The Born model can accurately describe electrostatic ion solvation
Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte solutions in the huge number of important applications where these solutions play a central role such as electrochemical energy storage. The Born...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 22; no. 43; pp. 25126 - 25135 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte solutions in the huge number of important applications where these solutions play a central role such as electrochemical energy storage. The Born model, developed to describe ion solvation free energies, is widely considered to be critically flawed as it predicts a linear response of water to ionic charge, which fails to match water's supposed intrinsic preference to solvate anions over cations. Here, we demonstrate that the asymmetric response observed in simulation is the result of an arbitrary choice of the oxygen atom to be the centre of a water molecule. We show that an alternative and reasonable choice, which places the centre 0.5 Å towards the hydrogen atoms, results in a linear and charge symmetric response of water to ionic charge for a classical water model consistent with the Born model. Therefore, this asymmetry should be regarded as a property of the specific short-range repulsive interaction not an intrinsic electrostatic property of water and so the fact that the Born model does not reproduce it is not a limitation of this approach. We also show that this new water centre results in a more reasonable surface potential contribution to the solvation free energies.
The solvation free energies of ions in water are consistent with the Born linear response model if the centre on which the ion-water repulsion force acts is moved from the oxygen atom towards the hydrogens. |
---|---|
AbstractList | Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte solutions in the huge number of important applications where these solutions play a central role such as electrochemical energy storage. The Born model, developed to describe ion solvation free energies, is widely considered to be critically flawed as it predicts a linear response of water to ionic charge, which fails to match water's supposed intrinsic preference to solvate anions over cations. Here, we demonstrate that the asymmetric response observed in simulation is the result of an arbitrary choice of the oxygen atom to be the centre of a water molecule. We show that an alternative and reasonable choice, which places the centre 0.5 Å towards the hydrogen atoms, results in a linear and charge symmetric response of water to ionic charge for a classical water model consistent with the Born model. Therefore, this asymmetry should be regarded as a property of the specific short-range repulsive interaction not an intrinsic electrostatic property of water and so the fact that the Born model does not reproduce it is not a limitation of this approach. We also show that this new water centre results in a more reasonable surface potential contribution to the solvation free energies. Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte solutions in the huge number of important applications where these solutions play a central role such as electrochemical energy storage. The Born model, developed to describe ion solvation free energies, is widely considered to be critically flawed as it predicts a linear response of water to ionic charge, which fails to match water's supposed intrinsic preference to solvate anions over cations. Here, we demonstrate that the asymmetric response observed in simulation is the result of an arbitrary choice of the oxygen atom to be the centre of a water molecule. We show that an alternative and reasonable choice, which places the centre 0.5 Å towards the hydrogen atoms, results in a linear and charge symmetric response of water to ionic charge for a classical water model consistent with the Born model. Therefore, this asymmetry should be regarded as a property of the specific short-range repulsive interaction not an intrinsic electrostatic property of water and so the fact that the Born model does not reproduce it is not a limitation of this approach. We also show that this new water centre results in a more reasonable surface potential contribution to the solvation free energies. The solvation free energies of ions in water are consistent with the Born linear response model if the centre on which the ion-water repulsion force acts is moved from the oxygen atom towards the hydrogens. Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte solutions in the huge number of important applications where these solutions play a central role such as electrochemical energy storage. The Born model, developed to describe ion solvation free energies, is widely considered to be critically flawed as it predicts a linear response of water to ionic charge, which fails to match water's supposed intrinsic preference to solvate anions over cations. Here, we demonstrate that the asymmetric response observed in simulation is the result of an arbitrary choice of the oxygen atom to be the centre of a water molecule. We show that an alternative and reasonable choice, which places the centre 0.5 Å towards the hydrogen atoms, results in a linear and charge symmetric response of water to ionic charge for a classical water model consistent with the Born model. Therefore, this asymmetry should be regarded as a property of the specific short-range repulsive interaction not an intrinsic electrostatic property of water and so the fact that the Born model does not reproduce it is not a limitation of this approach. We also show that this new water centre results in a more reasonable surface potential contribution to the solvation free energies.Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte solutions in the huge number of important applications where these solutions play a central role such as electrochemical energy storage. The Born model, developed to describe ion solvation free energies, is widely considered to be critically flawed as it predicts a linear response of water to ionic charge, which fails to match water's supposed intrinsic preference to solvate anions over cations. Here, we demonstrate that the asymmetric response observed in simulation is the result of an arbitrary choice of the oxygen atom to be the centre of a water molecule. We show that an alternative and reasonable choice, which places the centre 0.5 Å towards the hydrogen atoms, results in a linear and charge symmetric response of water to ionic charge for a classical water model consistent with the Born model. Therefore, this asymmetry should be regarded as a property of the specific short-range repulsive interaction not an intrinsic electrostatic property of water and so the fact that the Born model does not reproduce it is not a limitation of this approach. We also show that this new water centre results in a more reasonable surface potential contribution to the solvation free energies. |
Author | Duignan, Timothy T Zhao, X. S |
AuthorAffiliation | School of Chemical Engineering The University of Queensland |
AuthorAffiliation_xml | – name: School of Chemical Engineering – name: The University of Queensland |
Author_xml | – sequence: 1 givenname: Timothy T surname: Duignan fullname: Duignan, Timothy T – sequence: 2 givenname: X. S surname: Zhao fullname: Zhao, X. S |
BookMark | eNptkV1LwzAUhoNMcJveeC8EvBGhmjRpml66-gkDBXdf0vQUO7JkJqmwf2-3icLw6pwDz_uerwkaWWcBoXNKbihhxW1D9JpwyqU-QmPKBUsKIvnoN8_FCZqEsCSE0IyyMZotPgDPnLd45RowWCuLlda9VxHMBjcQtO9qwGBAR-9CVLHTuHMWB2e-hsLZU3TcKhPg7CdO0fvjw6J8TuavTy_l3TzRnOYxYaKRDeSZ5Bmlqha1KFimqOCtbNtG1YVgKgXJWy5y0WpdawUAkhWNhFSxKbrau669--whxGrVBQ3GKAuuD1XKs8Ga8zwd0MsDdOl6b4fZtlTBKSFD7ykie0oPawUPbaW7uFsoetWZipJqe9LqnpRvu5OWg-T6QLL23Ur5zf_wxR72Qf9yf_9h335bgnI |
CitedBy_id | crossref_primary_10_1016_j_molliq_2023_121874 crossref_primary_10_1021_jacs_3c04643 crossref_primary_10_1016_j_watres_2023_120325 crossref_primary_10_1016_j_jcp_2024_113094 crossref_primary_10_1016_j_molliq_2024_125555 crossref_primary_10_1039_D4CP03289F crossref_primary_10_1016_j_eti_2023_103334 crossref_primary_10_1021_acs_jpcb_4c05727 crossref_primary_10_1021_acs_jpca_2c03934 crossref_primary_10_1021_acs_jpcb_2c03915 crossref_primary_10_1016_j_jct_2024_107305 crossref_primary_10_1021_acssuschemeng_4c07268 crossref_primary_10_1021_acsearthspacechem_1c00067 crossref_primary_10_1021_acs_jpcb_3c00218 crossref_primary_10_1021_acs_jpcb_3c05701 crossref_primary_10_1016_j_fuel_2024_132669 crossref_primary_10_1002_wcms_1519 crossref_primary_10_1021_acs_macromol_4c01691 crossref_primary_10_1021_acs_est_2c08584 crossref_primary_10_1002_adfm_202408685 crossref_primary_10_1002_pol_20210810 crossref_primary_10_1021_jacs_1c05765 crossref_primary_10_1016_j_jcp_2023_112206 crossref_primary_10_1080_00268976_2021_1933228 crossref_primary_10_1021_acs_accounts_1c00107 |
Cites_doi | 10.1021/jz502319n 10.1021/ja00172a038 10.1039/C7CP03663A 10.1021/acs.jpclett.8b02473 10.1039/D0SC01947J 10.1021/acs.jpcb.7b10722 10.1039/C7SC02138K 10.1021/jp1116036 10.1021/jp305226j 10.1021/ct5004115 10.1039/C4CP02822H 10.1021/jp403596c 10.1063/1.3280816 10.1103/PhysRevLett.124.065502 10.1039/C9CP06161D 10.1063/1.3013865 10.1021/jz501780a 10.1039/tf9676303004 10.1007/BF01881023 10.1021/cr9904009 10.1021/jp502887e 10.1063/1.477873 10.1021/acs.jctc.9b00064 10.1063/1.3081142 10.1039/C6CP03926J 10.1016/j.fluid.2015.05.027 10.1016/j.cocis.2016.06.015 10.1021/jp403595x 10.1021/acs.jpcb.6b02156 10.1016/j.cplett.2014.05.056 10.1002/aenm.201703036 10.1063/1.1750387 10.1021/ar800019z 10.1021/j100180a010 10.1063/1.3693330 10.1021/acs.jpclett.7b00239 10.1021/jp106378p 10.1063/1.1644536 10.1063/1.4814070 10.1063/1.4994912 10.1021/acs.jpclett.9b02652 10.1021/acs.jpca.8b04106 10.1063/1.4752735 10.1063/1.4986284 10.1063/1.4975608 10.1006/jcph.1995.1039 10.1063/1.1587122 10.1063/1.5024209 10.1016/j.cplett.2013.01.008 10.1021/jz501067w 10.1021/jp402482q 10.1021/acs.jpcb.6b02238 10.1021/ct9005807 10.1038/ncomms3701 10.1063/1.2201698 10.1063/1.4905009 10.1063/1.4960175 10.1021/acs.jpclett.8b03829 10.1063/1.4881602 10.1021/jp962775t 10.1021/cr960149m |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d0cp04148c |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 25135 |
ExternalDocumentID | 10_1039_D0CP04148C d0cp04148c |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 53G 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c417t-36d8de7584511ab6b6935a164f8ffdab963a2e84f4676fccbcaeee839d8e2a3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 08:47:40 EDT 2025 Mon Jun 30 17:03:48 EDT 2025 Thu Apr 24 22:51:25 EDT 2025 Tue Jul 01 00:53:49 EDT 2025 Sat Jan 08 03:54:41 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-36d8de7584511ab6b6935a164f8ffdab963a2e84f4676fccbcaeee839d8e2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1276-5858 0000-0003-3772-8057 |
PQID | 2459410069 |
PQPubID | 2047499 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2459410069 proquest_miscellaneous_2455844472 rsc_primary_d0cp04148c crossref_primary_10_1039_D0CP04148C crossref_citationtrail_10_1039_D0CP04148C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-21 |
PublicationDateYYYYMMDD | 2020-11-21 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Izadi (D0CP04148C-(cit47)/*[position()=1]) 2016; 145 Rogers (D0CP04148C-(cit29)/*[position()=1]) 2010; 132 Galib (D0CP04148C-(cit55)/*[position()=1]) 2017; 146 Mukhopadhyay (D0CP04148C-(cit12)/*[position()=1]) 2012; 116 Duignan (D0CP04148C-(cit23)/*[position()=1]) 2014; 118 Remsing (D0CP04148C-(cit16)/*[position()=1]) 2018; 122 Kathmann (D0CP04148C-(cit33)/*[position()=1]) 2011; 115 Duignan (D0CP04148C-(cit59)/*[position()=1]) 2020; 22 Pollard (D0CP04148C-(cit40)/*[position()=1]) 2014; 140 Åvall (D0CP04148C-(cit5)/*[position()=1]) 2018; 8 Rajamani (D0CP04148C-(cit9)/*[position()=1]) 2004; 120 Duignan (D0CP04148C-(cit25)/*[position()=1]) 2013; 117 Tomasi (D0CP04148C-(cit19)/*[position()=1]) 2005; 105 Asthagiri (D0CP04148C-(cit28)/*[position()=1]) 2003; 119 Bizzarro (D0CP04148C-(cit63)/*[position()=1]) 2019; 15 Remsing (D0CP04148C-(cit36)/*[position()=1]) 2015; 142 Cramer (D0CP04148C-(cit48)/*[position()=1]) 2008; 41 Paesani (D0CP04148C-(cit62)/*[position()=1]) 2019; 4 Galib (D0CP04148C-(cit44)/*[position()=1]) 2017; 146 Fulton (D0CP04148C-(cit54)/*[position()=1]) 2010; 114 Klamt (D0CP04148C-(cit49)/*[position()=1]) 2016; 407 Leontyev (D0CP04148C-(cit52)/*[position()=1]) 2010; 6 Gaiduk (D0CP04148C-(cit56)/*[position()=1]) 2017; 8 Hünenberger (D0CP04148C-(cit65)/*[position()=1]) 1999; 110 Ashbaugh (D0CP04148C-(cit10)/*[position()=1]) 2008; 129 Duignan (D0CP04148C-(cit22)/*[position()=1]) 2014; 16 Hünenberger (D0CP04148C-(cit31)/*[position()=1]) 2011 Robinson (D0CP04148C-(cit2)/*[position()=1]) 1959 Cox (D0CP04148C-(cit17)/*[position()=1]) 2020 Loche (D0CP04148C-(cit15)/*[position()=1]) 2018; 9 Fyta (D0CP04148C-(cit51)/*[position()=1]) 2012; 136 Cassone (D0CP04148C-(cit57)/*[position()=1]) 2016; 18 Shi (D0CP04148C-(cit39)/*[position()=1]) 2013; 139 Merlet (D0CP04148C-(cit6)/*[position()=1]) 2013; 4 Klamt (D0CP04148C-(cit21)/*[position()=1]) 2011; 1 Duignan (D0CP04148C-(cit24)/*[position()=1]) 2013; 117 Logan (D0CP04148C-(cit3)/*[position()=1]) 1967; 63 Kastenholz (D0CP04148C-(cit66)/*[position()=1]) 2006; 124 Cheng (D0CP04148C-(cit4)/*[position()=1]) 2015; 6 Reif (D0CP04148C-(cit13)/*[position()=1]) 2016; 120 Riera (D0CP04148C-(cit61)/*[position()=1]) 2018; 122 Pollard (D0CP04148C-(cit41)/*[position()=1]) 2018; 148 Yesibolati (D0CP04148C-(cit35)/*[position()=1]) 2020; 124 Plimpton (D0CP04148C-(cit64)/*[position()=1]) 1995; 117 Bardhan (D0CP04148C-(cit11)/*[position()=1]) 2012; 137 Remsing (D0CP04148C-(cit34)/*[position()=1]) 2014; 5 Horinek (D0CP04148C-(cit50)/*[position()=1]) 2009; 130 Zhuang (D0CP04148C-(cit60)/*[position()=1]) 2019; 10 Remsing (D0CP04148C-(cit30)/*[position()=1]) 2016; 120 Latimer (D0CP04148C-(cit8)/*[position()=1]) 1939; 7 Cramer (D0CP04148C-(cit18)/*[position()=1]) 1999; 99 Izadi (D0CP04148C-(cit46)/*[position()=1]) 2014; 5 Duignan (D0CP04148C-(cit14)/*[position()=1]) 2017; 147 Conboy (D0CP04148C-(cit42)/*[position()=1]) 1997; 101 Pratt (D0CP04148C-(cit37)/*[position()=1]) 1992; 96 Born (D0CP04148C-(cit7)/*[position()=1]) 1919; 1 Medders (D0CP04148C-(cit43)/*[position()=1]) 2014; 10 Wright (D0CP04148C-(cit1)/*[position()=1]) 2007 Duignan (D0CP04148C-(cit32)/*[position()=1]) 2017; 8 Kirby (D0CP04148C-(cit53)/*[position()=1]) 2019; 10 Pollard (D0CP04148C-(cit26)/*[position()=1]) 2016; 23 Cassone (D0CP04148C-(cit58)/*[position()=1]) 2017; 19 Beck (D0CP04148C-(cit38)/*[position()=1]) 2013; 561–562 Bonthuis (D0CP04148C-(cit45)/*[position()=1]) 2013; 117 Still (D0CP04148C-(cit20)/*[position()=1]) 1990; 112 Duignan (D0CP04148C-(cit27)/*[position()=1]) 2014; 608 |
References_xml | – issn: 2007 end-page: 574 publication-title: An Introduction to Aqueous Electrolyte Solutions doi: Wright – issn: 1959 publication-title: Electrolyte solutions doi: Robinson Stokes – issn: 2011 publication-title: Single-ion solvation: experimental and theoretical approaches to elusive thermodynamic quantities doi: Hünenberger Reif – volume: 6 start-page: 283 year: 2015 ident: D0CP04148C-(cit4)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502319n – start-page: 574 volume-title: An Introduction to Aqueous Electrolyte Solutions year: 2007 ident: D0CP04148C-(cit1)/*[position()=1] – volume: 112 start-page: 6127 year: 1990 ident: D0CP04148C-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00172a038 – volume: 19 start-page: 20420 year: 2017 ident: D0CP04148C-(cit58)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP03663A – volume: 9 start-page: 6463 year: 2018 ident: D0CP04148C-(cit15)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02473 – year: 2020 ident: D0CP04148C-(cit17)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/D0SC01947J – volume: 122 start-page: 3519 year: 2018 ident: D0CP04148C-(cit16)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b10722 – volume: 8 start-page: 6131 year: 2017 ident: D0CP04148C-(cit32)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC02138K – volume: 115 start-page: 4369 year: 2011 ident: D0CP04148C-(cit33)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp1116036 – volume: 116 start-page: 9776 year: 2012 ident: D0CP04148C-(cit12)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp305226j – volume: 10 start-page: 2906 year: 2014 ident: D0CP04148C-(cit43)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5004115 – volume: 16 start-page: 22014 year: 2014 ident: D0CP04148C-(cit22)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02822H – volume: 117 start-page: 9421 year: 2013 ident: D0CP04148C-(cit24)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp403596c – volume: 132 start-page: 014505 year: 2010 ident: D0CP04148C-(cit29)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3280816 – volume: 124 start-page: 18 year: 2020 ident: D0CP04148C-(cit35)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.065502 – volume: 22 start-page: 10641 year: 2020 ident: D0CP04148C-(cit59)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP06161D – volume: 129 start-page: 204501 year: 2008 ident: D0CP04148C-(cit10)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3013865 – volume: 5 start-page: 3863 year: 2014 ident: D0CP04148C-(cit46)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501780a – volume: 63 start-page: 3004 year: 1967 ident: D0CP04148C-(cit3)/*[position()=1] publication-title: Trans. Faraday Soc. doi: 10.1039/tf9676303004 – volume: 1 start-page: 45 year: 1919 ident: D0CP04148C-(cit7)/*[position()=1] publication-title: Zeitschrift füer Phys doi: 10.1007/BF01881023 – volume: 105 start-page: 2999 year: 2005 ident: D0CP04148C-(cit19)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr9904009 – volume: 118 start-page: 8700 year: 2014 ident: D0CP04148C-(cit23)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp502887e – volume: 110 start-page: 1856 year: 1999 ident: D0CP04148C-(cit65)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1063/1.477873 – volume: 15 start-page: 2983 year: 2019 ident: D0CP04148C-(cit63)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00064 – volume: 130 start-page: 124507 year: 2009 ident: D0CP04148C-(cit50)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3081142 – volume: 18 start-page: 23164 year: 2016 ident: D0CP04148C-(cit57)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP03926J – volume: 407 start-page: 152 year: 2016 ident: D0CP04148C-(cit49)/*[position()=1] publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2015.05.027 – volume: 23 start-page: 110 year: 2016 ident: D0CP04148C-(cit26)/*[position()=1] publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2016.06.015 – volume: 117 start-page: 9412 year: 2013 ident: D0CP04148C-(cit25)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp403595x – volume: 120 start-page: 8485 year: 2016 ident: D0CP04148C-(cit13)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.6b02156 – volume: 608 start-page: 55 year: 2014 ident: D0CP04148C-(cit27)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2014.05.056 – volume: 8 start-page: 1703036 year: 2018 ident: D0CP04148C-(cit5)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703036 – volume: 7 start-page: 108 year: 1939 ident: D0CP04148C-(cit8)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1750387 – volume: 41 start-page: 760 year: 2008 ident: D0CP04148C-(cit48)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar800019z – volume: 96 start-page: 25 year: 1992 ident: D0CP04148C-(cit37)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100180a010 – volume: 136 start-page: 124103 year: 2012 ident: D0CP04148C-(cit51)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3693330 – volume: 8 start-page: 1496 issue: 7 year: 2017 ident: D0CP04148C-(cit56)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b00239 – volume-title: Electrolyte solutions year: 1959 ident: D0CP04148C-(cit2)/*[position()=1] – volume: 114 start-page: 12926 year: 2010 ident: D0CP04148C-(cit54)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp106378p – volume: 120 start-page: 4457 year: 2004 ident: D0CP04148C-(cit9)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1644536 – volume-title: Single-ion solvation: experimental and theoretical approaches to elusive thermodynamic quantities year: 2011 ident: D0CP04148C-(cit31)/*[position()=1] – volume: 139 start-page: 044504 year: 2013 ident: D0CP04148C-(cit39)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4814070 – volume: 4 start-page: 1631212 year: 2019 ident: D0CP04148C-(cit62)/*[position()=1] publication-title: Adv. Phys. X – volume: 147 start-page: 161716 year: 2017 ident: D0CP04148C-(cit14)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4994912 – volume: 10 start-page: 7531 year: 2019 ident: D0CP04148C-(cit53)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b02652 – volume: 122 start-page: 5811 year: 2018 ident: D0CP04148C-(cit61)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.8b04106 – volume: 137 start-page: 124101 year: 2012 ident: D0CP04148C-(cit11)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4752735 – volume: 146 start-page: 244501 year: 2017 ident: D0CP04148C-(cit44)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4986284 – volume: 146 start-page: 084504 year: 2017 ident: D0CP04148C-(cit55)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4975608 – volume: 117 start-page: 1 year: 1995 ident: D0CP04148C-(cit64)/*[position()=1] publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 119 start-page: 2702 year: 2003 ident: D0CP04148C-(cit28)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1587122 – volume: 148 start-page: 222830 year: 2018 ident: D0CP04148C-(cit41)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.5024209 – volume: 561–562 start-page: 1 year: 2013 ident: D0CP04148C-(cit38)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2013.01.008 – volume: 1 start-page: 699 year: 2011 ident: D0CP04148C-(cit21)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 5 start-page: 2767 year: 2014 ident: D0CP04148C-(cit34)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz501067w – volume: 117 start-page: 11397 year: 2013 ident: D0CP04148C-(cit45)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp402482q – volume: 120 start-page: 6238 year: 2016 ident: D0CP04148C-(cit30)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.6b02238 – volume: 6 start-page: 1498 year: 2010 ident: D0CP04148C-(cit52)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct9005807 – volume: 4 start-page: 2701 year: 2013 ident: D0CP04148C-(cit6)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3701 – volume: 124 start-page: 224501 year: 2006 ident: D0CP04148C-(cit66)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2201698 – volume: 142 start-page: 024502 year: 2015 ident: D0CP04148C-(cit36)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4905009 – volume: 145 start-page: 074501 year: 2016 ident: D0CP04148C-(cit47)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4960175 – volume: 10 start-page: 406 year: 2019 ident: D0CP04148C-(cit60)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03829 – volume: 140 start-page: 224507 year: 2014 ident: D0CP04148C-(cit40)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4881602 – volume: 101 start-page: 983 year: 1997 ident: D0CP04148C-(cit42)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp962775t – volume: 99 start-page: 2161 year: 1999 ident: D0CP04148C-(cit18)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr960149m |
SSID | ssj0001513 |
Score | 2.4681985 |
Snippet | Accurate models of the free energies of ions in solution are crucially important. They can be used to predict and understand the properties of electrolyte... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25126 |
SubjectTerms | Asymmetry Energy storage Fluid dynamics Hydrogen atoms Physical simulation Solvation Water chemistry |
Title | The Born model can accurately describe electrostatic ion solvation |
URI | https://www.proquest.com/docview/2459410069 https://www.proquest.com/docview/2455844472 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMAttj3Ay8TXRNlARvCCKo_UdtL4ccs6DVRGJTKp4iXyV8akKZ26Fgn-es6xnWxSHwYvUeS6aXo_53zn-O4Q-kAzlRkjBDGGGcJTbYgajzVhNlc0V0xT6xzFr-fZ2QX_Mk_nfX3CNrpkpQ71n41xJf9DFdqAq4uS_Qey3UWhAc6BLxyBMBwfzPh4sWx8PRu3gWsotV677A_Xv4fGOpWg7DCUunGxQ1d66HjDbf3qkQTbdBaR6VgEzp-5Jr8ActsuIMyKogsKO1lfXcYKx556v-v6x0_ZrsPOw_JqWFsAR3I0Ij5gOahDnjEiEl_E7dBuaAs6lNI7Y4WzuxoRLIpso65OmEt1ahJ9k3BwynQ_I8W38OffqtOL6bQqJ_NyC-1Q8ARAle0cTcrP0266BZOF-RAyf1sxBy0Tn_pr37c6eldiaxnrvLT2RPkU7QZHAB95qs_QI9s8R4-LKPoX6BjoYkcXt3Qx0MU9XRzp4nt0MTDFHd2X6PvppCzOSKh4QTQfjVeEZSY3Flw4lzVOKniOBEsleLR1XtdGKtCWktqc1zC9ZbXWSktrLdi4JrdUsj203Swa-wphqhQF256mzOQggFoKIRVPqEisBadVDdDHKI9Kh2TwribJddVuSmCiOkmKWSu7YoDed31vfAqUjb0Oolir8IjcVpSngo9cNuwBetd9DHJ0b6VkYxfrtg_8X87HdID2AEf3Gz291w_48j560o_gA7S9Wq7tG7AXV-ptGDF_AbUrbF4 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Born+model+can+accurately+describe+electrostatic+ion+solvation&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Duignan%2C+Timothy+T&rft.au=Zhao%2C+X+S&rft.date=2020-11-21&rft.issn=1463-9084&rft.eissn=1463-9084&rft.volume=22&rft.issue=43&rft.spage=25126&rft_id=info:doi/10.1039%2Fd0cp04148c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |