A universal route to N-coordinated metals anchored on porous carbon nanosheets for highly efficient oxygen electrochemistry

Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to substitute noble-metal electrocatalysts are significantly vital for the development of electrocatalytic energy conversion technologies. Metal mod...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 7; no. 22; pp. 13591 - 1361
Main Authors Ren, Jin-Tao, Yuan, Zhong-Yong
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to substitute noble-metal electrocatalysts are significantly vital for the development of electrocatalytic energy conversion technologies. Metal modified N-doped carbon materials have attracted tremendous interest due to the evidently improved activities and fascinating features, whereas the development of facile and efficient fabrication methodologies is still highly challenging. Herein, we elaborately developed a reliable and scalable graphitic carbon nitride (g-C 3 N 4 )-templated method to prepare uniformly dispersed N-coordinated metal (M = Fe, Co, Ni, Cu, Mn, Mo and Sn) species in porous carbon nanosheets (M-N-C PCSs) using cost-effective and sustainable polyacrylonitrile (PAN) as a heteroatom precursor and carbon source. With the assembly of sufficiently distributed N-coordinated metal species, and advanced porous nanosheet architectures, the as-synthesized M-N-C PCSs, especially Fe-N-C PCSs, exhibit an outstanding catalytic efficiency for both oxygen reduction and evolution reactions in an alkaline medium, even competing with the state-of-the-art Pt/C catalysts and recently reported highly active non-noble electrocatalysts, thus possessing an ability to work as an air cathode for rechargeable Zn-air batteries with a large peak power density and high long-term durability. This reported synthesis approach will provide novel but facile guidance to the exploration and preparation of various porous carbon materials with an outstanding efficiency for diverse energy systems. Highly porous carbon nanosheets with N-coordinated metals are rationally developed and show outstanding electrocatalytic oxygen reduction and oxygen evolution performance.
AbstractList Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to substitute noble-metal electrocatalysts are significantly vital for the development of electrocatalytic energy conversion technologies. Metal modified N-doped carbon materials have attracted tremendous interest due to the evidently improved activities and fascinating features, whereas the development of facile and efficient fabrication methodologies is still highly challenging. Herein, we elaborately developed a reliable and scalable graphitic carbon nitride (g-C 3 N 4 )-templated method to prepare uniformly dispersed N-coordinated metal (M = Fe, Co, Ni, Cu, Mn, Mo and Sn) species in porous carbon nanosheets (M–N–C PCSs) using cost-effective and sustainable polyacrylonitrile (PAN) as a heteroatom precursor and carbon source. With the assembly of sufficiently distributed N-coordinated metal species, and advanced porous nanosheet architectures, the as-synthesized M–N–C PCSs, especially Fe–N–C PCSs, exhibit an outstanding catalytic efficiency for both oxygen reduction and evolution reactions in an alkaline medium, even competing with the state-of-the-art Pt/C catalysts and recently reported highly active non-noble electrocatalysts, thus possessing an ability to work as an air cathode for rechargeable Zn–air batteries with a large peak power density and high long-term durability. This reported synthesis approach will provide novel but facile guidance to the exploration and preparation of various porous carbon materials with an outstanding efficiency for diverse energy systems.
Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to substitute noble-metal electrocatalysts are significantly vital for the development of electrocatalytic energy conversion technologies. Metal modified N-doped carbon materials have attracted tremendous interest due to the evidently improved activities and fascinating features, whereas the development of facile and efficient fabrication methodologies is still highly challenging. Herein, we elaborately developed a reliable and scalable graphitic carbon nitride (g-C 3 N 4 )-templated method to prepare uniformly dispersed N-coordinated metal (M = Fe, Co, Ni, Cu, Mn, Mo and Sn) species in porous carbon nanosheets (M-N-C PCSs) using cost-effective and sustainable polyacrylonitrile (PAN) as a heteroatom precursor and carbon source. With the assembly of sufficiently distributed N-coordinated metal species, and advanced porous nanosheet architectures, the as-synthesized M-N-C PCSs, especially Fe-N-C PCSs, exhibit an outstanding catalytic efficiency for both oxygen reduction and evolution reactions in an alkaline medium, even competing with the state-of-the-art Pt/C catalysts and recently reported highly active non-noble electrocatalysts, thus possessing an ability to work as an air cathode for rechargeable Zn-air batteries with a large peak power density and high long-term durability. This reported synthesis approach will provide novel but facile guidance to the exploration and preparation of various porous carbon materials with an outstanding efficiency for diverse energy systems. Highly porous carbon nanosheets with N-coordinated metals are rationally developed and show outstanding electrocatalytic oxygen reduction and oxygen evolution performance.
Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to substitute noble-metal electrocatalysts are significantly vital for the development of electrocatalytic energy conversion technologies. Metal modified N-doped carbon materials have attracted tremendous interest due to the evidently improved activities and fascinating features, whereas the development of facile and efficient fabrication methodologies is still highly challenging. Herein, we elaborately developed a reliable and scalable graphitic carbon nitride (g-C₃N₄)-templated method to prepare uniformly dispersed N-coordinated metal (M = Fe, Co, Ni, Cu, Mn, Mo and Sn) species in porous carbon nanosheets (M–N–C PCSs) using cost-effective and sustainable polyacrylonitrile (PAN) as a heteroatom precursor and carbon source. With the assembly of sufficiently distributed N-coordinated metal species, and advanced porous nanosheet architectures, the as-synthesized M–N–C PCSs, especially Fe–N–C PCSs, exhibit an outstanding catalytic efficiency for both oxygen reduction and evolution reactions in an alkaline medium, even competing with the state-of-the-art Pt/C catalysts and recently reported highly active non-noble electrocatalysts, thus possessing an ability to work as an air cathode for rechargeable Zn–air batteries with a large peak power density and high long-term durability. This reported synthesis approach will provide novel but facile guidance to the exploration and preparation of various porous carbon materials with an outstanding efficiency for diverse energy systems.
Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to substitute noble-metal electrocatalysts are significantly vital for the development of electrocatalytic energy conversion technologies. Metal modified N-doped carbon materials have attracted tremendous interest due to the evidently improved activities and fascinating features, whereas the development of facile and efficient fabrication methodologies is still highly challenging. Herein, we elaborately developed a reliable and scalable graphitic carbon nitride (g-C3N4)-templated method to prepare uniformly dispersed N-coordinated metal (M = Fe, Co, Ni, Cu, Mn, Mo and Sn) species in porous carbon nanosheets (M–N–C PCSs) using cost-effective and sustainable polyacrylonitrile (PAN) as a heteroatom precursor and carbon source. With the assembly of sufficiently distributed N-coordinated metal species, and advanced porous nanosheet architectures, the as-synthesized M–N–C PCSs, especially Fe–N–C PCSs, exhibit an outstanding catalytic efficiency for both oxygen reduction and evolution reactions in an alkaline medium, even competing with the state-of-the-art Pt/C catalysts and recently reported highly active non-noble electrocatalysts, thus possessing an ability to work as an air cathode for rechargeable Zn–air batteries with a large peak power density and high long-term durability. This reported synthesis approach will provide novel but facile guidance to the exploration and preparation of various porous carbon materials with an outstanding efficiency for diverse energy systems.
Author Ren, Jin-Tao
Yuan, Zhong-Yong
AuthorAffiliation School of Materials Science and Engineering
Nankai University
National Institute for Advanced Materials
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
AuthorAffiliation_xml – sequence: 0
  name: National Institute for Advanced Materials
– sequence: 0
  name: School of Materials Science and Engineering
– sequence: 0
  name: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 0
  name: Nankai University
– sequence: 0
  name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
Author_xml – sequence: 1
  givenname: Jin-Tao
  surname: Ren
  fullname: Ren, Jin-Tao
– sequence: 2
  givenname: Zhong-Yong
  surname: Yuan
  fullname: Yuan, Zhong-Yong
BookMark eNptkctLxDAQxoMo-NqLdyHgRYRq0qSPHJfFF4he1nNJp1Mb6SZrkhUX_3mjKwriXGYGft88-PbJtnUWCTni7JwzoS5ARc2EYExvkb2cFSyrpCq3f-q63iWTEJ5ZipqxUqk98j6lK2te0Qc9Uu9WEWl09D4D53xnrI7Y0QVGPQaqLQzOp95ZunSJDRS0b1NntXVhQIyB9s7TwTwN45pi3xswaCN1b-sntBRHhOgdDLgwIfr1Idnp02CcfOcD8nh1OZ_dZHcP17ez6V0Gklcxy0FWohbYYodQFRw7zktZ56KqhGhbWQJ2QumCVUxJybRuZQECeVcAKz6VB-R0M3fp3csKQ2zSfsBx1BbTF02eV7yWosjLhJ78QZ_dytt0XaKEVDwXSiWKbSjwLgSPfQMm6micjV6bseGs-TSkman59MuQaZKc_ZEsvVlov_4fPt7APsAP9-uu-ACAqJhQ
CitedBy_id crossref_primary_10_1016_j_cej_2021_131717
crossref_primary_10_1016_j_colsurfa_2021_127395
crossref_primary_10_1002_smll_202101856
crossref_primary_10_1016_j_jechem_2020_02_055
crossref_primary_10_1039_D0NR02618B
crossref_primary_10_1007_s11705_022_2153_3
crossref_primary_10_1016_j_ccr_2024_215901
crossref_primary_10_1002_anbr_202300078
crossref_primary_10_1016_j_apcatb_2022_121190
crossref_primary_10_1016_j_cej_2021_130761
crossref_primary_10_1039_D0TA03457F
crossref_primary_10_1016_j_cej_2020_124408
crossref_primary_10_1039_C9CY02217A
crossref_primary_10_1039_D2TA02076A
crossref_primary_10_1007_s11705_023_2318_8
crossref_primary_10_1016_j_apcatb_2023_122466
crossref_primary_10_1039_D3CS00557G
crossref_primary_10_1016_j_elecom_2021_106932
crossref_primary_10_1016_j_jcis_2019_09_107
crossref_primary_10_1039_D0NJ04907G
crossref_primary_10_1016_j_ijhydene_2021_04_179
crossref_primary_10_1016_j_gee_2022_03_014
crossref_primary_10_1002_cctc_202000360
crossref_primary_10_1007_s41918_022_00133_x
crossref_primary_10_1016_j_jechem_2020_04_054
crossref_primary_10_1002_celc_202101108
crossref_primary_10_1002_slct_202000322
crossref_primary_10_1002_smll_202306396
crossref_primary_10_1021_acssuschemeng_2c03952
crossref_primary_10_1039_D0CY00376J
crossref_primary_10_1016_j_ensm_2022_11_046
crossref_primary_10_1016_j_jechem_2020_08_030
crossref_primary_10_1016_j_materresbull_2024_112945
crossref_primary_10_1021_acs_analchem_9b04938
crossref_primary_10_1021_acsnano_3c10867
crossref_primary_10_1007_s11705_021_2104_4
crossref_primary_10_1016_j_cej_2021_133210
crossref_primary_10_1007_s10934_019_00846_3
crossref_primary_10_1039_D0QM00968G
crossref_primary_10_1002_cssc_202000416
crossref_primary_10_1016_j_jechem_2020_05_048
crossref_primary_10_1021_acs_jpcc_1c01910
crossref_primary_10_1039_D0TA06794F
crossref_primary_10_1016_S1872_2067_19_63455_8
crossref_primary_10_1016_j_jcis_2020_02_005
crossref_primary_10_1039_D4RA04251D
crossref_primary_10_1002_adfm_202000503
crossref_primary_10_1039_D3EE03059H
Cites_doi 10.1016/j.electacta.2008.02.012
10.1039/C8EE00673C
10.1002/smll.201602247
10.1021/ja3030565
10.1002/adma.201203923
10.1002/aenm.201801912
10.1002/anie.201510495
10.1039/C7NR06844A
10.1021/acsami.8b12108
10.1021/ja504696r
10.1002/aenm.201200013
10.1039/c0ee00558d
10.1021/acscatal.7b02340
10.1002/anie.201311223
10.1002/smll.201603407
10.1021/acs.nanolett.7b00004
10.1039/C8NR01655K
10.1126/science.1168049
10.1002/adma.201600398
10.1021/acsnano.6b05914
10.1002/adfm.201805828
10.1038/s41467-019-09290-y
10.1039/C9EE00162J
10.1002/smtd.201800251
10.1021/jacs.7b10194
10.1039/C4NR06366J
10.1021/acsami.7b14443
10.1021/acsnano.7b00417
10.1002/anie.201504830
10.1021/acsenergylett.7b00835
10.1021/acs.chemmater.7b03100
10.1038/nature11115
10.1021/acsenergylett.8b00303
10.1039/C5EE02903A
10.1039/C5CS00670H
10.1021/acsami.7b08533
10.1021/acscatal.7b01695
10.1002/aenm.201301735
10.1002/cctc.201801482
10.1002/smll.201602334
10.1021/acsami.6b16180
10.1002/adma.201401848
10.1002/adma.201506112
10.1021/ar300359w
10.1002/smll.201704354
10.1016/j.nanoen.2016.12.056
10.1002/anie.201600850
10.1002/adma.201104392
10.1002/adma.201806312
10.1021/jacs.6b00757
10.1002/anie.200907289
10.1002/anie.201702473
10.1002/adfm.201200186
10.1016/j.nanoen.2019.02.043
10.1021/acscatal.7b02101
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/c9ta03300a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 1361
ExternalDocumentID 10_1039_C9TA03300A
c9ta03300a
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c417t-2c47383ebedec751ed11648237733bb46ced39a50709440aab45c3e1d5c057383
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 18:08:12 EDT 2025
Mon Jun 30 12:07:33 EDT 2025
Tue Jul 01 03:14:03 EDT 2025
Thu Apr 24 22:54:21 EDT 2025
Tue Dec 17 21:00:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-2c47383ebedec751ed11648237733bb46ced39a50709440aab45c3e1d5c057383
Notes 10.1039/c9ta03300a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3790-8181
PQID 2234912399
PQPubID 2047523
PageCount 11
ParticipantIDs rsc_primary_c9ta03300a
proquest_miscellaneous_2271843526
crossref_citationtrail_10_1039_C9TA03300A
crossref_primary_10_1039_C9TA03300A
proquest_journals_2234912399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Ai (C9TA03300A-(cit40)/*[position()=1]) 2013; 25
Guan (C9TA03300A-(cit51)/*[position()=1]) 2017; 9
Shinde (C9TA03300A-(cit38)/*[position()=1]) 2017; 11
Zhou (C9TA03300A-(cit37)/*[position()=1]) 2015; 7
Ren (C9TA03300A-(cit21)/*[position()=1]) 2017; 7
Serov (C9TA03300A-(cit54)/*[position()=1]) 2014; 4
Song (C9TA03300A-(cit47)/*[position()=1]) 2016; 12
Xia (C9TA03300A-(cit45)/*[position()=1]) 2018
Yuan (C9TA03300A-(cit16)/*[position()=1]) 2019; 59
Ren (C9TA03300A-(cit30)/*[position()=1]) 2018; 10
Kuang (C9TA03300A-(cit52)/*[position()=1]) 2017; 2
Yu (C9TA03300A-(cit28)/*[position()=1]) 2016; 28
Wu (C9TA03300A-(cit11)/*[position()=1]) 2012; 134
Zhang (C9TA03300A-(cit31)/*[position()=1]) 2018; 14
Li (C9TA03300A-(cit33)/*[position()=1]) 2018; 28
Zhu (C9TA03300A-(cit53)/*[position()=1]) 2017; 13
Liu (C9TA03300A-(cit55)/*[position()=1]) 2010; 49
Zhang (C9TA03300A-(cit13)/*[position()=1]) 2016; 55
Zhang (C9TA03300A-(cit23)/*[position()=1]) 2019; 12
Chen (C9TA03300A-(cit35)/*[position()=1]) 2017; 32
Zhao (C9TA03300A-(cit24)/*[position()=1]) 2019; 10
Gong (C9TA03300A-(cit15)/*[position()=1]) 2009; 323
Wang (C9TA03300A-(cit34)/*[position()=1]) 2017; 29
Wang (C9TA03300A-(cit5)/*[position()=1]) 2018; 3
Han (C9TA03300A-(cit22)/*[position()=1]) 2017; 139
Yang (C9TA03300A-(cit14)/*[position()=1]) 2012; 22
Hu (C9TA03300A-(cit20)/*[position()=1]) 2016; 9
Zhang (C9TA03300A-(cit39)/*[position()=1]) 2018; 10
Wen (C9TA03300A-(cit18)/*[position()=1]) 2012; 24
Liu (C9TA03300A-(cit49)/*[position()=1]) 2016; 28
Tang (C9TA03300A-(cit44)/*[position()=1]) 2017; 9
Debe (C9TA03300A-(cit2)/*[position()=1]) 2012; 486
Xia (C9TA03300A-(cit6)/*[position()=1]) 2016; 55
Wang (C9TA03300A-(cit29)/*[position()=1]) 2017; 7
Chen (C9TA03300A-(cit32)/*[position()=1]) 2019; 31
Lei (C9TA03300A-(cit26)/*[position()=1]) 2018; 8
Ren (C9TA03300A-(cit17)/*[position()=1]) 2018; 10
Lin (C9TA03300A-(cit43)/*[position()=1]) 2014; 136
Ren (C9TA03300A-(cit12)/*[position()=1]) 2018; 10
Ye (C9TA03300A-(cit27)/*[position()=1]) 2017; 7
Cheng (C9TA03300A-(cit50)/*[position()=1]) 2017; 9
Zhu (C9TA03300A-(cit25)/*[position()=1]) 2016; 45
Hu (C9TA03300A-(cit42)/*[position()=1]) 2018; 11
Cao (C9TA03300A-(cit1)/*[position()=1]) 2012; 2
Chen (C9TA03300A-(cit46)/*[position()=1]) 2017; 56
Bezerra (C9TA03300A-(cit4)/*[position()=1]) 2008; 53
Wang (C9TA03300A-(cit36)/*[position()=1]) 2017; 17
Jung (C9TA03300A-(cit9)/*[position()=1]) 2014; 53
Ding (C9TA03300A-(cit48)/*[position()=1]) 2016; 12
Chen (C9TA03300A-(cit3)/*[position()=1]) 2011; 4
Yuan (C9TA03300A-(cit7)/*[position()=1]) 2016; 55
Yin (C9TA03300A-(cit10)/*[position()=1]) 2017; 11
Jiang (C9TA03300A-(cit19)/*[position()=1]) 2016; 138
Liang (C9TA03300A-(cit41)/*[position()=1]) 2014; 26
Wu (C9TA03300A-(cit8)/*[position()=1]) 2013; 46
References_xml – volume: 53
  start-page: 4937
  year: 2008
  ident: C9TA03300A-(cit4)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.02.012
– volume: 11
  start-page: 2208
  year: 2018
  ident: C9TA03300A-(cit42)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00673C
– volume: 12
  start-page: 5414
  year: 2016
  ident: C9TA03300A-(cit48)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201602247
– volume: 134
  start-page: 9082
  year: 2012
  ident: C9TA03300A-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3030565
– volume: 25
  start-page: 998
  year: 2013
  ident: C9TA03300A-(cit40)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201203923
– volume: 8
  start-page: 1801912
  year: 2018
  ident: C9TA03300A-(cit26)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801912
– volume: 55
  start-page: 2230
  year: 2016
  ident: C9TA03300A-(cit13)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201510495
– volume: 9
  start-page: 17364
  year: 2017
  ident: C9TA03300A-(cit44)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR06844A
– volume: 10
  start-page: 33276
  year: 2018
  ident: C9TA03300A-(cit30)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12108
– volume: 136
  start-page: 11027
  year: 2014
  ident: C9TA03300A-(cit43)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504696r
– volume: 2
  start-page: 816
  year: 2012
  ident: C9TA03300A-(cit1)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200013
– volume: 4
  start-page: 3167
  year: 2011
  ident: C9TA03300A-(cit3)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00558d
– volume: 7
  start-page: 6485
  year: 2017
  ident: C9TA03300A-(cit21)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02340
– volume: 53
  start-page: 4582
  year: 2014
  ident: C9TA03300A-(cit9)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201311223
– volume: 13
  start-page: 1603407
  year: 2017
  ident: C9TA03300A-(cit53)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201603407
– volume: 17
  start-page: 2003
  year: 2017
  ident: C9TA03300A-(cit36)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00004
– volume: 10
  start-page: 10620
  year: 2018
  ident: C9TA03300A-(cit12)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C8NR01655K
– volume: 323
  start-page: 760
  year: 2009
  ident: C9TA03300A-(cit15)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1168049
– volume: 28
  start-page: 5080
  year: 2016
  ident: C9TA03300A-(cit28)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600398
– volume: 11
  start-page: 347
  year: 2017
  ident: C9TA03300A-(cit38)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05914
– volume: 28
  start-page: 1805828
  year: 2018
  ident: C9TA03300A-(cit33)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805828
– volume: 10
  start-page: 1278
  year: 2019
  ident: C9TA03300A-(cit24)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09290-y
– volume: 12
  start-page: 1317
  year: 2019
  ident: C9TA03300A-(cit23)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00162J
– start-page: 1800251
  year: 2018
  ident: C9TA03300A-(cit45)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800251
– volume: 139
  start-page: 17269
  year: 2017
  ident: C9TA03300A-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10194
– volume: 7
  start-page: 1501
  year: 2015
  ident: C9TA03300A-(cit37)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR06366J
– volume: 10
  start-page: 2423
  year: 2018
  ident: C9TA03300A-(cit39)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14443
– volume: 11
  start-page: 2275
  year: 2017
  ident: C9TA03300A-(cit10)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00417
– volume: 55
  start-page: 2650
  year: 2016
  ident: C9TA03300A-(cit6)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504830
– volume: 2
  start-page: 2498
  year: 2017
  ident: C9TA03300A-(cit52)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00835
– volume: 29
  start-page: 9915
  year: 2017
  ident: C9TA03300A-(cit34)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03100
– volume: 486
  start-page: 43
  year: 2012
  ident: C9TA03300A-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11115
– volume: 3
  start-page: 1183
  year: 2018
  ident: C9TA03300A-(cit5)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00303
– volume: 9
  start-page: 107
  year: 2016
  ident: C9TA03300A-(cit20)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02903A
– volume: 45
  start-page: 517
  year: 2016
  ident: C9TA03300A-(cit25)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00670H
– volume: 9
  start-page: 30662
  year: 2017
  ident: C9TA03300A-(cit51)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08533
– volume: 7
  start-page: 6144
  year: 2017
  ident: C9TA03300A-(cit29)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01695
– volume: 4
  start-page: 1301735
  year: 2014
  ident: C9TA03300A-(cit54)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301735
– volume: 10
  start-page: 5297
  year: 2018
  ident: C9TA03300A-(cit17)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201801482
– volume: 12
  start-page: 6398
  year: 2016
  ident: C9TA03300A-(cit47)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201602334
– volume: 9
  start-page: 8121
  year: 2017
  ident: C9TA03300A-(cit50)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16180
– volume: 26
  start-page: 6074
  year: 2014
  ident: C9TA03300A-(cit41)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401848
– volume: 28
  start-page: 3000
  year: 2016
  ident: C9TA03300A-(cit49)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506112
– volume: 46
  start-page: 1848
  year: 2013
  ident: C9TA03300A-(cit8)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300359w
– volume: 14
  start-page: 1704354
  year: 2018
  ident: C9TA03300A-(cit31)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201704354
– volume: 32
  start-page: 353
  year: 2017
  ident: C9TA03300A-(cit35)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.056
– volume: 55
  start-page: 6858
  year: 2016
  ident: C9TA03300A-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600850
– volume: 24
  start-page: 1399
  year: 2012
  ident: C9TA03300A-(cit18)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104392
– volume: 31
  start-page: 1806312
  year: 2019
  ident: C9TA03300A-(cit32)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806312
– volume: 138
  start-page: 3570
  year: 2016
  ident: C9TA03300A-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00757
– volume: 49
  start-page: 2565
  year: 2010
  ident: C9TA03300A-(cit55)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200907289
– volume: 56
  start-page: 6937
  year: 2017
  ident: C9TA03300A-(cit46)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702473
– volume: 22
  start-page: 3634
  year: 2012
  ident: C9TA03300A-(cit14)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200186
– volume: 59
  start-page: 207
  year: 2019
  ident: C9TA03300A-(cit16)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.043
– volume: 7
  start-page: 7638
  year: 2017
  ident: C9TA03300A-(cit27)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02101
SSID ssj0000800699
Score 2.4574285
Snippet Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13591
SubjectTerms air
Batteries
Carbon
Carbon nitride
Carbon sources
Catalysis
Catalysts
catalytic activity
cathodes
cobalt
Copper
copper nanoparticles
cost effectiveness
durability
Efficiency
Electrocatalysts
Electrochemistry
Energy conversion
Energy conversion efficiency
Evolution
Exploration
Fabrication
graphene
Iron
Manganese
Metal air batteries
Metals
Molybdenum
Nanosheets
Nickel
Noble metals
Oxygen
Polyacrylonitrile
Porous materials
Rechargeable batteries
Reduction
Tin
Zinc-oxygen batteries
Title A universal route to N-coordinated metals anchored on porous carbon nanosheets for highly efficient oxygen electrochemistry
URI https://www.proquest.com/docview/2234912399
https://www.proquest.com/docview/2271843526
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gIHxNdEYSAjuKDII4mduDlGU6eBSpFQKhUukeM4a6WRTF0qMZD423m2E7eDIQ0uUWs7Sevfz_bz8_tA6HUkKhZVLCDSLxLCeMVIUvKCwGqtggIE7NBYE36Yxadz9n4RLQaDn7veJW1xJL_f6FfyP6hCGeCqvWT_AVn3UCiAz4AvXAFhuN4K49TbWLsKHZ2_0Sf-IEnOiGxgR7mqhRYmv6pWB0gGbJeNNjUHsEHi1navUqwL-FaLurlcKtWawAyeDl98fqXNPFbGVdJrvl2d6UwANl2O7PPD_UWoBfnX_nHPtTzyUusU1NeYIOPW5dBo7XsXLm2l6xT8nzqnkVVNMtG4uWlj9bVflk19Rj433bLbaS26WdFMa6Ef-YQzm8e2n4P5DtXC0LvQ6TiSgAQ07lQddno1pTtrtav_YyHwqY6jKpNW-JT6_s5y1x_xzz7mJ_PpNM8mi2wP7YewzQiHaD-dZO-mTkun5enYJCF1P7uPcUuTt9vHX5dqtluVvXWfR8bIK9l9dK_DBKeWNQ_QQNUP0d2d8JOP0I8UO_5gwx_cNvgaf7DlD-75g5saW_5gyx-85Q8GYLHlD3b8wZY_-Hf-PEbzk0l2fEq6ZBxEsoC3JJSM0zGFMV8qyaNAlQHstHWoI05pUbBYqpImArYXfsKYL0TBIklVUEZSx9wc0wM0rJtaPUG4ZKKCe6tyzMdMBLJIqogzxgUIk5yPyxF603dmLrtI9TphynluLCZokh8nWWo6Ph2hV67thY3PcmOrwx6TvBu_lzkIxiwJtG_3CL101dAJ-shM1Aq6EtpwnRApCuMROgAs3Tu20D-9xc3P0B09CKzq7hAN2_VGPQdhti1edIz7BVFZppA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+route+to+N-coordinated+metals+anchored+on+porous+carbon+nanosheets+for+highly+efficient+oxygen+electrochemistry&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Ren%2C+Jin-Tao&rft.au=Yuan%2C+Zhong-Yong&rft.date=2019&rft.issn=2050-7496&rft.volume=7&rft.issue=22+p.13591-13601&rft.spage=13591&rft.epage=13601&rft_id=info:doi/10.1039%2Fc9ta03300a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon