New insight on the mechanism of electrochemical cycling effects in MnO2-based aqueous supercapacitor

The investigation of mechanism for electrochemical cycling process has become ever more important in supercapacitor electrode material for achieving higher stability and electrochemical performance. Herein, an electrochemical cycling effect has been demonstrated basing on the comprehensive study on...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 436; p. 226795
Main Authors Sun, Zhenheng, Zhang, Yaxiong, Liu, Yupeng, Fu, Jiecai, Cheng, Situo, Cui, Peng, Xie, Erqing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The investigation of mechanism for electrochemical cycling process has become ever more important in supercapacitor electrode material for achieving higher stability and electrochemical performance. Herein, an electrochemical cycling effect has been demonstrated basing on the comprehensive study on the morphological and electronic evolution, which provides an insight into the capacity fluctuation mechanism in a typical MnO2-based supercapacitor. The results reveal that the significant changes of morphologies and chemical valence state of MnO2 take place accompanying with the intercalation of electrolyte ions (i.e. Na+) during the electrochemical cycling process. A structural reconstruction model is established to unravel the origin of microscopic changes of MnO2@carbon nanotubes (MnO2@CNTs) composites electrode and their relationships with the capacity at different electrochemical stages. It was found that the morphological and structural evolution of the electrode should be attributed to the dissolution-redeposition process of MnO2, which governed by the cation distribution near the interface between electrode and electrolyte. The ion intercalation-deintercalation process is evidenced by the oxidation state variations of Mn with the Na+ intercalation amount. Therefore, the capacity performance of MnO2@CNTs was strongly correlated with its structural and chemical states. This work will open up new perspectives for the capacity performance improvement of MnO2-based electrode materials. [Display omitted] •An obvious electrochemical cycling effect was demonstrated in MnO2.•A structural reconstruction model was established.•It gives a significant insight into the energy storage mechanism of MnO2.
AbstractList The investigation of mechanism for electrochemical cycling process has become ever more important in supercapacitor electrode material for achieving higher stability and electrochemical performance. Herein, an electrochemical cycling effect has been demonstrated basing on the comprehensive study on the morphological and electronic evolution, which provides an insight into the capacity fluctuation mechanism in a typical MnO2-based supercapacitor. The results reveal that the significant changes of morphologies and chemical valence state of MnO2 take place accompanying with the intercalation of electrolyte ions (i.e. Na+) during the electrochemical cycling process. A structural reconstruction model is established to unravel the origin of microscopic changes of MnO2@carbon nanotubes (MnO2@CNTs) composites electrode and their relationships with the capacity at different electrochemical stages. It was found that the morphological and structural evolution of the electrode should be attributed to the dissolution-redeposition process of MnO2, which governed by the cation distribution near the interface between electrode and electrolyte. The ion intercalation-deintercalation process is evidenced by the oxidation state variations of Mn with the Na+ intercalation amount. Therefore, the capacity performance of MnO2@CNTs was strongly correlated with its structural and chemical states. This work will open up new perspectives for the capacity performance improvement of MnO2-based electrode materials. [Display omitted] •An obvious electrochemical cycling effect was demonstrated in MnO2.•A structural reconstruction model was established.•It gives a significant insight into the energy storage mechanism of MnO2.
ArticleNumber 226795
Author Sun, Zhenheng
Zhang, Yaxiong
Cui, Peng
Xie, Erqing
Cheng, Situo
Liu, Yupeng
Fu, Jiecai
Author_xml – sequence: 1
  givenname: Zhenheng
  surname: Sun
  fullname: Sun, Zhenheng
– sequence: 2
  givenname: Yaxiong
  surname: Zhang
  fullname: Zhang, Yaxiong
– sequence: 3
  givenname: Yupeng
  surname: Liu
  fullname: Liu, Yupeng
– sequence: 4
  givenname: Jiecai
  orcidid: 0000-0001-7363-6948
  surname: Fu
  fullname: Fu, Jiecai
  email: fujc@lzu.edu.cn
– sequence: 5
  givenname: Situo
  surname: Cheng
  fullname: Cheng, Situo
– sequence: 6
  givenname: Peng
  surname: Cui
  fullname: Cui, Peng
– sequence: 7
  givenname: Erqing
  orcidid: 0000-0001-5647-6938
  surname: Xie
  fullname: Xie, Erqing
  email: xieeq@lzu.edu.cn
BookMark eNqFkMtOwzAQRS1UJNrCLyD_QILtPBxLLEAVL6nQDawtx5k0jhI72ClV_55UhQ0bViPd0bmaOQs0s84CQteUxJTQ_KaN28Htg9v5mBEqYsZyLrIzNKcFTyLGs2yG5iThRcR5llygRQgtIYRSTuaoeoM9NjaYbTNiZ_HYAO5BN8qa0GNXY-hAj97pBnqjVYf1QXfGbjHU9bQIE4tf7YZFpQpQYfW5A7cLOOwG8FoNSpvR-Ut0XqsuwNXPXKKPx4f31XO03jy9rO7XkU4pH6NEiIqxUhdU8awUQgNJaZWlggNQwQs-BSwpISnShCmVl6lQgpKCcuB5UZBkifJTr_YuBA-1HLzplT9ISuTRlWzlryt5dCVPribw9g843a1G4-zolen-x-9OOEzPfRnwMmgDVkNl_CRJVs78V_ENyw2ODw
CitedBy_id crossref_primary_10_1021_acsami_2c06850
crossref_primary_10_1002_smll_202404506
crossref_primary_10_1016_j_cej_2020_126820
crossref_primary_10_3390_ma13010181
crossref_primary_10_1016_j_apcatb_2020_119684
crossref_primary_10_1021_acsaem_0c02487
crossref_primary_10_1016_j_cej_2022_139661
crossref_primary_10_1016_j_est_2023_109341
crossref_primary_10_1016_j_desal_2024_117387
crossref_primary_10_1016_j_electacta_2022_140281
crossref_primary_10_1021_acsaelm_3c00169
crossref_primary_10_1021_acs_energyfuels_1c04425
crossref_primary_10_1002_smll_202003403
crossref_primary_10_1002_ente_202401426
crossref_primary_10_1039_D0TA11667J
crossref_primary_10_1016_j_cej_2023_147197
crossref_primary_10_1016_j_electacta_2022_140929
crossref_primary_10_1016_j_mseb_2020_114754
crossref_primary_10_1002_elan_202060488
crossref_primary_10_1039_D1TC05889D
crossref_primary_10_1039_D2RA06664E
crossref_primary_10_3390_nano13121866
crossref_primary_10_1016_j_jallcom_2021_162368
crossref_primary_10_1039_C9TA08278F
crossref_primary_10_1016_j_jcis_2022_09_119
crossref_primary_10_1016_j_jpowsour_2024_235491
crossref_primary_10_1016_j_ijhydene_2022_01_083
crossref_primary_10_1016_j_est_2023_108352
crossref_primary_10_1016_j_jpowsour_2024_235202
crossref_primary_10_1016_j_electacta_2021_137979
crossref_primary_10_1016_j_electacta_2022_139872
crossref_primary_10_1016_j_cej_2022_135967
crossref_primary_10_1016_j_jechem_2021_09_038
crossref_primary_10_1007_s11581_021_04138_2
crossref_primary_10_1038_s41427_022_00450_z
crossref_primary_10_1039_D3NJ04881K
crossref_primary_10_1002_aenm_202301008
crossref_primary_10_1039_C9NA00547A
crossref_primary_10_1039_C9TA12709G
crossref_primary_10_1002_adma_202002450
crossref_primary_10_1021_acsaem_1c04076
crossref_primary_10_1039_D1TA04850C
crossref_primary_10_1021_acsanm_3c02134
crossref_primary_10_1016_j_electacta_2020_137265
crossref_primary_10_1002_aenm_202103689
crossref_primary_10_1016_j_jechem_2022_07_012
crossref_primary_10_1016_j_cej_2021_129643
crossref_primary_10_1016_j_est_2023_108468
crossref_primary_10_1016_j_jelechem_2020_114656
crossref_primary_10_1021_acsaelm_0c00939
Cites_doi 10.1021/nl400600x
10.1002/aenm.201802707
10.1007/s13738-017-1192-z
10.1016/j.micron.2005.12.004
10.1021/acsami.8b12486
10.1149/2.0191505jes
10.1021/cm049649j
10.1126/science.1249625
10.2138/am.2010.3468
10.3390/ma10101205
10.1016/j.ultramic.2005.09.002
10.1016/j.jpowsour.2017.04.039
10.1021/nn304833s
10.1149/1.1393216
10.1126/sciadv.aau6852
10.1016/j.electacta.2010.01.102
10.1021/jp0773029
10.1016/j.electacta.2017.08.087
10.1039/C5SC03326H
10.1016/j.jpowsour.2008.10.058
10.1016/0304-3991(90)90078-Z
10.1038/ncomms15630
10.1016/j.jpowsour.2012.11.040
10.1016/j.electacta.2008.10.031
10.1149/2.019311jes
10.1021/nl200513a
10.1021/cm503544e
10.1038/s41467-019-08644-w
10.1016/j.jpowsour.2015.12.063
10.1126/science.1158736
10.1021/acs.chemrev.8b00252
10.1002/adma.201700804
10.1103/PhysRevB.79.085117
10.1021/am900094e
10.1039/C1CS15060J
10.1021/acsami.6b12518
10.1002/aenm.201300816
10.1002/smll.201303926
10.1017/S1431927614000440
10.1021/acsnano.7b03431
10.1016/j.jpowsour.2013.07.046
10.1002/aenm.201500772
10.1021/jp3118488
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2019.226795
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
ExternalDocumentID 10_1016_j_jpowsour_2019_226795
S0378775319307803
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c417t-399d22bc81a75b99ce041d5497ee19787ce023be38432aa6b49a910817e768803
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Tue Jul 01 01:40:18 EDT 2025
Thu Apr 24 22:52:05 EDT 2025
Fri Feb 23 02:49:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MnO2
Capacity variation
Structural reconstruction
Electrochemical cycling effect
Valence state
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-399d22bc81a75b99ce041d5497ee19787ce023be38432aa6b49a910817e768803
ORCID 0000-0001-7363-6948
0000-0001-5647-6938
ParticipantIDs crossref_primary_10_1016_j_jpowsour_2019_226795
crossref_citationtrail_10_1016_j_jpowsour_2019_226795
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2019_226795
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jabeen, Hussain, Xia, Sun, Zhu, Xia (bib9) 2017; 29
Liu, Zhou, Guo, Guo, Liu (bib43) 2019; 10
Athouël, Moser, Dugas, Crosnier, Bélanger, Brousse (bib40) 2008; 112
Ou, Hsu, Hu (bib11) 2015; 162
Ghodbane, Pascal, Favier (bib16) 2009; 1
Weng, Pan, Lee, Huang, Chu, Lee, Sheu, Wu (bib33) 2015; 5
Yedra, Xuriguera, Estrader, Lopez-Ortega, Baro, Nogues, Roldan, Varela, Estrade, Peiro (bib39) 2014; 20
Ma, Chen, Yang, Chen, Cheng, Guo, Peng, Ramakrishna, Zhu (bib15) 2016; 306
Wang, Xiao, Zhu, Chang, Hu, Wu, Holze (bib22) 2014; 246
Komaba, Tsuchikawa, Tomita, Yabuuchi, Ogata (bib25) 2013; 160
Paterson, Krivanek (bib38) 1990; 32
Miller, Simon (bib1) 2008; 321
Riedl, Gemming, Wetzig (bib35) 2006; 106
Jabeen, Xia, Savilov, Aldoshin, Yu, Xia (bib26) 2016; 8
Boisset, Athouël, Jacquemin, Porion, Brousse, Anouti (bib41) 2013; 117
Azari, Rahmanifar, El-Kady, Noori, Mousavi, Kaner (bib23) 2017; 14
Toupin, Brousse, Bélanger (bib30) 2004; 16
Hanna, Luski, Brousse, Aurbach (bib17) 2017; 354
Ataherian, Lee, Wu (bib29) 2010; 55
Zhang, Levi, Dou, Lu, Chai, Lei, Ji, Liu, Bu, Ma, Yan (bib7) 2019; 9
Hu, Xiao, Jin, Li, Chen, Liang, Guo, Li, Wan, Huang, Zhang, Feng, Zhou (bib10) 2017; 8
Pang, Anderson, Chapman (bib31) 2000; 147
Zhu, Li, Liu, Wang, Wang, Zhang, Zhang, Ruoff, Dong (bib13) 2018; 12
Zhang, Fu, Zhang, Ma, He, Li, Xie, Xue, Zhang, Peng (bib6) 2014; 10
Zhang, Li, Ji, Zhang, Yang, Gao, Li, Xiong, Dang (bib14) 2017; 252
Yan, Wang, Wei, Fan (bib2) 2014; 4
Wei, Cui, Chen, Ivey (bib28) 2009; 54
Young, Holder, George, Musgrave (bib24) 2015; 27
Peng, Peng, Liu, Wu, Xie, Yu (bib19) 2013; 13
Kim, Lee, Overzet, Lee (bib18) 2011; 11
Zhang, Livi, Gaillot, Stone, Veblen (bib34) 2010; 95
Huang, Li, Xu (bib32) 2017; 10
Shao, El-Kady, Sun, Li, Zhang, Zhu, Wang, Dunn, Kaner (bib4) 2018; 118
Lu, Huang, Tong, Li (bib21) 2016; 7
Zong, Zhang, Mei, Li, Zhou, Li, Chen, Shi, Sun, Yao, Zhang (bib8) 2018; 10
Wei, Cui, Chen, Ivey (bib27) 2009; 186
Wang, Zhang, Zhang (bib5) 2012; 41
Zhou, Liu, Khan, Liu (bib42) 2019; 5
Xiong, Hembram, Reifenberger, Fisher (bib12) 2013; 227
Schmid, Mader (bib36) 2006; 37
He, Chen, Li, Zhang, Fu, Zhao, Xie (bib20) 2012; 7
Simon, Gogotsi, Dunn (bib3) 2014; 343
Varela, Oxley, Luo, Tao, Watanabe, Lupini, Pantelides, Pennycook (bib37) 2009; 79
Zhu (10.1016/j.jpowsour.2019.226795_bib13) 2018; 12
Miller (10.1016/j.jpowsour.2019.226795_bib1) 2008; 321
Liu (10.1016/j.jpowsour.2019.226795_bib43) 2019; 10
Wang (10.1016/j.jpowsour.2019.226795_bib22) 2014; 246
Jabeen (10.1016/j.jpowsour.2019.226795_bib9) 2017; 29
Kim (10.1016/j.jpowsour.2019.226795_bib18) 2011; 11
Athouël (10.1016/j.jpowsour.2019.226795_bib40) 2008; 112
Ataherian (10.1016/j.jpowsour.2019.226795_bib29) 2010; 55
Zong (10.1016/j.jpowsour.2019.226795_bib8) 2018; 10
Ghodbane (10.1016/j.jpowsour.2019.226795_bib16) 2009; 1
Jabeen (10.1016/j.jpowsour.2019.226795_bib26) 2016; 8
Shao (10.1016/j.jpowsour.2019.226795_bib4) 2018; 118
Huang (10.1016/j.jpowsour.2019.226795_bib32) 2017; 10
Varela (10.1016/j.jpowsour.2019.226795_bib37) 2009; 79
Hu (10.1016/j.jpowsour.2019.226795_bib10) 2017; 8
Simon (10.1016/j.jpowsour.2019.226795_bib3) 2014; 343
Zhang (10.1016/j.jpowsour.2019.226795_bib14) 2017; 252
Wei (10.1016/j.jpowsour.2019.226795_bib28) 2009; 54
Schmid (10.1016/j.jpowsour.2019.226795_bib36) 2006; 37
Wei (10.1016/j.jpowsour.2019.226795_bib27) 2009; 186
Boisset (10.1016/j.jpowsour.2019.226795_bib41) 2013; 117
Riedl (10.1016/j.jpowsour.2019.226795_bib35) 2006; 106
Pang (10.1016/j.jpowsour.2019.226795_bib31) 2000; 147
Zhang (10.1016/j.jpowsour.2019.226795_bib34) 2010; 95
Ma (10.1016/j.jpowsour.2019.226795_bib15) 2016; 306
Zhang (10.1016/j.jpowsour.2019.226795_bib7) 2019; 9
Xiong (10.1016/j.jpowsour.2019.226795_bib12) 2013; 227
Paterson (10.1016/j.jpowsour.2019.226795_bib38) 1990; 32
He (10.1016/j.jpowsour.2019.226795_bib20) 2012; 7
Azari (10.1016/j.jpowsour.2019.226795_bib23) 2017; 14
Yedra (10.1016/j.jpowsour.2019.226795_bib39) 2014; 20
Yan (10.1016/j.jpowsour.2019.226795_bib2) 2014; 4
Komaba (10.1016/j.jpowsour.2019.226795_bib25) 2013; 160
Wang (10.1016/j.jpowsour.2019.226795_bib5) 2012; 41
Young (10.1016/j.jpowsour.2019.226795_bib24) 2015; 27
Zhou (10.1016/j.jpowsour.2019.226795_bib42) 2019; 5
Hanna (10.1016/j.jpowsour.2019.226795_bib17) 2017; 354
Peng (10.1016/j.jpowsour.2019.226795_bib19) 2013; 13
Ou (10.1016/j.jpowsour.2019.226795_bib11) 2015; 162
Toupin (10.1016/j.jpowsour.2019.226795_bib30) 2004; 16
Zhang (10.1016/j.jpowsour.2019.226795_bib6) 2014; 10
Lu (10.1016/j.jpowsour.2019.226795_bib21) 2016; 7
Weng (10.1016/j.jpowsour.2019.226795_bib33) 2015; 5
References_xml – volume: 4
  start-page: 1300816
  year: 2014
  ident: bib2
  article-title: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities
  publication-title: Adv. Energy Mater.
– volume: 54
  start-page: 2271
  year: 2009
  end-page: 2275
  ident: bib28
  article-title: Improved electrochemical impedance response induced by morphological and structural evolution in nanocrystalline MnO
  publication-title: Electrochim. Acta
– volume: 321
  start-page: 651
  year: 2008
  end-page: 652
  ident: bib1
  article-title: Materials science. Electrochemical capacitors for energy management
  publication-title: Science
– volume: 252
  start-page: 306
  year: 2017
  end-page: 314
  ident: bib14
  article-title: Freestanding three-dimensional reduced graphene oxide/MnO
  publication-title: Electrochim. Acta
– volume: 186
  start-page: 543
  year: 2009
  end-page: 550
  ident: bib27
  article-title: Electrochemical cyclability mechanism for MnO
  publication-title: J. Power Sources
– volume: 95
  start-page: 1741
  year: 2010
  end-page: 1746
  ident: bib34
  article-title: Determination of manganese valence states in (Mn
  publication-title: Am. Mineral.
– volume: 14
  start-page: 2579
  year: 2017
  end-page: 2590
  ident: bib23
  article-title: A wide potential window aqueous supercapacitor based on LiMn
  publication-title: J. Iran. Chem. Soc.
– volume: 1
  start-page: 1130
  year: 2009
  end-page: 1139
  ident: bib16
  article-title: Microstructural effects on charge-storage properties in MnO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 354
  start-page: 148
  year: 2017
  end-page: 156
  ident: bib17
  article-title: Aqueous energy-storage cells based on activated carbon and LiMn2O4 electrodes
  publication-title: J. Power Sources
– volume: 32
  start-page: 319
  year: 1990
  end-page: 325
  ident: bib38
  article-title: ELNES of 3d transition-metal oxides: II. Variations with oxidation state and crystal structure
  publication-title: Ultramicroscopy
– volume: 10
  start-page: 675
  year: 2019
  ident: bib43
  article-title: Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2611
  year: 2011
  end-page: 2617
  ident: bib18
  article-title: Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnO
  publication-title: Nano Lett.
– volume: 10
  start-page: 37233
  year: 2018
  end-page: 37241
  ident: bib8
  article-title: Facile synthesis of Na-doped MnO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 1205
  year: 2017
  ident: bib32
  article-title: Nucleation/growth mechanisms and morphological evolution of porous MnO
  publication-title: Materials
– volume: 7
  start-page: 174
  year: 2012
  end-page: 182
  ident: bib20
  article-title: Freestanding three-dimensional graphene/MnO
  publication-title: ACS Nano
– volume: 117
  start-page: 7408
  year: 2013
  end-page: 7422
  ident: bib41
  article-title: Comparative performances of birnessite and cryptomelane MnO
  publication-title: J. Phys. Chem. C
– volume: 27
  start-page: 1172
  year: 2015
  end-page: 1180
  ident: bib24
  article-title: Charge storage in cation incorporated α-MnO2
  publication-title: Chem. Mater.
– volume: 118
  start-page: 9233
  year: 2018
  end-page: 9280
  ident: bib4
  article-title: Design and mechanisms of asymmetric supercapacitors
  publication-title: Chem. Rev.
– volume: 147
  start-page: 444
  year: 2000
  end-page: 450
  ident: bib31
  article-title: Novel electrode materials for thin‐film ultracapacitors: comparison of electrochemical properties of sol‐gel‐derived and electrodeposited manganese dioxide
  publication-title: J. Electrochem. Soc.
– volume: 162
  start-page: A5124
  year: 2015
  end-page: A5132
  ident: bib11
  article-title: Synthesis and characterization of sodium-doped MnO
  publication-title: J. Electrochem. Soc.
– volume: 306
  start-page: 481
  year: 2016
  end-page: 488
  ident: bib15
  article-title: Hierarchical MnO
  publication-title: J. Power Sources
– volume: 55
  start-page: 7429
  year: 2010
  end-page: 7435
  ident: bib29
  article-title: Long-term electrochemical behaviors of manganese oxide aqueous electrochemical capacitor under reducing potentials
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 2618
  year: 2014
  end-page: 2624
  ident: bib6
  article-title: Co@Co
  publication-title: Small
– volume: 227
  start-page: 254
  year: 2013
  end-page: 259
  ident: bib12
  article-title: MnO
  publication-title: J. Power Sources
– volume: 16
  start-page: 3184
  year: 2004
  end-page: 3190
  ident: bib30
  article-title: Charge storage mechanism of MnO
  publication-title: Chem. Mater.
– volume: 13
  start-page: 2151
  year: 2013
  end-page: 2157
  ident: bib19
  article-title: Ultrathin two-dimensional MnO
  publication-title: Nano Lett.
– volume: 343
  start-page: 1210
  year: 2014
  end-page: 1211
  ident: bib3
  article-title: Where do batteries end and supercapacitors begin?
  publication-title: Science
– volume: 246
  start-page: 19
  year: 2014
  end-page: 23
  ident: bib22
  article-title: Spinel LiMn
  publication-title: J. Power Sources
– volume: 160
  start-page: A1952
  year: 2013
  end-page: A1961
  ident: bib25
  article-title: Efficient electrolyte additives of phosphate, carbonate, and borate to improve redox capacitor performance of manganese oxide electrodes
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 1500772
  year: 2015
  ident: bib33
  article-title: Spatially confined MnO
  publication-title: Adv. Energy Mater.
– volume: 112
  start-page: 7270
  year: 2008
  end-page: 7277
  ident: bib40
  article-title: Variation of the MnO
  publication-title: J. Phys. Chem. C
– volume: 5
  year: 2019
  ident: bib42
  article-title: Block copolymer-based porous carbon fibers
  publication-title: Sci. Adv.
– volume: 8
  start-page: 33732
  year: 2016
  end-page: 33740
  ident: bib26
  article-title: Enhanced pseudocapacitive performance of α-MnO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 37
  start-page: 426
  year: 2006
  end-page: 432
  ident: bib36
  article-title: Oxidation states of Mn and Fe in various compound oxide systems
  publication-title: Micron
– volume: 12
  start-page: 1033
  year: 2018
  end-page: 1042
  ident: bib13
  article-title: Structural directed growth of ultrathin parallel birnessite on β-MnO
  publication-title: ACS Nano
– volume: 106
  start-page: 284
  year: 2006
  end-page: 291
  ident: bib35
  article-title: Extraction of EELS white-line intensities of manganese compounds: methods, accuracy, and valence sensitivity
  publication-title: Ultramicroscopy
– volume: 79
  year: 2009
  ident: bib37
  article-title: Atomic-resolution imaging of oxidation states in manganites
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 698
  year: 2014
  end-page: 705
  ident: bib39
  article-title: Oxide Wizard: an EELS application to characterize the white lines of transition metal edges
  publication-title: Microsc. Microanal.
– volume: 29
  start-page: 1700804
  year: 2017
  ident: bib9
  article-title: High‐performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1802707
  year: 2019
  ident: bib7
  article-title: The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes
  publication-title: Adv. Energy Mater.
– volume: 41
  start-page: 797
  year: 2012
  end-page: 828
  ident: bib5
  article-title: A review of electrode materials for electrochemical supercapacitors
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 15630
  year: 2017
  ident: bib10
  article-title: Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method
  publication-title: Nat. Commun.
– volume: 7
  start-page: 510
  year: 2016
  end-page: 517
  ident: bib21
  article-title: Asymmetric supercapacitors with high energy density based on helical hierarchical porous Na
  publication-title: Chem. Sci.
– volume: 13
  start-page: 2151
  year: 2013
  ident: 10.1016/j.jpowsour.2019.226795_bib19
  article-title: Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors
  publication-title: Nano Lett.
  doi: 10.1021/nl400600x
– volume: 9
  start-page: 1802707
  year: 2019
  ident: 10.1016/j.jpowsour.2019.226795_bib7
  article-title: The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802707
– volume: 14
  start-page: 2579
  year: 2017
  ident: 10.1016/j.jpowsour.2019.226795_bib23
  article-title: A wide potential window aqueous supercapacitor based on LiMn2O4–rGO nanocomposite
  publication-title: J. Iran. Chem. Soc.
  doi: 10.1007/s13738-017-1192-z
– volume: 37
  start-page: 426
  year: 2006
  ident: 10.1016/j.jpowsour.2019.226795_bib36
  article-title: Oxidation states of Mn and Fe in various compound oxide systems
  publication-title: Micron
  doi: 10.1016/j.micron.2005.12.004
– volume: 10
  start-page: 37233
  year: 2018
  ident: 10.1016/j.jpowsour.2019.226795_bib8
  article-title: Facile synthesis of Na-doped MnO2 nanosheets on carbon nanotube fibers for ultrahigh-energy-density all-solid-state wearable asymmetric supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12486
– volume: 162
  start-page: A5124
  year: 2015
  ident: 10.1016/j.jpowsour.2019.226795_bib11
  article-title: Synthesis and characterization of sodium-doped MnO2 for the aqueous asymmetric supercapacitor application
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0191505jes
– volume: 16
  start-page: 3184
  year: 2004
  ident: 10.1016/j.jpowsour.2019.226795_bib30
  article-title: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor
  publication-title: Chem. Mater.
  doi: 10.1021/cm049649j
– volume: 343
  start-page: 1210
  year: 2014
  ident: 10.1016/j.jpowsour.2019.226795_bib3
  article-title: Where do batteries end and supercapacitors begin?
  publication-title: Science
  doi: 10.1126/science.1249625
– volume: 95
  start-page: 1741
  year: 2010
  ident: 10.1016/j.jpowsour.2019.226795_bib34
  article-title: Determination of manganese valence states in (Mn3+, Mn4+) minerals by electron energy-loss spectroscopy
  publication-title: Am. Mineral.
  doi: 10.2138/am.2010.3468
– volume: 10
  start-page: 1205
  year: 2017
  ident: 10.1016/j.jpowsour.2019.226795_bib32
  article-title: Nucleation/growth mechanisms and morphological evolution of porous MnO2 coating deposited on graphite for supercapacitor
  publication-title: Materials
  doi: 10.3390/ma10101205
– volume: 106
  start-page: 284
  year: 2006
  ident: 10.1016/j.jpowsour.2019.226795_bib35
  article-title: Extraction of EELS white-line intensities of manganese compounds: methods, accuracy, and valence sensitivity
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2005.09.002
– volume: 354
  start-page: 148
  year: 2017
  ident: 10.1016/j.jpowsour.2019.226795_bib17
  article-title: Aqueous energy-storage cells based on activated carbon and LiMn2O4 electrodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.039
– volume: 7
  start-page: 174
  year: 2012
  ident: 10.1016/j.jpowsour.2019.226795_bib20
  article-title: Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes
  publication-title: ACS Nano
  doi: 10.1021/nn304833s
– volume: 147
  start-page: 444
  year: 2000
  ident: 10.1016/j.jpowsour.2019.226795_bib31
  article-title: Novel electrode materials for thin‐film ultracapacitors: comparison of electrochemical properties of sol‐gel‐derived and electrodeposited manganese dioxide
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393216
– volume: 5
  year: 2019
  ident: 10.1016/j.jpowsour.2019.226795_bib42
  article-title: Block copolymer-based porous carbon fibers
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau6852
– volume: 55
  start-page: 7429
  year: 2010
  ident: 10.1016/j.jpowsour.2019.226795_bib29
  article-title: Long-term electrochemical behaviors of manganese oxide aqueous electrochemical capacitor under reducing potentials
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.01.102
– volume: 112
  start-page: 7270
  year: 2008
  ident: 10.1016/j.jpowsour.2019.226795_bib40
  article-title: Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0773029
– volume: 252
  start-page: 306
  year: 2017
  ident: 10.1016/j.jpowsour.2019.226795_bib14
  article-title: Freestanding three-dimensional reduced graphene oxide/MnO2 on porous carbon/nickel foam as a designed hierarchical multihole supercapacitor electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.08.087
– volume: 7
  start-page: 510
  year: 2016
  ident: 10.1016/j.jpowsour.2019.226795_bib21
  article-title: Asymmetric supercapacitors with high energy density based on helical hierarchical porous NaxMnO2 and MoO2
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC03326H
– volume: 186
  start-page: 543
  year: 2009
  ident: 10.1016/j.jpowsour.2019.226795_bib27
  article-title: Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.10.058
– volume: 32
  start-page: 319
  year: 1990
  ident: 10.1016/j.jpowsour.2019.226795_bib38
  article-title: ELNES of 3d transition-metal oxides: II. Variations with oxidation state and crystal structure
  publication-title: Ultramicroscopy
  doi: 10.1016/0304-3991(90)90078-Z
– volume: 8
  start-page: 15630
  year: 2017
  ident: 10.1016/j.jpowsour.2019.226795_bib10
  article-title: Rapid mass production of two-dimensional metal oxides and hydroxides via the molten salts method
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15630
– volume: 227
  start-page: 254
  year: 2013
  ident: 10.1016/j.jpowsour.2019.226795_bib12
  article-title: MnO2-coated graphitic petals for supercapacitor electrodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.11.040
– volume: 54
  start-page: 2271
  year: 2009
  ident: 10.1016/j.jpowsour.2019.226795_bib28
  article-title: Improved electrochemical impedance response induced by morphological and structural evolution in nanocrystalline MnO2 electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.10.031
– volume: 160
  start-page: A1952
  year: 2013
  ident: 10.1016/j.jpowsour.2019.226795_bib25
  article-title: Efficient electrolyte additives of phosphate, carbonate, and borate to improve redox capacitor performance of manganese oxide electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.019311jes
– volume: 11
  start-page: 2611
  year: 2011
  ident: 10.1016/j.jpowsour.2019.226795_bib18
  article-title: Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnOx composites for high-performance energy storage devices
  publication-title: Nano Lett.
  doi: 10.1021/nl200513a
– volume: 27
  start-page: 1172
  year: 2015
  ident: 10.1016/j.jpowsour.2019.226795_bib24
  article-title: Charge storage in cation incorporated α-MnO2
  publication-title: Chem. Mater.
  doi: 10.1021/cm503544e
– volume: 10
  start-page: 675
  year: 2019
  ident: 10.1016/j.jpowsour.2019.226795_bib43
  article-title: Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08644-w
– volume: 306
  start-page: 481
  year: 2016
  ident: 10.1016/j.jpowsour.2019.226795_bib15
  article-title: Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.12.063
– volume: 321
  start-page: 651
  year: 2008
  ident: 10.1016/j.jpowsour.2019.226795_bib1
  article-title: Materials science. Electrochemical capacitors for energy management
  publication-title: Science
  doi: 10.1126/science.1158736
– volume: 118
  start-page: 9233
  year: 2018
  ident: 10.1016/j.jpowsour.2019.226795_bib4
  article-title: Design and mechanisms of asymmetric supercapacitors
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00252
– volume: 29
  start-page: 1700804
  year: 2017
  ident: 10.1016/j.jpowsour.2019.226795_bib9
  article-title: High‐performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0. 5MnO2 nanosheet assembled nanowall arrays
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700804
– volume: 79
  year: 2009
  ident: 10.1016/j.jpowsour.2019.226795_bib37
  article-title: Atomic-resolution imaging of oxidation states in manganites
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.085117
– volume: 1
  start-page: 1130
  year: 2009
  ident: 10.1016/j.jpowsour.2019.226795_bib16
  article-title: Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900094e
– volume: 41
  start-page: 797
  year: 2012
  ident: 10.1016/j.jpowsour.2019.226795_bib5
  article-title: A review of electrode materials for electrochemical supercapacitors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15060J
– volume: 8
  start-page: 33732
  year: 2016
  ident: 10.1016/j.jpowsour.2019.226795_bib26
  article-title: Enhanced pseudocapacitive performance of α-MnO2 by cation preinsertion
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12518
– volume: 4
  start-page: 1300816
  year: 2014
  ident: 10.1016/j.jpowsour.2019.226795_bib2
  article-title: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300816
– volume: 10
  start-page: 2618
  year: 2014
  ident: 10.1016/j.jpowsour.2019.226795_bib6
  article-title: Co@Co3O4 core-shell three-dimensional nano-network for high-performance electrochemical energy storage
  publication-title: Small
  doi: 10.1002/smll.201303926
– volume: 20
  start-page: 698
  year: 2014
  ident: 10.1016/j.jpowsour.2019.226795_bib39
  article-title: Oxide Wizard: an EELS application to characterize the white lines of transition metal edges
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927614000440
– volume: 12
  start-page: 1033
  year: 2018
  ident: 10.1016/j.jpowsour.2019.226795_bib13
  article-title: Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03431
– volume: 246
  start-page: 19
  year: 2014
  ident: 10.1016/j.jpowsour.2019.226795_bib22
  article-title: Spinel LiMn2O4 nanohybrid as high capacitance positive electrode material for supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.07.046
– volume: 5
  start-page: 1500772
  year: 2015
  ident: 10.1016/j.jpowsour.2019.226795_bib33
  article-title: Spatially confined MnO2 nanostructure enabling consecutive reversible charge transfer from Mn (IV) to Mn (II) in a mixed pseudocapacitor‐battery electrode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500772
– volume: 117
  start-page: 7408
  year: 2013
  ident: 10.1016/j.jpowsour.2019.226795_bib41
  article-title: Comparative performances of birnessite and cryptomelane MnO2 as electrode material in neutral aqueous lithium salt for supercapacitor application
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3118488
SSID ssj0001170
Score 2.5290308
Snippet The investigation of mechanism for electrochemical cycling process has become ever more important in supercapacitor electrode material for achieving higher...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 226795
SubjectTerms Capacity variation
Electrochemical cycling effect
MnO2
Structural reconstruction
Valence state
Title New insight on the mechanism of electrochemical cycling effects in MnO2-based aqueous supercapacitor
URI https://dx.doi.org/10.1016/j.jpowsour.2019.226795
Volume 436
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4NAEN009aIH42ds1WYPXikFFhaOTWNTNdaDNumNsMtiaCyQ0sZ48bc7A4vWxKQHjxAmIcMw8x68mSHkBjA3k0wmhsciHwiK4IZgiQdATipPOK6QolL5Tr3JjN3P3XmLjJpeGJRV6txf5_QqW-szpvamWaSp-TxwINg4xhDEqV9N_GSMY5T3P39kHrhZpfqTAGwJr97qEl70F0X-jh_JUeIV9AGJcNwz8VeB2io64yNyqNEiHdY3dExaKjshB1szBE9JDGmKplmJJJvmGQVAR5cK-3nTcknzhOpFN1JPBqDyA7shX6lWcoAtfcyebAPrWUwjqBP5pqTlplArCZVUwiu_OiOz8e3LaGLo1QmGZBZfGwA7YtsW0rci7oogkGrArBi4IFfKAuIITwKKtVCOzxw7ijzBggiAg29xBfwDnHlO2lmeqQtCcSicHHCgKknMmK0i13IEsxMOzDqJE7tD3MZfodRzxXG9xVvYCMgWYePnEP0c1n7uEPPbrqgna-y0CJrHEf6KkRDS_w7b7j9sL8k-HtUSvivSXq826hqgyFr0qljrkb3h3cNk-gXs8d_a
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4NAEN009aAejJ-xfu7BK6XAwsLRNDZV23qwTXoj7LKYNhZIaWO8-NudgUVrYuLBKzAJmZ2deQ_ezhByA5ibSSYTw2ORDwRFcEOwxAMgJ5UnHFdIUap8R15_wh6m7rRBuvVZGJRV6txf5fQyW-srpvammc9m5nPHgWDjGEMQpz52_NxisH1xjEH741vngaNVyl8JQJfw8Y1jwvP2PM_e8Cs5aryCNkARjoMmfqtQG1Wnt0_2NFykt9UbHZCGSg_J7kYTwSMSQ56is7RAlk2zlAKiowuFB3pnxYJmCdWTbqRuDUDlOx6HfKFaygG2dJg-2QYWtJhGUCiydUGLda6WEkqphD2_PCaT3t242zf07ARDMouvDMAdsW0L6VsRd0UQSNVhVgxkkCtlAXOEpYBqLZTjM8eOIk-wIALk4FtcAQEBb56QZpql6pRQ7AonOxy4ShIzZqvItRzB7IQDtU7ixG4Rt_ZXKHVjcZxv8RrWCrJ5WPs5RD-HlZ9bxPyyy6vWGn9aBPVyhD-CJIT8_4ft2T9sr8l2fzwchIP70eM52cE7lZ7vgjRXy7W6BFyyEldl3H0CIyrhaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+insight+on+the+mechanism+of+electrochemical+cycling+effects+in+MnO2-based+aqueous+supercapacitor&rft.jtitle=Journal+of+power+sources&rft.au=Sun%2C+Zhenheng&rft.au=Zhang%2C+Yaxiong&rft.au=Liu%2C+Yupeng&rft.au=Fu%2C+Jiecai&rft.date=2019-10-01&rft.issn=0378-7753&rft.volume=436&rft.spage=226795&rft_id=info:doi/10.1016%2Fj.jpowsour.2019.226795&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2019_226795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon