Toward null-state equations in d > 2

A bstract In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe scalar has dimension h = − 1 2 ; the corresponding linear ordinary differential equation can be recast into a schematic form x 2 u xx +...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2023; no. 11; pp. 203 - 24
Main Author Huang, Kuo-Wei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 28.11.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe scalar has dimension h = − 1 2 ; the corresponding linear ordinary differential equation can be recast into a schematic form x 2 u xx + u = 0. In this paper, we make an observation that in a class of four-dimensional CFTs with a large central charge, the heavy-light scalar correlator in the near-lightcone limit obeys a similar equation, x 3 u xxxy + u = 0, when the light scalar has dimension ∆ = –1. We focus on the multi-stress tensor sector of the theory and also discuss the corresponding equations for the cases with ∆ = –2, –3. The solutions to these linear partial differential equations in higher dimensions are shown, after a suitable change of variables, to reproduce the near-lightcone correlators previously obtained via holography and the conformal bootstrap.
AbstractList In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe scalar has dimension h = −12 ; the corresponding linear ordinary differential equation can be recast into a schematic form x2uxx + u = 0. In this paper, we make an observation that in a class of four-dimensional CFTs with a large central charge, the heavy-light scalar correlator in the near-lightcone limit obeys a similar equation, x3uxxxy + u = 0, when the light scalar has dimension ∆ = –1. We focus on the multi-stress tensor sector of the theory and also discuss the corresponding equations for the cases with ∆ = –2, –3. The solutions to these linear partial differential equations in higher dimensions are shown, after a suitable change of variables, to reproduce the near-lightcone correlators previously obtained via holography and the conformal bootstrap.
In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe scalar has dimension h = $$ -\frac{1}{2} $$ − 1 2 ; the corresponding linear ordinary differential equation can be recast into a schematic form x 2 u xx + u = 0. In this paper, we make an observation that in a class of four-dimensional CFTs with a large central charge, the heavy-light scalar correlator in the near-lightcone limit obeys a similar equation, x 3 u xxxy + u = 0, when the light scalar has dimension ∆ = –1. We focus on the multi-stress tensor sector of the theory and also discuss the corresponding equations for the cases with ∆ = –2, –3. The solutions to these linear partial differential equations in higher dimensions are shown, after a suitable change of variables, to reproduce the near-lightcone correlators previously obtained via holography and the conformal bootstrap.
A bstract In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe scalar has dimension h = − 1 2 ; the corresponding linear ordinary differential equation can be recast into a schematic form x 2 u xx + u = 0. In this paper, we make an observation that in a class of four-dimensional CFTs with a large central charge, the heavy-light scalar correlator in the near-lightcone limit obeys a similar equation, x 3 u xxxy + u = 0, when the light scalar has dimension ∆ = –1. We focus on the multi-stress tensor sector of the theory and also discuss the corresponding equations for the cases with ∆ = –2, –3. The solutions to these linear partial differential equations in higher dimensions are shown, after a suitable change of variables, to reproduce the near-lightcone correlators previously obtained via holography and the conformal bootstrap.
Abstract In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe scalar has dimension h = − 1 2 $$ -\frac{1}{2} $$ ; the corresponding linear ordinary differential equation can be recast into a schematic form x 2 u xx + u = 0. In this paper, we make an observation that in a class of four-dimensional CFTs with a large central charge, the heavy-light scalar correlator in the near-lightcone limit obeys a similar equation, x 3 u xxxy + u = 0, when the light scalar has dimension ∆ = –1. We focus on the multi-stress tensor sector of the theory and also discuss the corresponding equations for the cases with ∆ = –2, –3. The solutions to these linear partial differential equations in higher dimensions are shown, after a suitable change of variables, to reproduce the near-lightcone correlators previously obtained via holography and the conformal bootstrap.
ArticleNumber 203
Author Huang, Kuo-Wei
Author_xml – sequence: 1
  givenname: Kuo-Wei
  surname: Huang
  fullname: Huang, Kuo-Wei
  email: K-W.Huang@soton.ac.uk
  organization: Mathematical Sciences, University of Southampton
BookMark eNp1kMFLwzAUxoNMcJuevRb0oIe6lzRJk4sgY7rJQA_zHNImHR212ZIW8b-3WxVF2OXlEb7fx_e-ERrUrrYIXWK4wwDp5Hk-e8X4hgBJbgkkJ2iIgchY0FQO_uxnaBTCBgAzLGGIrlfuQ3sT1W1VxaHRjY3srtVN6eoQlXVkovuInKPTQlfBXny_Y_T2OFtN5_Hy5WkxfVjGOcVpE1OcESGIFDpjWUYJ5wWWRJOCZgYbaTmntBAi0SbrhKm0mBFgPLeZpLnBLBmjRe9rnN6orS_ftf9UTpfq8OH8WmnflHlllcSJAMKpTE1BcwBBjAFimUkTWRBGO6-r3mvr3a61oVEb1_q6i6-IkAw4T7jsVKxX5d6F4G2h8rI5XN94XVYKg9qXq_py1b7cbiQdN_nH_aQ9TkBPhE5Zr63_zXMM-QKpR4hY
CitedBy_id crossref_primary_10_1103_PhysRevD_111_046016
crossref_primary_10_1007_JHEP09_2024_149
Cites_doi 10.1007/JHEP02(2016)020
10.1103/PhysRevD.103.L121702
10.1007/JHEP07(2020)046
10.1103/PhysRevD.59.104001
10.21468/SciPostPhys.6.6.065
10.1007/JHEP06(2018)121
10.1007/JHEP11(2019)139
10.1007/JHEP08(2015)088
10.1007/JHEP04(2019)056
10.1103/PhysRevLett.69.1849
10.1016/0550-3213(84)90052-X
10.1016/S0370-2693(98)00377-3
10.1007/JHEP07(2011)023
10.1007/JHEP02(2016)072
10.1007/JHEP04(2019)018
10.1007/JHEP01(2020)109
10.1088/1742-5468/ab900b
10.1007/JHEP09(2022)053
10.1007/JHEP07(2017)092
10.1007/JHEP07(2020)019
10.1007/JHEP05(2016)070
10.1007/JHEP12(2013)004
10.1007/JHEP10(2019)107
10.1007/JHEP05(2016)075
10.1007/JHEP08(2014)145
10.1007/JHEP07(2021)148
10.1088/1751-8121/abec16
10.1103/PhysRevD.98.125015
10.1007/JHEP05(2015)020
10.1007/JHEP08(2019)032
10.1007/JHEP11(2020)060
10.1007/JHEP06(2017)117
10.1007/JHEP12(2017)013
10.4310/ATMP.1998.v2.n2.a2
10.21468/SciPostPhys.14.5.116
10.1007/JHEP06(2022)162
10.1007/JHEP07(2020)074
10.1007/JHEP05(2021)015
10.1007/s00220-018-3274-x
10.1007/JHEP07(2015)131
10.1007/JHEP01(2020)076
10.1007/JHEP10(2017)040
10.1007/JHEP05(2016)109
10.1088/1126-6708/2007/11/019
10.1007/JHEP08(2019)063
10.1007/BF01022967
10.1007/JHEP04(2019)022
10.1007/JHEP05(2016)099
10.1007/s00220-014-2272-x
10.1007/JHEP01(2019)025
10.1016/0550-3213(94)00408-7
10.1007/JHEP02(2019)079
10.1007/JHEP11(2019)102
10.1007/JHEP07(2018)157
10.1007/JHEP03(2019)068
10.1007/JHEP12(2011)071
10.1007/JHEP12(2017)049
10.1007/JHEP11(2018)102
10.1007/JHEP05(2015)017
10.1103/PhysRevD.102.021701
10.1007/JHEP07(2016)123
10.1140/epjc/s10052-017-5492-3
10.1007/JHEP05(2016)069
10.4310/ATMP.1998.v2.n2.a1
10.1007/JHEP05(2019)212
10.1007/JHEP11(2013)140
10.1007/JHEP11(2020)096
10.1007/s00220-023-04767-w
10.21468/SciPostPhys.7.1.003
10.1007/JHEP09(2017)102
10.1007/JHEP05(2016)127
10.1007/JHEP08(2018)161
10.1016/j.nuclphysb.2020.115018
10.1007/JHEP11(2021)164
10.1140/epjc/s10052-018-6522-5
10.1007/JHEP03(2017)167
10.1103/PhysRevLett.115.131603
10.1007/JHEP10(2016)110
10.1088/1126-6708/2009/10/079
10.1007/JHEP11(2020)010
10.1007/JHEP04(2023)143
10.1007/JHEP02(2022)140
10.1007/JHEP03(2019)096
10.1007/JHEP07(2018)085
10.1007/JHEP09(2017)078
10.1007/JHEP05(2021)029
10.1007/BF01214585
10.1007/JHEP05(2023)166
10.1103/PhysRevD.95.065011
10.1007/JHEP08(2019)138
10.1007/JHEP09(2021)205
10.1007/JHEP08(2020)002
10.1142/9789814304634_0015
10.1007/JHEP02(2015)171
10.1103/PhysRevD.100.061701
10.1088/1751-8121/aa7eaa
10.1007/JHEP05(2021)033
10.1007/JHEP11(2015)200
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1007/JHEP11(2023)203
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 24
ExternalDocumentID oai_doaj_org_article_9138026497df4c0082dd02e5d739f254
10_1007_JHEP11_2023_203
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c417t-41b288298ab5bb4266f192a2f4bd1d9e6644f883adbb2879e152056ceb94cd153
IEDL.DBID C6C
ISSN 1029-8479
IngestDate Wed Aug 27 01:08:30 EDT 2025
Sat Jul 26 00:38:46 EDT 2025
Tue Jul 01 01:02:02 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
Fri Feb 21 02:41:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Scale and Conformal Symmetries
AdS-CFT Correspondence
Field Theories in Higher Dimensions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-41b288298ab5bb4266f192a2f4bd1d9e6644f883adbb2879e152056ceb94cd153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/JHEP11(2023)203
PQID 2895066369
PQPubID 2034718
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_9138026497df4c0082dd02e5d739f254
proquest_journals_2895066369
crossref_citationtrail_10_1007_JHEP11_2023_203
crossref_primary_10_1007_JHEP11_2023_203
springer_journals_10_1007_JHEP11_2023_203
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-28
PublicationDateYYYYMMDD 2023-11-28
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-28
  day: 28
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Afkhami-JeddiNKunduSTajdiniAA Bound on Massive Higher Spin ParticlesJHEP2019040562019JHEP...04..056A395541310.1007/JHEP04(2019)056[arXiv:1811.01952] [INSPIRE]
LiDMeltzerDPolandDConformal Bootstrap in the Regge LimitJHEP2017120132017JHEP...12..013L375788310.1007/JHEP12(2017)013[arXiv:1705.03453] [INSPIRE]
BeemCLemosMLiendoPPeelaersWRastelliLvan ReesBCInfinite Chiral Symmetry in Four DimensionsCommun. Math. Phys.201533613592015CMaPh.336.1359B332414710.1007/s00220-014-2272-x[arXiv:1312.5344] [INSPIRE]
FitzpatrickALKaplanJWaltersMTWangJHawking from CatalanJHEP2016050692016JHEP...05..069F352178810.1007/JHEP05(2016)069[arXiv:1510.00014] [INSPIRE]
NguyenKReparametrization modes in 2d CFT and the effective theory of stress tensor exchangesJHEP2021050292021JHEP...05..029N430177410.1007/JHEP05(2021)029[arXiv:2101.08800] [INSPIRE]
BeşkenMDe BoerJMathysGOn local and integrated stress-tensor commutatorsJHEP2021071482021JHEP...07..148B431652310.1007/JHEP07(2021)148[arXiv:2012.15724] [INSPIRE]
KusukiYLight Cone Bootstrap in General 2D CFTs and Entanglement from Light Cone SingularityJHEP2019010252019JHEP...01..025K393307610.1007/JHEP01(2019)025[arXiv:1810.01335] [INSPIRE]
CasiniHTesteETorrobaGModular Hamiltonians on the null plane and the Markov property of the vacuum stateJ. Phys. A201750368810710.1088/1751-8121/aa7eaa[arXiv:1703.10656] [INSPIRE]
KarlssonRParnachevATadićPThermalization in large-N CFTsJHEP2021092052021JHEP...09..205K432711110.1007/JHEP09(2021)205[arXiv:2102.04953] [INSPIRE]
GonzoRPokrakaALight-ray operators, detectors and gravitational event shapesJHEP2021050152021JHEP...05..015G430178810.1007/JHEP05(2021)015[arXiv:2012.01406] [INSPIRE]
Simmons-DuffinDStanfordDWittenEA spacetime derivation of the Lorentzian OPE inversion formulaJHEP2018070852018JHEP...07..085S386196810.1007/JHEP07(2018)085[arXiv:1711.03816] [INSPIRE]
KravchukPSimmons-DuffinDLight-ray operators in conformal field theoryJHEP2018111022018JHEP...11..102K390847410.1007/JHEP11(2018)102[arXiv:1805.00098] [INSPIRE]
AnousTHartmanTRovaiASonnerJBlack Hole Collapse in the 1/c ExpansionJHEP2016071232016JHEP...07..123A355021810.1007/JHEP07(2016)123[arXiv:1603.04856] [INSPIRE]
Caron-HuotSAnalyticity in Spin in Conformal TheoriesJHEP2017090782017JHEP...09..078C371053610.1007/JHEP09(2017)078[arXiv:1703.00278] [INSPIRE]
LiY-ZHeavy-light Bootstrap from Lorentzian Inversion FormulaJHEP2020070462020JHEP...07..046L413805010.1007/JHEP07(2020)046[arXiv:1910.06357] [INSPIRE]
BeemCPeelaersWRastelliLvan ReesBCChiral algebras of class SJHEP2015050202015JHEP...05..020B335937710.1007/JHEP05(2015)020[arXiv:1408.6522] [INSPIRE]
KorchemskyGPZhiboedovAOn the light-ray algebra in conformal field theoriesJHEP2022021402022JHEP...02..140K440730510.1007/JHEP02(2022)140[arXiv:2109.13269] [INSPIRE]
DodelsonMGrassiAIossaCPanea LichtigDZhiboedovAHolographic thermal correlators from supersymmetric instantonsSciPost Phys.2023141162023ScPP...14..116D459568010.21468/SciPostPhys.14.5.116[arXiv:2206.07720] [INSPIRE]
MaloneyAMaxfieldHNgGSA conformal block Farey tailJHEP2017061172017JHEP...06..117M368184210.1007/JHEP06(2017)117[arXiv:1609.02165] [INSPIRE]
NguyenKVirasoro blocks and the reparametrization formalismJHEP2023041432023JHEP...04..143N458445210.1007/JHEP04(2023)143[arXiv:2212.02527] [INSPIRE]
CotlerJJensenKA theory of reparameterizations for AdS3gravityJHEP2019020792019JHEP...02..079C10.1007/JHEP02(2019)079[arXiv:1808.03263] [INSPIRE]
BelavinVHaraokaYSantachiaraRRigid Fuchsian systems in 2-dimensional conformal field theoriesCommun. Math. Phys.2019365172019CMaPh.365...17B390082610.1007/s00220-018-3274-x[arXiv:1711.04361] [INSPIRE]
HuangK-Wd > 2 stress-tensor operator product expansion near a linePhys. Rev. D20211032021PhRvD.103l1702H428656510.1103/PhysRevD.103.L121702[arXiv:2103.09930] [INSPIRE]
BeşkenMDattaSKrausPSemi-classical Virasoro blocks: proof of exponentiationJHEP2020011092020JHEP...01..109B408821010.1007/JHEP01(2020)109[arXiv:1910.04169] [INSPIRE]
BenjaminNCollierSMaloneyAMeruliyaVResurgence, conformal blocks, and the sum over geometries in quantum gravityJHEP2023051662023JHEP...05..166B459425110.1007/JHEP05(2023)166[arXiv:2302.12851] [INSPIRE]
BombiniAGiustoSRussoRA note on the Virasoro blocks at order 1/cEur. Phys. J. C20197932019EPJC...79....3B10.1140/epjc/s10052-018-6522-5[arXiv:1807.07886] [INSPIRE]
RobertsDAStanfordDTwo-dimensional conformal field theory and the butterfly effectPhys. Rev. Lett.20151152015PhRvL.115m1603R10.1103/PhysRevLett.115.131603[arXiv:1412.5123] [INSPIRE]
FitzpatrickALHuangK-WMeltzerDPerlmutterESimmons-DuffinDModel-dependence of minimal-twist OPEs in d > 2 holographic CFTsJHEP2020110602020JHEP...11..060F420422510.1007/JHEP11(2020)060[arXiv:2007.07382] [INSPIRE]
HijanoEKrausPPerlmutterESnivelyRSemiclassical Virasoro blocks from AdS3gravityJHEP2015120772015JHEP...12..077H[arXiv:1508.04987] [INSPIRE]
FitzpatrickALHuangK-WLiDProbing universalities in d > 2 CFTs: from black holes to shockwavesJHEP2019111392019JHEP...11..139F405880610.1007/JHEP11(2019)139[arXiv:1907.10810] [INSPIRE]
HuangK-WApproximate symmetries in d = 4 CFTs with an Einstein gravity dualJHEP2022090532022JHEP...09..053H447845910.1007/JHEP09(2022)053[arXiv:2202.09998] [INSPIRE]
AsplundCTBernamontiAGalliFHartmanTHolographic Entanglement Entropy from 2d CFT: Heavy States and Local QuenchesJHEP2015021712015JHEP...02..171A332128210.1007/JHEP02(2015)171[arXiv:1410.1392] [INSPIRE]
Afkhami-JeddiNHartmanTKunduSTajdiniAEinstein gravity 3-point functions from conformal field theoryJHEP2017120492017JHEP...12..049A375784710.1007/JHEP12(2017)049[arXiv:1610.09378] [INSPIRE]
WittenEAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W163301210.4310/ATMP.1998.v2.n2.a2[hep-th/9802150] [INSPIRE]
HijanoEKrausPSnivelyRWorldline approach to semi-classical conformal blocksJHEP2015071312015JHEP...07..131H338308110.1007/JHEP07(2015)131[arXiv:1501.02260] [INSPIRE]
CamanhoXOEdelsteinJDMaldacenaJMZhiboedovACausality Constraints on Corrections to the Graviton Three-Point CouplingJHEP2016020202016JHEP...02..020C349124910.1007/JHEP02(2016)020[arXiv:1407.5597] [INSPIRE]
ChoMCollierSYinXRecursive Representations of Arbitrary Virasoro Conformal BlocksJHEP2019040182019JHEP...04..018C395545110.1007/JHEP04(2019)018[arXiv:1703.09805] [INSPIRE]
HeemskerkIPenedonesJPolchinskiJSullyJHolography from Conformal Field TheoryJHEP2009100792009JHEP...10..079H260743610.1088/1126-6708/2009/10/079[arXiv:0907.0151] [INSPIRE]
BeccariaMFachechiAMacoriniGVirasoro vacuum block at next-to-leading order in the heavy-light limitJHEP2016020722016JHEP...02..072B349119710.1007/JHEP02(2016)072[arXiv:1511.05452] [INSPIRE]
AnousTHaehlFMOn the Virasoro six-point identity block and chaosJHEP2020080022020JHEP...08..002A419022210.1007/JHEP08(2020)002[arXiv:2005.06440] [INSPIRE]
C. Beem, L. Rastelli and B.C. van Rees, W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE].
HuangK-WStress-tensor commutators in conformal field theories near the lightconePhys. Rev. D20191002019PhRvD.100f1701H402583610.1103/PhysRevD.100.061701[arXiv:1907.00599] [INSPIRE]
LiY-ZZhangH-YMore on heavy-light bootstrap up to double-stress-tensorJHEP2020100552020JHEP...10..055L4204050[arXiv:2004.04758] [INSPIRE]
N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, in the proceedings of the 16th International Congress on Mathematical Physics (ICMP09), Prague, Czech Republic, 3–8 August 2009, pp. 265–289 [https://doi.org/10.1142/9789814304634_0015] [arXiv:0908.4052] [INSPIRE].
MaldacenaJMThe Large N limit of superconformal field theories and supergravityAdv. Theor. Math. Phys.199822311998AdTMP...2..231M163301610.4310/ATMP.1998.v2.n2.a1[hep-th/9711200] [INSPIRE]
M. Kulaxizi, G.S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys.6 (2019) 065 [arXiv:1812.03120] [INSPIRE].
CollierSGobeilYMaxfieldHPerlmutterEQuantum Regge Trajectories and the Virasoro Analytic BootstrapJHEP2019052122019JHEP...05..212C397343710.1007/JHEP05(2019)212[arXiv:1811.05710] [INSPIRE]
FitzpatrickALKaplanJWaltersMTUniversality of Long-Distance AdS Physics from the CFT BootstrapJHEP2014081452014JHEP...08..145F10.1007/JHEP08(2014)145[arXiv:1403.6829] [INSPIRE]
FitzpatrickALKaplanJWaltersMTVirasoro Conformal Blocks and Thermality from Classical Background FieldsJHEP2015112002015JHEP...11..200F345487210.1007/JHEP11(2015)200[arXiv:1501.05315] [INSPIRE]
H. Chen, A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Degenerate Operators and the 1/c Expansion: Lorentzian Resummations, High Order Computations, and Super-Virasoro Blocks, JHEP03 (2017) 167 [arXiv:1606.02659] [INSPIRE].
BelinAHofmanDMMathysGWaltersMTOn the stress tensor light-ray operator algebraJHEP2021050332021JHEP...05..033B430177010.1007/JHEP05(2021)033[arXiv:2011.13862] [INSPIRE]
BombiniAGallianiAGiustoSMoscatoERussoRUnitary 4-point correlators from classical geometriesEur. Phys. J. C20187882018EPJC...78....8B10.1140/epjc/s10052-017-5492-3[arXiv:1710.06820] [INSPIRE]
KarlssonRKulaxiziMParnachevATadićPLeading Multi-Stress Tensors and Conformal BootstrapJHEP2020010762020JHEP...01..076K408824310.1007/JHEP01(2020)076[arXiv:1909.05775] [INSPIRE]
CollierSMaloneyAMaxfieldHTsiaresIUniversal dynamics of heavy operators in CFT2JHEP2020070742020JHEP...07..074C10.1007/JHEP07(2020)074[arXiv:1912.00222] [INSPIRE]
FitzpatrickALKaplanJA Quantum Correction To ChaosJHEP2016050702016JHEP...05..070F352178910.1007/JHEP05(2016)070[arXiv:1601.06164] [INSPIRE]
AldayLFMaldacenaJMComments on operators with large spinJHEP2007110192007JHEP...11..019A236213010.1088/1126-6708/2007/11/019[arXiv:0708.0672] [INSPIRE]
B. Chen, J.-q. Wu and J.-j. Zhang, Holographic Description of 2D Conformal Block in Semi-classical Limit, JHEP10 (2016) 110
XO Camanho (22278_CR55) 2016; 02
R Karlsson (22278_CR84) 2021; 09
22278_CR86
DA Roberts (22278_CR12) 2015; 115
D Li (22278_CR60) 2017; 12
E Keski-Vakkuri (22278_CR70) 1999; 59
M Beşken (22278_CR43) 2020; 2006
JM Maldacena (22278_CR66) 1998; 2
GP Korchemsky (22278_CR94) 2022; 02
AL Fitzpatrick (22278_CR20) 2016; 05
S Collier (22278_CR37) 2019; 05
K-W Huang (22278_CR88) 2019; 100
22278_CR101
22278_CR103
T Hartman (22278_CR56) 2016; 05
22278_CR98
M Beccaria (22278_CR18) 2016; 02
C-M Chang (22278_CR39) 2019; 03
E Witten (22278_CR68) 1998; 2
D Harlow (22278_CR8) 2011; 12
D Das (22278_CR49) 2020; 11
Z Komargodski (22278_CR57) 2017; 95
I Heemskerk (22278_CR53) 2009; 10
SS Gubser (22278_CR67) 1998; 428
Y-Z Li (22278_CR81) 2020; 07
K-W Huang (22278_CR95) 2020; 102
FM Haehl (22278_CR44) 2019; 11
K Alkalaev (22278_CR47) 2020; 956
C Beem (22278_CR97) 2015; 336
22278_CR24
E Hijano (22278_CR16) 2015; 12
22278_CR25
T Anous (22278_CR41) 2019; 7
D Simmons-Duffin (22278_CR80) 2018; 07
A Parnachev (22278_CR83) 2021; 54
AL Fitzpatrick (22278_CR23) 2016; 05
A Bombini (22278_CR34) 2019; 79
S Caron-Huot (22278_CR65) 2021; 11
AL Fitzpatrick (22278_CR71) 2019; 08
S Giusto (22278_CR40) 2019; 03
M Beşken (22278_CR93) 2021; 07
V Belavin (22278_CR102) 2019; 365
J Cotler (22278_CR35) 2019; 02
H Chen (22278_CR28) 2017; 09
Y Kusuki (22278_CR36) 2019; 01
CT Asplund (22278_CR11) 2015; 02
R Karlsson (22278_CR75) 2020; 01
AL Fitzpatrick (22278_CR10) 2014; 08
K Nguyen (22278_CR51) 2023; 04
AL Fitzpatrick (22278_CR19) 2016; 05
M Dodelson (22278_CR85) 2023; 14
K-W Huang (22278_CR77) 2021; 103
N Afkhami-Jeddi (22278_CR58) 2017; 12
M Beşken (22278_CR45) 2020; 01
AL Fitzpatrick (22278_CR17) 2016; 05
22278_CR38
Z Komargodski (22278_CR3) 2013; 11
H Casini (22278_CR87) 2017; 50
A Johansen (22278_CR100) 1995; 436
E Hijano (22278_CR13) 2015; 07
R Karlsson (22278_CR76) 2020; 07
D Meltzer (22278_CR61) 2018; 07
C Beem (22278_CR99) 2015; 05
T Anous (22278_CR48) 2020; 08
A Galliani (22278_CR31) 2017; 10
T Anous (22278_CR22) 2016; 07
AL Fitzpatrick (22278_CR27) 2017; 07
AL Fitzpatrick (22278_CR54) 2011; 07
A Belin (22278_CR91) 2021; 05
22278_CR59
N Benjamin (22278_CR52) 2023; 05
AL Fitzpatrick (22278_CR14) 2015; 11
A Bombini (22278_CR32) 2018; 78
K Nguyen (22278_CR50) 2021; 05
M Cho (22278_CR30) 2019; 04
C Córdova (22278_CR90) 2018; 98
M Banados (22278_CR69) 1992; 69
N Afkhami-Jeddi (22278_CR62) 2019; 04
22278_CR64
A Belin (22278_CR63) 2019; 08
K-W Huang (22278_CR96) 2022; 09
22278_CR6
P Banerjee (22278_CR21) 2016; 05
LF Alday (22278_CR4) 2007; 11
22278_CR9
22278_CR7
AL Fitzpatrick (22278_CR72) 2019; 11
22278_CR1
E Perlmutter (22278_CR15) 2015; 08
AL Fitzpatrick (22278_CR73) 2020; 11
AL Fitzpatrick (22278_CR2) 2013; 12
S Pal (22278_CR5) 2023; 402
22278_CR74
S Caron-Huot (22278_CR79) 2017; 09
P Kravchuk (22278_CR89) 2018; 11
22278_CR78
S Collier (22278_CR46) 2020; 07
R Gonzo (22278_CR92) 2021; 05
Y Kusuki (22278_CR33) 2018; 08
Y Kusuki (22278_CR42) 2019; 08
Y-Z Li (22278_CR82) 2020; 10
M Cho (22278_CR29) 2019; 04
A Maloney (22278_CR26) 2017; 06
References_xml – reference: M. Kulaxizi, G.S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys.6 (2019) 065 [arXiv:1812.03120] [INSPIRE].
– reference: Afkhami-JeddiNHartmanTKunduSTajdiniAEinstein gravity 3-point functions from conformal field theoryJHEP2017120492017JHEP...12..049A375784710.1007/JHEP12(2017)049[arXiv:1610.09378] [INSPIRE]
– reference: NguyenKVirasoro blocks and the reparametrization formalismJHEP2023041432023JHEP...04..143N458445210.1007/JHEP04(2023)143[arXiv:2212.02527] [INSPIRE]
– reference: AsplundCTBernamontiAGalliFHartmanTHolographic Entanglement Entropy from 2d CFT: Heavy States and Local QuenchesJHEP2015021712015JHEP...02..171A332128210.1007/JHEP02(2015)171[arXiv:1410.1392] [INSPIRE]
– reference: LiY-ZZhangH-YMore on heavy-light bootstrap up to double-stress-tensorJHEP2020100552020JHEP...10..055L4204050[arXiv:2004.04758] [INSPIRE]
– reference: ChangC-MRamirezDMRangamaniMSpinning constraints on chaotic large c CFTsJHEP201903068395119810.1007/JHEP03(2019)068[arXiv:1812.05585] [INSPIRE]
– reference: CasiniHTesteETorrobaGModular Hamiltonians on the null plane and the Markov property of the vacuum stateJ. Phys. A201750368810710.1088/1751-8121/aa7eaa[arXiv:1703.10656] [INSPIRE]
– reference: HijanoEKrausPSnivelyRWorldline approach to semi-classical conformal blocksJHEP2015071312015JHEP...07..131H338308110.1007/JHEP07(2015)131[arXiv:1501.02260] [INSPIRE]
– reference: KomargodskiZKulaxiziMParnachevAZhiboedovAConformal Field Theories and Deep Inelastic ScatteringPhys. Rev. D2017952017PhRvD..95f5011K379028510.1103/PhysRevD.95.065011[arXiv:1601.05453] [INSPIRE]
– reference: M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk Phase Shift, CFT Regge Limit and Einstein Gravity, JHEP06 (2018) 121 [arXiv:1705.02934] [INSPIRE].
– reference: AnousTSonnerJPhases of scrambling in eigenstatesSciPost Phys.201970032019ScPP....7....3A413472010.21468/SciPostPhys.7.1.003[arXiv:1903.03143] [INSPIRE]
– reference: MeltzerDPerlmutterEBeyond a = c: gravitational couplings to matter and the stress tensor OPEJHEP2018071572018JHEP...07..157M385856610.1007/JHEP07(2018)157[arXiv:1712.04861] [INSPIRE]
– reference: CollierSMaloneyAMaxfieldHTsiaresIUniversal dynamics of heavy operators in CFT2JHEP2020070742020JHEP...07..074C10.1007/JHEP07(2020)074[arXiv:1912.00222] [INSPIRE]
– reference: HeemskerkIPenedonesJPolchinskiJSullyJHolography from Conformal Field TheoryJHEP2009100792009JHEP...10..079H260743610.1088/1126-6708/2009/10/079[arXiv:0907.0151] [INSPIRE]
– reference: HartmanTJainSKunduSCausality Constraints in Conformal Field TheoryJHEP2016050992016JHEP...05..099H10.1007/JHEP05(2016)099[arXiv:1509.00014] [INSPIRE]
– reference: KusukiYMiyajiMEntanglement Entropy, OTOC and Bootstrap in 2D CFTs from Regge and Light Cone Limits of Multi-point Conformal BlockJHEP2019080632019JHEP...08..063K401453210.1007/JHEP08(2019)063[arXiv:1905.02191] [INSPIRE]
– reference: WittenEAnti-de Sitter space and holographyAdv. Theor. Math. Phys.199822531998AdTMP...2..253W163301210.4310/ATMP.1998.v2.n2.a2[hep-th/9802150] [INSPIRE]
– reference: Simmons-DuffinDStanfordDWittenEA spacetime derivation of the Lorentzian OPE inversion formulaJHEP2018070852018JHEP...07..085S386196810.1007/JHEP07(2018)085[arXiv:1711.03816] [INSPIRE]
– reference: BenjaminNCollierSMaloneyAMeruliyaVResurgence, conformal blocks, and the sum over geometries in quantum gravityJHEP2023051662023JHEP...05..166B459425110.1007/JHEP05(2023)166[arXiv:2302.12851] [INSPIRE]
– reference: HuangK-WLightcone Commutator and Stress-Tensor Exchange in d > 2 CFTsPhys. Rev. D20201022020PhRvD.102b1701H10.1103/PhysRevD.102.021701[arXiv:2002.00110] [INSPIRE]
– reference: MaloneyAMaxfieldHNgGSA conformal block Farey tailJHEP2017061172017JHEP...06..117M368184210.1007/JHEP06(2017)117[arXiv:1609.02165] [INSPIRE]
– reference: ChoMCollierSYinXRecursive Representations of Arbitrary Virasoro Conformal BlocksJHEP2019040182019JHEP...04..018C395545110.1007/JHEP04(2019)018[arXiv:1703.09805] [INSPIRE]
– reference: Caron-HuotSMazacDRastelliLSimmons-DuffinDAdS bulk locality from sharp CFT boundsJHEP2021111642021JHEP...11..164C436828010.1007/JHEP11(2021)164[arXiv:2106.10274] [INSPIRE]
– reference: R. Karlsson, M. Kulaxizi, G.S. Ng, A. Parnachev and P. Tadić, CFT correlators,W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}-algebras and generalized Catalan numbers, JHEP06 (2022) 162 [arXiv:2111.07924] [INSPIRE].
– reference: A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B241 (1984) 333 [INSPIRE].
– reference: JohansenAInfinite conformal algebras in supersymmetric theories on four manifoldsNucl. Phys. B19954362911995NuPhB.436..291J131637010.1016/0550-3213(94)00408-7[hep-th/9407109] [INSPIRE]
– reference: FitzpatrickALKaplanJWaltersMTWangJHawking from CatalanJHEP2016050692016JHEP...05..069F352178810.1007/JHEP05(2016)069[arXiv:1510.00014] [INSPIRE]
– reference: CórdovaCShaoS-HLight-ray Operators and the BMS AlgebraPhys. Rev. D2018982018PhRvD..98l5015C397430710.1103/PhysRevD.98.125015[arXiv:1810.05706] [INSPIRE]
– reference: BeşkenMDattaSKrausPQuantum thermalization and Virasoro symmetryJ. Stat. Mech.20202006416160710.1088/1742-5468/ab900b[arXiv:1907.06661] [INSPIRE]
– reference: BeccariaMFachechiAMacoriniGVirasoro vacuum block at next-to-leading order in the heavy-light limitJHEP2016020722016JHEP...02..072B349119710.1007/JHEP02(2016)072[arXiv:1511.05452] [INSPIRE]
– reference: M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Shocks, Superconvergence, and a Stringy Equivalence Principle, JHEP11 (2020) 096 [arXiv:1904.05905] [INSPIRE].
– reference: FitzpatrickALKaplanJWaltersMTUniversality of Long-Distance AdS Physics from the CFT BootstrapJHEP2014081452014JHEP...08..145F10.1007/JHEP08(2014)145[arXiv:1403.6829] [INSPIRE]
– reference: FitzpatrickALKaplanJWaltersMTVirasoro Conformal Blocks and Thermality from Classical Background FieldsJHEP2015112002015JHEP...11..200F345487210.1007/JHEP11(2015)200[arXiv:1501.05315] [INSPIRE]
– reference: MaldacenaJMThe Large N limit of superconformal field theories and supergravityAdv. Theor. Math. Phys.199822311998AdTMP...2..231M163301610.4310/ATMP.1998.v2.n2.a1[hep-th/9711200] [INSPIRE]
– reference: A. Kapustin, Holomorphic reduction of N = 2 gauge theories, Wilson-’t Hooft operators, and S-duality, hep-th/0612119 [INSPIRE].
– reference: LiY-ZHeavy-light Bootstrap from Lorentzian Inversion FormulaJHEP2020070462020JHEP...07..046L413805010.1007/JHEP07(2020)046[arXiv:1910.06357] [INSPIRE]
– reference: BelavinVHaraokaYSantachiaraRRigid Fuchsian systems in 2-dimensional conformal field theoriesCommun. Math. Phys.2019365172019CMaPh.365...17B390082610.1007/s00220-018-3274-x[arXiv:1711.04361] [INSPIRE]
– reference: DodelsonMGrassiAIossaCPanea LichtigDZhiboedovAHolographic thermal correlators from supersymmetric instantonsSciPost Phys.2023141162023ScPP...14..116D459568010.21468/SciPostPhys.14.5.116[arXiv:2206.07720] [INSPIRE]
– reference: GallianiAGiustoSRussoRHolographic 4-point correlators with heavy statesJHEP2017100402017JHEP...10..040G373117310.1007/JHEP10(2017)040[arXiv:1705.09250] [INSPIRE]
– reference: Keski-VakkuriEBulk and boundary dynamics in BTZ black holesPhys. Rev. D1999591999PhRvD..59j4001K170922110.1103/PhysRevD.59.104001[hep-th/9808037] [INSPIRE]
– reference: KusukiYLarge c Virasoro Blocks from Monodromy Method beyond Known LimitsJHEP2018081612018JHEP...08..161K386116110.1007/JHEP08(2018)161[arXiv:1806.04352] [INSPIRE]
– reference: FitzpatrickALHuangK-WLiDProbing universalities in d > 2 CFTs: from black holes to shockwavesJHEP2019111392019JHEP...11..139F405880610.1007/JHEP11(2019)139[arXiv:1907.10810] [INSPIRE]
– reference: M. Kulaxizi, G.S. Ng and A. Parnachev, Subleading Eikonal, AdS/CFT and Double Stress Tensors, JHEP10 (2019) 107 [arXiv:1907.00867] [INSPIRE].
– reference: C. Beem, L. Rastelli and B.C. van Rees, W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{W} $$\end{document}symmetry in six dimensions, JHEP05 (2015) 017 [arXiv:1404.1079] [INSPIRE].
– reference: BeemCPeelaersWRastelliLvan ReesBCChiral algebras of class SJHEP2015050202015JHEP...05..020B335937710.1007/JHEP05(2015)020[arXiv:1408.6522] [INSPIRE]
– reference: GonzoRPokrakaALight-ray operators, detectors and gravitational event shapesJHEP2021050152021JHEP...05..015G430178810.1007/JHEP05(2021)015[arXiv:2012.01406] [INSPIRE]
– reference: FitzpatrickALKaplanJConformal Blocks Beyond the Semi-Classical LimitJHEP2016050752016JHEP...05..075F352179410.1007/JHEP05(2016)075[arXiv:1512.03052] [INSPIRE]
– reference: BanadosMTeitelboimCZanelliJThe Black hole in three-dimensional space-timePhys. Rev. Lett.19926918491992PhRvL..69.1849B118166310.1103/PhysRevLett.69.1849[hep-th/9204099] [INSPIRE]
– reference: ChenHHussongCKaplanJLiDA Numerical Approach to Virasoro Blocks and the Information ParadoxJHEP2017091022017JHEP...09..102C10.1007/JHEP09(2017)102[arXiv:1703.09727] [INSPIRE]
– reference: AnousTHaehlFMOn the Virasoro six-point identity block and chaosJHEP2020080022020JHEP...08..002A419022210.1007/JHEP08(2020)002[arXiv:2005.06440] [INSPIRE]
– reference: BombiniAGiustoSRussoRA note on the Virasoro blocks at order 1/cEur. Phys. J. C20197932019EPJC...79....3B10.1140/epjc/s10052-018-6522-5[arXiv:1807.07886] [INSPIRE]
– reference: FitzpatrickALHuangK-WUniversal Lowest-Twist in CFTs from HolographyJHEP2019081382019JHEP...08..138F401341010.1007/JHEP08(2019)138[arXiv:1903.05306] [INSPIRE]
– reference: LiDMeltzerDPolandDConformal Bootstrap in the Regge LimitJHEP2017120132017JHEP...12..013L375788310.1007/JHEP12(2017)013[arXiv:1705.03453] [INSPIRE]
– reference: BanerjeePDattaSSinhaRHigher-point conformal blocks and entanglement entropy in heavy statesJHEP2016051272016JHEP...05..127B352184610.1007/JHEP05(2016)127[arXiv:1601.06794] [INSPIRE]
– reference: GiustoSRussoRWenCHolographic correlators in AdS3JHEP2019030962019JHEP...03..096G10.1007/JHEP03(2019)096[arXiv:1812.06479] [INSPIRE]
– reference: HuangK-WStress-tensor commutators in conformal field theories near the lightconePhys. Rev. D20191002019PhRvD.100f1701H402583610.1103/PhysRevD.100.061701[arXiv:1907.00599] [INSPIRE]
– reference: FitzpatrickALHuangK-WMeltzerDPerlmutterESimmons-DuffinDModel-dependence of minimal-twist OPEs in d > 2 holographic CFTsJHEP2020110602020JHEP...11..060F420422510.1007/JHEP11(2020)060[arXiv:2007.07382] [INSPIRE]
– reference: ParnachevANear Lightcone Thermal Conformal Correlators and HolographyJ. Phys. A2021542021JPhA...54o5401P424043410.1088/1751-8121/abec16[arXiv:2005.06877] [INSPIRE]
– reference: HaehlFMReevesWRozaliMReparametrization modes, shadow operators, and quantum chaos in higher-dimensional CFTsJHEP2019111022019JHEP...11..102H405884310.1007/JHEP11(2019)102[arXiv:1909.05847] [INSPIRE]
– reference: BelinAHofmanDMMathysGEinstein gravity from ANEC correlatorsJHEP2019080322019JHEP...08..032B401450110.1007/JHEP08(2019)032[arXiv:1904.05892] [INSPIRE]
– reference: HarlowDMaltzJWittenEAnalytic Continuation of Liouville TheoryJHEP2011120712011JHEP...12..071H293561310.1007/JHEP12(2011)071[arXiv:1108.4417] [INSPIRE]
– reference: FitzpatrickALKaplanJA Quantum Correction To ChaosJHEP2016050702016JHEP...05..070F352178910.1007/JHEP05(2016)070[arXiv:1601.06164] [INSPIRE]
– reference: NguyenKReparametrization modes in 2d CFT and the effective theory of stress tensor exchangesJHEP2021050292021JHEP...05..029N430177410.1007/JHEP05(2021)029[arXiv:2101.08800] [INSPIRE]
– reference: BeşkenMDattaSKrausPSemi-classical Virasoro blocks: proof of exponentiationJHEP2020011092020JHEP...01..109B408821010.1007/JHEP01(2020)109[arXiv:1910.04169] [INSPIRE]
– reference: FitzpatrickALKatzEPolandDSimmons-DuffinDEffective Conformal Theory and the Flat-Space Limit of AdSJHEP2011070232011JHEP...07..023F287598410.1007/JHEP07(2011)023[arXiv:1007.2412] [INSPIRE]
– reference: T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
– reference: B. Chen, J.-q. Wu and J.-j. Zhang, Holographic Description of 2D Conformal Block in Semi-classical Limit, JHEP10 (2016) 110 [arXiv:1609.00801] [INSPIRE].
– reference: PalSQiaoJRychkovSTwist Accumulation in Conformal Field Theory: A Rigorous Approach to the Lightcone BootstrapCommun. Math. Phys.202340221692023CMaPh.402.2169P463047310.1007/s00220-023-04767-w[arXiv:2212.04893] [INSPIRE]
– reference: DasDDattaSRamanMVirasoro blocks and quasimodular formsJHEP2020110102020JHEP...11..010D420427510.1007/JHEP11(2020)010[arXiv:2007.10998] [INSPIRE]
– reference: HuangK-Wd > 2 stress-tensor operator product expansion near a linePhys. Rev. D20211032021PhRvD.103l1702H428656510.1103/PhysRevD.103.L121702[arXiv:2103.09930] [INSPIRE]
– reference: KarlssonRKulaxiziMParnachevATadićPStress tensor sector of conformal correlators operators in the Regge limitJHEP2020070192020JHEP...07..019K413807710.1007/JHEP07(2020)019[arXiv:2002.12254] [INSPIRE]
– reference: BombiniAGallianiAGiustoSMoscatoERussoRUnitary 4-point correlators from classical geometriesEur. Phys. J. C20187882018EPJC...78....8B10.1140/epjc/s10052-017-5492-3[arXiv:1710.06820] [INSPIRE]
– reference: KarlssonRKulaxiziMParnachevATadićPLeading Multi-Stress Tensors and Conformal BootstrapJHEP2020010762020JHEP...01..076K408824310.1007/JHEP01(2020)076[arXiv:1909.05775] [INSPIRE]
– reference: HuangK-WApproximate symmetries in d = 4 CFTs with an Einstein gravity dualJHEP2022090532022JHEP...09..053H447845910.1007/JHEP09(2022)053[arXiv:2202.09998] [INSPIRE]
– reference: GubserSSKlebanovIRPolyakovAMGauge theory correlators from noncritical string theoryPhys. Lett. B19984281051998PhLB..428..105G163076610.1016/S0370-2693(98)00377-3[hep-th/9802109] [INSPIRE]
– reference: Afkhami-JeddiNKunduSTajdiniAA Bound on Massive Higher Spin ParticlesJHEP2019040562019JHEP...04..056A395541310.1007/JHEP04(2019)056[arXiv:1811.01952] [INSPIRE]
– reference: BeşkenMDe BoerJMathysGOn local and integrated stress-tensor commutatorsJHEP2021071482021JHEP...07..148B431652310.1007/JHEP07(2021)148[arXiv:2012.15724] [INSPIRE]
– reference: KarlssonRParnachevATadićPThermalization in large-N CFTsJHEP2021092052021JHEP...09..205K432711110.1007/JHEP09(2021)205[arXiv:2102.04953] [INSPIRE]
– reference: KorchemskyGPZhiboedovAOn the light-ray algebra in conformal field theoriesJHEP2022021402022JHEP...02..140K440730510.1007/JHEP02(2022)140[arXiv:2109.13269] [INSPIRE]
– reference: RobertsDAStanfordDTwo-dimensional conformal field theory and the butterfly effectPhys. Rev. Lett.20151152015PhRvL.115m1603R10.1103/PhysRevLett.115.131603[arXiv:1412.5123] [INSPIRE]
– reference: AnousTHartmanTRovaiASonnerJBlack Hole Collapse in the 1/c ExpansionJHEP2016071232016JHEP...07..123A355021810.1007/JHEP07(2016)123[arXiv:1603.04856] [INSPIRE]
– reference: HijanoEKrausPPerlmutterESnivelyRSemiclassical Virasoro blocks from AdS3gravityJHEP2015120772015JHEP...12..077H[arXiv:1508.04987] [INSPIRE]
– reference: AlkalaevKPavlovMHolographic variables for CFT2conformal blocks with heavy operatorsNucl. Phys. B202095610.1016/j.nuclphysb.2020.115018[arXiv:2001.02604] [INSPIRE]
– reference: KomargodskiZZhiboedovAConvexity and Liberation at Large SpinJHEP2013111402013JHEP...11..140K10.1007/JHEP11(2013)140[arXiv:1212.4103] [INSPIRE]
– reference: KusukiYLight Cone Bootstrap in General 2D CFTs and Entanglement from Light Cone SingularityJHEP2019010252019JHEP...01..025K393307610.1007/JHEP01(2019)025[arXiv:1810.01335] [INSPIRE]
– reference: A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: Recursion representation of conformal block, Theor. Math. Phys.73 (1987) 1088.
– reference: S. Ribault, Conformal field theory on the plane, arXiv:1406.4290 [INSPIRE].
– reference: AldayLFMaldacenaJMComments on operators with large spinJHEP2007110192007JHEP...11..019A236213010.1088/1126-6708/2007/11/019[arXiv:0708.0672] [INSPIRE]
– reference: CollierSGobeilYMaxfieldHPerlmutterEQuantum Regge Trajectories and the Virasoro Analytic BootstrapJHEP2019052122019JHEP...05..212C397343710.1007/JHEP05(2019)212[arXiv:1811.05710] [INSPIRE]
– reference: FitzpatrickALKaplanJPolandDSimmons-DuffinDThe Analytic Bootstrap and AdS Superhorizon LocalityJHEP2013120042013JHEP...12..004F313819310.1007/JHEP12(2013)004[arXiv:1212.3616] [INSPIRE]
– reference: FitzpatrickALKaplanJLiDWangJExact Virasoro Blocks from Wilson Lines and Background-Independent OperatorsJHEP2017070922017JHEP...07..092F368670610.1007/JHEP07(2017)092[arXiv:1612.06385] [INSPIRE]
– reference: A.B. Zamolodchikov, Conformal symmetry in two dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys.96 (1984) 419 [INSPIRE].
– reference: PerlmutterEVirasoro conformal blocks in closed formJHEP2015080882015JHEP...08..088P340074210.1007/JHEP08(2015)088[arXiv:1502.07742] [INSPIRE]
– reference: H. Chen, A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, Degenerate Operators and the 1/c Expansion: Lorentzian Resummations, High Order Computations, and Super-Virasoro Blocks, JHEP03 (2017) 167 [arXiv:1606.02659] [INSPIRE].
– reference: ChoMCollierSYinXGenus Two Modular BootstrapJHEP2019040222019JHEP...04..022C395544710.1007/JHEP04(2019)022[arXiv:1705.05865] [INSPIRE]
– reference: FitzpatrickALKaplanJLiDWangJOn information loss in AdS3/CFT2JHEP2016051092016JHEP...05..109F10.1007/JHEP05(2016)109[arXiv:1603.08925] [INSPIRE]
– reference: BelinAHofmanDMMathysGWaltersMTOn the stress tensor light-ray operator algebraJHEP2021050332021JHEP...05..033B430177010.1007/JHEP05(2021)033[arXiv:2011.13862] [INSPIRE]
– reference: KravchukPSimmons-DuffinDLight-ray operators in conformal field theoryJHEP2018111022018JHEP...11..102K390847410.1007/JHEP11(2018)102[arXiv:1805.00098] [INSPIRE]
– reference: CamanhoXOEdelsteinJDMaldacenaJMZhiboedovACausality Constraints on Corrections to the Graviton Three-Point CouplingJHEP2016020202016JHEP...02..020C349124910.1007/JHEP02(2016)020[arXiv:1407.5597] [INSPIRE]
– reference: CotlerJJensenKA theory of reparameterizations for AdS3gravityJHEP2019020792019JHEP...02..079C10.1007/JHEP02(2019)079[arXiv:1808.03263] [INSPIRE]
– reference: BeemCLemosMLiendoPPeelaersWRastelliLvan ReesBCInfinite Chiral Symmetry in Four DimensionsCommun. Math. Phys.201533613592015CMaPh.336.1359B332414710.1007/s00220-014-2272-x[arXiv:1312.5344] [INSPIRE]
– reference: N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, in the proceedings of the 16th International Congress on Mathematical Physics (ICMP09), Prague, Czech Republic, 3–8 August 2009, pp. 265–289 [https://doi.org/10.1142/9789814304634_0015] [arXiv:0908.4052] [INSPIRE].
– reference: Caron-HuotSAnalyticity in Spin in Conformal TheoriesJHEP2017090782017JHEP...09..078C371053610.1007/JHEP09(2017)078[arXiv:1703.00278] [INSPIRE]
– volume: 02
  start-page: 020
  year: 2016
  ident: 22278_CR55
  publication-title: JHEP
  doi: 10.1007/JHEP02(2016)020
– volume: 103
  year: 2021
  ident: 22278_CR77
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.L121702
– volume: 07
  start-page: 046
  year: 2020
  ident: 22278_CR81
  publication-title: JHEP
  doi: 10.1007/JHEP07(2020)046
– volume: 59
  year: 1999
  ident: 22278_CR70
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.59.104001
– ident: 22278_CR38
  doi: 10.21468/SciPostPhys.6.6.065
– ident: 22278_CR59
  doi: 10.1007/JHEP06(2018)121
– ident: 22278_CR101
– volume: 11
  start-page: 139
  year: 2019
  ident: 22278_CR72
  publication-title: JHEP
  doi: 10.1007/JHEP11(2019)139
– volume: 08
  start-page: 088
  year: 2015
  ident: 22278_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP08(2015)088
– volume: 04
  start-page: 056
  year: 2019
  ident: 22278_CR62
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)056
– volume: 69
  start-page: 1849
  year: 1992
  ident: 22278_CR69
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.1849
– ident: 22278_CR1
  doi: 10.1016/0550-3213(84)90052-X
– volume: 428
  start-page: 105
  year: 1998
  ident: 22278_CR67
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)00377-3
– volume: 07
  start-page: 023
  year: 2011
  ident: 22278_CR54
  publication-title: JHEP
  doi: 10.1007/JHEP07(2011)023
– volume: 02
  start-page: 072
  year: 2016
  ident: 22278_CR18
  publication-title: JHEP
  doi: 10.1007/JHEP02(2016)072
– volume: 04
  start-page: 018
  year: 2019
  ident: 22278_CR29
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)018
– volume: 01
  start-page: 109
  year: 2020
  ident: 22278_CR45
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)109
– volume: 2006
  year: 2020
  ident: 22278_CR43
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/ab900b
– volume: 09
  start-page: 053
  year: 2022
  ident: 22278_CR96
  publication-title: JHEP
  doi: 10.1007/JHEP09(2022)053
– volume: 07
  start-page: 092
  year: 2017
  ident: 22278_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP07(2017)092
– volume: 07
  start-page: 019
  year: 2020
  ident: 22278_CR76
  publication-title: JHEP
  doi: 10.1007/JHEP07(2020)019
– volume: 05
  start-page: 070
  year: 2016
  ident: 22278_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)070
– volume: 12
  start-page: 004
  year: 2013
  ident: 22278_CR2
  publication-title: JHEP
  doi: 10.1007/JHEP12(2013)004
– ident: 22278_CR74
  doi: 10.1007/JHEP10(2019)107
– volume: 05
  start-page: 075
  year: 2016
  ident: 22278_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)075
– volume: 08
  start-page: 145
  year: 2014
  ident: 22278_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP08(2014)145
– volume: 07
  start-page: 148
  year: 2021
  ident: 22278_CR93
  publication-title: JHEP
  doi: 10.1007/JHEP07(2021)148
– volume: 54
  year: 2021
  ident: 22278_CR83
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/abec16
– volume: 98
  year: 2018
  ident: 22278_CR90
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.125015
– volume: 05
  start-page: 020
  year: 2015
  ident: 22278_CR99
  publication-title: JHEP
  doi: 10.1007/JHEP05(2015)020
– volume: 08
  start-page: 032
  year: 2019
  ident: 22278_CR63
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)032
– volume: 11
  start-page: 060
  year: 2020
  ident: 22278_CR73
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)060
– volume: 06
  start-page: 117
  year: 2017
  ident: 22278_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP06(2017)117
– volume: 12
  start-page: 013
  year: 2017
  ident: 22278_CR60
  publication-title: JHEP
  doi: 10.1007/JHEP12(2017)013
– volume: 2
  start-page: 253
  year: 1998
  ident: 22278_CR68
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a2
– volume: 14
  start-page: 116
  year: 2023
  ident: 22278_CR85
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.14.5.116
– ident: 22278_CR78
  doi: 10.1007/JHEP06(2022)162
– volume: 07
  start-page: 074
  year: 2020
  ident: 22278_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP07(2020)074
– ident: 22278_CR103
– volume: 05
  start-page: 015
  year: 2021
  ident: 22278_CR92
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)015
– volume: 365
  start-page: 17
  year: 2019
  ident: 22278_CR102
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-018-3274-x
– volume: 07
  start-page: 131
  year: 2015
  ident: 22278_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP07(2015)131
– volume: 01
  start-page: 076
  year: 2020
  ident: 22278_CR75
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)076
– volume: 10
  start-page: 040
  year: 2017
  ident: 22278_CR31
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)040
– ident: 22278_CR9
– volume: 05
  start-page: 109
  year: 2016
  ident: 22278_CR23
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)109
– volume: 11
  start-page: 019
  year: 2007
  ident: 22278_CR4
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/11/019
– volume: 08
  start-page: 063
  year: 2019
  ident: 22278_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)063
– ident: 22278_CR7
  doi: 10.1007/BF01022967
– volume: 04
  start-page: 022
  year: 2019
  ident: 22278_CR30
  publication-title: JHEP
  doi: 10.1007/JHEP04(2019)022
– volume: 05
  start-page: 099
  year: 2016
  ident: 22278_CR56
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)099
– volume: 336
  start-page: 1359
  year: 2015
  ident: 22278_CR97
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-2272-x
– volume: 01
  start-page: 025
  year: 2019
  ident: 22278_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)025
– volume: 436
  start-page: 291
  year: 1995
  ident: 22278_CR100
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(94)00408-7
– volume: 02
  start-page: 079
  year: 2019
  ident: 22278_CR35
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)079
– volume: 11
  start-page: 102
  year: 2019
  ident: 22278_CR44
  publication-title: JHEP
  doi: 10.1007/JHEP11(2019)102
– volume: 07
  start-page: 157
  year: 2018
  ident: 22278_CR61
  publication-title: JHEP
  doi: 10.1007/JHEP07(2018)157
– volume: 03
  start-page: 068
  year: 2019
  ident: 22278_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP03(2019)068
– volume: 12
  start-page: 071
  year: 2011
  ident: 22278_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP12(2011)071
– volume: 12
  start-page: 049
  year: 2017
  ident: 22278_CR58
  publication-title: JHEP
  doi: 10.1007/JHEP12(2017)049
– volume: 11
  start-page: 102
  year: 2018
  ident: 22278_CR89
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)102
– ident: 22278_CR98
  doi: 10.1007/JHEP05(2015)017
– volume: 102
  year: 2020
  ident: 22278_CR95
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.021701
– volume: 07
  start-page: 123
  year: 2016
  ident: 22278_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP07(2016)123
– volume: 78
  start-page: 8
  year: 2018
  ident: 22278_CR32
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5492-3
– volume: 05
  start-page: 069
  year: 2016
  ident: 22278_CR17
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)069
– volume: 2
  start-page: 231
  year: 1998
  ident: 22278_CR66
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a1
– volume: 05
  start-page: 212
  year: 2019
  ident: 22278_CR37
  publication-title: JHEP
  doi: 10.1007/JHEP05(2019)212
– volume: 11
  start-page: 140
  year: 2013
  ident: 22278_CR3
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)140
– volume: 12
  start-page: 077
  year: 2015
  ident: 22278_CR16
  publication-title: JHEP
– ident: 22278_CR64
  doi: 10.1007/JHEP11(2020)096
– volume: 402
  start-page: 2169
  year: 2023
  ident: 22278_CR5
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-023-04767-w
– volume: 7
  start-page: 003
  year: 2019
  ident: 22278_CR41
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.7.1.003
– volume: 09
  start-page: 102
  year: 2017
  ident: 22278_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)102
– volume: 05
  start-page: 127
  year: 2016
  ident: 22278_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)127
– volume: 08
  start-page: 161
  year: 2018
  ident: 22278_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)161
– volume: 956
  year: 2020
  ident: 22278_CR47
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2020.115018
– volume: 11
  start-page: 164
  year: 2021
  ident: 22278_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP11(2021)164
– volume: 79
  start-page: 3
  year: 2019
  ident: 22278_CR34
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6522-5
– ident: 22278_CR24
  doi: 10.1007/JHEP03(2017)167
– volume: 115
  year: 2015
  ident: 22278_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.131603
– ident: 22278_CR25
  doi: 10.1007/JHEP10(2016)110
– volume: 10
  start-page: 079
  year: 2009
  ident: 22278_CR53
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/10/079
– volume: 11
  start-page: 010
  year: 2020
  ident: 22278_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)010
– volume: 04
  start-page: 143
  year: 2023
  ident: 22278_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP04(2023)143
– volume: 02
  start-page: 140
  year: 2022
  ident: 22278_CR94
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)140
– volume: 03
  start-page: 096
  year: 2019
  ident: 22278_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP03(2019)096
– volume: 07
  start-page: 085
  year: 2018
  ident: 22278_CR80
  publication-title: JHEP
  doi: 10.1007/JHEP07(2018)085
– volume: 09
  start-page: 078
  year: 2017
  ident: 22278_CR79
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)078
– volume: 05
  start-page: 029
  year: 2021
  ident: 22278_CR50
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)029
– volume: 10
  start-page: 055
  year: 2020
  ident: 22278_CR82
  publication-title: JHEP
– ident: 22278_CR6
  doi: 10.1007/BF01214585
– volume: 05
  start-page: 166
  year: 2023
  ident: 22278_CR52
  publication-title: JHEP
  doi: 10.1007/JHEP05(2023)166
– volume: 95
  year: 2017
  ident: 22278_CR57
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.065011
– volume: 08
  start-page: 138
  year: 2019
  ident: 22278_CR71
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)138
– volume: 09
  start-page: 205
  year: 2021
  ident: 22278_CR84
  publication-title: JHEP
  doi: 10.1007/JHEP09(2021)205
– volume: 08
  start-page: 002
  year: 2020
  ident: 22278_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP08(2020)002
– ident: 22278_CR86
  doi: 10.1142/9789814304634_0015
– volume: 02
  start-page: 171
  year: 2015
  ident: 22278_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP02(2015)171
– volume: 100
  year: 2019
  ident: 22278_CR88
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.061701
– volume: 50
  year: 2017
  ident: 22278_CR87
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/aa7eaa
– volume: 05
  start-page: 033
  year: 2021
  ident: 22278_CR91
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)033
– volume: 11
  start-page: 200
  year: 2015
  ident: 22278_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP11(2015)200
SSID ssj0015190
Score 2.4395645
Snippet A bstract In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light...
In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light probe...
Abstract In two-dimensional CFTs with a large central charge, the level-two BPZ equation governs the heavy-light scalar four-point correlator when the light...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 203
SubjectTerms AdS-CFT Correspondence
Black holes
Classical and Quantum Gravitation
Correlation
Critical phenomena
Elementary Particles
Equations of state
Field Theories in Higher Dimensions
High energy physics
Light
Mathematical analysis
Ordinary differential equations
Partial differential equations
Phase transitions
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Scale and Conformal Symmetries
String Theory
Symmetry
Tensors
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRnxitsoce2kNsskk2uxdBpaUUFA8t9BZ2d3ZBkKht_f_O5lEfULx4ySGZhMlMsvMNM_sNIT1lmZLARai4BV9mNKGIMxsKCy5jwBKpfEX34ZFP5ul0kS2-jfryPWE1PXBtuKGME4F5QipzcKnxEQsgYjaDPJEOsxu_-mLMa5Oppn6AuCRqiXyifDidjJ7iuO9HhQ9YOx-riUEVVf8PfPmrJFpFmvEB2W8gIr2tVTskO7Y8IrtVq6ZZHZPerOp0pSUmj2G1H4ja95qwe0WfSwr0hrITMh-PZveTsJl1EJo0ztdoJc0Q7EqhdKa1D5sOsZdiLtUQg7QccYsTIlGgUTCXFuMuYhdjtUwN4LJ1Sjrla2nPCOXM8FwxAR6OxY5rJyJMiyDJrJSGQ0Cu27cvTEME7udRvBQthXFtrsKbCw9JQPqbG95qDoztonfenBsxT15dnUCXFo1Li79cGpBu64yi-aNWBSaGmYdHXAZk0Dro6_IWfc7_Q58Lsuef53cgMtElnfXyw14iFFnrq-qr-wQOqNO1
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90Q_BF_MT5RR_2oA91bdqmyYuisjEGisgGeytNLhVBOrXz__fSpRsK86UP7bU0l-Tud7nkdwDd3LBcIhd-zg3aNKP2RZgYXxgsEoYskrnN6D4-8eEkHk2TqVtwq9y2ysYm1oYaZ9qukfcoMEise-Ty9uPTt1WjbHbVldDYhDaZYCFa0L7vPz2_LPMIhE-ChtAnSHujYf85DC9tyfAr1tTJcr6opuz_hTP_pEZrjzPYhR0HFb27Rd_uwYYp92Gr3rKpqwPojusdr15JQaRfnwvyzOeCuLvy3koPvRuPHcJk0B8_DH1X88DXcZjOSVuK2sGkyFWilHWfBWGwnBWxwhCl4YRfCiGiHBUJptKQ_yUMo42SsUYyX0fQKmelOQaPM83TnAm0sCwsuCpEQOERRomRUnPswHXT-kw7QnBbl-I9a6iMF-rKrLroEnXgcvnCx4ILY73ovVXnUsySWNc3Zl-vmZsTmQwjQSFgLFMsYm3BCGLATIJpJAsKXDtw1nRG5mZWla3GQQeumg5aPV7zPyf_f-oUtq2kPWPIxBm05l_f5pzAxlxduBH1A8aTzg8
  priority: 102
  providerName: ProQuest
Title Toward null-state equations in d > 2
URI https://link.springer.com/article/10.1007/JHEP11(2023)203
https://www.proquest.com/docview/2895066369
https://doaj.org/article/9138026497df4c0082dd02e5d739f254
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEB5apdBL6ZOmtSEHD3pIazbJZvdS0KAVoSJFwVvIPgKFkj60_7-zeVi0eOhlyWMWkplN5htm5xuAdqpJyhVlbkq1MmlG6TIv1C7TKguJIj5PTUb3eUrHi2CyDJcVSZKphdnJ3z9MxsOZ53VMk-8uMayezdDzI9OjIabxJl2AMKRX8_b8nbTlcgpm_i04uZMBLRzL6BROKkTo9EsTnsGBzs_hqNiZKVcX0J4XG1udHGNFtyj_cfRnyc-9cl5zRzmPDrmExWg4j8du1drAlYEXrVEpgiC25SwVoRDGS2YItVKSBUJ5imuKMCVjzE-VQMGIa3SzCFWkFjyQCv9SV9DI33N9DQ4lkkYpYcqgLy-jImM9jIKUH2rOJVUW3Ndvn8iK99u0n3hLasbiUl2JURcOvgWdzYSPkvJiv-jAqHMjZriqiwtowqRa-gn3fIaRXsAjlQXSYA6lekSHKvJ5hvGpBa3aGEn1Aa0SjANDg4Yot6BbG-j39p7nufmH7C0cm0NTV0hYCxrrr299hwBjLWw4ZKMnG5qD4XT2gmcxCexiwdlFyI7jgvR_AKlEyS8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0hUAWXirZUbIHiA0hwSNk4iWMfaFValuVTPSwStzT2OFUllAV2q4o_xW_sTBIvaiV645JDYkfOeOx5k_HMA9gqvSwNKh2VyiOHGV2k48xH2mOVSZSJKTmie36hhpfpyVV2NQcPIReGj1WGPbHZqHHs-B_5HjkGGZtHZT7d3EbMGsXR1UCh0arFqb__TS7bZP_4K83vtpSDw9GXYdSxCkQujfMpjcdKgpVGlzazlg1URSinlFVqMUbjFSGESuukREsNc-PJwhFKcN6a1GHMLBG05S-kCVlyzkwfHM2iFoSG-qF8UD_fOxkefovjHSYo35WBlauzfA1BwF-o9p9AbGPfBsvwsgOm4nOrSa9gztev4UVzQNRN3sDWqDlfK2pyWaMmC0n427ZM-ET8rAWKj0KuwOWzyOItzNfj2q-CUNKpvJQaGQTGlbKV7pMzhknmjXEKe_AhfH3huvLjzIJxXYTCya24ChYXXZIe7Mw63LSVN55uesDinDXjktnNjfHdj6JbgYWJE00OZ2pyrFLH0AexL32GeWIqcpN7sB4mo-jW8aR41Loe7IYJenz8xHje_f9Vm7A4HJ2fFWfHF6drsMS9OLtR6nWYn9798hsEc6b2faNbAr4_tzL_AUuxCRY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRa16QZS26lJofaASHMJunMSxD7QqZVfLa7VCIHFL41dVqcoCu6jqX-PXMZPEi4pEb1xySOzIGY8932TG8wFslY6XygoZlcJZCjOaSMaZi6SzPuOWJ6qkiO7pWIwu0qPL7HIJ7sJZGEqrDHtivVHbqaF_5D10DDIyj0L1fJsWMTkYfr26johBiiKtgU6jUZFj9_cPum-zvcMDnOvPnA8H599HUcswEJk0zuc4Ns0RYipZ6kxrMlYeEU_JfaptbJUTiBa8lElpNTbMlUNrh4jBOK1SY2NijMDtfzknr6gDy_uD8eRsEcNAbNQPxYT6ee9oNJjE8TbRle_wwNHV2sGaLuAfjPsoLFtbu-EqrLQwlX1r9Oo1LLlqDV7U6aJm9ga2zutsW1ahjKL6TBJz103R8Bn7VTHLvjD-Fi6eRRrvoFNNK_cemOBG5CWXliBh7IX2so-umU0yp5QRtgu74esL0xYjJ06M30Uoo9yIqyBx4SXpwvaiw1VTh-PppvskzkUzKqBd35je_Cza9VioOJHofqYqtz41BISs7XOX2TxRHp3mLmyEySjaVT0rHnSwCzthgh4ePzGe9f-_6hO8REUuTg7Hxx_gFXWio45cbkBnfnPrNhHzzPXHVrkY_Hhufb4HVKwOqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+null-state+equations+in+d+%3E+2&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Huang%2C+Kuo-Wei&rft.date=2023-11-28&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2023&rft.issue=11&rft_id=info:doi/10.1007%2FJHEP11%282023%29203&rft.externalDocID=10_1007_JHEP11_2023_203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon