A Low-Cost Lower-Limb Brain-Machine Interface Triggered by Pedaling Motor Imagery for Post-Stroke Patients Rehabilitation

A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides passive pedaling as feedback, when patients trigger a Mini-Motorized Exercise Bike (MMEB) by executing pedaling motor imagery (MI). This sys...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 4; pp. 988 - 996
Main Authors Romero-Laiseca, Maria Alejandra, Delisle-Rodriguez, Denis, Cardoso, Vivianne, Gurve, Dharmendra, Loterio, Flavia, Posses Nascimento, Jorge Henrique, Krishnan, Sridhar, Frizera-Neto, Anselmo, Bastos-Filho, Teodiano
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2020.2974056

Cover

Loading…
Abstract A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides passive pedaling as feedback, when patients trigger a Mini-Motorized Exercise Bike (MMEB) by executing pedaling motor imagery (MI). This system was validated in an On-line phase by eight healthy subjects and two post-stroke patients, which felt a closed-loop commanding the MMEB due to the fast response of our BMI. It was developed using methods of low-computational cost, such as Riemannian geometry for feature extraction, Pair-Wise Feature Proximity (PWFP) for feature selection, and Linear Discriminant Analysis (LDA) for pedaling imagery recognition. The On-line phase was composed of two sessions, where each participant completed a total of 12 trials per session executing pedaling MI for triggering the MMEB. As a result, the MMEB was successfully triggered by healthy subjects for almost all trials (ACC up to 100%), while the two post-stroke patients, PS1 and PS2, achieved their best performance (ACC of 41.67% and 91.67%, respectively) in Session #2. These patients improved their latency (2.03 ± 0.42 s and 1.99 ± 0.35 s, respectively) when triggering the MMEB, and their performance suggests the hypothesis that our system may be used with chronic stroke patients for lower-limb recovery, providing neural relearning and enhancing neuroplasticity.
AbstractList A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides passive pedaling as feedback, when patients trigger a Mini-Motorized Exercise Bike (MMEB) by executing pedaling motor imagery (MI). This system was validated in an On-line phase by eight healthy subjects and two post-stroke patients, which felt a closed-loop commanding the MMEB due to the fast response of our BMI. It was developed using methods of low-computational cost, such as Riemannian geometry for feature extraction, Pair-Wise Feature Proximity (PWFP) for feature selection, and Linear Discriminant Analysis (LDA) for pedaling imagery recognition. The On-line phase was composed of two sessions, where each participant completed a total of 12 trials per session executing pedaling MI for triggering the MMEB. As a result, the MMEB was successfully triggered by healthy subjects for almost all trials (ACC up to 100%), while the two post-stroke patients, PS1 and PS2, achieved their best performance (ACC of 41.67% and 91.67%, respectively) in Session #2. These patients improved their latency (2.03 ± 0.42 s and 1.99 ± 0.35 s, respectively) when triggering the MMEB, and their performance suggests the hypothesis that our system may be used with chronic stroke patients for lower-limb recovery, providing neural relearning and enhancing neuroplasticity.A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides passive pedaling as feedback, when patients trigger a Mini-Motorized Exercise Bike (MMEB) by executing pedaling motor imagery (MI). This system was validated in an On-line phase by eight healthy subjects and two post-stroke patients, which felt a closed-loop commanding the MMEB due to the fast response of our BMI. It was developed using methods of low-computational cost, such as Riemannian geometry for feature extraction, Pair-Wise Feature Proximity (PWFP) for feature selection, and Linear Discriminant Analysis (LDA) for pedaling imagery recognition. The On-line phase was composed of two sessions, where each participant completed a total of 12 trials per session executing pedaling MI for triggering the MMEB. As a result, the MMEB was successfully triggered by healthy subjects for almost all trials (ACC up to 100%), while the two post-stroke patients, PS1 and PS2, achieved their best performance (ACC of 41.67% and 91.67%, respectively) in Session #2. These patients improved their latency (2.03 ± 0.42 s and 1.99 ± 0.35 s, respectively) when triggering the MMEB, and their performance suggests the hypothesis that our system may be used with chronic stroke patients for lower-limb recovery, providing neural relearning and enhancing neuroplasticity.
A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides passive pedaling as feedback, when patients trigger a Mini-Motorized Exercise Bike (MMEB) by executing pedaling motor imagery (MI). This system was validated in an On-line phase by eight healthy subjects and two post-stroke patients, which felt a closed-loop commanding the MMEB due to the fast response of our BMI. It was developed using methods of low-computational cost, such as Riemannian geometry for feature extraction, Pair-Wise Feature Proximity (PWFP) for feature selection, and Linear Discriminant Analysis (LDA) for pedaling imagery recognition. The On-line phase was composed of two sessions, where each participant completed a total of 12 trials per session executing pedaling MI for triggering the MMEB. As a result, the MMEB was successfully triggered by healthy subjects for almost all trials (ACC up to 100%), while the two post-stroke patients, PS1 and PS2, achieved their best performance (ACC of 41.67% and 91.67%, respectively) in Session #2. These patients improved their latency (2.03 ± 0.42 s and 1.99 ± 0.35 s, respectively) when triggering the MMEB, and their performance suggests the hypothesis that our system may be used with chronic stroke patients for lower-limb recovery, providing neural relearning and enhancing neuroplasticity.
Author Posses Nascimento, Jorge Henrique
Cardoso, Vivianne
Delisle-Rodriguez, Denis
Frizera-Neto, Anselmo
Bastos-Filho, Teodiano
Romero-Laiseca, Maria Alejandra
Gurve, Dharmendra
Krishnan, Sridhar
Loterio, Flavia
Author_xml – sequence: 1
  givenname: Maria Alejandra
  orcidid: 0000-0002-3505-221X
  surname: Romero-Laiseca
  fullname: Romero-Laiseca, Maria Alejandra
  email: alejandralaiseca@gmail.com
  organization: Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil
– sequence: 2
  givenname: Denis
  orcidid: 0000-0002-8937-031X
  surname: Delisle-Rodriguez
  fullname: Delisle-Rodriguez, Denis
  email: delisle05@gmail.com
  organization: Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil
– sequence: 3
  givenname: Vivianne
  orcidid: 0000-0002-1654-3320
  surname: Cardoso
  fullname: Cardoso, Vivianne
  email: viviannefc@gmail.com
  organization: Postgraduate Program in Biotechnology, Federal University of Espirito Santo, Vitoria, Brazil
– sequence: 4
  givenname: Dharmendra
  orcidid: 0000-0002-7025-9451
  surname: Gurve
  fullname: Gurve, Dharmendra
  email: dgurve@ryerson.ca
  organization: Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada
– sequence: 5
  givenname: Flavia
  orcidid: 0000-0002-8001-4669
  surname: Loterio
  fullname: Loterio, Flavia
  email: loteriofa.ufes@gmail.com
  organization: Postgraduate Program in Biotechnology, Federal University of Espirito Santo, Vitoria, Brazil
– sequence: 6
  givenname: Jorge Henrique
  surname: Posses Nascimento
  fullname: Posses Nascimento, Jorge Henrique
  email: jhposses@gmail.com
  organization: Department of Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil
– sequence: 7
  givenname: Sridhar
  orcidid: 0000-0002-4659-564X
  surname: Krishnan
  fullname: Krishnan, Sridhar
  email: krishnan@ryerson.ca
  organization: Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada
– sequence: 8
  givenname: Anselmo
  orcidid: 0000-0002-0687-3967
  surname: Frizera-Neto
  fullname: Frizera-Neto, Anselmo
  email: frizera@ieee.org
  organization: Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil
– sequence: 9
  givenname: Teodiano
  orcidid: 0000-0002-1185-2773
  surname: Bastos-Filho
  fullname: Bastos-Filho, Teodiano
  email: teodiano.bastos@ufes.br
  organization: Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32078552$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URD_gD4CELHHh4uCP9dp7LFGBSClEbTivvN7Z1GXXLrYjlH-P04QeeuDkVzPPO2PNe45OfPCA0FtGZ4zR5tP6--3N1YxTTme8URWV9Qt0xqTUhHJGT_ZaVKQSnJ6i85TuKWWqluoVOi0lpaXkZ2h3iZfhD5mHlPcCIlm6qcOfo3GeXBt75zzghc8QB2MBr6PbbCBCj7sdXkFvRuc3-DrkEPFiMqW1w0PRqzKP3OYYfgFemezA54Rv4M50bnS5FIJ_jV4OZkzw5vheoJ9frtbzb2T54-tifrkktmIqE2Fg0MBMVdFa91b3zHJt6opRqnmlOddaKGkNKKn1AJ2ulSpN09i6kRSouEAfD3MfYvi9hZTbySUL42g8hG1qudBas1rVoqAfnqH3YRt9-d0jxShjDS_U-yO17Sbo24foJhN37b-jFoAfABtDShGGJ4TRdp9c-5hcu0-uPSZXTPqZyR4PlUsW4_-t7w5WBwBPu3TTNEow8RcVbqST
CODEN ITNSB3
CitedBy_id crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_1299_mej_23_00547
crossref_primary_10_1088_2057_1976_ac2077
crossref_primary_10_1016_j_medj_2024_02_014
crossref_primary_10_1088_1741_2552_ad48b9
crossref_primary_10_3390_s23239302
crossref_primary_10_1007_s11571_022_09919_7
crossref_primary_10_1088_1741_2552_ad3986
crossref_primary_10_1109_ACCESS_2021_3097797
crossref_primary_10_1088_1741_2552_ac17d6
crossref_primary_10_1109_ACCESS_2020_2999133
crossref_primary_10_3389_fninf_2024_1345425
crossref_primary_10_1002_pmrj_13324
crossref_primary_10_1109_TNSRE_2021_3125946
crossref_primary_10_1088_1741_2552_acb73b
crossref_primary_10_3390_s21062020
crossref_primary_10_3390_s24248127
crossref_primary_10_1007_s42600_023_00333_4
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_3389_fnhum_2023_1243750
crossref_primary_10_1038_s41598_023_41815_w
crossref_primary_10_1109_JSYST_2020_3026242
crossref_primary_10_1016_j_neuroimage_2023_120405
crossref_primary_10_3389_fnins_2023_1129049
crossref_primary_10_1007_s42600_024_00372_5
crossref_primary_10_15622_ia_2021_20_1_4
crossref_primary_10_1109_TNSRE_2024_3451716
crossref_primary_10_3390_s22155802
crossref_primary_10_1080_10255842_2023_2207705
crossref_primary_10_3390_e24111556
crossref_primary_10_1109_THMS_2021_3138677
crossref_primary_10_1088_2057_1976_ad2e35
crossref_primary_10_1007_s42600_023_00284_w
crossref_primary_10_1088_1741_2552_abe20f
crossref_primary_10_3389_fnins_2023_1305850
crossref_primary_10_3390_s22239091
crossref_primary_10_1007_s42600_023_00329_0
crossref_primary_10_3390_s21144754
crossref_primary_10_1016_j_bspc_2023_104937
crossref_primary_10_1109_TIM_2024_3476618
crossref_primary_10_3389_fnins_2023_1077479
crossref_primary_10_1109_TBME_2024_3440036
crossref_primary_10_1016_j_jneumeth_2024_110240
crossref_primary_10_1016_j_neuarg_2024_02_001
crossref_primary_10_3390_e24030376
Cites_doi 10.1016/j.neucom.2012.12.039
10.1109/TNSRE.2013.2267851
10.3390/s140712410
10.1109/MSP.2008.4408441
10.1007/s10846-018-0854-0
10.1162/pres.19.1.35
10.1109/CCDC.2017.7978394
10.1111/j.1469-8749.2007.00522.x
10.23919/EUSIPCO.2017.8081474
10.1186/1743-0003-11-9
10.1109/SMC.2019.8914544
10.3389/fnhum.2016.00061
10.3389/fnsys.2015.00048
10.1093/ptj/85.2.159
10.1016/j.procs.2015.12.155
10.1016/j.asoc.2018.11.031
10.1016/0966-6362(96)01064-8
10.4324/9781410612403
10.1093/ptj/71.4.334
10.1109/TNSRE.2016.2627016
10.1080/09602011.2017.1377087
10.1177/155005941104200410
10.1142/S0129065716500295
10.1088/1741-2552/ab08c8
10.5220/0005846503350339
10.1017/CBO9780511921803
10.1016/j.clinph.2013.05.006
10.1590/2446-4740.07417
10.1093/acprof:oso/9780195388855.001.0001
10.1016/j.neucom.2011.10.021
10.1016/j.jelekin.2005.06.001
10.1186/1743-0003-8-66
10.3389/fninf.2017.00045
10.1177/1550059414522229
10.1088/1741-2560/13/1/016018
10.1016/S1388-2457(03)00067-1
10.1152/jn.00918.2015
10.1310/tsr1605-346
10.1111/j.1747-4949.2011.00728.x
10.1109/TENCON.2017.8228124
10.1088/1741-2560/12/3/036007
10.1109/TBME.2013.2294203
10.1016/S1388-2457(99)00141-8
10.1088/1741-2560/13/3/031001
10.1109/TMECH.2015.2508030
10.3390/s18041136
10.1055/s-0038-1649503
10.1088/1741-2552/aab2f2
10.1191/0269215505cr960oa
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2020.2974056
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 996
ExternalDocumentID 32078552
10_1109_TNSRE_2020_2974056
8999731
Genre orig-research
Journal Article
GrantInformation_xml – fundername: FAPES
  grantid: 33361.503.19197.11092017
  funderid: 10.13039/501100006182
– fundername: FAPES/CAPES from Brazil
  grantid: 36325.566.26765.05072018
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c417t-3aef8e1a44068dc8d1c28a6410082482288375cae7588feb8677410a9c6950e03
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 00:44:57 EDT 2025
Fri Jul 25 06:49:06 EDT 2025
Wed Feb 19 02:30:04 EST 2025
Thu Apr 24 23:03:45 EDT 2025
Tue Jul 01 00:43:20 EDT 2025
Wed Aug 27 02:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-3aef8e1a44068dc8d1c28a6410082482288375cae7588feb8677410a9c6950e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8937-031X
0000-0002-8001-4669
0000-0002-0687-3967
0000-0002-3505-221X
0000-0002-1185-2773
0000-0002-7025-9451
0000-0002-1654-3320
0000-0002-4659-564X
PMID 32078552
PQID 2388101192
PQPubID 85423
PageCount 9
ParticipantIDs ieee_primary_8999731
crossref_primary_10_1109_TNSRE_2020_2974056
pubmed_primary_32078552
crossref_citationtrail_10_1109_TNSRE_2020_2974056
proquest_miscellaneous_2388816763
proquest_journals_2388101192
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
xu (ref24) 2014; 61
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref38
gurve (ref32) 2019
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref40
  doi: 10.1016/j.neucom.2012.12.039
– ident: ref3
  doi: 10.1109/TNSRE.2013.2267851
– ident: ref12
  doi: 10.3390/s140712410
– ident: ref41
  doi: 10.1109/MSP.2008.4408441
– ident: ref10
  doi: 10.1007/s10846-018-0854-0
– ident: ref33
  doi: 10.1162/pres.19.1.35
– ident: ref30
  doi: 10.1109/CCDC.2017.7978394
– ident: ref20
  doi: 10.1111/j.1469-8749.2007.00522.x
– ident: ref45
  doi: 10.23919/EUSIPCO.2017.8081474
– ident: ref42
  doi: 10.1186/1743-0003-11-9
– ident: ref38
  doi: 10.1109/SMC.2019.8914544
– ident: ref48
  doi: 10.3389/fnhum.2016.00061
– ident: ref8
  doi: 10.3389/fnsys.2015.00048
– ident: ref16
  doi: 10.1093/ptj/85.2.159
– ident: ref34
  doi: 10.1016/j.procs.2015.12.155
– ident: ref37
  doi: 10.1016/j.asoc.2018.11.031
– ident: ref5
  doi: 10.1016/0966-6362(96)01064-8
– ident: ref50
  doi: 10.4324/9781410612403
– ident: ref14
  doi: 10.1093/ptj/71.4.334
– ident: ref43
  doi: 10.1109/TNSRE.2016.2627016
– ident: ref2
  doi: 10.1080/09602011.2017.1377087
– ident: ref23
  doi: 10.1177/155005941104200410
– ident: ref25
  doi: 10.1142/S0129065716500295
– ident: ref29
  doi: 10.1088/1741-2552/ab08c8
– year: 2019
  ident: ref32
  article-title: Subject-specific EEG channel selection using non-negative matrix factorization for lower-limb motor imagery recognition
  publication-title: J Neural Eng
– ident: ref35
  doi: 10.5220/0005846503350339
– ident: ref47
  doi: 10.1017/CBO9780511921803
– ident: ref31
  doi: 10.1016/j.clinph.2013.05.006
– ident: ref9
  doi: 10.1590/2446-4740.07417
– ident: ref21
  doi: 10.1093/acprof:oso/9780195388855.001.0001
– ident: ref44
  doi: 10.1016/j.neucom.2011.10.021
– ident: ref13
  doi: 10.1016/j.jelekin.2005.06.001
– ident: ref6
  doi: 10.1186/1743-0003-8-66
– ident: ref18
  doi: 10.3389/fninf.2017.00045
– ident: ref22
  doi: 10.1177/1550059414522229
– ident: ref15
  doi: 10.1088/1741-2560/13/1/016018
– ident: ref39
  doi: 10.1016/S1388-2457(03)00067-1
– ident: ref49
  doi: 10.1152/jn.00918.2015
– ident: ref4
  doi: 10.1310/tsr1605-346
– ident: ref11
  doi: 10.1111/j.1747-4949.2011.00728.x
– ident: ref36
  doi: 10.1109/TENCON.2017.8228124
– ident: ref28
  doi: 10.1088/1741-2560/12/3/036007
– volume: 61
  start-page: 288
  year: 2014
  ident: ref24
  article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2294203
– ident: ref26
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref7
  doi: 10.1088/1741-2560/13/3/031001
– ident: ref17
  doi: 10.1109/TMECH.2015.2508030
– ident: ref27
  doi: 10.3390/s18041136
– ident: ref1
  doi: 10.1055/s-0038-1649503
– ident: ref46
  doi: 10.1088/1741-2552/aab2f2
– ident: ref19
  doi: 10.1191/0269215505cr960oa
SSID ssj0017657
Score 2.4941497
Snippet A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 988
SubjectTerms Brain
Brain-computer interface
Brain-computer interfaces
brain-machine interface
Clinical trials
Computational neuroscience
Computing costs
Discriminant analysis
EEG
Electroencephalography
Feature extraction
Image recognition
Imagery
Latency
Low cost
lower-limb rehabilitation
Man-machine interfaces
Mental task performance
motor imagery
On-line systems
Patient rehabilitation
pedaling
Plasticity (neural)
Presenilin 1
Presenilin 2
Recovery
Rehabilitation
Relearning
Stroke
Task analysis
Title A Low-Cost Lower-Limb Brain-Machine Interface Triggered by Pedaling Motor Imagery for Post-Stroke Patients Rehabilitation
URI https://ieeexplore.ieee.org/document/8999731
https://www.ncbi.nlm.nih.gov/pubmed/32078552
https://www.proquest.com/docview/2388101192
https://www.proquest.com/docview/2388816763
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bh4pLX_QRSitXantpvcR52TlSBKIVixAsErcocWZRRdmg3ayq7a_vjJ1EBbVVb5Zix47Gznyf7fkG4J1WicU0tjLO00RSWUtC-Voq8naINiafyERxfJIdXSRfL9PLNfg0xMIgort8hiMuurP8urFL3irbJW7AmZbWYZ2Im4_VGk4MdOZUPWkBU5dxFPYBMmG-Ozk5PzsgKhiFo4jgM7n8TXhAVbRJ0-iOP3IJVv6ONZ3POXwE4360_qrJ9WjZViP7856Q4_9-zmN42IFPsednyxNYw9lTeP-70LCYeJUB8UGc3dHw3oLVnjhufsj9ZtFyAefy-NtNJT5zjgk5dncyUbgNxmlpUUyI9l9xIlBRrcQp1iXHvYtxQxxffLlh5YyVIMAsOFuwPG_nzTWKUy_yurjX9zO4ODyY7B_JLnGDtInSrYxLnBpUZUJowdTW1MpGpswSFhKKEoIkhmhxaksksmKmWLGmHj0sc5vlaYhh_Bw2Zs0MX4JQSBhkqkqtuX2ic4JrhiAOmTuuI5MFoHrzFbYbFSfX-F44dhPmhbN-wdYvOusH8HFoc-s1Pf5Ze4tNN9TsrBbATj9Lim7ZLwoaGwumEWoO4O3wmBYsn8KUM2yWvo5RGf3XA3jhZ9fw7n5Sbv-5z1ewySPzF4d2YKOdL_E1YaK2euMWwy8sZgNg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEvvMojUMBIwIV6G-fpHEvVagubVdWmUm9R4swiVLpBu1mh5dcz4zxEK0DcLMWOHc1M5hvb8w3A21gFBkPfSD8JA0ntWBLKj6Uib4dofPKJHCim02h8Hny6CC82YHfIhUFEe_kMR9y0Z_lVbVa8VbZHsQFXWroFt8nvh6rN1hrODOLI8nqSCdOkvuf2KTJuspdNz04PKRj03JFHAJqc_hbcoS6xDkPvmkeyJVb-jjat1zm6D2m_3vayyeVo1ZQj8_MGleP_ftADuNfBT7Hf6stD2MD5I3j3O9WwyFqeAfFenF5j8d6G9b6Y1D_kQb1suIELOfl6VYqPXGVCpvZWJgq7xTgrDIqMAv8vXApUlGtxglXBme8irSnKF8dXzJ2xFgSZBdcLlmfNor5EcdLSvC5vzP0Yzo8Os4Ox7Eo3SBOouJF-gTONqggIL-jK6EoZTxdRwFRCXkCgRFNgHJoCKVzRMyyZVY8eFomJktBF138Cm_N6js9AKCQUMlNFHPP4IE4IsGkCOSRuv_J05IDqxZebblVcXuNbbuMbN8mt9HOWft5J34EPw5jvLavHP3tvs-iGnp3UHNjptSTvDH-Z09qYMo1wswNvhsdksnwOU8yxXrV9tIroz-7A01a7hnf3Svn8z3O-hrvjLJ3kk-Pp5xewxatsrxHtwGazWOFLQkhN-coaxi_XJgap
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Low-Cost+Lower-Limb+Brain-Machine+Interface+Triggered+by+Pedaling+Motor+Imagery+for+Post-Stroke+Patients+Rehabilitation&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Romero-Laiseca%2C+Maria+Alejandra&rft.au=Delisle-Rodriguez%2C+Denis&rft.au=Cardoso%2C+Vivianne&rft.au=Gurve%2C+Dharmendra&rft.date=2020-04-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=28&rft.issue=4&rft.spage=988&rft.epage=996&rft_id=info:doi/10.1109%2FTNSRE.2020.2974056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2020_2974056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon