Primer ID Validates Template Sampling Depth and Greatly Reduces the Error Rate of Next-Generation Sequencing of HIV-1 Genomic RNA Populations
Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that l...
Saved in:
Published in | Journal of virology Vol. 89; no. 16; pp. 8540 - 8555 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS.
IMPORTANCE
Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set. |
---|---|
AbstractList | Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set. Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS.UNLABELLEDValidating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS.Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set.IMPORTANCEAlthough next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set. Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set. Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set. |
Author | Jones, Corbin Mieczkowski, Piotr Swanstrom, Ronald Zhou, Shuntai |
Author_xml | – sequence: 1 givenname: Shuntai surname: Zhou fullname: Zhou, Shuntai organization: UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA – sequence: 2 givenname: Corbin surname: Jones fullname: Jones, Corbin organization: Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA – sequence: 3 givenname: Piotr surname: Mieczkowski fullname: Mieczkowski, Piotr organization: Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA – sequence: 4 givenname: Ronald surname: Swanstrom fullname: Swanstrom, Ronald organization: UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, UNC Center For AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26041299$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhi1URLcfN87IRw6k2E4cJxekqi3bRVWptu2Km-U4k65RYgfbQfRH8J_xbksFCKknjzzPvHrnYw_tWGcBodeUHFHKqvefVosjQjhjGeUv0IySuso4p8UOmhGSfnlefdlFeyF8JYQWRVm8QrusJAVldT1DP6-8GcDjxSleqd60KkLANzCMfYrwtUqBsXf4FMa4xsq2eO5Bxf4eL6GddGLjGvCZ987j5abCdfgSfsRsDha8isZZfA3fJrB6I5Oy54tVRnFKu8FovLw8xldunPotGg7Qy071AQ4f3310-_Hs5uQ8u_g8X5wcX2S6oCJmrKk0q4QQBSHAedOpBgSptWravKx0J0ARTfJWiJYApSrhXVepmnScV4p1-T768KA7Ts0ArQYbverlmGah_L10ysi_M9as5Z37LgvOClbmSeDto4B3qbsQ5WCChr5XFtwUJE12aMnzmj2PlnWV10TkNKFv_rT15Of3uhLw7gHQ3oXgoXtCKJGba5DpGuT2GiTlCWf_4NrE7aRTU6b_f9Ev_U647g |
CitedBy_id | crossref_primary_10_1016_j_jmb_2017_05_010 crossref_primary_10_1038_s41598_020_58410_y crossref_primary_10_1089_aid_2019_0245 crossref_primary_10_3390_v12060586 crossref_primary_10_1093_jac_dkw507 crossref_primary_10_1021_acsinfecdis_2c00319 crossref_primary_10_3389_fimmu_2019_01966 crossref_primary_10_1016_S2352_3018_19_30051_7 crossref_primary_10_1093_infdis_jiae131 crossref_primary_10_1093_infdis_jix338 crossref_primary_10_1097_QAD_0000000000002102 crossref_primary_10_1128_JVI_00828_17 crossref_primary_10_1038_s41467_021_27647_0 crossref_primary_10_1146_annurev_virology_101416_041718 crossref_primary_10_1089_aid_2020_0109 crossref_primary_10_1128_JVI_00229_20 crossref_primary_10_1128_JVI_01217_18 crossref_primary_10_1073_pnas_1709166114 crossref_primary_10_7554_eLife_57246 crossref_primary_10_1089_aid_2015_0202 crossref_primary_10_7554_eLife_80328 crossref_primary_10_1126_scitranslmed_aaw5589 crossref_primary_10_1093_infdis_jiad211 crossref_primary_10_1073_pnas_1607580113 crossref_primary_10_1128_JCM_00382_20 crossref_primary_10_1016_j_chom_2025_01_004 crossref_primary_10_1007_s13365_017_0605_1 crossref_primary_10_3390_v13030513 crossref_primary_10_1186_s12864_016_2388_9 crossref_primary_10_1111_tmi_13851 crossref_primary_10_1038_nm_4268 crossref_primary_10_1016_j_jmb_2024_168815 crossref_primary_10_1093_bioinformatics_btad002 crossref_primary_10_1093_infdis_jiab487 crossref_primary_10_1172_JCI176358 crossref_primary_10_1038_s41598_020_65085_y crossref_primary_10_1016_j_xcrm_2023_100943 crossref_primary_10_1016_j_virusres_2016_10_019 crossref_primary_10_1371_journal_ppat_1012574 crossref_primary_10_1016_j_celrep_2020_108430 crossref_primary_10_1172_jci_insight_130118 crossref_primary_10_1016_j_chom_2018_03_012 crossref_primary_10_1128_JVI_00441_16 crossref_primary_10_3390_v12070694 crossref_primary_10_3390_v14020406 crossref_primary_10_1016_j_jmb_2016_04_005 crossref_primary_10_3390_v17020173 crossref_primary_10_1371_journal_pcbi_1005480 crossref_primary_10_1016_j_virusres_2016_12_008 crossref_primary_10_1093_infdis_jiaa417 crossref_primary_10_1038_s41564_022_01306_6 crossref_primary_10_7554_eLife_26437 crossref_primary_10_1093_ve_vez011 crossref_primary_10_1093_infdis_jiae213 crossref_primary_10_1128_JVI_00667_16 crossref_primary_10_1128_JCM_00105_18 crossref_primary_10_1371_journal_ppat_1006964 crossref_primary_10_1002_jia2_25833 crossref_primary_10_1093_cid_ciy1066 crossref_primary_10_1128_JVI_00787_20 crossref_primary_10_3390_v12060666 crossref_primary_10_1016_j_xcrm_2020_100162 crossref_primary_10_3389_fmicb_2019_02878 crossref_primary_10_1016_j_tibtech_2020_06_008 crossref_primary_10_1016_j_bsheal_2021_06_002 crossref_primary_10_1128_JVI_00151_20 crossref_primary_10_1038_s41598_018_29325_6 crossref_primary_10_1097_QAI_0000000000001187 crossref_primary_10_1371_journal_ppat_1006796 crossref_primary_10_1128_JVI_01420_19 crossref_primary_10_1128_JVI_01589_17 crossref_primary_10_3390_v16040510 crossref_primary_10_1186_s12977_016_0321_6 crossref_primary_10_1016_j_virusres_2020_197963 crossref_primary_10_1093_bioinformatics_bty919 crossref_primary_10_1093_jac_dkac372 crossref_primary_10_1371_journal_pone_0190438 crossref_primary_10_1016_j_antiviral_2018_07_024 crossref_primary_10_1371_journal_ppat_1011974 crossref_primary_10_3390_pathogens12060767 crossref_primary_10_22207_JPAM_17_2_08 crossref_primary_10_1128_JVI_01357_16 crossref_primary_10_1016_j_jmb_2019_04_038 crossref_primary_10_3390_v12050550 crossref_primary_10_20411_pai_v7i2_524 crossref_primary_10_3390_v12080850 crossref_primary_10_1126_scitranslmed_abb5883 crossref_primary_10_1097_QAD_0000000000003098 crossref_primary_10_1016_j_isci_2023_107711 crossref_primary_10_1016_j_virol_2018_08_021 crossref_primary_10_1016_j_jmb_2015_12_012 crossref_primary_10_1371_journal_ppat_1007868 crossref_primary_10_1128_spectrum_01353_22 crossref_primary_10_1371_journal_pgen_1010179 crossref_primary_10_1016_j_coviro_2016_09_011 crossref_primary_10_3390_v12060617 crossref_primary_10_1128_spectrum_03454_22 crossref_primary_10_1097_COH_0000000000000344 |
Cites_doi | 10.1101/gr.070227.107 10.1186/1471-2164-15-699 10.1016/j.jviromet.2010.07.040 10.1038/nmeth.2634 10.1073/pnas.1110064108 10.1371/journal.pcbi.1001022 10.1101/gr.6468307 10.1093/nar/18.7.1687 10.1128/AAC.03466-14 10.1093/bioinformatics/btu552 10.1093/nar/gkh340 10.1186/1471-2105-5-113 10.1371/journal.pone.0119123 10.1371/journal.pone.0049602 10.1089/AID.2014.0031 10.1093/nar/gku355 10.1126/science.273.5274.415 10.1093/biomet/26.4.404 10.1016/j.ab.2006.10.009 10.1073/pnas.1105422108 10.1371/journal.pone.0004724 10.1073/pnas.1203613109 10.1002/hep.27375 10.1084/jem.164.1.280 10.1371/journal.ppat.1002529 10.1126/science.2460925 10.1126/science.1254031 10.1186/1471-2164-13-341 10.1186/gb-2013-14-9-r95 10.1038/nature07517 10.1073/pnas.1319590110 10.1093/nar/gkl164 |
ContentType | Journal Article |
Copyright | Copyright © 2015, American Society for Microbiology. All Rights Reserved. Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 7U9 8FD FR3 H94 P64 RC3 5PM |
DOI | 10.1128/JVI.00522-15 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Primer ID Improves NGS in Viral Population Studies |
EISSN | 1098-5514 |
EndPage | 8555 |
ExternalDocumentID | PMC4524263 26041299 10_1128_JVI_00522_15 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R21 AI108539 – fundername: NIAID NIH HHS grantid: R37 AI044667 – fundername: NIAID NIH HHS grantid: R37 AI44667 – fundername: NCI NIH HHS grantid: P30 CA16068 – fundername: NIAID NIH HHS grantid: P30 AI050410 – fundername: NIAID NIH HHS grantid: P30 AI50410 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM .55 .GJ 3O- 41~ 6TJ AAYJJ ADXHL AFFNX AI. C1A CGR CUY CVF D0S ECM EIF MVM NPM OHT VH1 X7M Y6R ZGI ZXP 7X8 7TM 7U9 8FD FR3 H94 P64 RC3 5PM |
ID | FETCH-LOGICAL-c417t-2b8c28777400e55bfabe709cabd368cf7ea0c03d77d0e11ab8cff8a90f558a2f3 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 18:30:17 EDT 2025 Thu Jul 10 23:01:41 EDT 2025 Fri Jul 11 13:22:39 EDT 2025 Mon Jul 21 06:03:33 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Tue Jul 01 01:02:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | Copyright © 2015, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-2b8c28777400e55bfabe709cabd368cf7ea0c03d77d0e11ab8cff8a90f558a2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Zhou S, Jones C, Mieczkowski P, Swanstrom R. 2015. Primer ID validates template sampling depth and greatly reduces the error rate of next-generation sequencing of HIV-1 genomic RNA populations. J Virol 89:8540–8555. doi:10.1128/JVI.00522-15. |
OpenAccessLink | https://jvi.asm.org/content/jvi/89/16/8540.full.pdf |
PMID | 26041299 |
PQID | 1698390731 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4524263 proquest_miscellaneous_1709165392 proquest_miscellaneous_1698390731 pubmed_primary_26041299 crossref_primary_10_1128_JVI_00522_15 crossref_citationtrail_10_1128_JVI_00522_15 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-01 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2015 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Team RC (e_1_3_3_15_2) 2013 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 23995388 - Nat Methods. 2013 Oct;10(10):999-1002 3014036 - J Exp Med. 1986 Jul 1;164(1):280-90 25092699 - Antimicrob Agents Chemother. 2014 Oct;58(10):6079-92 24810852 - Nucleic Acids Res. 2014 Jul;42(12):e98 25142801 - BMC Genomics. 2014;15:699 15318951 - BMC Bioinformatics. 2004 Aug 19;5:113 17600086 - Genome Res. 2007 Aug;17(8):1195-201 25741706 - PLoS One. 2015;10(3):e0119123 18987734 - Nature. 2008 Nov 6;456(7218):53-9 25013080 - Science. 2014 Jul 11;345(6193):1254031 22135472 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20166-71 25748056 - AIDS Res Hum Retroviruses. 2015 Jun;31(6):658-68 19266092 - PLoS One. 2009;4(3):e4724 15034147 - Nucleic Acids Res. 2004;32(5):1792-7 23166726 - PLoS One. 2012;7(11):e49602 16845079 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W6-9 2460925 - Science. 1988 Nov 25;242(4882):1171-3 20691210 - J Virol Methods. 2010 Oct;169(1):248-52 25123381 - Hepatology. 2015 Jan;61(1):56-65 2186361 - Nucleic Acids Res. 1990 Apr 11;18(7):1687-91 21187908 - PLoS Comput Biol. 2010;6(12):e1001022 24243955 - Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19872-7 25189781 - Bioinformatics. 2014 Dec 1;30(23):3424-6 21586637 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9530-5 22827831 - BMC Genomics. 2012;13:341 22517746 - Proc Natl Acad Sci U S A. 2012 May 22;109(21):E1330; author reply E1331 17107651 - Anal Biochem. 2007 Jan 1;360(1):84-91 24020486 - Genome Biol. 2013;14(9):R95 8677432 - Science. 1996 Jul 26;273(5274):415-6 18212088 - Genome Res. 2008 May;18(5):763-70 22412369 - PLoS Pathog. 2012;8(3):e1002529 |
References_xml | – ident: e_1_3_3_28_2 doi: 10.1101/gr.070227.107 – ident: e_1_3_3_26_2 doi: 10.1186/1471-2164-15-699 – ident: e_1_3_3_3_2 doi: 10.1016/j.jviromet.2010.07.040 – ident: e_1_3_3_17_2 doi: 10.1038/nmeth.2634 – ident: e_1_3_3_7_2 doi: 10.1073/pnas.1110064108 – ident: e_1_3_3_29_2 doi: 10.1371/journal.pcbi.1001022 – ident: e_1_3_3_27_2 doi: 10.1101/gr.6468307 – ident: e_1_3_3_2_2 doi: 10.1093/nar/18.7.1687 – ident: e_1_3_3_22_2 doi: 10.1128/AAC.03466-14 – ident: e_1_3_3_5_2 doi: 10.1093/bioinformatics/btu552 – volume-title: A language and environment for statistical computing year: 2013 ident: e_1_3_3_15_2 – ident: e_1_3_3_12_2 doi: 10.1093/nar/gkh340 – ident: e_1_3_3_11_2 doi: 10.1186/1471-2105-5-113 – ident: e_1_3_3_24_2 doi: 10.1371/journal.pone.0119123 – ident: e_1_3_3_25_2 doi: 10.1371/journal.pone.0049602 – ident: e_1_3_3_8_2 doi: 10.1089/AID.2014.0031 – ident: e_1_3_3_9_2 doi: 10.1093/nar/gku355 – ident: e_1_3_3_4_2 doi: 10.1126/science.273.5274.415 – ident: e_1_3_3_20_2 doi: 10.1093/biomet/26.4.404 – ident: e_1_3_3_34_2 doi: 10.1016/j.ab.2006.10.009 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.1105422108 – ident: e_1_3_3_19_2 doi: 10.1371/journal.pone.0004724 – ident: e_1_3_3_18_2 doi: 10.1073/pnas.1203613109 – ident: e_1_3_3_32_2 doi: 10.1002/hep.27375 – ident: e_1_3_3_10_2 doi: 10.1084/jem.164.1.280 – ident: e_1_3_3_30_2 doi: 10.1371/journal.ppat.1002529 – ident: e_1_3_3_33_2 doi: 10.1126/science.2460925 – ident: e_1_3_3_31_2 doi: 10.1126/science.1254031 – ident: e_1_3_3_13_2 doi: 10.1186/1471-2164-13-341 – ident: e_1_3_3_6_2 doi: 10.1186/gb-2013-14-9-r95 – ident: e_1_3_3_16_2 doi: 10.1038/nature07517 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.1319590110 – ident: e_1_3_3_14_2 doi: 10.1093/nar/gkl164 – reference: 8677432 - Science. 1996 Jul 26;273(5274):415-6 – reference: 17107651 - Anal Biochem. 2007 Jan 1;360(1):84-91 – reference: 2186361 - Nucleic Acids Res. 1990 Apr 11;18(7):1687-91 – reference: 25123381 - Hepatology. 2015 Jan;61(1):56-65 – reference: 17600086 - Genome Res. 2007 Aug;17(8):1195-201 – reference: 22412369 - PLoS Pathog. 2012;8(3):e1002529 – reference: 3014036 - J Exp Med. 1986 Jul 1;164(1):280-90 – reference: 25741706 - PLoS One. 2015;10(3):e0119123 – reference: 24243955 - Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19872-7 – reference: 22827831 - BMC Genomics. 2012;13:341 – reference: 2460925 - Science. 1988 Nov 25;242(4882):1171-3 – reference: 23166726 - PLoS One. 2012;7(11):e49602 – reference: 24020486 - Genome Biol. 2013;14(9):R95 – reference: 25189781 - Bioinformatics. 2014 Dec 1;30(23):3424-6 – reference: 22135472 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20166-71 – reference: 24810852 - Nucleic Acids Res. 2014 Jul;42(12):e98 – reference: 18987734 - Nature. 2008 Nov 6;456(7218):53-9 – reference: 20691210 - J Virol Methods. 2010 Oct;169(1):248-52 – reference: 25013080 - Science. 2014 Jul 11;345(6193):1254031 – reference: 25142801 - BMC Genomics. 2014;15:699 – reference: 21586637 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9530-5 – reference: 21187908 - PLoS Comput Biol. 2010;6(12):e1001022 – reference: 25748056 - AIDS Res Hum Retroviruses. 2015 Jun;31(6):658-68 – reference: 16845079 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W6-9 – reference: 15318951 - BMC Bioinformatics. 2004 Aug 19;5:113 – reference: 19266092 - PLoS One. 2009;4(3):e4724 – reference: 15034147 - Nucleic Acids Res. 2004;32(5):1792-7 – reference: 18212088 - Genome Res. 2008 May;18(5):763-70 – reference: 22517746 - Proc Natl Acad Sci U S A. 2012 May 22;109(21):E1330; author reply E1331 – reference: 23995388 - Nat Methods. 2013 Oct;10(10):999-1002 – reference: 25092699 - Antimicrob Agents Chemother. 2014 Oct;58(10):6079-92 |
SSID | ssj0014464 |
Score | 2.4872723 |
Snippet | Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 8540 |
SubjectTerms | DNA Barcoding, Taxonomic - methods DNA Primers - genetics DNA, Complementary - genetics Drug Resistance, Viral - genetics Genetic Diversity and Evolution High-Throughput Nucleotide Sequencing - methods HIV-1 - genetics Human immunodeficiency virus Human immunodeficiency virus 1 Polymerase Chain Reaction Research Design - standards RNA, Viral - genetics |
Title | Primer ID Validates Template Sampling Depth and Greatly Reduces the Error Rate of Next-Generation Sequencing of HIV-1 Genomic RNA Populations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26041299 https://www.proquest.com/docview/1698390731 https://www.proquest.com/docview/1709165392 https://pubmed.ncbi.nlm.nih.gov/PMC4524263 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3battAEF1MSqEvJb27acsW2iehVFrdH0OSYgdqTOIY0xexutWmrmRkidD8Qz-of9eZ3ZUsO0lJ-yKEtLKQ5nhumjlDyAcw0lYMjrhum9zQkfJc50Zm6J7hZoz7Vpxmgu1z5A4u7bOZM-v1fneqluoqOoyvb-0r-R-pwjGQK3bJ_oNk2x-FA7AP8oUtSBi295LxGLn5S214ok3BncbYfa1N0h-rJexpFxyLxfNvoFJWqn9N5AOW6HUnNVZiodN5WpZFqZ1zWS4wwkBYUlErVSIqrVVp9GA41U1kqsZWZu18dKSN2_lf6zvcXOyj62buv86LWqRc53Ve8cWmgkfNDDguymjRIvbLIo2vvxdXarr2eFFUbTXxxRVH-ttCDmoWOe5uDsN02gq6bk8BqN6ZtEpSFSPTKfpzXV0txw01mOxqXt-RtE-NFXck--9NC8Gw6-FsOjzEjDjTZTPpNhH3joFsyxZFwMT8EK4OxdUh0hs8YBChsCZRpD5gQZRtN0T1-GBNzwXzP3Xvve0N3Qhxdit1O67PZJ88VsKkRxKAT0gvzZ-Sh3KK6c9n5JeEIR2e0BaGtIEhbWBIBQwpwJAqGFIFQwowpAKGFGFIi4zuwJBuYIhnBQypgiEFGNIODJ-Ty8-nk-OBrqZ86LFtepXOIj9myEoJ1iR1nCjjUeoZQcyjxHL9OPNSbsSGlXheYqSmyWF5lvk8MDLH8TnLrBdkLweMviKUJz7nrsst7nGbJYxzO0h8K_I808aOzj7RmrcdxooCHyexLMPbJNsnH9vVK0n9cse6943gQtDN-MGN52lRr0PTDSD-ACNq_mUNPKuJ_NCsT15KYbd3Yy6y4QVBn3hbMGgXIDf89pl8MRcc8bYjRjG8vuczHJBHm__lG7JXlXX6FrztKnoncP0HlrjXiQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Primer+ID+Validates+Template+Sampling+Depth+and+Greatly+Reduces+the+Error+Rate+of+Next-Generation+Sequencing+of+HIV-1+Genomic+RNA+Populations&rft.jtitle=Journal+of+virology&rft.au=Zhou%2C+Shuntai&rft.au=Jones%2C+Corbin&rft.au=Mieczkowski%2C+Piotr&rft.au=Swanstrom%2C+Ronald&rft.date=2015-08-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=89&rft.issue=16&rft.spage=8540&rft.epage=8555&rft_id=info:doi/10.1128%2FJVI.00522-15&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_00522_15 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |