A comparison of the pro-angiogenic potential of human induced pluripotent stem cell derived endothelial cells and induced endothelial cells in a murine model of peripheral arterial disease
Abstract Background Endothelial cells derived from human induced pluripotent stem cells (iPSC-ECs) promote angiogenesis, and more recently induced endothelial cells (iECs) have been generated via fibroblast trans-differentiation. These cell types have potential as treatments for peripheral arterial...
Saved in:
Published in | International journal of cardiology Vol. 234; pp. 81 - 89 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract Background Endothelial cells derived from human induced pluripotent stem cells (iPSC-ECs) promote angiogenesis, and more recently induced endothelial cells (iECs) have been generated via fibroblast trans-differentiation. These cell types have potential as treatments for peripheral arterial disease (PAD). However, it is unknown whether different reprogramming methods produce cells that are equivalent in terms of their pro-angiogenic capabilities. Objectives We aimed to directly compare iPSC-ECs and iECs in an animal model of PAD, in order to identify which cell type, if any, displays superior therapeutic potential. Methods IPSC-ECs and iECs were generated from human fibroblasts, and transduced with a reporter construct encoding GFP and firefly luciferase for bioluminescence imaging (BLI). Endothelial phenotype was confirmed using in vitro assays. NOD-SCID mice underwent hindlimb ischaemia surgery and received an intramuscular injection of either 1x106 iPSC-ECs, 1x106 iECs or control vehicle only. Perfusion recovery was measured by laser Doppler. Hindlimb muscle samples were taken for histological analyses. Results Perfusion recovery was enhanced in iPSC-EC treated mice on day 14 (Control vs. iPSC-EC; 0.35 ± 0.04 vs. 0.54 ± 0.08, p < 0.05) and in iEC treated mice on days 7 (Control vs. iEC; 0.23 ± 0.02 vs. 0.44 ± 0.06, p < 0.05), 10 (0.31 ± 0.04 vs. 0.64 ± 0.07, p < 0.001) and 14 (0.35 ± 0.04 vs. 0.68 ± 0.07, p < 0.001) post-treatment. IEC-treated mice also had greater capillary density in the ischaemic gastrocnemius muscle (Control vs. iEC; 125 ± 10 vs. 179 ± 11 capillaries/image; p < 0.05). BLI detected iPSC-EC and iEC presence in vivo for two weeks post-treatment. Conclusions IPSC-ECs and iECs exhibit similar, but not identical, endothelial functionality and both cell types enhance perfusion recovery after hindlimb ischaemia. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0167-5273 1874-1754 |
DOI: | 10.1016/j.ijcard.2017.01.125 |