Reduction of Feynman integrals in the parametric representation

A bstract In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the integration-by-part (IBP) method in the momentum space. Tensor integrals can directly be parametrized without performing tensor reductions. The...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2020; no. 2; pp. 1 - 11
Main Author Chen, Wen
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the integration-by-part (IBP) method in the momentum space. Tensor integrals can directly be parametrized without performing tensor reductions. The integrands of parametric integrals are functions of Lorentz scalars, instead of four momenta. The complexity of a calculation is determined by the number of propagators that are present rather than the number of all the linearly independent propagators. Furthermore, the symmetries of Feynman integrals under permutations of indices are transparent in the parametric representation. Since all the indices of the propagators are nonnegative, an algorithm to solve those identities can easily be developed, which can be used for automatic calculations.
AbstractList In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the integration-by-part (IBP) method in the momentum space. Tensor integrals can directly be parametrized without performing tensor reductions. The integrands of parametric integrals are functions of Lorentz scalars, instead of four momenta. The complexity of a calculation is determined by the number of propagators that are present rather than the number of all the linearly independent propagators. Furthermore, the symmetries of Feynman integrals under permutations of indices are transparent in the parametric representation. Since all the indices of the propagators are nonnegative, an algorithm to solve those identities can easily be developed, which can be used for automatic calculations.
A bstract In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the integration-by-part (IBP) method in the momentum space. Tensor integrals can directly be parametrized without performing tensor reductions. The integrands of parametric integrals are functions of Lorentz scalars, instead of four momenta. The complexity of a calculation is determined by the number of propagators that are present rather than the number of all the linearly independent propagators. Furthermore, the symmetries of Feynman integrals under permutations of indices are transparent in the parametric representation. Since all the indices of the propagators are nonnegative, an algorithm to solve those identities can easily be developed, which can be used for automatic calculations.
Abstract In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the integration-by-part (IBP) method in the momentum space. Tensor integrals can directly be parametrized without performing tensor reductions. The integrands of parametric integrals are functions of Lorentz scalars, instead of four momenta. The complexity of a calculation is determined by the number of propagators that are present rather than the number of all the linearly independent propagators. Furthermore, the symmetries of Feynman integrals under permutations of indices are transparent in the parametric representation. Since all the indices of the propagators are nonnegative, an algorithm to solve those identities can easily be developed, which can be used for automatic calculations.
ArticleNumber 115
Author Chen, Wen
Author_xml – sequence: 1
  givenname: Wen
  orcidid: 0000-0002-7568-2056
  surname: Chen
  fullname: Chen, Wen
  email: wchen1@ualberta.ca
  organization: Department of Physics, University of Alberta
BookMark eNp9kEFLAzEQRoNUsFXPXhe86KF2JrvpJicRqVopKKLnEJPZuqVNajY9-O_duqIi6ClD-N43wxuwng-eGDtCOEOAcnR7M7kHfsKBwymi2GF9BK6GsihV78e8xwZNswBAgQr67PyB3MamOvgsVNkVvfmV8VntE82jWTbtlKUXytYmmhWlWNss0jpSQz6ZLXXAdqs2R4ef7z57upo8Xt4MZ3fX08uL2dAWWKZhPpacSoQCrIQceJHzSgnEZyUlFGOsxrysXAlSorMiB1uMC6MkIEolnXH5Ppt2vS6YhV7HemXimw6m1h8fIc61iam2S9IEnJRxvBLIC2mdISsdEVeIOQq77TruutYxvG6oSXoRNtG352ueC8m5Eoq3qVGXsjE0TaTqayuC3hrXnXG9Na5b4y0hfhG27iylaOrlPxx0XNNu8HOK3_f8hbwDxN-TXw
CitedBy_id crossref_primary_10_1103_PhysRevD_110_L091901
crossref_primary_10_1103_PhysRevLett_132_201901
Cites_doi 10.1007/JHEP09(2018)024
10.1016/0550-3213(81)90199-1
10.1016/S0168-9002(97)00126-5
10.1007/JHEP11(2013)165
10.1088/1126-6708/2008/07/031
10.1143/PTP.20.690
10.1088/1126-6708/2004/07/046
10.1016/0370-2693(81)90288-4
10.1016/S0550-3213(00)00223-6
10.1103/PhysRev.76.769
10.1016/j.nuclphysb.2004.10.018
10.1016/j.physletb.2015.03.029
10.1016/j.cpc.2018.04.012
10.1016/j.cpc.2014.01.017
10.1143/PTP.17.401
10.1088/1126-6708/2006/01/001
10.1007/s11005-018-1114-8
10.1016/j.cpc.2008.11.006
10.1088/1126-6708/2008/10/107
10.1016/j.cpc.2010.03.012
10.1088/1742-6596/523/1/012059
10.1142/S0217751X00002159
ContentType Journal Article
Copyright The Author(s) 2021
Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2021
– notice: Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP02(2020)115
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 11
ExternalDocumentID oai_doaj_org_article_e02e9ad2f51248cdaec8dee2911315cd
10_1007_JHEP02_2020_115
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-3682e71040c80302432f9511b9880461f627fd70881dc530c464a98011898dad3
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Wed Aug 27 01:28:24 EDT 2025
Sat Jul 26 00:06:11 EDT 2025
Tue Jul 01 03:55:01 EDT 2025
Thu Apr 24 22:57:46 EDT 2025
Fri Feb 21 02:48:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords NLO Computations
QCD Phenomenology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-3682e71040c80302432f9511b9880461f627fd70881dc530c464a98011898dad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7568-2056
OpenAccessLink https://www.proquest.com/docview/2358229592?pq-origsite=%requestingapplication%
PQID 2358229592
PQPubID 2034718
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_e02e9ad2f51248cdaec8dee2911315cd
proquest_journals_2358229592
crossref_primary_10_1007_JHEP02_2020_115
crossref_citationtrail_10_1007_JHEP02_2020_115
springer_journals_10_1007_JHEP02_2020_115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, arXiv:1901.07808 [INSPIRE].
S. Actis, A. Ferroglia, G. Passarino, M. Passera and S. Uccirati, Two-loop tensor integrals in quantum field theory, Nucl. Phys.B 703 (2004) 3 [hep-ph/0402132] [INSPIRE].
ChetyrkinKGTkachovFVIntegration by Parts: The Algorithm to Calculate β-functions in 4 LoopsNucl. Phys.1981B 1921591981NuPhB.192..159C10.1016/0550-3213(81)90199-1[INSPIRE]
NakanishiNGeneral Integral Formula of Perturbation Term in the Quantized Field TheoryProg. Theor. Phys.1957174011957PThPh..17..401N8438310.1143/PTP.17.401
FeynmanRPSpace-time approach to quantum electrodynamicsPhys. Rev.1949767691949PhRv...76..769F3568710.1103/PhysRev.76.769[INSPIRE]
R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
LarsenKJZhangYIntegration-by-parts reductions from unitarity cuts and algebraic geometryPhys. Rev.2016D 932016PhRvD..93d1701L3499242[arXiv:1511.01071] [INSPIRE]
LeeRNPomeranskyAACritical points and number of master integralsJHEP2013111652013JHEP...11..165L313217210.1007/JHEP11(2013)165[arXiv:1308.6676] [INSPIRE]
O.V. Tarasov, Reduction of Feynman graph amplitudes to a minimal set of basic integrals, Acta Phys. Polon.B 29 (1998) 2655 [hep-ph/9812250] [INSPIRE].
BöhmJGeorgoudisALarsenKJSchönemannHZhangYComplete integration-by-parts reductions of the non-planar hexagon-box via module intersectionsJHEP2018090242018JHEP...09..024B387127510.1007/JHEP09(2018)024[arXiv:1805.01873] [INSPIRE]
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP07 (2004) 046 [hep-ph/0404258] [INSPIRE].
A.V. Smirnov and V.A. Smirnov, Applying Grobner bases to solve reduction problems for Feynman integrals, JHEP01 (2006) 001 [hep-lat/0509187] [INSPIRE].
SymanzikKDispersion relations and vertex properties in perturbation theoryProg. Theor. Phys.1958206901958PThPh..20..690S10306510.1143/PTP.20.690
BöhmJGeorgoudisALarsenKJSchulzeMZhangYComplete sets of logarithmic vector fields for integration-by-parts identities of Feynman integralsPhys. Rev.2018D 982018PhRvD..98b5023B3924092[arXiv:1712.09737] [INSPIRE]
TkachovFVA Theorem on Analytical Calculability of Four Loop Renormalization Group FunctionsPhys. Lett.1981100B651981PhLB..100...65T60764010.1016/0370-2693(81)90288-4[INSPIRE]
T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
W. Chen, Reduction of Feynman Integrals in the Parametric Representation II: Reduction of Tensor Integrals, arXiv:1912.08606 [INSPIRE].
KantPFinding Linear Dependencies in Integration-By-Parts Equations: A Monte Carlo ApproachComput. Phys. Commun.201418514732014CoPhC.185.1473K10.1016/j.cpc.2014.01.017[arXiv:1309.7287] [INSPIRE]
TarasovOVConnection between Feynman integrals having different values of the space-time dimensionPhys. Rev.1996D 5464791996PhRvD..54.6479T14235860925.81121[hep-th/9606018] [INSPIRE]
R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth.A 389 (1997) 347 [hep-ph/9611449] [INSPIRE].
StuderusCReduze-Feynman Integral Reduction in C++Comput. Phys. Commun.201018112932010CoPhC.181.1293S264497110.1016/j.cpc.2010.03.012[arXiv:0912.2546] [INSPIRE]
R.N. Lee, Modern techniques of multiloop calculations, in Proceedings, 49th Rencontres de Moriond on QCD and High Energy Interactions, La Thuile, Italy, 22–29 March 2014, pp. 297–300 (2014) [arXiv:1405.5616] [INSPIRE].
SmirnovAVTentyukovMNFeynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA)Comput. Phys. Commun.20091807352009CoPhC.180..735S10.1016/j.cpc.2008.11.006[arXiv:0807.4129] [INSPIRE]
SmirnovAVAlgorithm FIRE — Feynman Integral REductionJHEP2008101072008JHEP...10..107S10.1088/1126-6708/2008/10/107[arXiv:0807.3243] [INSPIRE]
LeeRNGroup structure of the integration-by-part identities and its application to the reduction of multiloop integralsJHEP2008070312008JHEP...07..031L243015310.1088/1126-6708/2008/07/031[arXiv:0804.3008] [INSPIRE]
von ManteuffelASchabingerRMQuark and gluon form factors to four-loop order in QCD: theNf3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {N}_f^3 $$\end{document}contributionsPhys. Rev.2017D 952017PhRvD..95c4030V[arXiv:1611.00795] [INSPIRE]
MaierhöferPUsovitschJUwerPKira — A Feynman integral reduction programComput. Phys. Commun.2018230992018CoPhC.230...99M10.1016/j.cpc.2018.04.012[arXiv:1705.05610] [INSPIRE]
BitounTBognerCKlausenRPPanzerEFeynman integral relations from parametric annihilatorsLett. Math. Phys.20191094972019LMaPh.109..497B391013410.1007/s11005-018-1114-8[arXiv:1712.09215] [INSPIRE]
von ManteuffelASchabingerRMA novel approach to integration by parts reductionPhys. Lett.2015B 7441012015PhLB..744..101V334186810.1016/j.physletb.2015.03.029[arXiv:1406.4513] [INSPIRE]
J Böhm (12413_CR28) 2018; 09
J Böhm (12413_CR27) 2018; D 98
12413_CR3
12413_CR4
12413_CR20
12413_CR5
12413_CR6
RN Lee (12413_CR7) 2008; 07
K Symanzik (12413_CR23) 1958; 20
AV Smirnov (12413_CR30) 2009; 180
N Nakanishi (12413_CR22) 1957; 17
KJ Larsen (12413_CR26) 2016; D 93
12413_CR18
12413_CR16
12413_CR17
12413_CR10
A von Manteuffel (12413_CR9) 2015; B 744
12413_CR13
FV Tkachov (12413_CR1) 1981; 100B
RN Lee (12413_CR19) 2013; 11
RP Feynman (12413_CR21) 1949; 76
12413_CR31
OV Tarasov (12413_CR24) 1996; D 54
P Maierhöfer (12413_CR15) 2018; 230
T Bitoun (12413_CR25) 2019; 109
P Kant (12413_CR8) 2014; 185
AV Smirnov (12413_CR11) 2008; 10
C Studerus (12413_CR12) 2010; 181
KG Chetyrkin (12413_CR2) 1981; B 192
A von Manteuffel (12413_CR14) 2017; D 95
12413_CR29
References_xml – reference: SmirnovAVAlgorithm FIRE — Feynman Integral REductionJHEP2008101072008JHEP...10..107S10.1088/1126-6708/2008/10/107[arXiv:0807.3243] [INSPIRE]
– reference: BöhmJGeorgoudisALarsenKJSchulzeMZhangYComplete sets of logarithmic vector fields for integration-by-parts identities of Feynman integralsPhys. Rev.2018D 982018PhRvD..98b5023B3924092[arXiv:1712.09737] [INSPIRE]
– reference: von ManteuffelASchabingerRMQuark and gluon form factors to four-loop order in QCD: theNf3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {N}_f^3 $$\end{document}contributionsPhys. Rev.2017D 952017PhRvD..95c4030V[arXiv:1611.00795] [INSPIRE]
– reference: P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth.A 389 (1997) 347 [hep-ph/9611449] [INSPIRE].
– reference: T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
– reference: TarasovOVConnection between Feynman integrals having different values of the space-time dimensionPhys. Rev.1996D 5464791996PhRvD..54.6479T14235860925.81121[hep-th/9606018] [INSPIRE]
– reference: KantPFinding Linear Dependencies in Integration-By-Parts Equations: A Monte Carlo ApproachComput. Phys. Commun.201418514732014CoPhC.185.1473K10.1016/j.cpc.2014.01.017[arXiv:1309.7287] [INSPIRE]
– reference: StuderusCReduze-Feynman Integral Reduction in C++Comput. Phys. Commun.201018112932010CoPhC.181.1293S264497110.1016/j.cpc.2010.03.012[arXiv:0912.2546] [INSPIRE]
– reference: R.N. Lee, Modern techniques of multiloop calculations, in Proceedings, 49th Rencontres de Moriond on QCD and High Energy Interactions, La Thuile, Italy, 22–29 March 2014, pp. 297–300 (2014) [arXiv:1405.5616] [INSPIRE].
– reference: R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
– reference: LarsenKJZhangYIntegration-by-parts reductions from unitarity cuts and algebraic geometryPhys. Rev.2016D 932016PhRvD..93d1701L3499242[arXiv:1511.01071] [INSPIRE]
– reference: S. Actis, A. Ferroglia, G. Passarino, M. Passera and S. Uccirati, Two-loop tensor integrals in quantum field theory, Nucl. Phys.B 703 (2004) 3 [hep-ph/0402132] [INSPIRE].
– reference: O.V. Tarasov, Reduction of Feynman graph amplitudes to a minimal set of basic integrals, Acta Phys. Polon.B 29 (1998) 2655 [hep-ph/9812250] [INSPIRE].
– reference: SymanzikKDispersion relations and vertex properties in perturbation theoryProg. Theor. Phys.1958206901958PThPh..20..690S10306510.1143/PTP.20.690
– reference: ChetyrkinKGTkachovFVIntegration by Parts: The Algorithm to Calculate β-functions in 4 LoopsNucl. Phys.1981B 1921591981NuPhB.192..159C10.1016/0550-3213(81)90199-1[INSPIRE]
– reference: S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
– reference: A.V. Smirnov and V.A. Smirnov, Applying Grobner bases to solve reduction problems for Feynman integrals, JHEP01 (2006) 001 [hep-lat/0509187] [INSPIRE].
– reference: R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
– reference: MaierhöferPUsovitschJUwerPKira — A Feynman integral reduction programComput. Phys. Commun.2018230992018CoPhC.230...99M10.1016/j.cpc.2018.04.012[arXiv:1705.05610] [INSPIRE]
– reference: C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP07 (2004) 046 [hep-ph/0404258] [INSPIRE].
– reference: SmirnovAVTentyukovMNFeynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA)Comput. Phys. Commun.20091807352009CoPhC.180..735S10.1016/j.cpc.2008.11.006[arXiv:0807.4129] [INSPIRE]
– reference: von ManteuffelASchabingerRMA novel approach to integration by parts reductionPhys. Lett.2015B 7441012015PhLB..744..101V334186810.1016/j.physletb.2015.03.029[arXiv:1406.4513] [INSPIRE]
– reference: BitounTBognerCKlausenRPPanzerEFeynman integral relations from parametric annihilatorsLett. Math. Phys.20191094972019LMaPh.109..497B391013410.1007/s11005-018-1114-8[arXiv:1712.09215] [INSPIRE]
– reference: BöhmJGeorgoudisALarsenKJSchönemannHZhangYComplete integration-by-parts reductions of the non-planar hexagon-box via module intersectionsJHEP2018090242018JHEP...09..024B387127510.1007/JHEP09(2018)024[arXiv:1805.01873] [INSPIRE]
– reference: NakanishiNGeneral Integral Formula of Perturbation Term in the Quantized Field TheoryProg. Theor. Phys.1957174011957PThPh..17..401N8438310.1143/PTP.17.401
– reference: W. Chen, Reduction of Feynman Integrals in the Parametric Representation II: Reduction of Tensor Integrals, arXiv:1912.08606 [INSPIRE].
– reference: LeeRNGroup structure of the integration-by-part identities and its application to the reduction of multiloop integralsJHEP2008070312008JHEP...07..031L243015310.1088/1126-6708/2008/07/031[arXiv:0804.3008] [INSPIRE]
– reference: LeeRNPomeranskyAACritical points and number of master integralsJHEP2013111652013JHEP...11..165L313217210.1007/JHEP11(2013)165[arXiv:1308.6676] [INSPIRE]
– reference: FeynmanRPSpace-time approach to quantum electrodynamicsPhys. Rev.1949767691949PhRv...76..769F3568710.1103/PhysRev.76.769[INSPIRE]
– reference: TkachovFVA Theorem on Analytical Calculability of Four Loop Renormalization Group FunctionsPhys. Lett.1981100B651981PhLB..100...65T60764010.1016/0370-2693(81)90288-4[INSPIRE]
– reference: A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, arXiv:1901.07808 [INSPIRE].
– ident: 12413_CR13
– volume: D 54
  start-page: 6479
  year: 1996
  ident: 12413_CR24
  publication-title: Phys. Rev.
– volume: 09
  start-page: 024
  year: 2018
  ident: 12413_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)024
– volume: B 192
  start-page: 159
  year: 1981
  ident: 12413_CR2
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(81)90199-1
– ident: 12413_CR3
  doi: 10.1016/S0168-9002(97)00126-5
– volume: 11
  start-page: 165
  year: 2013
  ident: 12413_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)165
– volume: D 93
  year: 2016
  ident: 12413_CR26
  publication-title: Phys. Rev.
– volume: 07
  start-page: 031
  year: 2008
  ident: 12413_CR7
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/07/031
– volume: 20
  start-page: 690
  year: 1958
  ident: 12413_CR23
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.20.690
– ident: 12413_CR10
  doi: 10.1088/1126-6708/2004/07/046
– volume: 100B
  start-page: 65
  year: 1981
  ident: 12413_CR1
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(81)90288-4
– ident: 12413_CR17
  doi: 10.1016/S0550-3213(00)00223-6
– volume: 76
  start-page: 769
  year: 1949
  ident: 12413_CR21
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.76.769
– ident: 12413_CR31
  doi: 10.1016/j.nuclphysb.2004.10.018
– volume: B 744
  start-page: 101
  year: 2015
  ident: 12413_CR9
  publication-title: Phys. Lett.
  doi: 10.1016/j.physletb.2015.03.029
– volume: 230
  start-page: 99
  year: 2018
  ident: 12413_CR15
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.04.012
– ident: 12413_CR20
– volume: 185
  start-page: 1473
  year: 2014
  ident: 12413_CR8
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.01.017
– volume: 17
  start-page: 401
  year: 1957
  ident: 12413_CR22
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.17.401
– ident: 12413_CR4
– ident: 12413_CR6
  doi: 10.1088/1126-6708/2006/01/001
– volume: 109
  start-page: 497
  year: 2019
  ident: 12413_CR25
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-018-1114-8
– volume: 180
  start-page: 735
  year: 2009
  ident: 12413_CR30
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.11.006
– volume: D 98
  year: 2018
  ident: 12413_CR27
  publication-title: Phys. Rev.
– volume: 10
  start-page: 107
  year: 2008
  ident: 12413_CR11
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/10/107
– volume: 181
  start-page: 1293
  year: 2010
  ident: 12413_CR12
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.03.012
– ident: 12413_CR29
  doi: 10.1088/1742-6596/523/1/012059
– ident: 12413_CR18
– ident: 12413_CR5
  doi: 10.1142/S0217751X00002159
– volume: D 95
  year: 2017
  ident: 12413_CR14
  publication-title: Phys. Rev.
– ident: 12413_CR16
SSID ssj0015190
Score 2.430079
Snippet A bstract In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the...
In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the...
Abstract In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Classical and Quantum Gravitation
Elementary Particles
High energy physics
Identities
Integrals
Mathematical analysis
NLO Computations
Permutations
Physics
Physics and Astronomy
QCD Phenomenology
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Reduction
Regular Article - Theoretical Physics
Relativity Theory
Representations
Scalars
String Theory
Tensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6xWycFDe1ibZLO7yUlUWkpBEbHQ25JNsqd2K7Ye_PfO7KNWoXjxtuwmS5jJZL5JMt8Qcp3BHIlcJIMEIx3pkixQudBBnin0iFEoDe5DPj7Fo4kcT6PpRqkvvBNW0QNXgut7Jrw2TuTgmaSyznirnPcCjDTkkXW4-oLPa4Kp-vwAcAlriHxY0h-PBs9MdCHQZz2OFXA3fFBJ1f8DX_46Ei09zfCA7NcQkd5VQzskO744IrvlVU27PCa3L8i2ivKki5wO_WcxNwWtaR9mS3iiAOoocnrPsVyWpSVxZZNkVJyQyXDw-jAK6jIIgZU8WQVhrIQHICCZVWCSQoYiB1zEMw22J2OexyLJXQLLBXc2CpmVsTRaYUqpVs648JS0ikXhzwiVmdHQWRtjITJiDrpkXCccWeycy1Sb3DSCSW3NEY6lKmZpw25cSTJFSULwELVJd93hraLH2N70HiW9boa81uUL0HZaazv9S9tt0mn0lNbGtkzLbF-hIy3apNfo7vvzlvGc_8d4Lsge_q-6xt0hrdX7h78ElLLKrsoJ-QUwAeAz
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SEbyIT6xW2YOH9rC6ySa7yUm0tJSCImKhtyWvPbWr2Hrw3zuzj0orPXgLuxlYZjKZbzaZbwi5MbBGhBM8TDHT4S41ocyZCnMjMSKKmGv8D_n0nIwmfDwV05okCWthNs7v78ajwUvEupCiRz2KxeS7gsYp9mjoJ_3VcQHAkKjh7fkrtBZySmb-NTi5cQJaBpbhITmoEWHwUJnwiOz44pjslTcz7eKE3L8iuSqqL3jPg6H_Lua6CGqWh9kCRgFguAApvOfYHcsGJU9lU1NUnJLJcPDWH4V114PQcpouwziRzEPc55GV4IGMxywHGESNAlfjCc0TluYuhd2BOiviyPKEayWxglRJp118RlrFe-HPScCNViCstLaQCEUORAxVKUXSOueMbJPbRjGZrSnBsTPFLGvIjCtNZqhJyBVEm3RXAh8VG8b2qY-o6dU0pLEuH4B1s9orMh8xr7RjOcAOLq3T3krnPYMdOKbCujbpNHbKat9aZGVxL1NCsTbpNbb7fb3ley7-MfeS7OOwupzdIa3l55e_AuyxNNfluvsBsTzOAQ
  priority: 102
  providerName: Springer Nature
Title Reduction of Feynman integrals in the parametric representation
URI https://link.springer.com/article/10.1007/JHEP02(2020)115
https://www.proquest.com/docview/2358229592
https://doaj.org/article/e02e9ad2f51248cdaec8dee2911315cd
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BKyQWxFMUSpWBoQyBxHESe0KlaqkqUSFEJbbIsR0WSIGWgX_PXeqUhwSLlYcdRWff-buz_R3AaY5jJDYx91PydLhJc18UTPpFLmhGjCOuKA55M0lGUz5-iB9cwG3utlXWNrEy1GamKUZ-UR3pZDKW7PLl1aesUbS66lJorEMTTbAQDWheDSa3d6t1BMQnQU3oE6QX49HgNmBddPiDs5Ay4X6biyrK_h8489fSaDXjDLdhy0FFr7fs2x1Ys-UubFRbNvV8Dy7viHWV5OrNCm9oP8pnVXqO_uFpjlcegjuPuL2fKW2W9ioCy_qwUbkP0-Hgvj_yXToEX_MwXfhRIphFQMADLVA1GY9YgfgozCXqIE_CImFpYVI0G6HRcRRonnAlBR0tlcIoEx1Ao5yV9hA8niuJjaVSGj2kwGCTPJRpSGx2xuSiBee1YDLtuMIpZcVTVrMcLyWZkSTRiYhb0F01eFnSZPxd9YokvapG_NbVg9nbY-bUJbMBs1IZViAe4UIbZbUw1jI0zVEYa9OCdt1PmVO6efY1RFpwVvfd1-s__ufo_08dwybVXG7UbkNj8fZuTxCHLPIOrIvhdccNObzrM05l0u9Unj2WU9b7BO1L3Gg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUEUvFRRQl_LwoUhwCCSOk9gHhHhtl6cqBBK31LGdXiAL7FYVf4rfyEwSLwUJbtyixGNFM58948d8A_CjQIwkNhFBRisdYbMikCVXQVlI8ohJLDTtQ56epb1LcXSVXI3Bo8-FoWuVfk6sJ2rbN7RHvlmndHKVKL59exdQ1Sg6XfUlNBpYHLuHf7hkG2wd7qN9VznvHlzs9YK2qkBgRJQNgziV3KFfFaGRiHAuYl5imBEVCqEs0qhMeVbaDEdfZE0Sh0akQitJGZpKWm1j7HccJkWMnpwy07s_R6cWGA2Fnj4ozDaPege_Qr7GMSJbj6ju7n-ery4Q8CKqfXUQW_u37jR8aQNTttMgaQbGXPUVPtUXRM1gFrbPieOVrMj6Jeu6h-pGV6wlm7ge4BPDUJIRk_gNFekyrKbL9KlN1Rxcfoia5mGi6lfuGzBRaIXCSmuD67HQokgRqSwi7jxrC9mBDa-Y3LTM5FQg4zr3nMqNJnPSJC5Zkg6sjQRuG1KOt5vukqZHzYhNu37Rv_-Tt4MzdyF3SlteYvQjpLHaGWmd4-gI4igxtgOL3k55O8QH-TMgO7Dubff8-Y3_WXi_qxWY6l2cnuQnh2fH3-EzSTVXxBdhYnj_1y1hBDQslmvYMfj90Th_Ak0cD5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRa16qUppxbY8fKASHNJNHCexDwgV2NXyWq1Qkbilju30AlnKblXx1_h1zCTxQivBjVuU2FY0_uyZsWe-AdgsECOJTUSQkacjbFYEsuQqKAtJGjGJhaZzyNNROjwXRxfJxQLc-VwYCqv0e2K9UduJoTPyXp3SyVWieK9swyLGB4Pd698BVZCim1ZfTqOByLG7_Yvu23Tn8ADn-ivng_6P_WHQVhgIjIiyWRCnkjvUsSI0EtHORcxLNDmiQiGsRRqVKc9Km-FKjKxJ4tCIVGglKVtTSattjOO-gsWMvKIOLO71R-Oz-R0G2kahJxMKs97RsD8O-RZH-2w7oiq8j_RgXS7gHxv3v2vZWtsN3sO71kxl3xtcLcGCqz7A6zpc1EyXYfeMGF9pTtmkZAN3W13pirXUE5dTfGJoWDLiFb-ikl2G1eSZPtGp-gjnLyKoT9CpJpVbASYKrbCz0tqgdxZa7FJEKouISc_aQnbhmxdMblqeciqXcZl7huVGkjlJEh2YpAtb8w7XDUXH0033SNLzZsStXb-Y3PzK26Wau5A7pS0v0RYS0ljtjLTOcVQLcZQY24VVP095u-Cn-QM8u7Dt5-7h8xP_8_n5oTbgDWI8PzkcHX-Bt9SpiRdfhc7s5o9bQ3NoVqy3uGPw86Whfg_W0RUm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduction+of+Feynman+integrals+in+the+parametric+representation&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Chen%2C+Wen&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2020&rft.issue=2&rft_id=info:doi/10.1007%2FJHEP02%282020%29115&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon