JHEP09(2017)078[arXiv:1703.00278] [INSPIRE] LiY-ZHeavy-light Bootstrap from Lorentzian Inversion FormulaJHEP2020070462020JHEP...07..046L413805010.1007/JHEP07(2020)046[arXiv:1910.06357] [INSPIRE] BeemCPeelaersWRastelliLvan ReesBCChiral algebras of class SJHEP2015050202015JHEP...05..020B335937710.1007/JHEP05(2015)020[arXiv:1408.6522] [INSPIRE] KorchemskyGPZhiboedovAOn the light-ray algebra in conformal field theoriesJHEP2022021402022JHEP...02..140K440730510.1007/JHEP02(2022)140[arXiv:2109.13269] [INSPIRE] DodelsonMGrassiAIossaCPanea LichtigDZhiboedovAHolographic thermal correlators from supersymmetric instantonsSciPost Phys.2023141162023ScPP...14..116D459568010.21468/SciPostPhys.14.5.116[arXiv:2206.07720] [INSPIRE] MaloneyAMaxfieldHNgGSA conformal block Farey tailJHEP2017061172017JHEP...06..117M368184210.1007/JHEP06(2017)117[arXiv:1609.02165] [INSPIRE] NguyenKVirasoro blocks and the reparametrization formalismJHEP2023041432023JHEP...04..143N458445210.1007/JHEP04(2023)143[arXiv:2212.02527] [INSPIRE] CotlerJJensenKA theory of reparameterizations for AdS3gravityJHEP2019020792019JHEP...02..079C10.1007/JHEP02(2019)079[arXiv:1808.03263] [INSPIRE] BelavinVHaraokaYSantachiaraRRigid Fuchsian systems in 2-dimensional conformal field theoriesCommun. Math. Phys.2019365172019CMaPh.365...17B390082610.1007/s00220-018-3274-x[arXiv:1711.04361] [INSPIRE] HuangK-Wd > 2 stress-tensor operator product expansion near a linePhys. Rev. D20211032021PhRvD.103l1702H428656510.1103/PhysRevD.103.L121702[arXiv:2103.09930] [INSPIRE] BeşkenMDattaSKrausPSemi-classical Virasoro blocks: proof of exponentiationJHEP2020011092020JHEP...01..109B408821010.1007/JHEP01(2020)109[arXiv:1910.04169] [INSPIRE] BenjaminNCollierSMaloneyAMeruliyaVResurgence, conformal blocks, and the sum over geometries in quantum gravityJHEP2023051662023JHEP...05..166B459425110.1007/JHEP05(2023)166[arXiv:2302.12851] [INSPIRE] BombiniAGiustoSRussoRA note on the Virasoro blocks at order 1/cEur. Phys. J. C20197932019EPJC...79....3B10.1140/epjc/s10052-018-6522-5[arXiv:1807.07886] [INSPIRE] RobertsDAStanfordDTwo-dimensional conformal field theory and the butterfly effectPhys. Rev. Lett.20151152015PhRvL.115m1603R10.1103/PhysRevLett.115.131603[arXiv:1412.5123] [INSPIRE] FitzpatrickALHuangK-WMeltzerDPerlmutterESimmons-DuffinDModel-dependence of minimal-twist OPEs in d > 2 holographic CFTsJHEP2020110602020JHEP...11..060F420422510.1007/JHEP11(2020)060[arXiv:2007.07382] [INSPIRE] HijanoEKrausPPerlmutterESnivelyRSemiclassical Virasoro blocks from AdS3gravityJHEP2015120772015JHEP...12..077H[arXiv:1508.04987] [INSPIRE] FitzpatrickALHuangK-WLiDProbing universalities in d > 2 CFTs: from black holes to shockwavesJHEP2019111392019JHEP...11..139F405880610.1007/JHEP11(2019)139[arXiv:1907.10810] [INSPIRE] HuangK-WApproximate symmetries in d = 4 CFTs with an Einstein gravity dualJHEP2022090532022JHEP...09..053H447845910.1007/JHEP09(2022)053[arXiv:2202.09998] [INSPIRE] AsplundCTBernamontiAGalliFHartmanTHolographic Entanglement Entropy from 2d CFT: Heavy States and Local QuenchesJHEP2015021712015JHEP...02..171A332128210.1007/JHEP02(2015)171[arXiv:1410.1392] [INSPIRE] Afkhami-JeddiNHartmanTKunduSTajdiniAEinstein gravity 3-point functions from conformal field theoryJHEP2017120492017JHEP...12..049A375784710.1007/JHEP12(2017)049[arXiv:1610.09378] [INSPIRE] WittenEAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W163301210.4310/ATMP.1998.v2.n2.a2[hep-th/9802150] [INSPIRE] HijanoEKrausPSnivelyRWorldline approach to semi-classical conformal blocksJHEP2015071312015JHEP...07..131H338308110.1007/JHEP07(2015)131[arXiv:1501.02260] [INSPIRE] CamanhoXOEdelsteinJDMaldacenaJMZhiboedovACausality Constraints on Corrections to the Graviton Three-Point CouplingJHEP2016020202016JHEP...02..020C349124910.1007/JHEP02(2016)020[arXiv:1407.5597] [INSPIRE] ChoMCollierSYinXRecursive Representations of Arbitrary Virasoro Conformal BlocksJHEP2019040182019JHEP...04..018C395545110.1007/JHEP04(2019)018[arXiv:1703.09805] [INSPIRE] HeemskerkIPenedonesJPolchinskiJSullyJHolography from Conformal Field TheoryJHEP2009100792009JHEP...10..079H260743610.1088/1126-6708/2009/10/079[arXiv:0907.0151] [INSPIRE] BeccariaMFachechiAMacoriniGVirasoro vacuum block at next-to-leading order in the heavy-light limitJHEP2016020722016JHEP...02..072B349119710.1007/JHEP02(2016)072[arXiv:1511.05452] [INSPIRE] AnousTHaehlFMOn the Virasoro six-point identity block and chaosJHEP2020080022020JHEP...08..002A419022210.1007/JHEP08(2020)002[arXiv:2005.06440] [INSPIRE] C. Beem, L. Rastelli and B.C. van Rees, W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE]. HuangK-WStress-tensor commutators in conformal field theories near the lightconePhys. Rev. D20191002019PhRvD.100f1701H402583610.1103/PhysRevD.100.061701[arXiv:1907.00599] [INSPIRE] LiY-ZZhangH-YMore on heavy-light bootstrap up to double-stress-tensorJHEP2020100552020JHEP...10..055L4204050[arXiv:2004.04758] [INSPIRE] N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, in the proceedings of the 16th International Congress on Mathematical Physics (ICMP09), Prague, Czech Republic, 3–8 August 2009, pp. 265–289 [https://doi.org/10.1142/9789814304634_0015] [arXiv:0908.4052] [INSPIRE]. MaldacenaJMThe Large N limit of superconformal field theories and supergravityAdv. Theor. Math. Phys.199822311998AdTMP...2..231M163301610.4310/ATMP.1998.v2.n2.a1[hep-th/9711200] [INSPIRE] M. Kulaxizi, G.S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys.6 (2019) 065 [arXiv:1812.03120] [INSPIRE]. CollierSGobeilYMaxfieldHPerlmutterEQuantum Regge Trajectories and the Virasoro Analytic BootstrapJHEP2019052122019JHEP...05..212C397343710.1007/JHEP05(2019)212[arXiv:1811.05710] [INSPIRE] FitzpatrickALKaplanJWaltersMTUniversality of Long-Distance AdS Physics from the CFT BootstrapJHEP2014081452014JHEP...08..145F10.1007/JHEP08(2014)145[arXiv:1403.6829] [INSPIRE] FitzpatrickALKaplanJWaltersMTVirasoro Conformal Blocks and Thermality from Classical Background FieldsJHEP2015112002015JHEP...11..200F345487210.1007/JHEP11(2015)200[arXiv:1501.05315] [INSPIRE] H. Chen, A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Degenerate Operators and the 1/c Expansion: Lorentzian Resummations, High Order Computations, and Super-Virasoro Blocks, JHEP03 (2017) 167 [arXiv:1606.02659] [INSPIRE]. BelinAHofmanDMMathysGWaltersMTOn the stress tensor light-ray operator algebraJHEP2021050332021JHEP...05..033B430177010.1007/JHEP05(2021)033[arXiv:2011.13862] [INSPIRE] BombiniAGallianiAGiustoSMoscatoERussoRUnitary 4-point correlators from classical geometriesEur. Phys. J. C20187882018EPJC...78....8B10.1140/epjc/s10052-017-5492-3[arXiv:1710.06820] [INSPIRE] KarlssonRKulaxiziMParnachevATadićPLeading Multi-Stress Tensors and Conformal BootstrapJHEP2020010762020JHEP...01..076K408824310.1007/JHEP01(2020)076[arXiv:1909.05775] [INSPIRE] CollierSMaloneyAMaxfieldHTsiaresIUniversal dynamics of heavy operators in CFT2JHEP2020070742020JHEP...07..074C10.1007/JHEP07(2020)074[arXiv:1912.00222] [INSPIRE] FitzpatrickALKaplanJA Quantum Correction To ChaosJHEP2016050702016JHEP...05..070F352178910.1007/JHEP05(2016)070[arXiv:1601.06164] [INSPIRE] AldayLFMaldacenaJMComments on operators with large spinJHEP2007110192007JHEP...11..019A236213010.1088/1126-6708/2007/11/019[arXiv:0708.0672] [INSPIRE] B. Chen, J.-q. Wu and J.-j. Zhang, Holographic Description of 2D Conformal Block in Semi-classical Limit, JHEP10 (2016) 110 XO Camanho (22278_CR55) 2016; 02 R Karlsson (22278_CR84) 2021; 09 22278_CR86 DA Roberts (22278_CR12) 2015; 115 D Li (22278_CR60) 2017; 12 E Keski-Vakkuri (22278_CR70) 1999; 59 M Beşken (22278_CR43) 2020; 2006 JM Maldacena (22278_CR66) 1998; 2 GP Korchemsky (22278_CR94) 2022; 02 AL Fitzpatrick (22278_CR20) 2016; 05 S Collier (22278_CR37) 2019; 05 K-W Huang (22278_CR88) 2019; 100 22278_CR101 22278_CR103 T Hartman (22278_CR56) 2016; 05 22278_CR98 M Beccaria (22278_CR18) 2016; 02 C-M Chang (22278_CR39) 2019; 03 E Witten (22278_CR68) 1998; 2 D Harlow (22278_CR8) 2011; 12 D Das (22278_CR49) 2020; 11 Z Komargodski (22278_CR57) 2017; 95 I Heemskerk (22278_CR53) 2009; 10 SS Gubser (22278_CR67) 1998; 428 Y-Z Li (22278_CR81) 2020; 07 K-W Huang (22278_CR95) 2020; 102 FM Haehl (22278_CR44) 2019; 11 K Alkalaev (22278_CR47) 2020; 956 C Beem (22278_CR97) 2015; 336 22278_CR24 E Hijano (22278_CR16) 2015; 12 22278_CR25 T Anous (22278_CR41) 2019; 7 D Simmons-Duffin (22278_CR80) 2018; 07 A Parnachev (22278_CR83) 2021; 54 AL Fitzpatrick (22278_CR23) 2016; 05 A Bombini (22278_CR34) 2019; 79 S Caron-Huot (22278_CR65) 2021; 11 AL Fitzpatrick (22278_CR71) 2019; 08 S Giusto (22278_CR40) 2019; 03 M Beşken (22278_CR93) 2021; 07 V Belavin (22278_CR102) 2019; 365 J Cotler (22278_CR35) 2019; 02 H Chen (22278_CR28) 2017; 09 Y Kusuki (22278_CR36) 2019; 01 CT Asplund (22278_CR11) 2015; 02 R Karlsson (22278_CR75) 2020; 01 AL Fitzpatrick (22278_CR10) 2014; 08 K Nguyen (22278_CR51) 2023; 04 AL Fitzpatrick (22278_CR19) 2016; 05 M Dodelson (22278_CR85) 2023; 14 K-W Huang (22278_CR77) 2021; 103 N Afkhami-Jeddi (22278_CR58) 2017; 12 M Beşken (22278_CR45) 2020; 01 AL Fitzpatrick (22278_CR17) 2016; 05 22278_CR38 Z Komargodski (22278_CR3) 2013; 11 H Casini (22278_CR87) 2017; 50 A Johansen (22278_CR100) 1995; 436 E Hijano (22278_CR13) 2015; 07 R Karlsson (22278_CR76) 2020; 07 D Meltzer (22278_CR61) 2018; 07 C Beem (22278_CR99) 2015; 05 T Anous (22278_CR48) 2020; 08 A Galliani (22278_CR31) 2017; 10 T Anous (22278_CR22) 2016; 07 AL Fitzpatrick (22278_CR27) 2017; 07 AL Fitzpatrick (22278_CR54) 2011; 07 A Belin (22278_CR91) 2021; 05 22278_CR59 N Benjamin (22278_CR52) 2023; 05 AL Fitzpatrick (22278_CR14) 2015; 11 A Bombini (22278_CR32) 2018; 78 K Nguyen (22278_CR50) 2021; 05 M Cho (22278_CR30) 2019; 04 C Córdova (22278_CR90) 2018; 98 M Banados (22278_CR69) 1992; 69 N Afkhami-Jeddi (22278_CR62) 2019; 04 22278_CR64 A Belin (22278_CR63) 2019; 08 K-W Huang (22278_CR96) 2022; 09 22278_CR6 P Banerjee (22278_CR21) 2016; 05 LF Alday (22278_CR4) 2007; 11 22278_CR9 22278_CR7 AL Fitzpatrick (22278_CR72) 2019; 11 22278_CR1 E Perlmutter (22278_CR15) 2015; 08 AL Fitzpatrick (22278_CR73) 2020; 11 AL Fitzpatrick (22278_CR2) 2013; 12 S Pal (22278_CR5) 2023; 402 22278_CR74 S Caron-Huot (22278_CR79) 2017; 09 P Kravchuk (22278_CR89) 2018; 11 22278_CR78 S Collier (22278_CR46) 2020; 07 R Gonzo (22278_CR92) 2021; 05 Y Kusuki (22278_CR33) 2018; 08 Y Kusuki (22278_CR42) 2019; 08 Y-Z Li (22278_CR82) 2020; 10 M Cho (22278_CR29) 2019; 04 A Maloney (22278_CR26) 2017; 06 |
References_xml | – reference: M. Kulaxizi, G.S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys.6 (2019) 065 [arXiv:1812.03120] [INSPIRE]. – reference: Afkhami-JeddiNHartmanTKunduSTajdiniAEinstein gravity 3-point functions from conformal field theoryJHEP2017120492017JHEP...12..049A375784710.1007/JHEP12(2017)049[arXiv:1610.09378] [INSPIRE] – reference: NguyenKVirasoro blocks and the reparametrization formalismJHEP2023041432023JHEP...04..143N458445210.1007/JHEP04(2023)143[arXiv:2212.02527] [INSPIRE] – reference: AsplundCTBernamontiAGalliFHartmanTHolographic Entanglement Entropy from 2d CFT: Heavy States and Local QuenchesJHEP2015021712015JHEP...02..171A332128210.1007/JHEP02(2015)171[arXiv:1410.1392] [INSPIRE] – reference: LiY-ZZhangH-YMore on heavy-light bootstrap up to double-stress-tensorJHEP2020100552020JHEP...10..055L4204050[arXiv:2004.04758] [INSPIRE] – reference: ChangC-MRamirezDMRangamaniMSpinning constraints on chaotic large c CFTsJHEP201903068395119810.1007/JHEP03(2019)068[arXiv:1812.05585] [INSPIRE] – reference: CasiniHTesteETorrobaGModular Hamiltonians on the null plane and the Markov property of the vacuum stateJ. Phys. A201750368810710.1088/1751-8121/aa7eaa[arXiv:1703.10656] [INSPIRE] – reference: HijanoEKrausPSnivelyRWorldline approach to semi-classical conformal blocksJHEP2015071312015JHEP...07..131H338308110.1007/JHEP07(2015)131[arXiv:1501.02260] [INSPIRE] – reference: KomargodskiZKulaxiziMParnachevAZhiboedovAConformal Field Theories and Deep Inelastic ScatteringPhys. Rev. D2017952017PhRvD..95f5011K379028510.1103/PhysRevD.95.065011[arXiv:1601.05453] [INSPIRE] – reference: M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk Phase Shift, CFT Regge Limit and Einstein Gravity, JHEP06 (2018) 121 [arXiv:1705.02934] [INSPIRE]. – reference: AnousTSonnerJPhases of scrambling in eigenstatesSciPost Phys.201970032019ScPP....7....3A413472010.21468/SciPostPhys.7.1.003[arXiv:1903.03143] [INSPIRE] – reference: MeltzerDPerlmutterEBeyond a = c: gravitational couplings to matter and the stress tensor OPEJHEP2018071572018JHEP...07..157M385856610.1007/JHEP07(2018)157[arXiv:1712.04861] [INSPIRE] – reference: CollierSMaloneyAMaxfieldHTsiaresIUniversal dynamics of heavy operators in CFT2JHEP2020070742020JHEP...07..074C10.1007/JHEP07(2020)074[arXiv:1912.00222] [INSPIRE] – reference: HeemskerkIPenedonesJPolchinskiJSullyJHolography from Conformal Field TheoryJHEP2009100792009JHEP...10..079H260743610.1088/1126-6708/2009/10/079[arXiv:0907.0151] [INSPIRE] – reference: HartmanTJainSKunduSCausality Constraints in Conformal Field TheoryJHEP2016050992016JHEP...05..099H10.1007/JHEP05(2016)099[arXiv:1509.00014] [INSPIRE] – reference: KusukiYMiyajiMEntanglement Entropy, OTOC and Bootstrap in 2D CFTs from Regge and Light Cone Limits of Multi-point Conformal BlockJHEP2019080632019JHEP...08..063K401453210.1007/JHEP08(2019)063[arXiv:1905.02191] [INSPIRE] – reference: WittenEAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W163301210.4310/ATMP.1998.v2.n2.a2[hep-th/9802150] [INSPIRE] – reference: Simmons-DuffinDStanfordDWittenEA spacetime derivation of the Lorentzian OPE inversion formulaJHEP2018070852018JHEP...07..085S386196810.1007/JHEP07(2018)085[arXiv:1711.03816] [INSPIRE] – reference: BenjaminNCollierSMaloneyAMeruliyaVResurgence, conformal blocks, and the sum over geometries in quantum gravityJHEP2023051662023JHEP...05..166B459425110.1007/JHEP05(2023)166[arXiv:2302.12851] [INSPIRE] – reference: HuangK-WLightcone Commutator and Stress-Tensor Exchange in d > 2 CFTsPhys. Rev. D20201022020PhRvD.102b1701H10.1103/PhysRevD.102.021701[arXiv:2002.00110] [INSPIRE] – reference: MaloneyAMaxfieldHNgGSA conformal block Farey tailJHEP2017061172017JHEP...06..117M368184210.1007/JHEP06(2017)117[arXiv:1609.02165] [INSPIRE] – reference: ChoMCollierSYinXRecursive Representations of Arbitrary Virasoro Conformal BlocksJHEP2019040182019JHEP...04..018C395545110.1007/JHEP04(2019)018[arXiv:1703.09805] [INSPIRE] – reference: Caron-HuotSMazacDRastelliLSimmons-DuffinDAdS bulk locality from sharp CFT boundsJHEP2021111642021JHEP...11..164C436828010.1007/JHEP11(2021)164[arXiv:2106.10274] [INSPIRE] – reference: R. Karlsson, M. Kulaxizi, G.S. Ng, A. Parnachev and P. Tadić, CFT correlators,W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}-algebras and generalized Catalan numbers, JHEP06 (2022) 162 [arXiv:2111.07924] [INSPIRE]. – reference: A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B241 (1984) 333 [INSPIRE]. – reference: JohansenAInfinite conformal algebras in supersymmetric theories on four manifoldsNucl. Phys. B19954362911995NuPhB.436..291J131637010.1016/0550-3213(94)00408-7[hep-th/9407109] [INSPIRE] – reference: FitzpatrickALKaplanJWaltersMTWangJHawking from CatalanJHEP2016050692016JHEP...05..069F352178810.1007/JHEP05(2016)069[arXiv:1510.00014] [INSPIRE] – reference: CórdovaCShaoS-HLight-ray Operators and the BMS AlgebraPhys. Rev. D2018982018PhRvD..98l5015C397430710.1103/PhysRevD.98.125015[arXiv:1810.05706] [INSPIRE] – reference: BeşkenMDattaSKrausPQuantum thermalization and Virasoro symmetryJ. Stat. Mech.20202006416160710.1088/1742-5468/ab900b[arXiv:1907.06661] [INSPIRE] – reference: BeccariaMFachechiAMacoriniGVirasoro vacuum block at next-to-leading order in the heavy-light limitJHEP2016020722016JHEP...02..072B349119710.1007/JHEP02(2016)072[arXiv:1511.05452] [INSPIRE] – reference: M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Shocks, Superconvergence, and a Stringy Equivalence Principle, JHEP11 (2020) 096 [arXiv:1904.05905] [INSPIRE]. – reference: FitzpatrickALKaplanJWaltersMTUniversality of Long-Distance AdS Physics from the CFT BootstrapJHEP2014081452014JHEP...08..145F10.1007/JHEP08(2014)145[arXiv:1403.6829] [INSPIRE] – reference: FitzpatrickALKaplanJWaltersMTVirasoro Conformal Blocks and Thermality from Classical Background FieldsJHEP2015112002015JHEP...11..200F345487210.1007/JHEP11(2015)200[arXiv:1501.05315] [INSPIRE] – reference: MaldacenaJMThe Large N limit of superconformal field theories and supergravityAdv. Theor. Math. Phys.199822311998AdTMP...2..231M163301610.4310/ATMP.1998.v2.n2.a1[hep-th/9711200] [INSPIRE] – reference: A. Kapustin, Holomorphic reduction of N = 2 gauge theories, Wilson-’t Hooft operators, and S-duality, hep-th/0612119 [INSPIRE]. – reference: LiY-ZHeavy-light Bootstrap from Lorentzian Inversion FormulaJHEP2020070462020JHEP...07..046L413805010.1007/JHEP07(2020)046[arXiv:1910.06357] [INSPIRE] – reference: BelavinVHaraokaYSantachiaraRRigid Fuchsian systems in 2-dimensional conformal field theoriesCommun. Math. Phys.2019365172019CMaPh.365...17B390082610.1007/s00220-018-3274-x[arXiv:1711.04361] [INSPIRE] – reference: DodelsonMGrassiAIossaCPanea LichtigDZhiboedovAHolographic thermal correlators from supersymmetric instantonsSciPost Phys.2023141162023ScPP...14..116D459568010.21468/SciPostPhys.14.5.116[arXiv:2206.07720] [INSPIRE] – reference: GallianiAGiustoSRussoRHolographic 4-point correlators with heavy statesJHEP2017100402017JHEP...10..040G373117310.1007/JHEP10(2017)040[arXiv:1705.09250] [INSPIRE] – reference: Keski-VakkuriEBulk and boundary dynamics in BTZ black holesPhys. Rev. D1999591999PhRvD..59j4001K170922110.1103/PhysRevD.59.104001[hep-th/9808037] [INSPIRE] – reference: KusukiYLarge c Virasoro Blocks from Monodromy Method beyond Known LimitsJHEP2018081612018JHEP...08..161K386116110.1007/JHEP08(2018)161[arXiv:1806.04352] [INSPIRE] – reference: FitzpatrickALHuangK-WLiDProbing universalities in d > 2 CFTs: from black holes to shockwavesJHEP2019111392019JHEP...11..139F405880610.1007/JHEP11(2019)139[arXiv:1907.10810] [INSPIRE] – reference: M. Kulaxizi, G.S. Ng and A. Parnachev, Subleading Eikonal, AdS/CFT and Double Stress Tensors, JHEP10 (2019) 107 [arXiv:1907.00867] [INSPIRE]. – reference: C. Beem, L. Rastelli and B.C. van Rees, W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE]. – reference: BeemCPeelaersWRastelliLvan ReesBCChiral algebras of class SJHEP2015050202015JHEP...05..020B335937710.1007/JHEP05(2015)020[arXiv:1408.6522] [INSPIRE] – reference: GonzoRPokrakaALight-ray operators, detectors and gravitational event shapesJHEP2021050152021JHEP...05..015G430178810.1007/JHEP05(2021)015[arXiv:2012.01406] [INSPIRE] – reference: FitzpatrickALKaplanJConformal Blocks Beyond the Semi-Classical LimitJHEP2016050752016JHEP...05..075F352179410.1007/JHEP05(2016)075[arXiv:1512.03052] [INSPIRE] – reference: BanadosMTeitelboimCZanelliJThe Black hole in three-dimensional space-timePhys. Rev. Lett.19926918491992PhRvL..69.1849B118166310.1103/PhysRevLett.69.1849[hep-th/9204099] [INSPIRE] – reference: ChenHHussongCKaplanJLiDA Numerical Approach to Virasoro Blocks and the Information ParadoxJHEP2017091022017JHEP...09..102C10.1007/JHEP09(2017)102[arXiv:1703.09727] [INSPIRE] – reference: AnousTHaehlFMOn the Virasoro six-point identity block and chaosJHEP2020080022020JHEP...08..002A419022210.1007/JHEP08(2020)002[arXiv:2005.06440] [INSPIRE] – reference: BombiniAGiustoSRussoRA note on the Virasoro blocks at order 1/cEur. Phys. J. C20197932019EPJC...79....3B10.1140/epjc/s10052-018-6522-5[arXiv:1807.07886] [INSPIRE] – reference: FitzpatrickALHuangK-WUniversal Lowest-Twist in CFTs from HolographyJHEP2019081382019JHEP...08..138F401341010.1007/JHEP08(2019)138[arXiv:1903.05306] [INSPIRE] – reference: LiDMeltzerDPolandDConformal Bootstrap in the Regge LimitJHEP2017120132017JHEP...12..013L375788310.1007/JHEP12(2017)013[arXiv:1705.03453] [INSPIRE] – reference: BanerjeePDattaSSinhaRHigher-point conformal blocks and entanglement entropy in heavy statesJHEP2016051272016JHEP...05..127B352184610.1007/JHEP05(2016)127[arXiv:1601.06794] [INSPIRE] – reference: GiustoSRussoRWenCHolographic correlators in AdS3JHEP2019030962019JHEP...03..096G10.1007/JHEP03(2019)096[arXiv:1812.06479] [INSPIRE] – reference: HuangK-WStress-tensor commutators in conformal field theories near the lightconePhys. Rev. D20191002019PhRvD.100f1701H402583610.1103/PhysRevD.100.061701[arXiv:1907.00599] [INSPIRE] – reference: FitzpatrickALHuangK-WMeltzerDPerlmutterESimmons-DuffinDModel-dependence of minimal-twist OPEs in d > 2 holographic CFTsJHEP2020110602020JHEP...11..060F420422510.1007/JHEP11(2020)060[arXiv:2007.07382] [INSPIRE] – reference: ParnachevANear Lightcone Thermal Conformal Correlators and HolographyJ. Phys. A2021542021JPhA...54o5401P424043410.1088/1751-8121/abec16[arXiv:2005.06877] [INSPIRE] – reference: HaehlFMReevesWRozaliMReparametrization modes, shadow operators, and quantum chaos in higher-dimensional CFTsJHEP2019111022019JHEP...11..102H405884310.1007/JHEP11(2019)102[arXiv:1909.05847] [INSPIRE] – reference: BelinAHofmanDMMathysGEinstein gravity from ANEC correlatorsJHEP2019080322019JHEP...08..032B401450110.1007/JHEP08(2019)032[arXiv:1904.05892] [INSPIRE] – reference: HarlowDMaltzJWittenEAnalytic Continuation of Liouville TheoryJHEP2011120712011JHEP...12..071H293561310.1007/JHEP12(2011)071[arXiv:1108.4417] [INSPIRE] – reference: FitzpatrickALKaplanJA Quantum Correction To ChaosJHEP2016050702016JHEP...05..070F352178910.1007/JHEP05(2016)070[arXiv:1601.06164] [INSPIRE] – reference: NguyenKReparametrization modes in 2d CFT and the effective theory of stress tensor exchangesJHEP2021050292021JHEP...05..029N430177410.1007/JHEP05(2021)029[arXiv:2101.08800] [INSPIRE] – reference: BeşkenMDattaSKrausPSemi-classical Virasoro blocks: proof of exponentiationJHEP2020011092020JHEP...01..109B408821010.1007/JHEP01(2020)109[arXiv:1910.04169] [INSPIRE] – reference: FitzpatrickALKatzEPolandDSimmons-DuffinDEffective Conformal Theory and the Flat-Space Limit of AdSJHEP2011070232011JHEP...07..023F287598410.1007/JHEP07(2011)023[arXiv:1007.2412] [INSPIRE] – reference: T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE]. – reference: B. Chen, J.-q. Wu and J.-j. Zhang, Holographic Description of 2D Conformal Block in Semi-classical Limit, JHEP10 (2016) 110 [arXiv:1609.00801] [INSPIRE]. – reference: PalSQiaoJRychkovSTwist Accumulation in Conformal Field Theory: A Rigorous Approach to the Lightcone BootstrapCommun. Math. Phys.202340221692023CMaPh.402.2169P463047310.1007/s00220-023-04767-w[arXiv:2212.04893] [INSPIRE] – reference: DasDDattaSRamanMVirasoro blocks and quasimodular formsJHEP2020110102020JHEP...11..010D420427510.1007/JHEP11(2020)010[arXiv:2007.10998] [INSPIRE] – reference: HuangK-Wd > 2 stress-tensor operator product expansion near a linePhys. Rev. D20211032021PhRvD.103l1702H428656510.1103/PhysRevD.103.L121702[arXiv:2103.09930] [INSPIRE] – reference: KarlssonRKulaxiziMParnachevATadićPStress tensor sector of conformal correlators operators in the Regge limitJHEP2020070192020JHEP...07..019K413807710.1007/JHEP07(2020)019[arXiv:2002.12254] [INSPIRE] – reference: BombiniAGallianiAGiustoSMoscatoERussoRUnitary 4-point correlators from classical geometriesEur. Phys. J. C20187882018EPJC...78....8B10.1140/epjc/s10052-017-5492-3[arXiv:1710.06820] [INSPIRE] – reference: KarlssonRKulaxiziMParnachevATadićPLeading Multi-Stress Tensors and Conformal BootstrapJHEP2020010762020JHEP...01..076K408824310.1007/JHEP01(2020)076[arXiv:1909.05775] [INSPIRE] – reference: HuangK-WApproximate symmetries in d = 4 CFTs with an Einstein gravity dualJHEP2022090532022JHEP...09..053H447845910.1007/JHEP09(2022)053[arXiv:2202.09998] [INSPIRE] – reference: GubserSSKlebanovIRPolyakovAMGauge theory correlators from noncritical string theoryPhys. Lett. B19984281051998PhLB..428..105G163076610.1016/S0370-2693(98)00377-3[hep-th/9802109] [INSPIRE] – reference: Afkhami-JeddiNKunduSTajdiniAA Bound on Massive Higher Spin ParticlesJHEP2019040562019JHEP...04..056A395541310.1007/JHEP04(2019)056[arXiv:1811.01952] [INSPIRE] – reference: BeşkenMDe BoerJMathysGOn local and integrated stress-tensor commutatorsJHEP2021071482021JHEP...07..148B431652310.1007/JHEP07(2021)148[arXiv:2012.15724] [INSPIRE] – reference: KarlssonRParnachevATadićPThermalization in large-N CFTsJHEP2021092052021JHEP...09..205K432711110.1007/JHEP09(2021)205[arXiv:2102.04953] [INSPIRE] – reference: KorchemskyGPZhiboedovAOn the light-ray algebra in conformal field theoriesJHEP2022021402022JHEP...02..140K440730510.1007/JHEP02(2022)140[arXiv:2109.13269] [INSPIRE] – reference: RobertsDAStanfordDTwo-dimensional conformal field theory and the butterfly effectPhys. Rev. Lett.20151152015PhRvL.115m1603R10.1103/PhysRevLett.115.131603[arXiv:1412.5123] [INSPIRE] – reference: AnousTHartmanTRovaiASonnerJBlack Hole Collapse in the 1/c ExpansionJHEP2016071232016JHEP...07..123A355021810.1007/JHEP07(2016)123[arXiv:1603.04856] [INSPIRE] – reference: HijanoEKrausPPerlmutterESnivelyRSemiclassical Virasoro blocks from AdS3gravityJHEP2015120772015JHEP...12..077H[arXiv:1508.04987] [INSPIRE] – reference: AlkalaevKPavlovMHolographic variables for CFT2conformal blocks with heavy operatorsNucl. Phys. B202095610.1016/j.nuclphysb.2020.115018[arXiv:2001.02604] [INSPIRE] – reference: KomargodskiZZhiboedovAConvexity and Liberation at Large SpinJHEP2013111402013JHEP...11..140K10.1007/JHEP11(2013)140[arXiv:1212.4103] [INSPIRE] – reference: KusukiYLight Cone Bootstrap in General 2D CFTs and Entanglement from Light Cone SingularityJHEP2019010252019JHEP...01..025K393307610.1007/JHEP01(2019)025[arXiv:1810.01335] [INSPIRE] – reference: A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: Recursion representation of conformal block, Theor. Math. Phys.73 (1987) 1088. – reference: S. Ribault, Conformal field theory on the plane, arXiv:1406.4290 [INSPIRE]. – reference: AldayLFMaldacenaJMComments on operators with large spinJHEP2007110192007JHEP...11..019A236213010.1088/1126-6708/2007/11/019[arXiv:0708.0672] [INSPIRE] – reference: CollierSGobeilYMaxfieldHPerlmutterEQuantum Regge Trajectories and the Virasoro Analytic BootstrapJHEP2019052122019JHEP...05..212C397343710.1007/JHEP05(2019)212[arXiv:1811.05710] [INSPIRE] – reference: FitzpatrickALKaplanJPolandDSimmons-DuffinDThe Analytic Bootstrap and AdS Superhorizon LocalityJHEP2013120042013JHEP...12..004F313819310.1007/JHEP12(2013)004[arXiv:1212.3616] [INSPIRE] – reference: FitzpatrickALKaplanJLiDWangJExact Virasoro Blocks from Wilson Lines and Background-Independent OperatorsJHEP2017070922017JHEP...07..092F368670610.1007/JHEP07(2017)092[arXiv:1612.06385] [INSPIRE] – reference: A.B. Zamolodchikov, Conformal symmetry in two dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys.96 (1984) 419 [INSPIRE]. – reference: PerlmutterEVirasoro conformal blocks in closed formJHEP2015080882015JHEP...08..088P340074210.1007/JHEP08(2015)088[arXiv:1502.07742] [INSPIRE] – reference: H. Chen, A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Degenerate Operators and the 1/c Expansion: Lorentzian Resummations, High Order Computations, and Super-Virasoro Blocks, JHEP03 (2017) 167 [arXiv:1606.02659] [INSPIRE]. – reference: ChoMCollierSYinXGenus Two Modular BootstrapJHEP2019040222019JHEP...04..022C395544710.1007/JHEP04(2019)022[arXiv:1705.05865] [INSPIRE] – reference: FitzpatrickALKaplanJLiDWangJOn information loss in AdS3/CFT2JHEP2016051092016JHEP...05..109F10.1007/JHEP05(2016)109[arXiv:1603.08925] [INSPIRE] – reference: BelinAHofmanDMMathysGWaltersMTOn the stress tensor light-ray operator algebraJHEP2021050332021JHEP...05..033B430177010.1007/JHEP05(2021)033[arXiv:2011.13862] [INSPIRE] – reference: KravchukPSimmons-DuffinDLight-ray operators in conformal field theoryJHEP2018111022018JHEP...11..102K390847410.1007/JHEP11(2018)102[arXiv:1805.00098] [INSPIRE] – reference: CamanhoXOEdelsteinJDMaldacenaJMZhiboedovACausality Constraints on Corrections to the Graviton Three-Point CouplingJHEP2016020202016JHEP...02..020C349124910.1007/JHEP02(2016)020[arXiv:1407.5597] [INSPIRE] – reference: CotlerJJensenKA theory of reparameterizations for AdS3gravityJHEP2019020792019JHEP...02..079C10.1007/JHEP02(2019)079[arXiv:1808.03263] [INSPIRE] – reference: BeemCLemosMLiendoPPeelaersWRastelliLvan ReesBCInfinite Chiral Symmetry in Four DimensionsCommun. Math. Phys.201533613592015CMaPh.336.1359B332414710.1007/s00220-014-2272-x[arXiv:1312.5344] [INSPIRE] – reference: N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, in the proceedings of the 16th International Congress on Mathematical Physics (ICMP09), Prague, Czech Republic, 3–8 August 2009, pp. 265–289 [https://doi.org/10.1142/9789814304634_0015] [arXiv:0908.4052] [INSPIRE]. – reference: Caron-HuotSAnalyticity in Spin in Conformal TheoriesJHEP2017090782017JHEP...09..078C371053610.1007/JHEP09(2017)078[arXiv:1703.00278] [INSPIRE] – volume: 02 start-page: 020 year: 2016 ident: 22278_CR55 publication-title: JHEP doi: 10.1007/JHEP02(2016)020 – volume: 103 year: 2021 ident: 22278_CR77 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.L121702 – volume: 07 start-page: 046 year: 2020 ident: 22278_CR81 publication-title: JHEP doi: 10.1007/JHEP07(2020)046 – volume: 59 year: 1999 ident: 22278_CR70 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.59.104001 – ident: 22278_CR38 doi: 10.21468/SciPostPhys.6.6.065 – ident: 22278_CR59 doi: 10.1007/JHEP06(2018)121 – ident: 22278_CR101 – volume: 11 start-page: 139 year: 2019 ident: 22278_CR72 publication-title: JHEP doi: 10.1007/JHEP11(2019)139 – volume: 08 start-page: 088 year: 2015 ident: 22278_CR15 publication-title: JHEP doi: 10.1007/JHEP08(2015)088 – volume: 04 start-page: 056 year: 2019 ident: 22278_CR62 publication-title: JHEP doi: 10.1007/JHEP04(2019)056 – volume: 69 start-page: 1849 year: 1992 ident: 22278_CR69 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1849 – ident: 22278_CR1 doi: 10.1016/0550-3213(84)90052-X – volume: 428 start-page: 105 year: 1998 ident: 22278_CR67 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)00377-3 – volume: 07 start-page: 023 year: 2011 ident: 22278_CR54 publication-title: JHEP doi: 10.1007/JHEP07(2011)023 – volume: 02 start-page: 072 year: 2016 ident: 22278_CR18 publication-title: JHEP doi: 10.1007/JHEP02(2016)072 – volume: 04 start-page: 018 year: 2019 ident: 22278_CR29 publication-title: JHEP doi: 10.1007/JHEP04(2019)018 – volume: 01 start-page: 109 year: 2020 ident: 22278_CR45 publication-title: JHEP doi: 10.1007/JHEP01(2020)109 – volume: 2006 year: 2020 ident: 22278_CR43 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/ab900b – volume: 09 start-page: 053 year: 2022 ident: 22278_CR96 publication-title: JHEP doi: 10.1007/JHEP09(2022)053 – volume: 07 start-page: 092 year: 2017 ident: 22278_CR27 publication-title: JHEP doi: 10.1007/JHEP07(2017)092 – volume: 07 start-page: 019 year: 2020 ident: 22278_CR76 publication-title: JHEP doi: 10.1007/JHEP07(2020)019 – volume: 05 start-page: 070 year: 2016 ident: 22278_CR20 publication-title: JHEP doi: 10.1007/JHEP05(2016)070 – volume: 12 start-page: 004 year: 2013 ident: 22278_CR2 publication-title: JHEP doi: 10.1007/JHEP12(2013)004 – ident: 22278_CR74 doi: 10.1007/JHEP10(2019)107 – volume: 05 start-page: 075 year: 2016 ident: 22278_CR19 publication-title: JHEP doi: 10.1007/JHEP05(2016)075 – volume: 08 start-page: 145 year: 2014 ident: 22278_CR10 publication-title: JHEP doi: 10.1007/JHEP08(2014)145 – volume: 07 start-page: 148 year: 2021 ident: 22278_CR93 publication-title: JHEP doi: 10.1007/JHEP07(2021)148 – volume: 54 year: 2021 ident: 22278_CR83 publication-title: J. Phys. A doi: 10.1088/1751-8121/abec16 – volume: 98 year: 2018 ident: 22278_CR90 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.125015 – volume: 05 start-page: 020 year: 2015 ident: 22278_CR99 publication-title: JHEP doi: 10.1007/JHEP05(2015)020 – volume: 08 start-page: 032 year: 2019 ident: 22278_CR63 publication-title: JHEP doi: 10.1007/JHEP08(2019)032 – volume: 11 start-page: 060 year: 2020 ident: 22278_CR73 publication-title: JHEP doi: 10.1007/JHEP11(2020)060 – volume: 06 start-page: 117 year: 2017 ident: 22278_CR26 publication-title: JHEP doi: 10.1007/JHEP06(2017)117 – volume: 12 start-page: 013 year: 2017 ident: 22278_CR60 publication-title: JHEP doi: 10.1007/JHEP12(2017)013 – volume: 2 start-page: 253 year: 1998 ident: 22278_CR68 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a2 – volume: 14 start-page: 116 year: 2023 ident: 22278_CR85 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.14.5.116 – ident: 22278_CR78 doi: 10.1007/JHEP06(2022)162 – volume: 07 start-page: 074 year: 2020 ident: 22278_CR46 publication-title: JHEP doi: 10.1007/JHEP07(2020)074 – ident: 22278_CR103 – volume: 05 start-page: 015 year: 2021 ident: 22278_CR92 publication-title: JHEP doi: 10.1007/JHEP05(2021)015 – volume: 365 start-page: 17 year: 2019 ident: 22278_CR102 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-018-3274-x – volume: 07 start-page: 131 year: 2015 ident: 22278_CR13 publication-title: JHEP doi: 10.1007/JHEP07(2015)131 – volume: 01 start-page: 076 year: 2020 ident: 22278_CR75 publication-title: JHEP doi: 10.1007/JHEP01(2020)076 – volume: 10 start-page: 040 year: 2017 ident: 22278_CR31 publication-title: JHEP doi: 10.1007/JHEP10(2017)040 – ident: 22278_CR9 – volume: 05 start-page: 109 year: 2016 ident: 22278_CR23 publication-title: JHEP doi: 10.1007/JHEP05(2016)109 – volume: 11 start-page: 019 year: 2007 ident: 22278_CR4 publication-title: JHEP doi: 10.1088/1126-6708/2007/11/019 – volume: 08 start-page: 063 year: 2019 ident: 22278_CR42 publication-title: JHEP doi: 10.1007/JHEP08(2019)063 – ident: 22278_CR7 doi: 10.1007/BF01022967 – volume: 04 start-page: 022 year: 2019 ident: 22278_CR30 publication-title: JHEP doi: 10.1007/JHEP04(2019)022 – volume: 05 start-page: 099 year: 2016 ident: 22278_CR56 publication-title: JHEP doi: 10.1007/JHEP05(2016)099 – volume: 336 start-page: 1359 year: 2015 ident: 22278_CR97 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-014-2272-x – volume: 01 start-page: 025 year: 2019 ident: 22278_CR36 publication-title: JHEP doi: 10.1007/JHEP01(2019)025 – volume: 436 start-page: 291 year: 1995 ident: 22278_CR100 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(94)00408-7 – volume: 02 start-page: 079 year: 2019 ident: 22278_CR35 publication-title: JHEP doi: 10.1007/JHEP02(2019)079 – volume: 11 start-page: 102 year: 2019 ident: 22278_CR44 publication-title: JHEP doi: 10.1007/JHEP11(2019)102 – volume: 07 start-page: 157 year: 2018 ident: 22278_CR61 publication-title: JHEP doi: 10.1007/JHEP07(2018)157 – volume: 03 start-page: 068 year: 2019 ident: 22278_CR39 publication-title: JHEP doi: 10.1007/JHEP03(2019)068 – volume: 12 start-page: 071 year: 2011 ident: 22278_CR8 publication-title: JHEP doi: 10.1007/JHEP12(2011)071 – volume: 12 start-page: 049 year: 2017 ident: 22278_CR58 publication-title: JHEP doi: 10.1007/JHEP12(2017)049 – volume: 11 start-page: 102 year: 2018 ident: 22278_CR89 publication-title: JHEP doi: 10.1007/JHEP11(2018)102 – ident: 22278_CR98 doi: 10.1007/JHEP05(2015)017 – volume: 102 year: 2020 ident: 22278_CR95 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.021701 – volume: 07 start-page: 123 year: 2016 ident: 22278_CR22 publication-title: JHEP doi: 10.1007/JHEP07(2016)123 – volume: 78 start-page: 8 year: 2018 ident: 22278_CR32 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5492-3 – volume: 05 start-page: 069 year: 2016 ident: 22278_CR17 publication-title: JHEP doi: 10.1007/JHEP05(2016)069 – volume: 2 start-page: 231 year: 1998 ident: 22278_CR66 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a1 – volume: 05 start-page: 212 year: 2019 ident: 22278_CR37 publication-title: JHEP doi: 10.1007/JHEP05(2019)212 – volume: 11 start-page: 140 year: 2013 ident: 22278_CR3 publication-title: JHEP doi: 10.1007/JHEP11(2013)140 – volume: 12 start-page: 077 year: 2015 ident: 22278_CR16 publication-title: JHEP – ident: 22278_CR64 doi: 10.1007/JHEP11(2020)096 – volume: 402 start-page: 2169 year: 2023 ident: 22278_CR5 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-023-04767-w – volume: 7 start-page: 003 year: 2019 ident: 22278_CR41 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.7.1.003 – volume: 09 start-page: 102 year: 2017 ident: 22278_CR28 publication-title: JHEP doi: 10.1007/JHEP09(2017)102 – volume: 05 start-page: 127 year: 2016 ident: 22278_CR21 publication-title: JHEP doi: 10.1007/JHEP05(2016)127 – volume: 08 start-page: 161 year: 2018 ident: 22278_CR33 publication-title: JHEP doi: 10.1007/JHEP08(2018)161 – volume: 956 year: 2020 ident: 22278_CR47 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2020.115018 – volume: 11 start-page: 164 year: 2021 ident: 22278_CR65 publication-title: JHEP doi: 10.1007/JHEP11(2021)164 – volume: 79 start-page: 3 year: 2019 ident: 22278_CR34 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6522-5 – ident: 22278_CR24 doi: 10.1007/JHEP03(2017)167 – volume: 115 year: 2015 ident: 22278_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.131603 – ident: 22278_CR25 doi: 10.1007/JHEP10(2016)110 – volume: 10 start-page: 079 year: 2009 ident: 22278_CR53 publication-title: JHEP doi: 10.1088/1126-6708/2009/10/079 – volume: 11 start-page: 010 year: 2020 ident: 22278_CR49 publication-title: JHEP doi: 10.1007/JHEP11(2020)010 – volume: 04 start-page: 143 year: 2023 ident: 22278_CR51 publication-title: JHEP doi: 10.1007/JHEP04(2023)143 – volume: 02 start-page: 140 year: 2022 ident: 22278_CR94 publication-title: JHEP doi: 10.1007/JHEP02(2022)140 – volume: 03 start-page: 096 year: 2019 ident: 22278_CR40 publication-title: JHEP doi: 10.1007/JHEP03(2019)096 – volume: 07 start-page: 085 year: 2018 ident: 22278_CR80 publication-title: JHEP doi: 10.1007/JHEP07(2018)085 – volume: 09 start-page: 078 year: 2017 ident: 22278_CR79 publication-title: JHEP doi: 10.1007/JHEP09(2017)078 – volume: 05 start-page: 029 year: 2021 ident: 22278_CR50 publication-title: JHEP doi: 10.1007/JHEP05(2021)029 – volume: 10 start-page: 055 year: 2020 ident: 22278_CR82 publication-title: JHEP – ident: 22278_CR6 doi: 10.1007/BF01214585 – volume: 05 start-page: 166 year: 2023 ident: 22278_CR52 publication-title: JHEP doi: 10.1007/JHEP05(2023)166 – volume: 95 year: 2017 ident: 22278_CR57 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.065011 – volume: 08 start-page: 138 year: 2019 ident: 22278_CR71 publication-title: JHEP doi: 10.1007/JHEP08(2019)138 – volume: 09 start-page: 205 year: 2021 ident: 22278_CR84 publication-title: JHEP doi: 10.1007/JHEP09(2021)205 – volume: 08 start-page: 002 year: 2020 ident: 22278_CR48 publication-title: JHEP doi: 10.1007/JHEP08(2020)002 – ident: 22278_CR86 doi: 10.1142/9789814304634_0015 – volume: 02 start-page: 171 year: 2015 ident: 22278_CR11 publication-title: JHEP doi: 10.1007/JHEP02(2015)171 – volume: 100 year: 2019 ident: 22278_CR88 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.061701 – volume: 50 year: 2017 ident: 22278_CR87 publication-title: J. Phys. A doi: 10.1088/1751-8121/aa7eaa – volume: 05 start-page: 033 year: 2021 ident: 22278_CR91 publication-title: JHEP doi: 10.1007/JHEP05(2021)033 – volume: 11 start-page: 200 year: 2015 ident: 22278_CR14 publication-title: JHEP doi: 10.1007/JHEP11(2015)200 |
SSID | ssj0015190 |
Score | 2.4395645 |
Snippet | A
bstract
In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light... In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe... Abstract In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 203 |
SubjectTerms | AdS-CFT Correspondence Black holes Classical and Quantum Gravitation Correlation Critical phenomena Elementary Particles Equations of state Field Theories in Higher Dimensions High energy physics Light Mathematical analysis Ordinary differential equations Partial differential equations Phase transitions Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Scale and Conformal Symmetries String Theory Symmetry Tensors |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRnxitsoce2kNsskk2uxdBpaUUFA8t9BZ2d3ZBkKht_f_O5lEfULx4ySGZhMlMsvMNM_sNIT1lmZLARai4BV9mNKGIMxsKCy5jwBKpfEX34ZFP5ul0kS2-jfryPWE1PXBtuKGME4F5QipzcKnxEQsgYjaDPJEOsxu_-mLMa5Oppn6AuCRqiXyifDidjJ7iuO9HhQ9YOx-riUEVVf8PfPmrJFpFmvEB2W8gIr2tVTskO7Y8IrtVq6ZZHZPerOp0pSUmj2G1H4ja95qwe0WfSwr0hrITMh-PZveTsJl1EJo0ztdoJc0Q7EqhdKa1D5sOsZdiLtUQg7QccYsTIlGgUTCXFuMuYhdjtUwN4LJ1Sjrla2nPCOXM8FwxAR6OxY5rJyJMiyDJrJSGQ0Cu27cvTEME7udRvBQthXFtrsKbCw9JQPqbG95qDoztonfenBsxT15dnUCXFo1Li79cGpBu64yi-aNWBSaGmYdHXAZk0Dro6_IWfc7_Q58Lsuef53cgMtElnfXyw14iFFnrq-qr-wQOqNO1 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_BF_MT5RR_2oA91bdqmyYuisjEGisgGeytNLhVBOrXz__fSpRsK86UP7bU0l-Tud7nkdwDd3LBcIhd-zg3aNKP2RZgYXxgsEoYskrnN6D4-8eEkHk2TqVtwq9y2ysYm1oYaZ9qukfcoMEise-Ty9uPTt1WjbHbVldDYhDaZYCFa0L7vPz2_LPMIhE-ChtAnSHujYf85DC9tyfAr1tTJcr6opuz_hTP_pEZrjzPYhR0HFb27Rd_uwYYp92Gr3rKpqwPojusdr15JQaRfnwvyzOeCuLvy3koPvRuPHcJk0B8_DH1X88DXcZjOSVuK2sGkyFWilHWfBWGwnBWxwhCl4YRfCiGiHBUJptKQ_yUMo42SsUYyX0fQKmelOQaPM83TnAm0sCwsuCpEQOERRomRUnPswHXT-kw7QnBbl-I9a6iMF-rKrLroEnXgcvnCx4ILY73ovVXnUsySWNc3Zl-vmZsTmQwjQSFgLFMsYm3BCGLATIJpJAsKXDtw1nRG5mZWla3GQQeumg5aPV7zPyf_f-oUtq2kPWPIxBm05l_f5pzAxlxduBH1A8aTzg8 priority: 102 providerName: ProQuest |
Title | Toward null-state equations in d > 2 |
URI | https://link.springer.com/article/10.1007/JHEP11(2023)203 https://www.proquest.com/docview/2895066369 https://doaj.org/article/9138026497df4c0082dd02e5d739f254 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB5apdBL6ZOmtSEHD3pIazbJZvdS0KAVoSJFwVvIPgKFkj60_7-zeVi0eOhlyWMWkplN5htm5xuAdqpJyhVlbkq1MmlG6TIv1C7TKguJIj5PTUb3eUrHi2CyDJcVSZKphdnJ3z9MxsOZ53VMk-8uMayezdDzI9OjIabxJl2AMKRX8_b8nbTlcgpm_i04uZMBLRzL6BROKkTo9EsTnsGBzs_hqNiZKVcX0J4XG1udHGNFtyj_cfRnyc-9cl5zRzmPDrmExWg4j8du1drAlYEXrVEpgiC25SwVoRDGS2YItVKSBUJ5imuKMCVjzE-VQMGIa3SzCFWkFjyQCv9SV9DI33N9DQ4lkkYpYcqgLy-jImM9jIKUH2rOJVUW3Ndvn8iK99u0n3hLasbiUl2JURcOvgWdzYSPkvJiv-jAqHMjZriqiwtowqRa-gn3fIaRXsAjlQXSYA6lekSHKvJ5hvGpBa3aGEn1Aa0SjANDg4Yot6BbG-j39p7nufmH7C0cm0NTV0hYCxrrr299hwBjLWw4ZKMnG5qD4XT2gmcxCexiwdlFyI7jgvR_AKlEyS8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hUAWXirZUbIHiA0hwSNk4iWMfaFValuVTPSwStzT2OFUllAV2q4o_xW_sTBIvaiV645JDYkfOeOx5k_HMA9gqvSwNKh2VyiOHGV2k48xH2mOVSZSJKTmie36hhpfpyVV2NQcPIReGj1WGPbHZqHHs-B_5HjkGGZtHZT7d3EbMGsXR1UCh0arFqb__TS7bZP_4K83vtpSDw9GXYdSxCkQujfMpjcdKgpVGlzazlg1URSinlFVqMUbjFSGESuukREsNc-PJwhFKcN6a1GHMLBG05S-kCVlyzkwfHM2iFoSG-qF8UD_fOxkefovjHSYo35WBlauzfA1BwF-o9p9AbGPfBsvwsgOm4nOrSa9gztev4UVzQNRN3sDWqDlfK2pyWaMmC0n427ZM-ET8rAWKj0KuwOWzyOItzNfj2q-CUNKpvJQaGQTGlbKV7pMzhknmjXEKe_AhfH3huvLjzIJxXYTCya24ChYXXZIe7Mw63LSVN55uesDinDXjktnNjfHdj6JbgYWJE00OZ2pyrFLH0AexL32GeWIqcpN7sB4mo-jW8aR41Loe7IYJenz8xHje_f9Vm7A4HJ2fFWfHF6drsMS9OLtR6nWYn9798hsEc6b2faNbAr4_tzL_AUuxCRY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRa16QZS26lJofaASHMJunMSxD7QqZVfLa7VCIHFL41dVqcoCu6jqX-PXMZPEi4pEb1xySOzIGY8932TG8wFslY6XygoZlcJZCjOaSMaZi6SzPuOWJ6qkiO7pWIwu0qPL7HIJ7sJZGEqrDHtivVHbqaF_5D10DDIyj0L1fJsWMTkYfr26johBiiKtgU6jUZFj9_cPum-zvcMDnOvPnA8H599HUcswEJk0zuc4Ns0RYipZ6kxrMlYeEU_JfaptbJUTiBa8lElpNTbMlUNrh4jBOK1SY2NijMDtfzknr6gDy_uD8eRsEcNAbNQPxYT6ee9oNJjE8TbRle_wwNHV2sGaLuAfjPsoLFtbu-EqrLQwlX1r9Oo1LLlqDV7U6aJm9ga2zutsW1ahjKL6TBJz103R8Bn7VTHLvjD-Fi6eRRrvoFNNK_cemOBG5CWXliBh7IX2so-umU0yp5QRtgu74esL0xYjJ06M30Uoo9yIqyBx4SXpwvaiw1VTh-PppvskzkUzKqBd35je_Cza9VioOJHofqYqtz41BISs7XOX2TxRHp3mLmyEySjaVT0rHnSwCzthgh4ePzGe9f-_6hO8REUuTg7Hxx_gFXWio45cbkBnfnPrNhHzzPXHVrkY_Hhufb4HVKwOqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+null-state+equations+in+d+%3E+2&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Huang%2C+Kuo-Wei&rft.date=2023-11-28&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2023&rft.issue=11&rft_id=info:doi/10.1007%2FJHEP11%282023%29203&rft.externalDocID=10_1007_JHEP11_2023_203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |