Anodic Dissolution of Aluminum in the Aluminum Chloride-1-Ethyl-3-methylimidazolium Chloride Ionic Liquid

The anodic dissolution of aluminum metal was investigated in the Lewis acidic chloroaluminate ionic liquid, aluminum chloride-1-ethyl-3-methylimidazolium chloride. The investigation was conducted on aluminum rotating disk electrodes as a function of potential, ionic liquid composition, and temperatu...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Electrochemical Society Vol. 163; no. 14; pp. H1186 - H1194
Main Authors Wang, Chen, Creuziger, Adam, Stafford, Gery, Hussey, Charles L.
Format Journal Article
LanguageEnglish
Published England The Electrochemical Society 01.01.2016
Online AccessGet full text

Cover

Loading…
Abstract The anodic dissolution of aluminum metal was investigated in the Lewis acidic chloroaluminate ionic liquid, aluminum chloride-1-ethyl-3-methylimidazolium chloride. The investigation was conducted on aluminum rotating disk electrodes as a function of potential, ionic liquid composition, and temperature. Two different dissolution mechanisms were realized. At modest overpotentials, dissolution takes place under mixed kinetic-mass transport control. However, as the overpotential is increased to induce higher dissolution rates and/or the ionic liquid is made more acidic, the dissolution reaction transitions to a potential-independent passivation-like process ascribed to the formation of a porous solid layer of AlCl3(s). At a fixed temperature and composition, the limiting passivation current density displays Levich behavior and also scales linearly with the concentration of AlCl4− in the ionic liquid. The heterogeneous kinetics of the Al dissolution reaction were measured in the active dissolution potential regime. The exchange current densities were independent of the composition of the ionic liquid, and the anodic transfer coefficients were close to zero and seemed to be independent of the Al grain size.
AbstractList The anodic dissolution of aluminum metal was investigated in the Lewis acidic chloroaluminate ionic liquid, aluminum chloride-1-ethyl-3-methylimidazolium chloride. The investigation was conducted on aluminum rotating disk electrodes as a function of potential, ionic liquid composition, and temperature. Two different dissolution mechanisms were realized. At modest overpotentials, dissolution takes place under mixed kinetic-mass transport control. However, as the overpotential is increased to induce higher dissolution rates and/or the ionic liquid is made more acidic, the dissolution reaction transitions to a potential-independent passivation-like process ascribed to the formation of a porous solid layer of AlCl 3 (s). At a fixed temperature and composition, the limiting passivation current density displays Levich behavior and also scales linearly with the concentration of AlCl 4 − in the ionic liquid. The heterogeneous kinetics of the Al dissolution reaction were measured in the active dissolution potential regime. The exchange current densities were independent of the composition of the ionic liquid, and the anodic transfer coefficients were close to zero and seemed to be independent of the Al grain size.
The anodic dissolution of aluminum metal was investigated in the Lewis acidic chloroaluminate ionic liquid, aluminum chloride-1-ethyl-3-methylimidazolium chloride. The investigation was conducted on aluminum rotating disk electrodes as a function of potential, ionic liquid composition, and temperature. Two different dissolution mechanisms were realized. At modest overpotentials, dissolution takes place under mixed kinetic-mass transport control. However, as the overpotential is increased to induce higher dissolution rates and/or the ionic liquid is made more acidic, the dissolution reaction transitions to a potential-independent passivation-like process ascribed to the formation of a porous solid layer of AlCl3(s). At a fixed temperature and composition, the limiting passivation current density displays Levich behavior and also scales linearly with the concentration of AlCl4 - in the ionic liquid. The heterogeneous kinetics of the Al dissolution reaction were measured in the active dissolution potential regime. The exchange current densities were independent of the composition of the ionic liquid, and the anodic transfer coefficients were close to zero and seemed to be independent of the Al grain size.
The anodic dissolution of aluminum metal was investigated in the Lewis acidic chloroaluminate ionic liquid, aluminum chloride-1-ethyl-3-methylimidazolium chloride. The investigation was conducted on aluminum rotating disk electrodes as a function of potential, ionic liquid composition, and temperature. Two different dissolution mechanisms were realized. At modest overpotentials, dissolution takes place under mixed kinetic-mass transport control. However, as the overpotential is increased to induce higher dissolution rates and/or the ionic liquid is made more acidic, the dissolution reaction transitions to a potential-independent passivation-like process ascribed to the formation of a porous solid layer of AlCl (s). At a fixed temperature and composition, the limiting passivation current density displays Levich behavior and also scales linearly with the concentration of AlCl in the ionic liquid. The heterogeneous kinetics of the Al dissolution reaction were measured in the active dissolution potential regime. The exchange current densities were independent of the composition of the ionic liquid, and the anodic transfer coefficients were close to zero and seemed to be independent of the Al grain size.
The anodic dissolution of aluminum metal was investigated in the Lewis acidic chloroaluminate ionic liquid, aluminum chloride-1-ethyl-3-methylimidazolium chloride. The investigation was conducted on aluminum rotating disk electrodes as a function of potential, ionic liquid composition, and temperature. Two different dissolution mechanisms were realized. At modest overpotentials, dissolution takes place under mixed kinetic-mass transport control. However, as the overpotential is increased to induce higher dissolution rates and/or the ionic liquid is made more acidic, the dissolution reaction transitions to a potential-independent passivation-like process ascribed to the formation of a porous solid layer of AlCl3(s). At a fixed temperature and composition, the limiting passivation current density displays Levich behavior and also scales linearly with the concentration of AlCl4− in the ionic liquid. The heterogeneous kinetics of the Al dissolution reaction were measured in the active dissolution potential regime. The exchange current densities were independent of the composition of the ionic liquid, and the anodic transfer coefficients were close to zero and seemed to be independent of the Al grain size.
Author Wang, Chen
Creuziger, Adam
Stafford, Gery
Hussey, Charles L.
AuthorAffiliation a Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, USA
b Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
AuthorAffiliation_xml – name: a Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, USA
– name: b Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
Author_xml – sequence: 1
  givenname: Chen
  surname: Wang
  fullname: Wang, Chen
  organization: The University of Mississippi Department of Chemistry and Biochemistry, , USA
– sequence: 2
  givenname: Adam
  surname: Creuziger
  fullname: Creuziger, Adam
  organization: National Institute of Standards and Technology Material Measurement Laboratory, , USA
– sequence: 3
  givenname: Gery
  surname: Stafford
  fullname: Stafford, Gery
  organization: National Institute of Standards and Technology Material Measurement Laboratory, , USA
– sequence: 4
  givenname: Charles L.
  surname: Hussey
  fullname: Hussey, Charles L.
  organization: The University of Mississippi Department of Chemistry and Biochemistry, , USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32831360$$D View this record in MEDLINE/PubMed
BookMark eNptkU1vGyEQhlGUKnbc3Hqu9thDSRhgP3ypZLlpY8lSL-kZwYLjsViwl91I6a8vUT6cSDnBDI-eGfGek9MQgyPkC7BLADm_4pfAKqhA7lw6IVOYy5LWAHBKpoyBoLIqYULOU9rlEhpZn5GJ4I0AUbEpwUWIFtviJ6YU_ThgDEXcFAs_dhjGrsBQDFt3rJdbH3u0jgK9HrYPngrauccLdmj1v-jxDVSsYsjuNR5GtJ_Jp432yV08nzPy99f17fKGrv_8Xi0Xa9pKqAcqatBGO7DWOF7peSM1N9xyIeumzPubNreZNEZwaawoG1OysqyBSSuYZY2YkR9P3v1oOmdbF4Zee7XvsdP9g4oa1fuXgFt1F-9VLUU1lywLvj0L-ngYXRpUh6l13uvg4pgUz1xTA2c8o9-f0LaPKfVu8zoGmHpMR3F1TCfjX9-u9gq_xHEcjXGvdnHsQ_6pj13_AacdmnM
CitedBy_id crossref_primary_10_1149_1945_7111_abebfa
crossref_primary_10_1016_j_electacta_2024_144265
crossref_primary_10_1016_j_cej_2023_144995
crossref_primary_10_1039_D3CP03403H
crossref_primary_10_1021_acs_jpcc_3c02302
crossref_primary_10_1016_j_elecom_2020_106720
crossref_primary_10_1021_acs_chemrev_0c01257
crossref_primary_10_1149_2_0021708jes
crossref_primary_10_1016_j_jmr_2023_107374
crossref_primary_10_1149_2162_8777_abdc00
crossref_primary_10_1039_C8GC03389G
crossref_primary_10_1016_j_jiec_2017_08_031
crossref_primary_10_1016_j_surfcoat_2017_10_007
crossref_primary_10_3390_coatings11111414
crossref_primary_10_3390_en13082014
crossref_primary_10_1149_1945_7111_ac6bc7
crossref_primary_10_1021_acs_jced_7b00702
crossref_primary_10_1088_1361_6528_aacd7f
crossref_primary_10_1016_j_electacta_2021_138715
crossref_primary_10_1016_j_ensm_2022_06_041
crossref_primary_10_1016_j_jelechem_2021_115715
crossref_primary_10_1149_1945_7111_ac876b
crossref_primary_10_1149_2_1481712jes
Cites_doi 10.1016/S0022-0728(68)80217-7
10.1149/2.0591503jes
10.1149/1.2401907
10.1016/S1288-3255(99)80010-0
10.1149/1.2408069
10.1149/1.2404433
10.1021/ic00133a078
10.1149/1.2086151
10.1039/B917351J
10.1149/1.2407882
10.1016/0013-4686(96)00080-1
10.1149/1.2108893
10.1149/1.2096931
10.1515/pac-2014-5025
10.1021/j150656a038
10.1149/1.2401993
10.1149/06404.0257ecst
10.1146/annurev-matsci-071312-121640
ContentType Journal Article
Copyright The Author(s) 2016. Published by ECS.
Copyright_xml – notice: The Author(s) 2016. Published by ECS.
DBID O3W
TSCCA
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1149/2.1061614jes
DatabaseName IOP_英国物理学会OA刊
IOPscience (Open Access)
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: O3W
  name: IOP Publishing
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
DocumentTitleAlternate Anodic Dissolution of Aluminum in the Aluminum Chloride-1-Ethyl-3-methylimidazolium Chloride Ionic Liquid
EISSN 1945-7111
EndPage H1194
ExternalDocumentID 10_1149_2_1061614jes
32831360
1061614JES
Genre Journal Article
GrantInformation_xml – fundername: Strategic Environmental Research and Development Program through contract to Oak Ridge National Laboratory
  grantid: DE-AC05-00OR22725
  funderid: http://dx.doi.org/10.13039/100006228
– fundername: Intramural NIST DOC
  grantid: 9999-NIST
GroupedDBID -~X
.-4
.DC
0R~
29L
41~
5GY
6TJ
9M8
AATNI
ABDNZ
ABEFU
ABJNI
ABTAH
ACBEA
ACHIP
ACYGS
ADNWM
AENEX
AI.
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
CJUJL
CS3
DU5
EBS
EJD
F20
F5P
H13
H~9
IOP
JGOPE
KOT
MV1
MVM
N5L
NFQFE
NHB
O3W
REC
RHI
RNS
ROL
RPA
TAE
TN5
TSCCA
UPT
VH1
VOH
VQP
WH7
XJT
XOL
YQT
YXB
ZY4
~02
IZVLO
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c417t-371abae1ddbe26a984a2b2d234785118bce2604bb324bd358b50557104d30d083
IEDL.DBID O3W
ISSN 0013-4651
IngestDate Tue Sep 17 21:19:56 EDT 2024
Sat Oct 26 05:57:09 EDT 2024
Fri Aug 23 02:26:31 EDT 2024
Sat Nov 02 12:27:40 EDT 2024
Wed Aug 21 03:33:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org.
This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.1061614jes]
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-371abae1ddbe26a984a2b2d234785118bce2604bb324bd358b50557104d30d083
Notes 1061614JES
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Electrochemical Society Student Member.
Electrochemical Society Fellow.
OpenAccessLink https://iopscience.iop.org/article/10.1149/2.1061614jes
PMID 32831360
PQID 2436871202
PQPubID 23479
PageCount 9
ParticipantIDs iop_journals_10_1149_2_1061614jes
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7436940
crossref_primary_10_1149_2_1061614jes
pubmed_primary_32831360
proquest_miscellaneous_2436871202
PublicationCentury 2000
PublicationDate 20160100
2016-00-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 20160100
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the Electrochemical Society
PublicationTitleAlternate J. Electrochem. Soc
PublicationYear 2016
Publisher The Electrochemical Society
Publisher_xml – name: The Electrochemical Society
References Delimarskii (2018082014534240000_163.14.H1186.15) 1969; 5
Storozhenko (2018082014534240000_163.14.H1186.16) 1972; 8
2018082014534240000_163.14.H1186.11
2018082014534240000_163.14.H1186.22
2018082014534240000_163.14.H1186.12
2018082014534240000_163.14.H1186.23
2018082014534240000_163.14.H1186.20
2018082014534240000_163.14.H1186.10
2018082014534240000_163.14.H1186.21
2018082014534240000_163.14.H1186.9
2018082014534240000_163.14.H1186.8
2018082014534240000_163.14.H1186.7
2018082014534240000_163.14.H1186.13
2018082014534240000_163.14.H1186.6
2018082014534240000_163.14.H1186.14
2018082014534240000_163.14.H1186.19
2018082014534240000_163.14.H1186.17
2018082014534240000_163.14.H1186.18
2018082014534240000_163.14.H1186.1
2018082014534240000_163.14.H1186.5
2018082014534240000_163.14.H1186.4
2018082014534240000_163.14.H1186.3
2018082014534240000_163.14.H1186.2
References_xml – ident: 2018082014534240000_163.14.H1186.2
  doi: 10.1016/S0022-0728(68)80217-7
– ident: 2018082014534240000_163.14.H1186.14
  doi: 10.1149/2.0591503jes
– ident: 2018082014534240000_163.14.H1186.22
– ident: 2018082014534240000_163.14.H1186.12
  doi: 10.1149/1.2401907
– ident: 2018082014534240000_163.14.H1186.3
  doi: 10.1016/S1288-3255(99)80010-0
– ident: 2018082014534240000_163.14.H1186.8
  doi: 10.1149/1.2408069
– ident: 2018082014534240000_163.14.H1186.10
  doi: 10.1149/1.2404433
– ident: 2018082014534240000_163.14.H1186.1
  doi: 10.1021/ic00133a078
– ident: 2018082014534240000_163.14.H1186.19
  doi: 10.1149/1.2086151
– ident: 2018082014534240000_163.14.H1186.7
  doi: 10.1039/B917351J
– ident: 2018082014534240000_163.14.H1186.9
  doi: 10.1149/1.2407882
– ident: 2018082014534240000_163.14.H1186.4
  doi: 10.1016/0013-4686(96)00080-1
– ident: 2018082014534240000_163.14.H1186.20
– ident: 2018082014534240000_163.14.H1186.6
– ident: 2018082014534240000_163.14.H1186.23
  doi: 10.1149/1.2108893
– volume: 5
  start-page: 108
  year: 1969
  ident: 2018082014534240000_163.14.H1186.15
  publication-title: Elecktrokhimiya
  contributor:
    fullname: Delimarskii
– ident: 2018082014534240000_163.14.H1186.13
  doi: 10.1149/1.2096931
– ident: 2018082014534240000_163.14.H1186.21
  doi: 10.1515/pac-2014-5025
– ident: 2018082014534240000_163.14.H1186.18
  doi: 10.1021/j150656a038
– ident: 2018082014534240000_163.14.H1186.11
  doi: 10.1149/1.2401993
– ident: 2018082014534240000_163.14.H1186.17
  doi: 10.1149/06404.0257ecst
– volume: 8
  start-page: 973
  year: 1972
  ident: 2018082014534240000_163.14.H1186.16
  publication-title: Elecktrokhimiya
  contributor:
    fullname: Storozhenko
– ident: 2018082014534240000_163.14.H1186.5
  doi: 10.1146/annurev-matsci-071312-121640
SSID ssj0011847
Score 2.3565838
Snippet The anodic dissolution of aluminum metal was investigated in the Lewis acidic chloroaluminate ionic liquid, aluminum chloride-1-ethyl-3-methylimidazolium...
SourceID pubmedcentral
proquest
crossref
pubmed
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage H1186
Title Anodic Dissolution of Aluminum in the Aluminum Chloride-1-Ethyl-3-methylimidazolium Chloride Ionic Liquid
URI https://iopscience.iop.org/article/10.1149/2.1061614jes
https://www.ncbi.nlm.nih.gov/pubmed/32831360
https://search.proquest.com/docview/2436871202
https://pubmed.ncbi.nlm.nih.gov/PMC7436940
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RMgAD4k15VEaCMRA7TpOMVWkFiNcAgi2yY1c1apNC2wF-PecmfSGQ2JLYka07--47-_wZ4NTyr3A_0o5A0-fwxFOO4EnicEG1qyiVVNsDznf3tatnfvPqvxZLF-OzMFm_MP3n-JgTBeciLIhtowt2bsMYdCtvelCCZfS4riXNf_BeptsHGLYEkyz3H38s-J8StvEbtPyZITnnclobsF5gRVLPe7YJSzrdgpXG5Iq2LVibYxPcBoOhvDIJuTTTAUWyNqmj-THpqEdMShDtzd4bHZt9pzSGd01UV9fxHHuf9GfX9IwSX1nXzFUi15ZDl9ya95FRO_Dcaj41rpziJgUn4TQYohWhQgpNlZKa1UQUcsEkU8zjgUVcoUzws8ulRHglleeH0rfcXBiqKc9ViNJ2oZxmqd4HwhEAaaoT2W6HPOFtKXz0s67Ame2HlNMKnE3kG_dzwow4P_wcxSye6aECJyj8uJgxg7_qTFQTo2TtVoZIdTYaxMwS5weUuawCe7mqpq15iJioV3MrECwocVrBMmovlqSmM2bWRjhVi7h78I--HcIqYqdiNeYIysOPkT5GfDKUVShdPzxWxyPyG0Du5JM
link.rule.ids 230,315,783,787,888,4033,27937,27938,27939,38879,38904,53856,53882
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xSCwHxE5ZjQTH0NhxmkScUKFihwMIbpEdO8KoJIW2B_h6xiQNLQKJWxZHtmbsmTfx-A3AnuVf4X6kHYGmz-GJpxzBk8ThgmpXUSqptgecr64bp_f8_NF_HIPD6ixM3ilN_wFeFkTBhQhLYtuozg5sGINu5Vl36x2VjsMkrtrQli-48R6qLQQMXYJBpvuPr0Z80Dj28xu8_JklOeR2WvMwV-JFclSMbgHGdLYI081BmbZFmB1iFFwCg-G8Mgk5NtWkInlKjtAEmaz_QkxGEPF93zefbAae0hjinaDK2o7n2JrS723zYpT4yNtmqBE5szy65NK89o1ahvvWyV3z1CmrKTgJp0EPLQkVUmiqlNSsIaKQCyaZYh4PLOoKZYKPXS4lQiypPD-UvuXnwnBNea5CpLYCE1me6TUgHEGQpjqRaRryhKdS-OhrXYGr2w8ppzXYH8g37hSkGXFxADqKWfythxrsovDjctV0_2ozUE2MkrXbGSLTeb8bM0ueH1DmshqsFqqqevMQNVGv4dYgGFFi1cCyao--yczTF7s2QqpGxN31f4xtB6Zuj1vx5dn1xQbMIJQqf85swkTvra-3EK705PbXtPwEEavnhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anodic+Dissolution+of+Aluminum+in+the+Aluminum+Chloride-1-Ethyl-3-methylimidazolium+Chloride+Ionic+Liquid&rft.jtitle=Journal+of+the+Electrochemical+Society&rft.au=Wang%2C+Chen&rft.au=Creuziger%2C+Adam&rft.au=Stafford%2C+Gery&rft.au=Hussey%2C+Charles+L&rft.date=2016&rft.issn=0013-4651&rft.volume=163&rft.issue=14&rft_id=info:doi/10.1149%2F2.1061614jes&rft_id=info%3Apmid%2F32831360&rft.externalDocID=32831360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4651&client=summon