Reduction of Feynman integrals in the parametric representation
A bstract In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the integration-by-part (IBP) method in the momentum space. Tensor integrals can directly be parametrized without performing tensor reductions. The...
Saved in:
Published in | The journal of high energy physics Vol. 2020; no. 2; pp. 1 - 11 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2020
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the integration-by-part (IBP) method in the momentum space. Tensor integrals can directly be parametrized without performing tensor reductions. The integrands of parametric integrals are functions of Lorentz scalars, instead of four momenta. The complexity of a calculation is determined by the number of propagators that are present rather than the number of all the linearly independent propagators. Furthermore, the symmetries of Feynman integrals under permutations of indices are transparent in the parametric representation. Since all the indices of the propagators are nonnegative, an algorithm to solve those identities can easily be developed, which can be used for automatic calculations. |
---|---|
AbstractList | In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the integration-by-part (IBP) method in the momentum space. Tensor integrals can directly be parametrized without performing tensor reductions. The integrands of parametric integrals are functions of Lorentz scalars, instead of four momenta. The complexity of a calculation is determined by the number of propagators that are present rather than the number of all the linearly independent propagators. Furthermore, the symmetries of Feynman integrals under permutations of indices are transparent in the parametric representation. Since all the indices of the propagators are nonnegative, an algorithm to solve those identities can easily be developed, which can be used for automatic calculations. A bstract In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the integration-by-part (IBP) method in the momentum space. Tensor integrals can directly be parametrized without performing tensor reductions. The integrands of parametric integrals are functions of Lorentz scalars, instead of four momenta. The complexity of a calculation is determined by the number of propagators that are present rather than the number of all the linearly independent propagators. Furthermore, the symmetries of Feynman integrals under permutations of indices are transparent in the parametric representation. Since all the indices of the propagators are nonnegative, an algorithm to solve those identities can easily be developed, which can be used for automatic calculations. Abstract In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the integration-by-part (IBP) method in the momentum space. Tensor integrals can directly be parametrized without performing tensor reductions. The integrands of parametric integrals are functions of Lorentz scalars, instead of four momenta. The complexity of a calculation is determined by the number of propagators that are present rather than the number of all the linearly independent propagators. Furthermore, the symmetries of Feynman integrals under permutations of indices are transparent in the parametric representation. Since all the indices of the propagators are nonnegative, an algorithm to solve those identities can easily be developed, which can be used for automatic calculations. |
ArticleNumber | 115 |
Author | Chen, Wen |
Author_xml | – sequence: 1 givenname: Wen orcidid: 0000-0002-7568-2056 surname: Chen fullname: Chen, Wen email: wchen1@ualberta.ca organization: Department of Physics, University of Alberta |
BookMark | eNp9kEFLAzEQRoNUsFXPXhe86KF2JrvpJicRqVopKKLnEJPZuqVNajY9-O_duqIi6ClD-N43wxuwng-eGDtCOEOAcnR7M7kHfsKBwymi2GF9BK6GsihV78e8xwZNswBAgQr67PyB3MamOvgsVNkVvfmV8VntE82jWTbtlKUXytYmmhWlWNss0jpSQz6ZLXXAdqs2R4ef7z57upo8Xt4MZ3fX08uL2dAWWKZhPpacSoQCrIQceJHzSgnEZyUlFGOsxrysXAlSorMiB1uMC6MkIEolnXH5Ppt2vS6YhV7HemXimw6m1h8fIc61iam2S9IEnJRxvBLIC2mdISsdEVeIOQq77TruutYxvG6oSXoRNtG352ueC8m5Eoq3qVGXsjE0TaTqayuC3hrXnXG9Na5b4y0hfhG27iylaOrlPxx0XNNu8HOK3_f8hbwDxN-TXw |
CitedBy_id | crossref_primary_10_1103_PhysRevD_110_L091901 crossref_primary_10_1103_PhysRevLett_132_201901 |
Cites_doi | 10.1007/JHEP09(2018)024 10.1016/0550-3213(81)90199-1 10.1016/S0168-9002(97)00126-5 10.1007/JHEP11(2013)165 10.1088/1126-6708/2008/07/031 10.1143/PTP.20.690 10.1088/1126-6708/2004/07/046 10.1016/0370-2693(81)90288-4 10.1016/S0550-3213(00)00223-6 10.1103/PhysRev.76.769 10.1016/j.nuclphysb.2004.10.018 10.1016/j.physletb.2015.03.029 10.1016/j.cpc.2018.04.012 10.1016/j.cpc.2014.01.017 10.1143/PTP.17.401 10.1088/1126-6708/2006/01/001 10.1007/s11005-018-1114-8 10.1016/j.cpc.2008.11.006 10.1088/1126-6708/2008/10/107 10.1016/j.cpc.2010.03.012 10.1088/1742-6596/523/1/012059 10.1142/S0217751X00002159 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2021 – notice: Journal of High Energy Physics is a copyright of Springer, (2020). All Rights Reserved. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP02(2020)115 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_e02e9ad2f51248cdaec8dee2911315cd 10_1007_JHEP02_2020_115 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-3682e71040c80302432f9511b9880461f627fd70881dc530c464a98011898dad3 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:28:24 EDT 2025 Sat Jul 26 00:06:11 EDT 2025 Tue Jul 01 03:55:01 EDT 2025 Thu Apr 24 22:57:46 EDT 2025 Fri Feb 21 02:48:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | NLO Computations QCD Phenomenology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-3682e71040c80302432f9511b9880461f627fd70881dc530c464a98011898dad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7568-2056 |
OpenAccessLink | https://www.proquest.com/docview/2358229592?pq-origsite=%requestingapplication% |
PQID | 2358229592 |
PQPubID | 2034718 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e02e9ad2f51248cdaec8dee2911315cd proquest_journals_2358229592 crossref_primary_10_1007_JHEP02_2020_115 crossref_citationtrail_10_1007_JHEP02_2020_115 springer_journals_10_1007_JHEP02_2020_115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, arXiv:1901.07808 [INSPIRE]. S. Actis, A. Ferroglia, G. Passarino, M. Passera and S. Uccirati, Two-loop tensor integrals in quantum field theory, Nucl. Phys.B 703 (2004) 3 [hep-ph/0402132] [INSPIRE]. ChetyrkinKGTkachovFVIntegration by Parts: The Algorithm to Calculate β-functions in 4 LoopsNucl. Phys.1981B 1921591981NuPhB.192..159C10.1016/0550-3213(81)90199-1[INSPIRE] NakanishiNGeneral Integral Formula of Perturbation Term in the Quantized Field TheoryProg. Theor. Phys.1957174011957PThPh..17..401N8438310.1143/PTP.17.401 FeynmanRPSpace-time approach to quantum electrodynamicsPhys. Rev.1949767691949PhRv...76..769F3568710.1103/PhysRev.76.769[INSPIRE] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE]. LarsenKJZhangYIntegration-by-parts reductions from unitarity cuts and algebraic geometryPhys. Rev.2016D 932016PhRvD..93d1701L3499242[arXiv:1511.01071] [INSPIRE] LeeRNPomeranskyAACritical points and number of master integralsJHEP2013111652013JHEP...11..165L313217210.1007/JHEP11(2013)165[arXiv:1308.6676] [INSPIRE] O.V. Tarasov, Reduction of Feynman graph amplitudes to a minimal set of basic integrals, Acta Phys. Polon.B 29 (1998) 2655 [hep-ph/9812250] [INSPIRE]. BöhmJGeorgoudisALarsenKJSchönemannHZhangYComplete integration-by-parts reductions of the non-planar hexagon-box via module intersectionsJHEP2018090242018JHEP...09..024B387127510.1007/JHEP09(2018)024[arXiv:1805.01873] [INSPIRE] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP07 (2004) 046 [hep-ph/0404258] [INSPIRE]. A.V. Smirnov and V.A. Smirnov, Applying Grobner bases to solve reduction problems for Feynman integrals, JHEP01 (2006) 001 [hep-lat/0509187] [INSPIRE]. SymanzikKDispersion relations and vertex properties in perturbation theoryProg. Theor. Phys.1958206901958PThPh..20..690S10306510.1143/PTP.20.690 BöhmJGeorgoudisALarsenKJSchulzeMZhangYComplete sets of logarithmic vector fields for integration-by-parts identities of Feynman integralsPhys. Rev.2018D 982018PhRvD..98b5023B3924092[arXiv:1712.09737] [INSPIRE] TkachovFVA Theorem on Analytical Calculability of Four Loop Renormalization Group FunctionsPhys. Lett.1981100B651981PhLB..100...65T60764010.1016/0370-2693(81)90288-4[INSPIRE] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE]. W. Chen, Reduction of Feynman Integrals in the Parametric Representation II: Reduction of Tensor Integrals, arXiv:1912.08606 [INSPIRE]. KantPFinding Linear Dependencies in Integration-By-Parts Equations: A Monte Carlo ApproachComput. Phys. Commun.201418514732014CoPhC.185.1473K10.1016/j.cpc.2014.01.017[arXiv:1309.7287] [INSPIRE] TarasovOVConnection between Feynman integrals having different values of the space-time dimensionPhys. Rev.1996D 5464791996PhRvD..54.6479T14235860925.81121[hep-th/9606018] [INSPIRE] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE]. P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth.A 389 (1997) 347 [hep-ph/9611449] [INSPIRE]. StuderusCReduze-Feynman Integral Reduction in C++Comput. Phys. Commun.201018112932010CoPhC.181.1293S264497110.1016/j.cpc.2010.03.012[arXiv:0912.2546] [INSPIRE] R.N. Lee, Modern techniques of multiloop calculations, in Proceedings, 49th Rencontres de Moriond on QCD and High Energy Interactions, La Thuile, Italy, 22–29 March 2014, pp. 297–300 (2014) [arXiv:1405.5616] [INSPIRE]. SmirnovAVTentyukovMNFeynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA)Comput. Phys. Commun.20091807352009CoPhC.180..735S10.1016/j.cpc.2008.11.006[arXiv:0807.4129] [INSPIRE] SmirnovAVAlgorithm FIRE — Feynman Integral REductionJHEP2008101072008JHEP...10..107S10.1088/1126-6708/2008/10/107[arXiv:0807.3243] [INSPIRE] LeeRNGroup structure of the integration-by-part identities and its application to the reduction of multiloop integralsJHEP2008070312008JHEP...07..031L243015310.1088/1126-6708/2008/07/031[arXiv:0804.3008] [INSPIRE] von ManteuffelASchabingerRMQuark and gluon form factors to four-loop order in QCD: theNf3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {N}_f^3 $$\end{document}contributionsPhys. Rev.2017D 952017PhRvD..95c4030V[arXiv:1611.00795] [INSPIRE] MaierhöferPUsovitschJUwerPKira — A Feynman integral reduction programComput. Phys. Commun.2018230992018CoPhC.230...99M10.1016/j.cpc.2018.04.012[arXiv:1705.05610] [INSPIRE] BitounTBognerCKlausenRPPanzerEFeynman integral relations from parametric annihilatorsLett. Math. Phys.20191094972019LMaPh.109..497B391013410.1007/s11005-018-1114-8[arXiv:1712.09215] [INSPIRE] von ManteuffelASchabingerRMA novel approach to integration by parts reductionPhys. Lett.2015B 7441012015PhLB..744..101V334186810.1016/j.physletb.2015.03.029[arXiv:1406.4513] [INSPIRE] J Böhm (12413_CR28) 2018; 09 J Böhm (12413_CR27) 2018; D 98 12413_CR3 12413_CR4 12413_CR20 12413_CR5 12413_CR6 RN Lee (12413_CR7) 2008; 07 K Symanzik (12413_CR23) 1958; 20 AV Smirnov (12413_CR30) 2009; 180 N Nakanishi (12413_CR22) 1957; 17 KJ Larsen (12413_CR26) 2016; D 93 12413_CR18 12413_CR16 12413_CR17 12413_CR10 A von Manteuffel (12413_CR9) 2015; B 744 12413_CR13 FV Tkachov (12413_CR1) 1981; 100B RN Lee (12413_CR19) 2013; 11 RP Feynman (12413_CR21) 1949; 76 12413_CR31 OV Tarasov (12413_CR24) 1996; D 54 P Maierhöfer (12413_CR15) 2018; 230 T Bitoun (12413_CR25) 2019; 109 P Kant (12413_CR8) 2014; 185 AV Smirnov (12413_CR11) 2008; 10 C Studerus (12413_CR12) 2010; 181 KG Chetyrkin (12413_CR2) 1981; B 192 A von Manteuffel (12413_CR14) 2017; D 95 12413_CR29 |
References_xml | – reference: SmirnovAVAlgorithm FIRE — Feynman Integral REductionJHEP2008101072008JHEP...10..107S10.1088/1126-6708/2008/10/107[arXiv:0807.3243] [INSPIRE] – reference: BöhmJGeorgoudisALarsenKJSchulzeMZhangYComplete sets of logarithmic vector fields for integration-by-parts identities of Feynman integralsPhys. Rev.2018D 982018PhRvD..98b5023B3924092[arXiv:1712.09737] [INSPIRE] – reference: von ManteuffelASchabingerRMQuark and gluon form factors to four-loop order in QCD: theNf3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {N}_f^3 $$\end{document}contributionsPhys. Rev.2017D 952017PhRvD..95c4030V[arXiv:1611.00795] [INSPIRE] – reference: P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth.A 389 (1997) 347 [hep-ph/9611449] [INSPIRE]. – reference: T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys.B 580 (2000) 485 [hep-ph/9912329] [INSPIRE]. – reference: TarasovOVConnection between Feynman integrals having different values of the space-time dimensionPhys. Rev.1996D 5464791996PhRvD..54.6479T14235860925.81121[hep-th/9606018] [INSPIRE] – reference: KantPFinding Linear Dependencies in Integration-By-Parts Equations: A Monte Carlo ApproachComput. Phys. Commun.201418514732014CoPhC.185.1473K10.1016/j.cpc.2014.01.017[arXiv:1309.7287] [INSPIRE] – reference: StuderusCReduze-Feynman Integral Reduction in C++Comput. Phys. Commun.201018112932010CoPhC.181.1293S264497110.1016/j.cpc.2010.03.012[arXiv:0912.2546] [INSPIRE] – reference: R.N. Lee, Modern techniques of multiloop calculations, in Proceedings, 49th Rencontres de Moriond on QCD and High Energy Interactions, La Thuile, Italy, 22–29 March 2014, pp. 297–300 (2014) [arXiv:1405.5616] [INSPIRE]. – reference: R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE]. – reference: LarsenKJZhangYIntegration-by-parts reductions from unitarity cuts and algebraic geometryPhys. Rev.2016D 932016PhRvD..93d1701L3499242[arXiv:1511.01071] [INSPIRE] – reference: S. Actis, A. Ferroglia, G. Passarino, M. Passera and S. Uccirati, Two-loop tensor integrals in quantum field theory, Nucl. Phys.B 703 (2004) 3 [hep-ph/0402132] [INSPIRE]. – reference: O.V. Tarasov, Reduction of Feynman graph amplitudes to a minimal set of basic integrals, Acta Phys. Polon.B 29 (1998) 2655 [hep-ph/9812250] [INSPIRE]. – reference: SymanzikKDispersion relations and vertex properties in perturbation theoryProg. Theor. Phys.1958206901958PThPh..20..690S10306510.1143/PTP.20.690 – reference: ChetyrkinKGTkachovFVIntegration by Parts: The Algorithm to Calculate β-functions in 4 LoopsNucl. Phys.1981B 1921591981NuPhB.192..159C10.1016/0550-3213(81)90199-1[INSPIRE] – reference: S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. – reference: A.V. Smirnov and V.A. Smirnov, Applying Grobner bases to solve reduction problems for Feynman integrals, JHEP01 (2006) 001 [hep-lat/0509187] [INSPIRE]. – reference: R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE]. – reference: MaierhöferPUsovitschJUwerPKira — A Feynman integral reduction programComput. Phys. Commun.2018230992018CoPhC.230...99M10.1016/j.cpc.2018.04.012[arXiv:1705.05610] [INSPIRE] – reference: C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP07 (2004) 046 [hep-ph/0404258] [INSPIRE]. – reference: SmirnovAVTentyukovMNFeynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA)Comput. Phys. Commun.20091807352009CoPhC.180..735S10.1016/j.cpc.2008.11.006[arXiv:0807.4129] [INSPIRE] – reference: von ManteuffelASchabingerRMA novel approach to integration by parts reductionPhys. Lett.2015B 7441012015PhLB..744..101V334186810.1016/j.physletb.2015.03.029[arXiv:1406.4513] [INSPIRE] – reference: BitounTBognerCKlausenRPPanzerEFeynman integral relations from parametric annihilatorsLett. Math. Phys.20191094972019LMaPh.109..497B391013410.1007/s11005-018-1114-8[arXiv:1712.09215] [INSPIRE] – reference: BöhmJGeorgoudisALarsenKJSchönemannHZhangYComplete integration-by-parts reductions of the non-planar hexagon-box via module intersectionsJHEP2018090242018JHEP...09..024B387127510.1007/JHEP09(2018)024[arXiv:1805.01873] [INSPIRE] – reference: NakanishiNGeneral Integral Formula of Perturbation Term in the Quantized Field TheoryProg. Theor. Phys.1957174011957PThPh..17..401N8438310.1143/PTP.17.401 – reference: W. Chen, Reduction of Feynman Integrals in the Parametric Representation II: Reduction of Tensor Integrals, arXiv:1912.08606 [INSPIRE]. – reference: LeeRNGroup structure of the integration-by-part identities and its application to the reduction of multiloop integralsJHEP2008070312008JHEP...07..031L243015310.1088/1126-6708/2008/07/031[arXiv:0804.3008] [INSPIRE] – reference: LeeRNPomeranskyAACritical points and number of master integralsJHEP2013111652013JHEP...11..165L313217210.1007/JHEP11(2013)165[arXiv:1308.6676] [INSPIRE] – reference: FeynmanRPSpace-time approach to quantum electrodynamicsPhys. Rev.1949767691949PhRv...76..769F3568710.1103/PhysRev.76.769[INSPIRE] – reference: TkachovFVA Theorem on Analytical Calculability of Four Loop Renormalization Group FunctionsPhys. Lett.1981100B651981PhLB..100...65T60764010.1016/0370-2693(81)90288-4[INSPIRE] – reference: A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, arXiv:1901.07808 [INSPIRE]. – ident: 12413_CR13 – volume: D 54 start-page: 6479 year: 1996 ident: 12413_CR24 publication-title: Phys. Rev. – volume: 09 start-page: 024 year: 2018 ident: 12413_CR28 publication-title: JHEP doi: 10.1007/JHEP09(2018)024 – volume: B 192 start-page: 159 year: 1981 ident: 12413_CR2 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(81)90199-1 – ident: 12413_CR3 doi: 10.1016/S0168-9002(97)00126-5 – volume: 11 start-page: 165 year: 2013 ident: 12413_CR19 publication-title: JHEP doi: 10.1007/JHEP11(2013)165 – volume: D 93 year: 2016 ident: 12413_CR26 publication-title: Phys. Rev. – volume: 07 start-page: 031 year: 2008 ident: 12413_CR7 publication-title: JHEP doi: 10.1088/1126-6708/2008/07/031 – volume: 20 start-page: 690 year: 1958 ident: 12413_CR23 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.20.690 – ident: 12413_CR10 doi: 10.1088/1126-6708/2004/07/046 – volume: 100B start-page: 65 year: 1981 ident: 12413_CR1 publication-title: Phys. Lett. doi: 10.1016/0370-2693(81)90288-4 – ident: 12413_CR17 doi: 10.1016/S0550-3213(00)00223-6 – volume: 76 start-page: 769 year: 1949 ident: 12413_CR21 publication-title: Phys. Rev. doi: 10.1103/PhysRev.76.769 – ident: 12413_CR31 doi: 10.1016/j.nuclphysb.2004.10.018 – volume: B 744 start-page: 101 year: 2015 ident: 12413_CR9 publication-title: Phys. Lett. doi: 10.1016/j.physletb.2015.03.029 – volume: 230 start-page: 99 year: 2018 ident: 12413_CR15 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.04.012 – ident: 12413_CR20 – volume: 185 start-page: 1473 year: 2014 ident: 12413_CR8 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.01.017 – volume: 17 start-page: 401 year: 1957 ident: 12413_CR22 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.17.401 – ident: 12413_CR4 – ident: 12413_CR6 doi: 10.1088/1126-6708/2006/01/001 – volume: 109 start-page: 497 year: 2019 ident: 12413_CR25 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-018-1114-8 – volume: 180 start-page: 735 year: 2009 ident: 12413_CR30 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2008.11.006 – volume: D 98 year: 2018 ident: 12413_CR27 publication-title: Phys. Rev. – volume: 10 start-page: 107 year: 2008 ident: 12413_CR11 publication-title: JHEP doi: 10.1088/1126-6708/2008/10/107 – volume: 181 start-page: 1293 year: 2010 ident: 12413_CR12 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.03.012 – ident: 12413_CR29 doi: 10.1088/1742-6596/523/1/012059 – ident: 12413_CR18 – ident: 12413_CR5 doi: 10.1142/S0217751X00002159 – volume: D 95 year: 2017 ident: 12413_CR14 publication-title: Phys. Rev. – ident: 12413_CR16 |
SSID | ssj0015190 |
Score | 2.430079 |
Snippet | A
bstract
In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the... In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the... Abstract In this paper, the reduction of Feynman integrals in the parametric representation is considered. This method proves to be more efficient than the... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Classical and Quantum Gravitation Elementary Particles High energy physics Identities Integrals Mathematical analysis NLO Computations Permutations Physics Physics and Astronomy QCD Phenomenology Quantum Field Theories Quantum Field Theory Quantum Physics Reduction Regular Article - Theoretical Physics Relativity Theory Representations Scalars String Theory Tensors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6xWycFDe1ibZLO7yUlUWkpBEbHQ25JNsqd2K7Ye_PfO7KNWoXjxtuwmS5jJZL5JMt8Qcp3BHIlcJIMEIx3pkixQudBBnin0iFEoDe5DPj7Fo4kcT6PpRqkvvBNW0QNXgut7Jrw2TuTgmaSyznirnPcCjDTkkXW4-oLPa4Kp-vwAcAlriHxY0h-PBs9MdCHQZz2OFXA3fFBJ1f8DX_46Ei09zfCA7NcQkd5VQzskO744IrvlVU27PCa3L8i2ivKki5wO_WcxNwWtaR9mS3iiAOoocnrPsVyWpSVxZZNkVJyQyXDw-jAK6jIIgZU8WQVhrIQHICCZVWCSQoYiB1zEMw22J2OexyLJXQLLBXc2CpmVsTRaYUqpVs648JS0ikXhzwiVmdHQWRtjITJiDrpkXCccWeycy1Sb3DSCSW3NEY6lKmZpw25cSTJFSULwELVJd93hraLH2N70HiW9boa81uUL0HZaazv9S9tt0mn0lNbGtkzLbF-hIy3apNfo7vvzlvGc_8d4Lsge_q-6xt0hrdX7h78ElLLKrsoJ-QUwAeAz priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SEbyIT6xW2YOH9rC6ySa7yUm0tJSCImKhtyWvPbWr2Hrw3zuzj0orPXgLuxlYZjKZbzaZbwi5MbBGhBM8TDHT4S41ocyZCnMjMSKKmGv8D_n0nIwmfDwV05okCWthNs7v78ajwUvEupCiRz2KxeS7gsYp9mjoJ_3VcQHAkKjh7fkrtBZySmb-NTi5cQJaBpbhITmoEWHwUJnwiOz44pjslTcz7eKE3L8iuSqqL3jPg6H_Lua6CGqWh9kCRgFguAApvOfYHcsGJU9lU1NUnJLJcPDWH4V114PQcpouwziRzEPc55GV4IGMxywHGESNAlfjCc0TluYuhd2BOiviyPKEayWxglRJp118RlrFe-HPScCNViCstLaQCEUORAxVKUXSOueMbJPbRjGZrSnBsTPFLGvIjCtNZqhJyBVEm3RXAh8VG8b2qY-o6dU0pLEuH4B1s9orMh8xr7RjOcAOLq3T3krnPYMdOKbCujbpNHbKat9aZGVxL1NCsTbpNbb7fb3ley7-MfeS7OOwupzdIa3l55e_AuyxNNfluvsBsTzOAQ priority: 102 providerName: Springer Nature |
Title | Reduction of Feynman integrals in the parametric representation |
URI | https://link.springer.com/article/10.1007/JHEP02(2020)115 https://www.proquest.com/docview/2358229592 https://doaj.org/article/e02e9ad2f51248cdaec8dee2911315cd |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BKyQWxFMUSpWBoQyBxHESe0KlaqkqUSFEJbbIsR0WSIGWgX_PXeqUhwSLlYcdRWff-buz_R3AaY5jJDYx91PydLhJc18UTPpFLmhGjCOuKA55M0lGUz5-iB9cwG3utlXWNrEy1GamKUZ-UR3pZDKW7PLl1aesUbS66lJorEMTTbAQDWheDSa3d6t1BMQnQU3oE6QX49HgNmBddPiDs5Ay4X6biyrK_h8489fSaDXjDLdhy0FFr7fs2x1Ys-UubFRbNvV8Dy7viHWV5OrNCm9oP8pnVXqO_uFpjlcegjuPuL2fKW2W9ioCy_qwUbkP0-Hgvj_yXToEX_MwXfhRIphFQMADLVA1GY9YgfgozCXqIE_CImFpYVI0G6HRcRRonnAlBR0tlcIoEx1Ao5yV9hA8niuJjaVSGj2kwGCTPJRpSGx2xuSiBee1YDLtuMIpZcVTVrMcLyWZkSTRiYhb0F01eFnSZPxd9YokvapG_NbVg9nbY-bUJbMBs1IZViAe4UIbZbUw1jI0zVEYa9OCdt1PmVO6efY1RFpwVvfd1-s__ufo_08dwybVXG7UbkNj8fZuTxCHLPIOrIvhdccNObzrM05l0u9Unj2WU9b7BO1L3Gg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUEUvFRRQl_LwoUhwCCSOk9gHhHhtl6cqBBK31LGdXiAL7FYVf4rfyEwSLwUJbtyixGNFM58948d8A_CjQIwkNhFBRisdYbMikCVXQVlI8ohJLDTtQ56epb1LcXSVXI3Bo8-FoWuVfk6sJ2rbN7RHvlmndHKVKL59exdQ1Sg6XfUlNBpYHLuHf7hkG2wd7qN9VznvHlzs9YK2qkBgRJQNgziV3KFfFaGRiHAuYl5imBEVCqEs0qhMeVbaDEdfZE0Sh0akQitJGZpKWm1j7HccJkWMnpwy07s_R6cWGA2Fnj4ozDaPege_Qr7GMSJbj6ju7n-ery4Q8CKqfXUQW_u37jR8aQNTttMgaQbGXPUVPtUXRM1gFrbPieOVrMj6Jeu6h-pGV6wlm7ge4BPDUJIRk_gNFekyrKbL9KlN1Rxcfoia5mGi6lfuGzBRaIXCSmuD67HQokgRqSwi7jxrC9mBDa-Y3LTM5FQg4zr3nMqNJnPSJC5Zkg6sjQRuG1KOt5vukqZHzYhNu37Rv_-Tt4MzdyF3SlteYvQjpLHaGWmd4-gI4igxtgOL3k55O8QH-TMgO7Dubff8-Y3_WXi_qxWY6l2cnuQnh2fH3-EzSTVXxBdhYnj_1y1hBDQslmvYMfj90Th_Ak0cD5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRa16qUppxbY8fKASHNJNHCexDwgV2NXyWq1Qkbilju30AlnKblXx1_h1zCTxQivBjVuU2FY0_uyZsWe-AdgsECOJTUSQkacjbFYEsuQqKAtJGjGJhaZzyNNROjwXRxfJxQLc-VwYCqv0e2K9UduJoTPyXp3SyVWieK9swyLGB4Pd698BVZCim1ZfTqOByLG7_Yvu23Tn8ADn-ivng_6P_WHQVhgIjIiyWRCnkjvUsSI0EtHORcxLNDmiQiGsRRqVKc9Km-FKjKxJ4tCIVGglKVtTSattjOO-gsWMvKIOLO71R-Oz-R0G2kahJxMKs97RsD8O-RZH-2w7oiq8j_RgXS7gHxv3v2vZWtsN3sO71kxl3xtcLcGCqz7A6zpc1EyXYfeMGF9pTtmkZAN3W13pirXUE5dTfGJoWDLiFb-ikl2G1eSZPtGp-gjnLyKoT9CpJpVbASYKrbCz0tqgdxZa7FJEKouISc_aQnbhmxdMblqeciqXcZl7huVGkjlJEh2YpAtb8w7XDUXH0033SNLzZsStXb-Y3PzK26Wau5A7pS0v0RYS0ljtjLTOcVQLcZQY24VVP095u-Cn-QM8u7Dt5-7h8xP_8_n5oTbgDWI8PzkcHX-Bt9SpiRdfhc7s5o9bQ3NoVqy3uGPw86Whfg_W0RUm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduction+of+Feynman+integrals+in+the+parametric+representation&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Chen%2C+Wen&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2020&rft.issue=2&rft_id=info:doi/10.1007%2FJHEP02%282020%29115&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |