The Born model can accurately describe electrostatic ion solvation

Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte solutions in the huge number of important applications where these solutions play a central role such as electrochemical energy storage. The Born...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 22; no. 43; pp. 25126 - 25135
Main Authors Duignan, Timothy T, Zhao, X. S
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte solutions in the huge number of important applications where these solutions play a central role such as electrochemical energy storage. The Born model, developed to describe ion solvation free energies, is widely considered to be critically flawed as it predicts a linear response of water to ionic charge, which fails to match water's supposed intrinsic preference to solvate anions over cations. Here, we demonstrate that the asymmetric response observed in simulation is the result of an arbitrary choice of the oxygen atom to be the centre of a water molecule. We show that an alternative and reasonable choice, which places the centre 0.5 Å towards the hydrogen atoms, results in a linear and charge symmetric response of water to ionic charge for a classical water model consistent with the Born model. Therefore, this asymmetry should be regarded as a property of the specific short-range repulsive interaction not an intrinsic electrostatic property of water and so the fact that the Born model does not reproduce it is not a limitation of this approach. We also show that this new water centre results in a more reasonable surface potential contribution to the solvation free energies. The solvation free energies of ions in water are consistent with the Born linear response model if the centre on which the ion-water repulsion force acts is moved from the oxygen atom towards the hydrogens.
AbstractList Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte solutions in the huge number of important applications where these solutions play a central role such as electrochemical energy storage. The Born model, developed to describe ion solvation free energies, is widely considered to be critically flawed as it predicts a linear response of water to ionic charge, which fails to match water's supposed intrinsic preference to solvate anions over cations. Here, we demonstrate that the asymmetric response observed in simulation is the result of an arbitrary choice of the oxygen atom to be the centre of a water molecule. We show that an alternative and reasonable choice, which places the centre 0.5 Å towards the hydrogen atoms, results in a linear and charge symmetric response of water to ionic charge for a classical water model consistent with the Born model. Therefore, this asymmetry should be regarded as a property of the specific short-range repulsive interaction not an intrinsic electrostatic property of water and so the fact that the Born model does not reproduce it is not a limitation of this approach. We also show that this new water centre results in a more reasonable surface potential contribution to the solvation free energies.
Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte solutions in the huge number of important applications where these solutions play a central role such as electrochemical energy storage. The Born model, developed to describe ion solvation free energies, is widely considered to be critically flawed as it predicts a linear response of water to ionic charge, which fails to match water's supposed intrinsic preference to solvate anions over cations. Here, we demonstrate that the asymmetric response observed in simulation is the result of an arbitrary choice of the oxygen atom to be the centre of a water molecule. We show that an alternative and reasonable choice, which places the centre 0.5 Å towards the hydrogen atoms, results in a linear and charge symmetric response of water to ionic charge for a classical water model consistent with the Born model. Therefore, this asymmetry should be regarded as a property of the specific short-range repulsive interaction not an intrinsic electrostatic property of water and so the fact that the Born model does not reproduce it is not a limitation of this approach. We also show that this new water centre results in a more reasonable surface potential contribution to the solvation free energies. The solvation free energies of ions in water are consistent with the Born linear response model if the centre on which the ion-water repulsion force acts is moved from the oxygen atom towards the hydrogens.
Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte solutions in the huge number of important applications where these solutions play a central role such as electrochemical energy storage. The Born model, developed to describe ion solvation free energies, is widely considered to be critically flawed as it predicts a linear response of water to ionic charge, which fails to match water's supposed intrinsic preference to solvate anions over cations. Here, we demonstrate that the asymmetric response observed in simulation is the result of an arbitrary choice of the oxygen atom to be the centre of a water molecule. We show that an alternative and reasonable choice, which places the centre 0.5 Å towards the hydrogen atoms, results in a linear and charge symmetric response of water to ionic charge for a classical water model consistent with the Born model. Therefore, this asymmetry should be regarded as a property of the specific short-range repulsive interaction not an intrinsic electrostatic property of water and so the fact that the Born model does not reproduce it is not a limitation of this approach. We also show that this new water centre results in a more reasonable surface potential contribution to the solvation free energies.Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte solutions in the huge number of important applications where these solutions play a central role such as electrochemical energy storage. The Born model, developed to describe ion solvation free energies, is widely considered to be critically flawed as it predicts a linear response of water to ionic charge, which fails to match water's supposed intrinsic preference to solvate anions over cations. Here, we demonstrate that the asymmetric response observed in simulation is the result of an arbitrary choice of the oxygen atom to be the centre of a water molecule. We show that an alternative and reasonable choice, which places the centre 0.5 Å towards the hydrogen atoms, results in a linear and charge symmetric response of water to ionic charge for a classical water model consistent with the Born model. Therefore, this asymmetry should be regarded as a property of the specific short-range repulsive interaction not an intrinsic electrostatic property of water and so the fact that the Born model does not reproduce it is not a limitation of this approach. We also show that this new water centre results in a more reasonable surface potential contribution to the solvation free energies.
Author Duignan, Timothy T
Zhao, X. S
AuthorAffiliation School of Chemical Engineering
The University of Queensland
AuthorAffiliation_xml – name: School of Chemical Engineering
– name: The University of Queensland
Author_xml – sequence: 1
  givenname: Timothy T
  surname: Duignan
  fullname: Duignan, Timothy T
– sequence: 2
  givenname: X. S
  surname: Zhao
  fullname: Zhao, X. S
BookMark eNptkV1LwzAUhoNMcJveeC8EvBGhmjRpml66-gkDBXdf0vQUO7JkJqmwf2-3icLw6pwDz_uerwkaWWcBoXNKbihhxW1D9JpwyqU-QmPKBUsKIvnoN8_FCZqEsCSE0IyyMZotPgDPnLd45RowWCuLlda9VxHMBjcQtO9qwGBAR-9CVLHTuHMWB2e-hsLZU3TcKhPg7CdO0fvjw6J8TuavTy_l3TzRnOYxYaKRDeSZ5Bmlqha1KFimqOCtbNtG1YVgKgXJWy5y0WpdawUAkhWNhFSxKbrau669--whxGrVBQ3GKAuuD1XKs8Ga8zwd0MsDdOl6b4fZtlTBKSFD7ykie0oPawUPbaW7uFsoetWZipJqe9LqnpRvu5OWg-T6QLL23Ur5zf_wxR72Qf9yf_9h335bgnI
CitedBy_id crossref_primary_10_1016_j_molliq_2023_121874
crossref_primary_10_1021_jacs_3c04643
crossref_primary_10_1016_j_watres_2023_120325
crossref_primary_10_1016_j_jcp_2024_113094
crossref_primary_10_1016_j_molliq_2024_125555
crossref_primary_10_1039_D4CP03289F
crossref_primary_10_1016_j_eti_2023_103334
crossref_primary_10_1021_acs_jpcb_4c05727
crossref_primary_10_1021_acs_jpca_2c03934
crossref_primary_10_1021_acs_jpcb_2c03915
crossref_primary_10_1016_j_jct_2024_107305
crossref_primary_10_1021_acssuschemeng_4c07268
crossref_primary_10_1021_acsearthspacechem_1c00067
crossref_primary_10_1021_acs_jpcb_3c00218
crossref_primary_10_1021_acs_jpcb_3c05701
crossref_primary_10_1016_j_fuel_2024_132669
crossref_primary_10_1002_wcms_1519
crossref_primary_10_1021_acs_macromol_4c01691
crossref_primary_10_1021_acs_est_2c08584
crossref_primary_10_1002_adfm_202408685
crossref_primary_10_1002_pol_20210810
crossref_primary_10_1021_jacs_1c05765
crossref_primary_10_1016_j_jcp_2023_112206
crossref_primary_10_1080_00268976_2021_1933228
crossref_primary_10_1021_acs_accounts_1c00107
Cites_doi 10.1021/jz502319n
10.1021/ja00172a038
10.1039/C7CP03663A
10.1021/acs.jpclett.8b02473
10.1039/D0SC01947J
10.1021/acs.jpcb.7b10722
10.1039/C7SC02138K
10.1021/jp1116036
10.1021/jp305226j
10.1021/ct5004115
10.1039/C4CP02822H
10.1021/jp403596c
10.1063/1.3280816
10.1103/PhysRevLett.124.065502
10.1039/C9CP06161D
10.1063/1.3013865
10.1021/jz501780a
10.1039/tf9676303004
10.1007/BF01881023
10.1021/cr9904009
10.1021/jp502887e
10.1063/1.477873
10.1021/acs.jctc.9b00064
10.1063/1.3081142
10.1039/C6CP03926J
10.1016/j.fluid.2015.05.027
10.1016/j.cocis.2016.06.015
10.1021/jp403595x
10.1021/acs.jpcb.6b02156
10.1016/j.cplett.2014.05.056
10.1002/aenm.201703036
10.1063/1.1750387
10.1021/ar800019z
10.1021/j100180a010
10.1063/1.3693330
10.1021/acs.jpclett.7b00239
10.1021/jp106378p
10.1063/1.1644536
10.1063/1.4814070
10.1063/1.4994912
10.1021/acs.jpclett.9b02652
10.1021/acs.jpca.8b04106
10.1063/1.4752735
10.1063/1.4986284
10.1063/1.4975608
10.1006/jcph.1995.1039
10.1063/1.1587122
10.1063/1.5024209
10.1016/j.cplett.2013.01.008
10.1021/jz501067w
10.1021/jp402482q
10.1021/acs.jpcb.6b02238
10.1021/ct9005807
10.1038/ncomms3701
10.1063/1.2201698
10.1063/1.4905009
10.1063/1.4960175
10.1021/acs.jpclett.8b03829
10.1063/1.4881602
10.1021/jp962775t
10.1021/cr960149m
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d0cp04148c
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 25135
ExternalDocumentID 10_1039_D0CP04148C
d0cp04148c
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c417t-36d8de7584511ab6b6935a164f8ffdab963a2e84f4676fccbcaeee839d8e2a3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 08:47:40 EDT 2025
Mon Jun 30 17:03:48 EDT 2025
Thu Apr 24 22:51:25 EDT 2025
Tue Jul 01 00:53:49 EDT 2025
Sat Jan 08 03:54:41 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-36d8de7584511ab6b6935a164f8ffdab963a2e84f4676fccbcaeee839d8e2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1276-5858
0000-0003-3772-8057
PQID 2459410069
PQPubID 2047499
PageCount 1
ParticipantIDs proquest_journals_2459410069
proquest_miscellaneous_2455844472
rsc_primary_d0cp04148c
crossref_primary_10_1039_D0CP04148C
crossref_citationtrail_10_1039_D0CP04148C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-21
PublicationDateYYYYMMDD 2020-11-21
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Izadi (D0CP04148C-(cit47)/*[position()=1]) 2016; 145
Rogers (D0CP04148C-(cit29)/*[position()=1]) 2010; 132
Galib (D0CP04148C-(cit55)/*[position()=1]) 2017; 146
Mukhopadhyay (D0CP04148C-(cit12)/*[position()=1]) 2012; 116
Duignan (D0CP04148C-(cit23)/*[position()=1]) 2014; 118
Remsing (D0CP04148C-(cit16)/*[position()=1]) 2018; 122
Kathmann (D0CP04148C-(cit33)/*[position()=1]) 2011; 115
Duignan (D0CP04148C-(cit59)/*[position()=1]) 2020; 22
Pollard (D0CP04148C-(cit40)/*[position()=1]) 2014; 140
Åvall (D0CP04148C-(cit5)/*[position()=1]) 2018; 8
Rajamani (D0CP04148C-(cit9)/*[position()=1]) 2004; 120
Duignan (D0CP04148C-(cit25)/*[position()=1]) 2013; 117
Tomasi (D0CP04148C-(cit19)/*[position()=1]) 2005; 105
Asthagiri (D0CP04148C-(cit28)/*[position()=1]) 2003; 119
Bizzarro (D0CP04148C-(cit63)/*[position()=1]) 2019; 15
Remsing (D0CP04148C-(cit36)/*[position()=1]) 2015; 142
Cramer (D0CP04148C-(cit48)/*[position()=1]) 2008; 41
Paesani (D0CP04148C-(cit62)/*[position()=1]) 2019; 4
Galib (D0CP04148C-(cit44)/*[position()=1]) 2017; 146
Fulton (D0CP04148C-(cit54)/*[position()=1]) 2010; 114
Klamt (D0CP04148C-(cit49)/*[position()=1]) 2016; 407
Leontyev (D0CP04148C-(cit52)/*[position()=1]) 2010; 6
Gaiduk (D0CP04148C-(cit56)/*[position()=1]) 2017; 8
Hünenberger (D0CP04148C-(cit65)/*[position()=1]) 1999; 110
Ashbaugh (D0CP04148C-(cit10)/*[position()=1]) 2008; 129
Duignan (D0CP04148C-(cit22)/*[position()=1]) 2014; 16
Hünenberger (D0CP04148C-(cit31)/*[position()=1]) 2011
Robinson (D0CP04148C-(cit2)/*[position()=1]) 1959
Cox (D0CP04148C-(cit17)/*[position()=1]) 2020
Loche (D0CP04148C-(cit15)/*[position()=1]) 2018; 9
Fyta (D0CP04148C-(cit51)/*[position()=1]) 2012; 136
Cassone (D0CP04148C-(cit57)/*[position()=1]) 2016; 18
Shi (D0CP04148C-(cit39)/*[position()=1]) 2013; 139
Merlet (D0CP04148C-(cit6)/*[position()=1]) 2013; 4
Klamt (D0CP04148C-(cit21)/*[position()=1]) 2011; 1
Duignan (D0CP04148C-(cit24)/*[position()=1]) 2013; 117
Logan (D0CP04148C-(cit3)/*[position()=1]) 1967; 63
Kastenholz (D0CP04148C-(cit66)/*[position()=1]) 2006; 124
Cheng (D0CP04148C-(cit4)/*[position()=1]) 2015; 6
Reif (D0CP04148C-(cit13)/*[position()=1]) 2016; 120
Riera (D0CP04148C-(cit61)/*[position()=1]) 2018; 122
Pollard (D0CP04148C-(cit41)/*[position()=1]) 2018; 148
Yesibolati (D0CP04148C-(cit35)/*[position()=1]) 2020; 124
Plimpton (D0CP04148C-(cit64)/*[position()=1]) 1995; 117
Bardhan (D0CP04148C-(cit11)/*[position()=1]) 2012; 137
Remsing (D0CP04148C-(cit34)/*[position()=1]) 2014; 5
Horinek (D0CP04148C-(cit50)/*[position()=1]) 2009; 130
Zhuang (D0CP04148C-(cit60)/*[position()=1]) 2019; 10
Remsing (D0CP04148C-(cit30)/*[position()=1]) 2016; 120
Latimer (D0CP04148C-(cit8)/*[position()=1]) 1939; 7
Cramer (D0CP04148C-(cit18)/*[position()=1]) 1999; 99
Izadi (D0CP04148C-(cit46)/*[position()=1]) 2014; 5
Duignan (D0CP04148C-(cit14)/*[position()=1]) 2017; 147
Conboy (D0CP04148C-(cit42)/*[position()=1]) 1997; 101
Pratt (D0CP04148C-(cit37)/*[position()=1]) 1992; 96
Born (D0CP04148C-(cit7)/*[position()=1]) 1919; 1
Medders (D0CP04148C-(cit43)/*[position()=1]) 2014; 10
Wright (D0CP04148C-(cit1)/*[position()=1]) 2007
Duignan (D0CP04148C-(cit32)/*[position()=1]) 2017; 8
Kirby (D0CP04148C-(cit53)/*[position()=1]) 2019; 10
Pollard (D0CP04148C-(cit26)/*[position()=1]) 2016; 23
Cassone (D0CP04148C-(cit58)/*[position()=1]) 2017; 19
Beck (D0CP04148C-(cit38)/*[position()=1]) 2013; 561–562
Bonthuis (D0CP04148C-(cit45)/*[position()=1]) 2013; 117
Still (D0CP04148C-(cit20)/*[position()=1]) 1990; 112
Duignan (D0CP04148C-(cit27)/*[position()=1]) 2014; 608
References_xml – issn: 2007
  end-page: 574
  publication-title: An Introduction to Aqueous Electrolyte Solutions
  doi: Wright
– issn: 1959
  publication-title: Electrolyte solutions
  doi: Robinson Stokes
– issn: 2011
  publication-title: Single-ion solvation: experimental and theoretical approaches to elusive thermodynamic quantities
  doi: Hünenberger Reif
– volume: 6
  start-page: 283
  year: 2015
  ident: D0CP04148C-(cit4)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502319n
– start-page: 574
  volume-title: An Introduction to Aqueous Electrolyte Solutions
  year: 2007
  ident: D0CP04148C-(cit1)/*[position()=1]
– volume: 112
  start-page: 6127
  year: 1990
  ident: D0CP04148C-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00172a038
– volume: 19
  start-page: 20420
  year: 2017
  ident: D0CP04148C-(cit58)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP03663A
– volume: 9
  start-page: 6463
  year: 2018
  ident: D0CP04148C-(cit15)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02473
– year: 2020
  ident: D0CP04148C-(cit17)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC01947J
– volume: 122
  start-page: 3519
  year: 2018
  ident: D0CP04148C-(cit16)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b10722
– volume: 8
  start-page: 6131
  year: 2017
  ident: D0CP04148C-(cit32)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02138K
– volume: 115
  start-page: 4369
  year: 2011
  ident: D0CP04148C-(cit33)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp1116036
– volume: 116
  start-page: 9776
  year: 2012
  ident: D0CP04148C-(cit12)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp305226j
– volume: 10
  start-page: 2906
  year: 2014
  ident: D0CP04148C-(cit43)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5004115
– volume: 16
  start-page: 22014
  year: 2014
  ident: D0CP04148C-(cit22)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02822H
– volume: 117
  start-page: 9421
  year: 2013
  ident: D0CP04148C-(cit24)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp403596c
– volume: 132
  start-page: 014505
  year: 2010
  ident: D0CP04148C-(cit29)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3280816
– volume: 124
  start-page: 18
  year: 2020
  ident: D0CP04148C-(cit35)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.065502
– volume: 22
  start-page: 10641
  year: 2020
  ident: D0CP04148C-(cit59)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP06161D
– volume: 129
  start-page: 204501
  year: 2008
  ident: D0CP04148C-(cit10)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3013865
– volume: 5
  start-page: 3863
  year: 2014
  ident: D0CP04148C-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501780a
– volume: 63
  start-page: 3004
  year: 1967
  ident: D0CP04148C-(cit3)/*[position()=1]
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9676303004
– volume: 1
  start-page: 45
  year: 1919
  ident: D0CP04148C-(cit7)/*[position()=1]
  publication-title: Zeitschrift füer Phys
  doi: 10.1007/BF01881023
– volume: 105
  start-page: 2999
  year: 2005
  ident: D0CP04148C-(cit19)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr9904009
– volume: 118
  start-page: 8700
  year: 2014
  ident: D0CP04148C-(cit23)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp502887e
– volume: 110
  start-page: 1856
  year: 1999
  ident: D0CP04148C-(cit65)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1063/1.477873
– volume: 15
  start-page: 2983
  year: 2019
  ident: D0CP04148C-(cit63)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00064
– volume: 130
  start-page: 124507
  year: 2009
  ident: D0CP04148C-(cit50)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3081142
– volume: 18
  start-page: 23164
  year: 2016
  ident: D0CP04148C-(cit57)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP03926J
– volume: 407
  start-page: 152
  year: 2016
  ident: D0CP04148C-(cit49)/*[position()=1]
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2015.05.027
– volume: 23
  start-page: 110
  year: 2016
  ident: D0CP04148C-(cit26)/*[position()=1]
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2016.06.015
– volume: 117
  start-page: 9412
  year: 2013
  ident: D0CP04148C-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp403595x
– volume: 120
  start-page: 8485
  year: 2016
  ident: D0CP04148C-(cit13)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b02156
– volume: 608
  start-page: 55
  year: 2014
  ident: D0CP04148C-(cit27)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2014.05.056
– volume: 8
  start-page: 1703036
  year: 2018
  ident: D0CP04148C-(cit5)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703036
– volume: 7
  start-page: 108
  year: 1939
  ident: D0CP04148C-(cit8)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750387
– volume: 41
  start-page: 760
  year: 2008
  ident: D0CP04148C-(cit48)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800019z
– volume: 96
  start-page: 25
  year: 1992
  ident: D0CP04148C-(cit37)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100180a010
– volume: 136
  start-page: 124103
  year: 2012
  ident: D0CP04148C-(cit51)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3693330
– volume: 8
  start-page: 1496
  issue: 7
  year: 2017
  ident: D0CP04148C-(cit56)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00239
– volume-title: Electrolyte solutions
  year: 1959
  ident: D0CP04148C-(cit2)/*[position()=1]
– volume: 114
  start-page: 12926
  year: 2010
  ident: D0CP04148C-(cit54)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp106378p
– volume: 120
  start-page: 4457
  year: 2004
  ident: D0CP04148C-(cit9)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1644536
– volume-title: Single-ion solvation: experimental and theoretical approaches to elusive thermodynamic quantities
  year: 2011
  ident: D0CP04148C-(cit31)/*[position()=1]
– volume: 139
  start-page: 044504
  year: 2013
  ident: D0CP04148C-(cit39)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4814070
– volume: 4
  start-page: 1631212
  year: 2019
  ident: D0CP04148C-(cit62)/*[position()=1]
  publication-title: Adv. Phys. X
– volume: 147
  start-page: 161716
  year: 2017
  ident: D0CP04148C-(cit14)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4994912
– volume: 10
  start-page: 7531
  year: 2019
  ident: D0CP04148C-(cit53)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b02652
– volume: 122
  start-page: 5811
  year: 2018
  ident: D0CP04148C-(cit61)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.8b04106
– volume: 137
  start-page: 124101
  year: 2012
  ident: D0CP04148C-(cit11)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4752735
– volume: 146
  start-page: 244501
  year: 2017
  ident: D0CP04148C-(cit44)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4986284
– volume: 146
  start-page: 084504
  year: 2017
  ident: D0CP04148C-(cit55)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4975608
– volume: 117
  start-page: 1
  year: 1995
  ident: D0CP04148C-(cit64)/*[position()=1]
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 119
  start-page: 2702
  year: 2003
  ident: D0CP04148C-(cit28)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1587122
– volume: 148
  start-page: 222830
  year: 2018
  ident: D0CP04148C-(cit41)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5024209
– volume: 561–562
  start-page: 1
  year: 2013
  ident: D0CP04148C-(cit38)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2013.01.008
– volume: 1
  start-page: 699
  year: 2011
  ident: D0CP04148C-(cit21)/*[position()=1]
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 5
  start-page: 2767
  year: 2014
  ident: D0CP04148C-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz501067w
– volume: 117
  start-page: 11397
  year: 2013
  ident: D0CP04148C-(cit45)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp402482q
– volume: 120
  start-page: 6238
  year: 2016
  ident: D0CP04148C-(cit30)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b02238
– volume: 6
  start-page: 1498
  year: 2010
  ident: D0CP04148C-(cit52)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct9005807
– volume: 4
  start-page: 2701
  year: 2013
  ident: D0CP04148C-(cit6)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3701
– volume: 124
  start-page: 224501
  year: 2006
  ident: D0CP04148C-(cit66)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2201698
– volume: 142
  start-page: 024502
  year: 2015
  ident: D0CP04148C-(cit36)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4905009
– volume: 145
  start-page: 074501
  year: 2016
  ident: D0CP04148C-(cit47)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4960175
– volume: 10
  start-page: 406
  year: 2019
  ident: D0CP04148C-(cit60)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03829
– volume: 140
  start-page: 224507
  year: 2014
  ident: D0CP04148C-(cit40)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4881602
– volume: 101
  start-page: 983
  year: 1997
  ident: D0CP04148C-(cit42)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp962775t
– volume: 99
  start-page: 2161
  year: 1999
  ident: D0CP04148C-(cit18)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr960149m
SSID ssj0001513
Score 2.4681985
Snippet Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25126
SubjectTerms Asymmetry
Energy storage
Fluid dynamics
Hydrogen atoms
Physical simulation
Solvation
Water chemistry
Title The Born model can accurately describe electrostatic ion solvation
URI https://www.proquest.com/docview/2459410069
https://www.proquest.com/docview/2455844472
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMAttj3Ay8TXRNlARvCCKo_UdtL4ccs6DVRGJTKp4iXyV8akKZ26Fgn-es6xnWxSHwYvUeS6aXo_53zn-O4Q-kAzlRkjBDGGGcJTbYgajzVhNlc0V0xT6xzFr-fZ2QX_Mk_nfX3CNrpkpQ71n41xJf9DFdqAq4uS_Qey3UWhAc6BLxyBMBwfzPh4sWx8PRu3gWsotV677A_Xv4fGOpWg7DCUunGxQ1d66HjDbf3qkQTbdBaR6VgEzp-5Jr8ActsuIMyKogsKO1lfXcYKx556v-v6x0_ZrsPOw_JqWFsAR3I0Ij5gOahDnjEiEl_E7dBuaAs6lNI7Y4WzuxoRLIpso65OmEt1ahJ9k3BwynQ_I8W38OffqtOL6bQqJ_NyC-1Q8ARAle0cTcrP0266BZOF-RAyf1sxBy0Tn_pr37c6eldiaxnrvLT2RPkU7QZHAB95qs_QI9s8R4-LKPoX6BjoYkcXt3Qx0MU9XRzp4nt0MTDFHd2X6PvppCzOSKh4QTQfjVeEZSY3Flw4lzVOKniOBEsleLR1XtdGKtCWktqc1zC9ZbXWSktrLdi4JrdUsj203Swa-wphqhQF256mzOQggFoKIRVPqEisBadVDdDHKI9Kh2TwribJddVuSmCiOkmKWSu7YoDed31vfAqUjb0Oolir8IjcVpSngo9cNuwBetd9DHJ0b6VkYxfrtg_8X87HdID2AEf3Gz291w_48j560o_gA7S9Wq7tG7AXV-ptGDF_AbUrbF4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Born+model+can+accurately+describe+electrostatic+ion+solvation&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Duignan%2C+Timothy+T&rft.au=Zhao%2C+X+S&rft.date=2020-11-21&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=22&rft.issue=43&rft.spage=25126&rft_id=info:doi/10.1039%2Fd0cp04148c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon