A universal route to N-coordinated metals anchored on porous carbon nanosheets for highly efficient oxygen electrochemistry
Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to substitute noble-metal electrocatalysts are significantly vital for the development of electrocatalytic energy conversion technologies. Metal mod...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 7; no. 22; pp. 13591 - 1361 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to substitute noble-metal electrocatalysts are significantly vital for the development of electrocatalytic energy conversion technologies. Metal modified N-doped carbon materials have attracted tremendous interest due to the evidently improved activities and fascinating features, whereas the development of facile and efficient fabrication methodologies is still highly challenging. Herein, we elaborately developed a reliable and scalable graphitic carbon nitride (g-C
3
N
4
)-templated method to prepare uniformly dispersed N-coordinated metal (M = Fe, Co, Ni, Cu, Mn, Mo and Sn) species in porous carbon nanosheets (M-N-C PCSs) using cost-effective and sustainable polyacrylonitrile (PAN) as a heteroatom precursor and carbon source. With the assembly of sufficiently distributed N-coordinated metal species, and advanced porous nanosheet architectures, the as-synthesized M-N-C PCSs, especially Fe-N-C PCSs, exhibit an outstanding catalytic efficiency for both oxygen reduction and evolution reactions in an alkaline medium, even competing with the state-of-the-art Pt/C catalysts and recently reported highly active non-noble electrocatalysts, thus possessing an ability to work as an air cathode for rechargeable Zn-air batteries with a large peak power density and high long-term durability. This reported synthesis approach will provide novel but facile guidance to the exploration and preparation of various porous carbon materials with an outstanding efficiency for diverse energy systems.
Highly porous carbon nanosheets with N-coordinated metals are rationally developed and show outstanding electrocatalytic oxygen reduction and oxygen evolution performance. |
---|---|
AbstractList | Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to substitute noble-metal electrocatalysts are significantly vital for the development of electrocatalytic energy conversion technologies. Metal modified N-doped carbon materials have attracted tremendous interest due to the evidently improved activities and fascinating features, whereas the development of facile and efficient fabrication methodologies is still highly challenging. Herein, we elaborately developed a reliable and scalable graphitic carbon nitride (g-C
3
N
4
)-templated method to prepare uniformly dispersed N-coordinated metal (M = Fe, Co, Ni, Cu, Mn, Mo and Sn) species in porous carbon nanosheets (M–N–C PCSs) using cost-effective and sustainable polyacrylonitrile (PAN) as a heteroatom precursor and carbon source. With the assembly of sufficiently distributed N-coordinated metal species, and advanced porous nanosheet architectures, the as-synthesized M–N–C PCSs, especially Fe–N–C PCSs, exhibit an outstanding catalytic efficiency for both oxygen reduction and evolution reactions in an alkaline medium, even competing with the state-of-the-art Pt/C catalysts and recently reported highly active non-noble electrocatalysts, thus possessing an ability to work as an air cathode for rechargeable Zn–air batteries with a large peak power density and high long-term durability. This reported synthesis approach will provide novel but facile guidance to the exploration and preparation of various porous carbon materials with an outstanding efficiency for diverse energy systems. Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to substitute noble-metal electrocatalysts are significantly vital for the development of electrocatalytic energy conversion technologies. Metal modified N-doped carbon materials have attracted tremendous interest due to the evidently improved activities and fascinating features, whereas the development of facile and efficient fabrication methodologies is still highly challenging. Herein, we elaborately developed a reliable and scalable graphitic carbon nitride (g-C 3 N 4 )-templated method to prepare uniformly dispersed N-coordinated metal (M = Fe, Co, Ni, Cu, Mn, Mo and Sn) species in porous carbon nanosheets (M-N-C PCSs) using cost-effective and sustainable polyacrylonitrile (PAN) as a heteroatom precursor and carbon source. With the assembly of sufficiently distributed N-coordinated metal species, and advanced porous nanosheet architectures, the as-synthesized M-N-C PCSs, especially Fe-N-C PCSs, exhibit an outstanding catalytic efficiency for both oxygen reduction and evolution reactions in an alkaline medium, even competing with the state-of-the-art Pt/C catalysts and recently reported highly active non-noble electrocatalysts, thus possessing an ability to work as an air cathode for rechargeable Zn-air batteries with a large peak power density and high long-term durability. This reported synthesis approach will provide novel but facile guidance to the exploration and preparation of various porous carbon materials with an outstanding efficiency for diverse energy systems. Highly porous carbon nanosheets with N-coordinated metals are rationally developed and show outstanding electrocatalytic oxygen reduction and oxygen evolution performance. Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to substitute noble-metal electrocatalysts are significantly vital for the development of electrocatalytic energy conversion technologies. Metal modified N-doped carbon materials have attracted tremendous interest due to the evidently improved activities and fascinating features, whereas the development of facile and efficient fabrication methodologies is still highly challenging. Herein, we elaborately developed a reliable and scalable graphitic carbon nitride (g-C₃N₄)-templated method to prepare uniformly dispersed N-coordinated metal (M = Fe, Co, Ni, Cu, Mn, Mo and Sn) species in porous carbon nanosheets (M–N–C PCSs) using cost-effective and sustainable polyacrylonitrile (PAN) as a heteroatom precursor and carbon source. With the assembly of sufficiently distributed N-coordinated metal species, and advanced porous nanosheet architectures, the as-synthesized M–N–C PCSs, especially Fe–N–C PCSs, exhibit an outstanding catalytic efficiency for both oxygen reduction and evolution reactions in an alkaline medium, even competing with the state-of-the-art Pt/C catalysts and recently reported highly active non-noble electrocatalysts, thus possessing an ability to work as an air cathode for rechargeable Zn–air batteries with a large peak power density and high long-term durability. This reported synthesis approach will provide novel but facile guidance to the exploration and preparation of various porous carbon materials with an outstanding efficiency for diverse energy systems. Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to substitute noble-metal electrocatalysts are significantly vital for the development of electrocatalytic energy conversion technologies. Metal modified N-doped carbon materials have attracted tremendous interest due to the evidently improved activities and fascinating features, whereas the development of facile and efficient fabrication methodologies is still highly challenging. Herein, we elaborately developed a reliable and scalable graphitic carbon nitride (g-C3N4)-templated method to prepare uniformly dispersed N-coordinated metal (M = Fe, Co, Ni, Cu, Mn, Mo and Sn) species in porous carbon nanosheets (M–N–C PCSs) using cost-effective and sustainable polyacrylonitrile (PAN) as a heteroatom precursor and carbon source. With the assembly of sufficiently distributed N-coordinated metal species, and advanced porous nanosheet architectures, the as-synthesized M–N–C PCSs, especially Fe–N–C PCSs, exhibit an outstanding catalytic efficiency for both oxygen reduction and evolution reactions in an alkaline medium, even competing with the state-of-the-art Pt/C catalysts and recently reported highly active non-noble electrocatalysts, thus possessing an ability to work as an air cathode for rechargeable Zn–air batteries with a large peak power density and high long-term durability. This reported synthesis approach will provide novel but facile guidance to the exploration and preparation of various porous carbon materials with an outstanding efficiency for diverse energy systems. |
Author | Ren, Jin-Tao Yuan, Zhong-Yong |
AuthorAffiliation | School of Materials Science and Engineering Nankai University National Institute for Advanced Materials Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) |
AuthorAffiliation_xml | – sequence: 0 name: National Institute for Advanced Materials – sequence: 0 name: School of Materials Science and Engineering – sequence: 0 name: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 0 name: Nankai University – sequence: 0 name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) |
Author_xml | – sequence: 1 givenname: Jin-Tao surname: Ren fullname: Ren, Jin-Tao – sequence: 2 givenname: Zhong-Yong surname: Yuan fullname: Yuan, Zhong-Yong |
BookMark | eNptkctLxDAQxoMo-NqLdyHgRYRq0qSPHJfFF4he1nNJp1Mb6SZrkhUX_3mjKwriXGYGft88-PbJtnUWCTni7JwzoS5ARc2EYExvkb2cFSyrpCq3f-q63iWTEJ5ZipqxUqk98j6lK2te0Qc9Uu9WEWl09D4D53xnrI7Y0QVGPQaqLQzOp95ZunSJDRS0b1NntXVhQIyB9s7TwTwN45pi3xswaCN1b-sntBRHhOgdDLgwIfr1Idnp02CcfOcD8nh1OZ_dZHcP17ez6V0Gklcxy0FWohbYYodQFRw7zktZ56KqhGhbWQJ2QumCVUxJybRuZQECeVcAKz6VB-R0M3fp3csKQ2zSfsBx1BbTF02eV7yWosjLhJ78QZ_dytt0XaKEVDwXSiWKbSjwLgSPfQMm6micjV6bseGs-TSkman59MuQaZKc_ZEsvVlov_4fPt7APsAP9-uu-ACAqJhQ |
CitedBy_id | crossref_primary_10_1016_j_cej_2021_131717 crossref_primary_10_1016_j_colsurfa_2021_127395 crossref_primary_10_1002_smll_202101856 crossref_primary_10_1016_j_jechem_2020_02_055 crossref_primary_10_1039_D0NR02618B crossref_primary_10_1007_s11705_022_2153_3 crossref_primary_10_1016_j_ccr_2024_215901 crossref_primary_10_1002_anbr_202300078 crossref_primary_10_1016_j_apcatb_2022_121190 crossref_primary_10_1016_j_cej_2021_130761 crossref_primary_10_1039_D0TA03457F crossref_primary_10_1016_j_cej_2020_124408 crossref_primary_10_1039_C9CY02217A crossref_primary_10_1039_D2TA02076A crossref_primary_10_1007_s11705_023_2318_8 crossref_primary_10_1016_j_apcatb_2023_122466 crossref_primary_10_1039_D3CS00557G crossref_primary_10_1016_j_elecom_2021_106932 crossref_primary_10_1016_j_jcis_2019_09_107 crossref_primary_10_1039_D0NJ04907G crossref_primary_10_1016_j_ijhydene_2021_04_179 crossref_primary_10_1016_j_gee_2022_03_014 crossref_primary_10_1002_cctc_202000360 crossref_primary_10_1007_s41918_022_00133_x crossref_primary_10_1016_j_jechem_2020_04_054 crossref_primary_10_1002_celc_202101108 crossref_primary_10_1002_slct_202000322 crossref_primary_10_1002_smll_202306396 crossref_primary_10_1021_acssuschemeng_2c03952 crossref_primary_10_1039_D0CY00376J crossref_primary_10_1016_j_ensm_2022_11_046 crossref_primary_10_1016_j_jechem_2020_08_030 crossref_primary_10_1016_j_materresbull_2024_112945 crossref_primary_10_1021_acs_analchem_9b04938 crossref_primary_10_1021_acsnano_3c10867 crossref_primary_10_1007_s11705_021_2104_4 crossref_primary_10_1016_j_cej_2021_133210 crossref_primary_10_1007_s10934_019_00846_3 crossref_primary_10_1039_D0QM00968G crossref_primary_10_1002_cssc_202000416 crossref_primary_10_1016_j_jechem_2020_05_048 crossref_primary_10_1021_acs_jpcc_1c01910 crossref_primary_10_1039_D0TA06794F crossref_primary_10_1016_S1872_2067_19_63455_8 crossref_primary_10_1016_j_jcis_2020_02_005 crossref_primary_10_1039_D4RA04251D crossref_primary_10_1002_adfm_202000503 crossref_primary_10_1039_D3EE03059H |
Cites_doi | 10.1016/j.electacta.2008.02.012 10.1039/C8EE00673C 10.1002/smll.201602247 10.1021/ja3030565 10.1002/adma.201203923 10.1002/aenm.201801912 10.1002/anie.201510495 10.1039/C7NR06844A 10.1021/acsami.8b12108 10.1021/ja504696r 10.1002/aenm.201200013 10.1039/c0ee00558d 10.1021/acscatal.7b02340 10.1002/anie.201311223 10.1002/smll.201603407 10.1021/acs.nanolett.7b00004 10.1039/C8NR01655K 10.1126/science.1168049 10.1002/adma.201600398 10.1021/acsnano.6b05914 10.1002/adfm.201805828 10.1038/s41467-019-09290-y 10.1039/C9EE00162J 10.1002/smtd.201800251 10.1021/jacs.7b10194 10.1039/C4NR06366J 10.1021/acsami.7b14443 10.1021/acsnano.7b00417 10.1002/anie.201504830 10.1021/acsenergylett.7b00835 10.1021/acs.chemmater.7b03100 10.1038/nature11115 10.1021/acsenergylett.8b00303 10.1039/C5EE02903A 10.1039/C5CS00670H 10.1021/acsami.7b08533 10.1021/acscatal.7b01695 10.1002/aenm.201301735 10.1002/cctc.201801482 10.1002/smll.201602334 10.1021/acsami.6b16180 10.1002/adma.201401848 10.1002/adma.201506112 10.1021/ar300359w 10.1002/smll.201704354 10.1016/j.nanoen.2016.12.056 10.1002/anie.201600850 10.1002/adma.201104392 10.1002/adma.201806312 10.1021/jacs.6b00757 10.1002/anie.200907289 10.1002/anie.201702473 10.1002/adfm.201200186 10.1016/j.nanoen.2019.02.043 10.1021/acscatal.7b02101 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/c9ta03300a |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 1361 |
ExternalDocumentID | 10_1039_C9TA03300A c9ta03300a |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c417t-2c47383ebedec751ed11648237733bb46ced39a50709440aab45c3e1d5c057383 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 18:08:12 EDT 2025 Mon Jun 30 12:07:33 EDT 2025 Tue Jul 01 03:14:03 EDT 2025 Thu Apr 24 22:54:21 EDT 2025 Tue Dec 17 21:00:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-2c47383ebedec751ed11648237733bb46ced39a50709440aab45c3e1d5c057383 |
Notes | 10.1039/c9ta03300a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3790-8181 |
PQID | 2234912399 |
PQPubID | 2047523 |
PageCount | 11 |
ParticipantIDs | rsc_primary_c9ta03300a proquest_miscellaneous_2271843526 crossref_citationtrail_10_1039_C9TA03300A crossref_primary_10_1039_C9TA03300A proquest_journals_2234912399 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Ai (C9TA03300A-(cit40)/*[position()=1]) 2013; 25 Guan (C9TA03300A-(cit51)/*[position()=1]) 2017; 9 Shinde (C9TA03300A-(cit38)/*[position()=1]) 2017; 11 Zhou (C9TA03300A-(cit37)/*[position()=1]) 2015; 7 Ren (C9TA03300A-(cit21)/*[position()=1]) 2017; 7 Serov (C9TA03300A-(cit54)/*[position()=1]) 2014; 4 Song (C9TA03300A-(cit47)/*[position()=1]) 2016; 12 Xia (C9TA03300A-(cit45)/*[position()=1]) 2018 Yuan (C9TA03300A-(cit16)/*[position()=1]) 2019; 59 Ren (C9TA03300A-(cit30)/*[position()=1]) 2018; 10 Kuang (C9TA03300A-(cit52)/*[position()=1]) 2017; 2 Yu (C9TA03300A-(cit28)/*[position()=1]) 2016; 28 Wu (C9TA03300A-(cit11)/*[position()=1]) 2012; 134 Zhang (C9TA03300A-(cit31)/*[position()=1]) 2018; 14 Li (C9TA03300A-(cit33)/*[position()=1]) 2018; 28 Zhu (C9TA03300A-(cit53)/*[position()=1]) 2017; 13 Liu (C9TA03300A-(cit55)/*[position()=1]) 2010; 49 Zhang (C9TA03300A-(cit13)/*[position()=1]) 2016; 55 Zhang (C9TA03300A-(cit23)/*[position()=1]) 2019; 12 Chen (C9TA03300A-(cit35)/*[position()=1]) 2017; 32 Zhao (C9TA03300A-(cit24)/*[position()=1]) 2019; 10 Gong (C9TA03300A-(cit15)/*[position()=1]) 2009; 323 Wang (C9TA03300A-(cit34)/*[position()=1]) 2017; 29 Wang (C9TA03300A-(cit5)/*[position()=1]) 2018; 3 Han (C9TA03300A-(cit22)/*[position()=1]) 2017; 139 Yang (C9TA03300A-(cit14)/*[position()=1]) 2012; 22 Hu (C9TA03300A-(cit20)/*[position()=1]) 2016; 9 Zhang (C9TA03300A-(cit39)/*[position()=1]) 2018; 10 Wen (C9TA03300A-(cit18)/*[position()=1]) 2012; 24 Liu (C9TA03300A-(cit49)/*[position()=1]) 2016; 28 Tang (C9TA03300A-(cit44)/*[position()=1]) 2017; 9 Debe (C9TA03300A-(cit2)/*[position()=1]) 2012; 486 Xia (C9TA03300A-(cit6)/*[position()=1]) 2016; 55 Wang (C9TA03300A-(cit29)/*[position()=1]) 2017; 7 Chen (C9TA03300A-(cit32)/*[position()=1]) 2019; 31 Lei (C9TA03300A-(cit26)/*[position()=1]) 2018; 8 Ren (C9TA03300A-(cit17)/*[position()=1]) 2018; 10 Lin (C9TA03300A-(cit43)/*[position()=1]) 2014; 136 Ren (C9TA03300A-(cit12)/*[position()=1]) 2018; 10 Ye (C9TA03300A-(cit27)/*[position()=1]) 2017; 7 Cheng (C9TA03300A-(cit50)/*[position()=1]) 2017; 9 Zhu (C9TA03300A-(cit25)/*[position()=1]) 2016; 45 Hu (C9TA03300A-(cit42)/*[position()=1]) 2018; 11 Cao (C9TA03300A-(cit1)/*[position()=1]) 2012; 2 Chen (C9TA03300A-(cit46)/*[position()=1]) 2017; 56 Bezerra (C9TA03300A-(cit4)/*[position()=1]) 2008; 53 Wang (C9TA03300A-(cit36)/*[position()=1]) 2017; 17 Jung (C9TA03300A-(cit9)/*[position()=1]) 2014; 53 Ding (C9TA03300A-(cit48)/*[position()=1]) 2016; 12 Chen (C9TA03300A-(cit3)/*[position()=1]) 2011; 4 Yuan (C9TA03300A-(cit7)/*[position()=1]) 2016; 55 Yin (C9TA03300A-(cit10)/*[position()=1]) 2017; 11 Jiang (C9TA03300A-(cit19)/*[position()=1]) 2016; 138 Liang (C9TA03300A-(cit41)/*[position()=1]) 2014; 26 Wu (C9TA03300A-(cit8)/*[position()=1]) 2013; 46 |
References_xml | – volume: 53 start-page: 4937 year: 2008 ident: C9TA03300A-(cit4)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.02.012 – volume: 11 start-page: 2208 year: 2018 ident: C9TA03300A-(cit42)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00673C – volume: 12 start-page: 5414 year: 2016 ident: C9TA03300A-(cit48)/*[position()=1] publication-title: Small doi: 10.1002/smll.201602247 – volume: 134 start-page: 9082 year: 2012 ident: C9TA03300A-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3030565 – volume: 25 start-page: 998 year: 2013 ident: C9TA03300A-(cit40)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201203923 – volume: 8 start-page: 1801912 year: 2018 ident: C9TA03300A-(cit26)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801912 – volume: 55 start-page: 2230 year: 2016 ident: C9TA03300A-(cit13)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510495 – volume: 9 start-page: 17364 year: 2017 ident: C9TA03300A-(cit44)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR06844A – volume: 10 start-page: 33276 year: 2018 ident: C9TA03300A-(cit30)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12108 – volume: 136 start-page: 11027 year: 2014 ident: C9TA03300A-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504696r – volume: 2 start-page: 816 year: 2012 ident: C9TA03300A-(cit1)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200013 – volume: 4 start-page: 3167 year: 2011 ident: C9TA03300A-(cit3)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00558d – volume: 7 start-page: 6485 year: 2017 ident: C9TA03300A-(cit21)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b02340 – volume: 53 start-page: 4582 year: 2014 ident: C9TA03300A-(cit9)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201311223 – volume: 13 start-page: 1603407 year: 2017 ident: C9TA03300A-(cit53)/*[position()=1] publication-title: Small doi: 10.1002/smll.201603407 – volume: 17 start-page: 2003 year: 2017 ident: C9TA03300A-(cit36)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00004 – volume: 10 start-page: 10620 year: 2018 ident: C9TA03300A-(cit12)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C8NR01655K – volume: 323 start-page: 760 year: 2009 ident: C9TA03300A-(cit15)/*[position()=1] publication-title: Science doi: 10.1126/science.1168049 – volume: 28 start-page: 5080 year: 2016 ident: C9TA03300A-(cit28)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600398 – volume: 11 start-page: 347 year: 2017 ident: C9TA03300A-(cit38)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b05914 – volume: 28 start-page: 1805828 year: 2018 ident: C9TA03300A-(cit33)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805828 – volume: 10 start-page: 1278 year: 2019 ident: C9TA03300A-(cit24)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-019-09290-y – volume: 12 start-page: 1317 year: 2019 ident: C9TA03300A-(cit23)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00162J – start-page: 1800251 year: 2018 ident: C9TA03300A-(cit45)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800251 – volume: 139 start-page: 17269 year: 2017 ident: C9TA03300A-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10194 – volume: 7 start-page: 1501 year: 2015 ident: C9TA03300A-(cit37)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR06366J – volume: 10 start-page: 2423 year: 2018 ident: C9TA03300A-(cit39)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14443 – volume: 11 start-page: 2275 year: 2017 ident: C9TA03300A-(cit10)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b00417 – volume: 55 start-page: 2650 year: 2016 ident: C9TA03300A-(cit6)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504830 – volume: 2 start-page: 2498 year: 2017 ident: C9TA03300A-(cit52)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00835 – volume: 29 start-page: 9915 year: 2017 ident: C9TA03300A-(cit34)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03100 – volume: 486 start-page: 43 year: 2012 ident: C9TA03300A-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/nature11115 – volume: 3 start-page: 1183 year: 2018 ident: C9TA03300A-(cit5)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00303 – volume: 9 start-page: 107 year: 2016 ident: C9TA03300A-(cit20)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02903A – volume: 45 start-page: 517 year: 2016 ident: C9TA03300A-(cit25)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00670H – volume: 9 start-page: 30662 year: 2017 ident: C9TA03300A-(cit51)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08533 – volume: 7 start-page: 6144 year: 2017 ident: C9TA03300A-(cit29)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b01695 – volume: 4 start-page: 1301735 year: 2014 ident: C9TA03300A-(cit54)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301735 – volume: 10 start-page: 5297 year: 2018 ident: C9TA03300A-(cit17)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201801482 – volume: 12 start-page: 6398 year: 2016 ident: C9TA03300A-(cit47)/*[position()=1] publication-title: Small doi: 10.1002/smll.201602334 – volume: 9 start-page: 8121 year: 2017 ident: C9TA03300A-(cit50)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16180 – volume: 26 start-page: 6074 year: 2014 ident: C9TA03300A-(cit41)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201401848 – volume: 28 start-page: 3000 year: 2016 ident: C9TA03300A-(cit49)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201506112 – volume: 46 start-page: 1848 year: 2013 ident: C9TA03300A-(cit8)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300359w – volume: 14 start-page: 1704354 year: 2018 ident: C9TA03300A-(cit31)/*[position()=1] publication-title: Small doi: 10.1002/smll.201704354 – volume: 32 start-page: 353 year: 2017 ident: C9TA03300A-(cit35)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.056 – volume: 55 start-page: 6858 year: 2016 ident: C9TA03300A-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201600850 – volume: 24 start-page: 1399 year: 2012 ident: C9TA03300A-(cit18)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201104392 – volume: 31 start-page: 1806312 year: 2019 ident: C9TA03300A-(cit32)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201806312 – volume: 138 start-page: 3570 year: 2016 ident: C9TA03300A-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00757 – volume: 49 start-page: 2565 year: 2010 ident: C9TA03300A-(cit55)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200907289 – volume: 56 start-page: 6937 year: 2017 ident: C9TA03300A-(cit46)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702473 – volume: 22 start-page: 3634 year: 2012 ident: C9TA03300A-(cit14)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200186 – volume: 59 start-page: 207 year: 2019 ident: C9TA03300A-(cit16)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.043 – volume: 7 start-page: 7638 year: 2017 ident: C9TA03300A-(cit27)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b02101 |
SSID | ssj0000800699 |
Score | 2.4574285 |
Snippet | Rational design and preparation of economical, high-efficiency, and robust electrocatalysts for the reversible oxygen reduction and evolution reactions to... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13591 |
SubjectTerms | air Batteries Carbon Carbon nitride Carbon sources Catalysis Catalysts catalytic activity cathodes cobalt Copper copper nanoparticles cost effectiveness durability Efficiency Electrocatalysts Electrochemistry Energy conversion Energy conversion efficiency Evolution Exploration Fabrication graphene Iron Manganese Metal air batteries Metals Molybdenum Nanosheets Nickel Noble metals Oxygen Polyacrylonitrile Porous materials Rechargeable batteries Reduction Tin Zinc-oxygen batteries |
Title | A universal route to N-coordinated metals anchored on porous carbon nanosheets for highly efficient oxygen electrochemistry |
URI | https://www.proquest.com/docview/2234912399 https://www.proquest.com/docview/2271843526 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67gIHxNdEYSAjuKDII4mduDlGU6eBSpFQKhUukeM4a6WRTF0qMZD423m2E7eDIQ0uUWs7Sevfz_bz8_tA6HUkKhZVLCDSLxLCeMVIUvKCwGqtggIE7NBYE36Yxadz9n4RLQaDn7veJW1xJL_f6FfyP6hCGeCqvWT_AVn3UCiAz4AvXAFhuN4K49TbWLsKHZ2_0Sf-IEnOiGxgR7mqhRYmv6pWB0gGbJeNNjUHsEHi1navUqwL-FaLurlcKtWawAyeDl98fqXNPFbGVdJrvl2d6UwANl2O7PPD_UWoBfnX_nHPtTzyUusU1NeYIOPW5dBo7XsXLm2l6xT8nzqnkVVNMtG4uWlj9bVflk19Rj433bLbaS26WdFMa6Ef-YQzm8e2n4P5DtXC0LvQ6TiSgAQ07lQddno1pTtrtav_YyHwqY6jKpNW-JT6_s5y1x_xzz7mJ_PpNM8mi2wP7YewzQiHaD-dZO-mTkun5enYJCF1P7uPcUuTt9vHX5dqtluVvXWfR8bIK9l9dK_DBKeWNQ_QQNUP0d2d8JOP0I8UO_5gwx_cNvgaf7DlD-75g5saW_5gyx-85Q8GYLHlD3b8wZY_-Hf-PEbzk0l2fEq6ZBxEsoC3JJSM0zGFMV8qyaNAlQHstHWoI05pUbBYqpImArYXfsKYL0TBIklVUEZSx9wc0wM0rJtaPUG4ZKKCe6tyzMdMBLJIqogzxgUIk5yPyxF603dmLrtI9TphynluLCZokh8nWWo6Ph2hV67thY3PcmOrwx6TvBu_lzkIxiwJtG_3CL101dAJ-shM1Aq6EtpwnRApCuMROgAs3Tu20D-9xc3P0B09CKzq7hAN2_VGPQdhti1edIz7BVFZppA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+route+to+N-coordinated+metals+anchored+on+porous+carbon+nanosheets+for+highly+efficient+oxygen+electrochemistry&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Ren%2C+Jin-Tao&rft.au=Yuan%2C+Zhong-Yong&rft.date=2019&rft.issn=2050-7496&rft.volume=7&rft.issue=22+p.13591-13601&rft.spage=13591&rft.epage=13601&rft_id=info:doi/10.1039%2Fc9ta03300a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |