A Low-Cost Lower-Limb Brain-Machine Interface Triggered by Pedaling Motor Imagery for Post-Stroke Patients Rehabilitation
A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides passive pedaling as feedback, when patients trigger a Mini-Motorized Exercise Bike (MMEB) by executing pedaling motor imagery (MI). This sys...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 4; pp. 988 - 996 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2020.2974056 |
Cover
Loading…
Abstract | A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides passive pedaling as feedback, when patients trigger a Mini-Motorized Exercise Bike (MMEB) by executing pedaling motor imagery (MI). This system was validated in an On-line phase by eight healthy subjects and two post-stroke patients, which felt a closed-loop commanding the MMEB due to the fast response of our BMI. It was developed using methods of low-computational cost, such as Riemannian geometry for feature extraction, Pair-Wise Feature Proximity (PWFP) for feature selection, and Linear Discriminant Analysis (LDA) for pedaling imagery recognition. The On-line phase was composed of two sessions, where each participant completed a total of 12 trials per session executing pedaling MI for triggering the MMEB. As a result, the MMEB was successfully triggered by healthy subjects for almost all trials (ACC up to 100%), while the two post-stroke patients, PS1 and PS2, achieved their best performance (ACC of 41.67% and 91.67%, respectively) in Session #2. These patients improved their latency (2.03 ± 0.42 s and 1.99 ± 0.35 s, respectively) when triggering the MMEB, and their performance suggests the hypothesis that our system may be used with chronic stroke patients for lower-limb recovery, providing neural relearning and enhancing neuroplasticity. |
---|---|
AbstractList | A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides passive pedaling as feedback, when patients trigger a Mini-Motorized Exercise Bike (MMEB) by executing pedaling motor imagery (MI). This system was validated in an On-line phase by eight healthy subjects and two post-stroke patients, which felt a closed-loop commanding the MMEB due to the fast response of our BMI. It was developed using methods of low-computational cost, such as Riemannian geometry for feature extraction, Pair-Wise Feature Proximity (PWFP) for feature selection, and Linear Discriminant Analysis (LDA) for pedaling imagery recognition. The On-line phase was composed of two sessions, where each participant completed a total of 12 trials per session executing pedaling MI for triggering the MMEB. As a result, the MMEB was successfully triggered by healthy subjects for almost all trials (ACC up to 100%), while the two post-stroke patients, PS1 and PS2, achieved their best performance (ACC of 41.67% and 91.67%, respectively) in Session #2. These patients improved their latency (2.03 ± 0.42 s and 1.99 ± 0.35 s, respectively) when triggering the MMEB, and their performance suggests the hypothesis that our system may be used with chronic stroke patients for lower-limb recovery, providing neural relearning and enhancing neuroplasticity.A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides passive pedaling as feedback, when patients trigger a Mini-Motorized Exercise Bike (MMEB) by executing pedaling motor imagery (MI). This system was validated in an On-line phase by eight healthy subjects and two post-stroke patients, which felt a closed-loop commanding the MMEB due to the fast response of our BMI. It was developed using methods of low-computational cost, such as Riemannian geometry for feature extraction, Pair-Wise Feature Proximity (PWFP) for feature selection, and Linear Discriminant Analysis (LDA) for pedaling imagery recognition. The On-line phase was composed of two sessions, where each participant completed a total of 12 trials per session executing pedaling MI for triggering the MMEB. As a result, the MMEB was successfully triggered by healthy subjects for almost all trials (ACC up to 100%), while the two post-stroke patients, PS1 and PS2, achieved their best performance (ACC of 41.67% and 91.67%, respectively) in Session #2. These patients improved their latency (2.03 ± 0.42 s and 1.99 ± 0.35 s, respectively) when triggering the MMEB, and their performance suggests the hypothesis that our system may be used with chronic stroke patients for lower-limb recovery, providing neural relearning and enhancing neuroplasticity. A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides passive pedaling as feedback, when patients trigger a Mini-Motorized Exercise Bike (MMEB) by executing pedaling motor imagery (MI). This system was validated in an On-line phase by eight healthy subjects and two post-stroke patients, which felt a closed-loop commanding the MMEB due to the fast response of our BMI. It was developed using methods of low-computational cost, such as Riemannian geometry for feature extraction, Pair-Wise Feature Proximity (PWFP) for feature selection, and Linear Discriminant Analysis (LDA) for pedaling imagery recognition. The On-line phase was composed of two sessions, where each participant completed a total of 12 trials per session executing pedaling MI for triggering the MMEB. As a result, the MMEB was successfully triggered by healthy subjects for almost all trials (ACC up to 100%), while the two post-stroke patients, PS1 and PS2, achieved their best performance (ACC of 41.67% and 91.67%, respectively) in Session #2. These patients improved their latency (2.03 ± 0.42 s and 1.99 ± 0.35 s, respectively) when triggering the MMEB, and their performance suggests the hypothesis that our system may be used with chronic stroke patients for lower-limb recovery, providing neural relearning and enhancing neuroplasticity. |
Author | Posses Nascimento, Jorge Henrique Cardoso, Vivianne Delisle-Rodriguez, Denis Frizera-Neto, Anselmo Bastos-Filho, Teodiano Romero-Laiseca, Maria Alejandra Gurve, Dharmendra Krishnan, Sridhar Loterio, Flavia |
Author_xml | – sequence: 1 givenname: Maria Alejandra orcidid: 0000-0002-3505-221X surname: Romero-Laiseca fullname: Romero-Laiseca, Maria Alejandra email: alejandralaiseca@gmail.com organization: Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil – sequence: 2 givenname: Denis orcidid: 0000-0002-8937-031X surname: Delisle-Rodriguez fullname: Delisle-Rodriguez, Denis email: delisle05@gmail.com organization: Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil – sequence: 3 givenname: Vivianne orcidid: 0000-0002-1654-3320 surname: Cardoso fullname: Cardoso, Vivianne email: viviannefc@gmail.com organization: Postgraduate Program in Biotechnology, Federal University of Espirito Santo, Vitoria, Brazil – sequence: 4 givenname: Dharmendra orcidid: 0000-0002-7025-9451 surname: Gurve fullname: Gurve, Dharmendra email: dgurve@ryerson.ca organization: Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada – sequence: 5 givenname: Flavia orcidid: 0000-0002-8001-4669 surname: Loterio fullname: Loterio, Flavia email: loteriofa.ufes@gmail.com organization: Postgraduate Program in Biotechnology, Federal University of Espirito Santo, Vitoria, Brazil – sequence: 6 givenname: Jorge Henrique surname: Posses Nascimento fullname: Posses Nascimento, Jorge Henrique email: jhposses@gmail.com organization: Department of Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil – sequence: 7 givenname: Sridhar orcidid: 0000-0002-4659-564X surname: Krishnan fullname: Krishnan, Sridhar email: krishnan@ryerson.ca organization: Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada – sequence: 8 givenname: Anselmo orcidid: 0000-0002-0687-3967 surname: Frizera-Neto fullname: Frizera-Neto, Anselmo email: frizera@ieee.org organization: Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil – sequence: 9 givenname: Teodiano orcidid: 0000-0002-1185-2773 surname: Bastos-Filho fullname: Bastos-Filho, Teodiano email: teodiano.bastos@ufes.br organization: Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32078552$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vEzEQhi1URD_gD4CELHHh4uCP9dp7LFGBSClEbTivvN7Z1GXXLrYjlH-P04QeeuDkVzPPO2PNe45OfPCA0FtGZ4zR5tP6--3N1YxTTme8URWV9Qt0xqTUhHJGT_ZaVKQSnJ6i85TuKWWqluoVOi0lpaXkZ2h3iZfhD5mHlPcCIlm6qcOfo3GeXBt75zzghc8QB2MBr6PbbCBCj7sdXkFvRuc3-DrkEPFiMqW1w0PRqzKP3OYYfgFemezA54Rv4M50bnS5FIJ_jV4OZkzw5vheoJ9frtbzb2T54-tifrkktmIqE2Fg0MBMVdFa91b3zHJt6opRqnmlOddaKGkNKKn1AJ2ulSpN09i6kRSouEAfD3MfYvi9hZTbySUL42g8hG1qudBas1rVoqAfnqH3YRt9-d0jxShjDS_U-yO17Sbo24foJhN37b-jFoAfABtDShGGJ4TRdp9c-5hcu0-uPSZXTPqZyR4PlUsW4_-t7w5WBwBPu3TTNEow8RcVbqST |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_1299_mej_23_00547 crossref_primary_10_1088_2057_1976_ac2077 crossref_primary_10_1016_j_medj_2024_02_014 crossref_primary_10_1088_1741_2552_ad48b9 crossref_primary_10_3390_s23239302 crossref_primary_10_1007_s11571_022_09919_7 crossref_primary_10_1088_1741_2552_ad3986 crossref_primary_10_1109_ACCESS_2021_3097797 crossref_primary_10_1088_1741_2552_ac17d6 crossref_primary_10_1109_ACCESS_2020_2999133 crossref_primary_10_3389_fninf_2024_1345425 crossref_primary_10_1002_pmrj_13324 crossref_primary_10_1109_TNSRE_2021_3125946 crossref_primary_10_1088_1741_2552_acb73b crossref_primary_10_3390_s21062020 crossref_primary_10_3390_s24248127 crossref_primary_10_1007_s42600_023_00333_4 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_3389_fnhum_2023_1243750 crossref_primary_10_1038_s41598_023_41815_w crossref_primary_10_1109_JSYST_2020_3026242 crossref_primary_10_1016_j_neuroimage_2023_120405 crossref_primary_10_3389_fnins_2023_1129049 crossref_primary_10_1007_s42600_024_00372_5 crossref_primary_10_15622_ia_2021_20_1_4 crossref_primary_10_1109_TNSRE_2024_3451716 crossref_primary_10_3390_s22155802 crossref_primary_10_1080_10255842_2023_2207705 crossref_primary_10_3390_e24111556 crossref_primary_10_1109_THMS_2021_3138677 crossref_primary_10_1088_2057_1976_ad2e35 crossref_primary_10_1007_s42600_023_00284_w crossref_primary_10_1088_1741_2552_abe20f crossref_primary_10_3389_fnins_2023_1305850 crossref_primary_10_3390_s22239091 crossref_primary_10_1007_s42600_023_00329_0 crossref_primary_10_3390_s21144754 crossref_primary_10_1016_j_bspc_2023_104937 crossref_primary_10_1109_TIM_2024_3476618 crossref_primary_10_3389_fnins_2023_1077479 crossref_primary_10_1109_TBME_2024_3440036 crossref_primary_10_1016_j_jneumeth_2024_110240 crossref_primary_10_1016_j_neuarg_2024_02_001 crossref_primary_10_3390_e24030376 |
Cites_doi | 10.1016/j.neucom.2012.12.039 10.1109/TNSRE.2013.2267851 10.3390/s140712410 10.1109/MSP.2008.4408441 10.1007/s10846-018-0854-0 10.1162/pres.19.1.35 10.1109/CCDC.2017.7978394 10.1111/j.1469-8749.2007.00522.x 10.23919/EUSIPCO.2017.8081474 10.1186/1743-0003-11-9 10.1109/SMC.2019.8914544 10.3389/fnhum.2016.00061 10.3389/fnsys.2015.00048 10.1093/ptj/85.2.159 10.1016/j.procs.2015.12.155 10.1016/j.asoc.2018.11.031 10.1016/0966-6362(96)01064-8 10.4324/9781410612403 10.1093/ptj/71.4.334 10.1109/TNSRE.2016.2627016 10.1080/09602011.2017.1377087 10.1177/155005941104200410 10.1142/S0129065716500295 10.1088/1741-2552/ab08c8 10.5220/0005846503350339 10.1017/CBO9780511921803 10.1016/j.clinph.2013.05.006 10.1590/2446-4740.07417 10.1093/acprof:oso/9780195388855.001.0001 10.1016/j.neucom.2011.10.021 10.1016/j.jelekin.2005.06.001 10.1186/1743-0003-8-66 10.3389/fninf.2017.00045 10.1177/1550059414522229 10.1088/1741-2560/13/1/016018 10.1016/S1388-2457(03)00067-1 10.1152/jn.00918.2015 10.1310/tsr1605-346 10.1111/j.1747-4949.2011.00728.x 10.1109/TENCON.2017.8228124 10.1088/1741-2560/12/3/036007 10.1109/TBME.2013.2294203 10.1016/S1388-2457(99)00141-8 10.1088/1741-2560/13/3/031001 10.1109/TMECH.2015.2508030 10.3390/s18041136 10.1055/s-0038-1649503 10.1088/1741-2552/aab2f2 10.1191/0269215505cr960oa |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2020.2974056 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 996 |
ExternalDocumentID | 32078552 10_1109_TNSRE_2020_2974056 8999731 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: FAPES grantid: 33361.503.19197.11092017 funderid: 10.13039/501100006182 – fundername: FAPES/CAPES from Brazil grantid: 36325.566.26765.05072018 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c417t-3aef8e1a44068dc8d1c28a6410082482288375cae7588feb8677410a9c6950e03 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 00:44:57 EDT 2025 Fri Jul 25 06:49:06 EDT 2025 Wed Feb 19 02:30:04 EST 2025 Thu Apr 24 23:03:45 EDT 2025 Tue Jul 01 00:43:20 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-3aef8e1a44068dc8d1c28a6410082482288375cae7588feb8677410a9c6950e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8937-031X 0000-0002-8001-4669 0000-0002-0687-3967 0000-0002-3505-221X 0000-0002-1185-2773 0000-0002-7025-9451 0000-0002-1654-3320 0000-0002-4659-564X |
PMID | 32078552 |
PQID | 2388101192 |
PQPubID | 85423 |
PageCount | 9 |
ParticipantIDs | ieee_primary_8999731 crossref_primary_10_1109_TNSRE_2020_2974056 pubmed_primary_32078552 crossref_citationtrail_10_1109_TNSRE_2020_2974056 proquest_miscellaneous_2388816763 proquest_journals_2388101192 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 xu (ref24) 2014; 61 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref2 ref1 ref39 ref38 gurve (ref32) 2019 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref40 doi: 10.1016/j.neucom.2012.12.039 – ident: ref3 doi: 10.1109/TNSRE.2013.2267851 – ident: ref12 doi: 10.3390/s140712410 – ident: ref41 doi: 10.1109/MSP.2008.4408441 – ident: ref10 doi: 10.1007/s10846-018-0854-0 – ident: ref33 doi: 10.1162/pres.19.1.35 – ident: ref30 doi: 10.1109/CCDC.2017.7978394 – ident: ref20 doi: 10.1111/j.1469-8749.2007.00522.x – ident: ref45 doi: 10.23919/EUSIPCO.2017.8081474 – ident: ref42 doi: 10.1186/1743-0003-11-9 – ident: ref38 doi: 10.1109/SMC.2019.8914544 – ident: ref48 doi: 10.3389/fnhum.2016.00061 – ident: ref8 doi: 10.3389/fnsys.2015.00048 – ident: ref16 doi: 10.1093/ptj/85.2.159 – ident: ref34 doi: 10.1016/j.procs.2015.12.155 – ident: ref37 doi: 10.1016/j.asoc.2018.11.031 – ident: ref5 doi: 10.1016/0966-6362(96)01064-8 – ident: ref50 doi: 10.4324/9781410612403 – ident: ref14 doi: 10.1093/ptj/71.4.334 – ident: ref43 doi: 10.1109/TNSRE.2016.2627016 – ident: ref2 doi: 10.1080/09602011.2017.1377087 – ident: ref23 doi: 10.1177/155005941104200410 – ident: ref25 doi: 10.1142/S0129065716500295 – ident: ref29 doi: 10.1088/1741-2552/ab08c8 – year: 2019 ident: ref32 article-title: Subject-specific EEG channel selection using non-negative matrix factorization for lower-limb motor imagery recognition publication-title: J Neural Eng – ident: ref35 doi: 10.5220/0005846503350339 – ident: ref47 doi: 10.1017/CBO9780511921803 – ident: ref31 doi: 10.1016/j.clinph.2013.05.006 – ident: ref9 doi: 10.1590/2446-4740.07417 – ident: ref21 doi: 10.1093/acprof:oso/9780195388855.001.0001 – ident: ref44 doi: 10.1016/j.neucom.2011.10.021 – ident: ref13 doi: 10.1016/j.jelekin.2005.06.001 – ident: ref6 doi: 10.1186/1743-0003-8-66 – ident: ref18 doi: 10.3389/fninf.2017.00045 – ident: ref22 doi: 10.1177/1550059414522229 – ident: ref15 doi: 10.1088/1741-2560/13/1/016018 – ident: ref39 doi: 10.1016/S1388-2457(03)00067-1 – ident: ref49 doi: 10.1152/jn.00918.2015 – ident: ref4 doi: 10.1310/tsr1605-346 – ident: ref11 doi: 10.1111/j.1747-4949.2011.00728.x – ident: ref36 doi: 10.1109/TENCON.2017.8228124 – ident: ref28 doi: 10.1088/1741-2560/12/3/036007 – volume: 61 start-page: 288 year: 2014 ident: ref24 article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2294203 – ident: ref26 doi: 10.1016/S1388-2457(99)00141-8 – ident: ref7 doi: 10.1088/1741-2560/13/3/031001 – ident: ref17 doi: 10.1109/TMECH.2015.2508030 – ident: ref27 doi: 10.3390/s18041136 – ident: ref1 doi: 10.1055/s-0038-1649503 – ident: ref46 doi: 10.1088/1741-2552/aab2f2 – ident: ref19 doi: 10.1191/0269215505cr960oa |
SSID | ssj0017657 |
Score | 2.4941497 |
Snippet | A low-cost Brain-Machine Interface (BMI) based on electroencephalography for lower-limb motor recovery of post-stroke patients is proposed here, which provides... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 988 |
SubjectTerms | Brain Brain-computer interface Brain-computer interfaces brain-machine interface Clinical trials Computational neuroscience Computing costs Discriminant analysis EEG Electroencephalography Feature extraction Image recognition Imagery Latency Low cost lower-limb rehabilitation Man-machine interfaces Mental task performance motor imagery On-line systems Patient rehabilitation pedaling Plasticity (neural) Presenilin 1 Presenilin 2 Recovery Rehabilitation Relearning Stroke Task analysis |
Title | A Low-Cost Lower-Limb Brain-Machine Interface Triggered by Pedaling Motor Imagery for Post-Stroke Patients Rehabilitation |
URI | https://ieeexplore.ieee.org/document/8999731 https://www.ncbi.nlm.nih.gov/pubmed/32078552 https://www.proquest.com/docview/2388101192 https://www.proquest.com/docview/2388816763 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bh4pLX_QRSitXantpvcR52TlSBKIVixAsErcocWZRRdmg3ayq7a_vjJ1EBbVVb5Zix47Gznyf7fkG4J1WicU0tjLO00RSWUtC-Voq8naINiafyERxfJIdXSRfL9PLNfg0xMIgort8hiMuurP8urFL3irbJW7AmZbWYZ2Im4_VGk4MdOZUPWkBU5dxFPYBMmG-Ozk5PzsgKhiFo4jgM7n8TXhAVbRJ0-iOP3IJVv6ONZ3POXwE4360_qrJ9WjZViP7856Q4_9-zmN42IFPsednyxNYw9lTeP-70LCYeJUB8UGc3dHw3oLVnjhufsj9ZtFyAefy-NtNJT5zjgk5dncyUbgNxmlpUUyI9l9xIlBRrcQp1iXHvYtxQxxffLlh5YyVIMAsOFuwPG_nzTWKUy_yurjX9zO4ODyY7B_JLnGDtInSrYxLnBpUZUJowdTW1MpGpswSFhKKEoIkhmhxaksksmKmWLGmHj0sc5vlaYhh_Bw2Zs0MX4JQSBhkqkqtuX2ic4JrhiAOmTuuI5MFoHrzFbYbFSfX-F44dhPmhbN-wdYvOusH8HFoc-s1Pf5Ze4tNN9TsrBbATj9Lim7ZLwoaGwumEWoO4O3wmBYsn8KUM2yWvo5RGf3XA3jhZ9fw7n5Sbv-5z1ewySPzF4d2YKOdL_E1YaK2euMWwy8sZgNg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEvvMojUMBIwIV6G-fpHEvVagubVdWmUm9R4swiVLpBu1mh5dcz4zxEK0DcLMWOHc1M5hvb8w3A21gFBkPfSD8JA0ntWBLKj6Uib4dofPKJHCim02h8Hny6CC82YHfIhUFEe_kMR9y0Z_lVbVa8VbZHsQFXWroFt8nvh6rN1hrODOLI8nqSCdOkvuf2KTJuspdNz04PKRj03JFHAJqc_hbcoS6xDkPvmkeyJVb-jjat1zm6D2m_3vayyeVo1ZQj8_MGleP_ftADuNfBT7Hf6stD2MD5I3j3O9WwyFqeAfFenF5j8d6G9b6Y1D_kQb1suIELOfl6VYqPXGVCpvZWJgq7xTgrDIqMAv8vXApUlGtxglXBme8irSnKF8dXzJ2xFgSZBdcLlmfNor5EcdLSvC5vzP0Yzo8Os4Ox7Eo3SBOouJF-gTONqggIL-jK6EoZTxdRwFRCXkCgRFNgHJoCKVzRMyyZVY8eFomJktBF138Cm_N6js9AKCQUMlNFHPP4IE4IsGkCOSRuv_J05IDqxZebblVcXuNbbuMbN8mt9HOWft5J34EPw5jvLavHP3tvs-iGnp3UHNjptSTvDH-Z09qYMo1wswNvhsdksnwOU8yxXrV9tIroz-7A01a7hnf3Svn8z3O-hrvjLJ3kk-Pp5xewxatsrxHtwGazWOFLQkhN-coaxi_XJgap |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Low-Cost+Lower-Limb+Brain-Machine+Interface+Triggered+by+Pedaling+Motor+Imagery+for+Post-Stroke+Patients+Rehabilitation&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Romero-Laiseca%2C+Maria+Alejandra&rft.au=Delisle-Rodriguez%2C+Denis&rft.au=Cardoso%2C+Vivianne&rft.au=Gurve%2C+Dharmendra&rft.date=2020-04-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=28&rft.issue=4&rft.spage=988&rft.epage=996&rft_id=info:doi/10.1109%2FTNSRE.2020.2974056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2020_2974056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |