Primer ID Validates Template Sampling Depth and Greatly Reduces the Error Rate of Next-Generation Sequencing of HIV-1 Genomic RNA Populations

Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that l...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 89; no. 16; pp. 8540 - 8555
Main Authors Zhou, Shuntai, Jones, Corbin, Mieczkowski, Piotr, Swanstrom, Ronald
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.08.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set.
AbstractList Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set.
Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS.UNLABELLEDValidating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS.Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set.IMPORTANCEAlthough next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set.
Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. IMPORTANCE Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set.
Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We previously described the use of Primer ID to tag each viral RNA template with a block of degenerate nucleotides in the cDNA primer. We now show that low-abundance Primer IDs (offspring Primer IDs) are generated due to PCR/sequencing errors. These artifactual Primer IDs can be removed using a cutoff model for the number of reads required to make a template consensus sequence. We have modeled the fraction of sequences lost due to Primer ID resampling. For a typical sequencing run, less than 10% of the raw reads are lost to offspring Primer ID filtering and resampling. The remaining raw reads are used to correct for PCR resampling and sequencing errors. We also demonstrate that Primer ID reveals bias intrinsic to PCR, especially at low template input or utilization. cDNA synthesis and PCR convert ca. 20% of RNA templates into recoverable sequences, and 30-fold sequence coverage recovers most of these template sequences. We have directly measured the residual error rate to be around 1 in 10,000 nucleotides. We use this error rate and the Poisson distribution to define the cutoff to identify preexisting drug resistance mutations at low abundance in an HIV-infected subject. Collectively, these studies show that >90% of the raw sequence reads can be used to validate template sampling depth and to dramatically reduce the error rate in assessing a genetically diverse viral population using NGS. Although next-generation sequencing (NGS) has revolutionized sequencing strategies, it suffers from serious limitations in defining sequence heterogeneity in a genetically diverse population, such as HIV-1 due to PCR resampling and PCR/sequencing errors. The Primer ID approach reveals the true sampling depth and greatly reduces errors. Knowing the sampling depth allows the construction of a model of how to maximize the recovery of sequences from input templates and to reduce resampling of the Primer ID so that appropriate multiplexing can be included in the experimental design. With the defined sampling depth and measured error rate, we are able to assign cutoffs for the accurate detection of minority variants in viral populations. This approach allows the power of NGS to be realized without having to guess about sampling depth or to ignore the problem of PCR resampling, while also being able to correct most of the errors in the data set.
Author Jones, Corbin
Mieczkowski, Piotr
Swanstrom, Ronald
Zhou, Shuntai
Author_xml – sequence: 1
  givenname: Shuntai
  surname: Zhou
  fullname: Zhou, Shuntai
  organization: UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– sequence: 2
  givenname: Corbin
  surname: Jones
  fullname: Jones, Corbin
  organization: Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– sequence: 3
  givenname: Piotr
  surname: Mieczkowski
  fullname: Mieczkowski, Piotr
  organization: Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
– sequence: 4
  givenname: Ronald
  surname: Swanstrom
  fullname: Swanstrom, Ronald
  organization: UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, UNC Center For AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26041299$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLcfN87IRw6k2E4cJxekqi3bRVWptu2Km-U4k65RYgfbQfRH8J_xbksFCKknjzzPvHrnYw_tWGcBodeUHFHKqvefVosjQjhjGeUv0IySuso4p8UOmhGSfnlefdlFeyF8JYQWRVm8QrusJAVldT1DP6-8GcDjxSleqd60KkLANzCMfYrwtUqBsXf4FMa4xsq2eO5Bxf4eL6GddGLjGvCZ987j5abCdfgSfsRsDha8isZZfA3fJrB6I5Oy54tVRnFKu8FovLw8xldunPotGg7Qy071AQ4f3310-_Hs5uQ8u_g8X5wcX2S6oCJmrKk0q4QQBSHAedOpBgSptWravKx0J0ARTfJWiJYApSrhXVepmnScV4p1-T768KA7Ts0ArQYbverlmGah_L10ysi_M9as5Z37LgvOClbmSeDto4B3qbsQ5WCChr5XFtwUJE12aMnzmj2PlnWV10TkNKFv_rT15Of3uhLw7gHQ3oXgoXtCKJGba5DpGuT2GiTlCWf_4NrE7aRTU6b_f9Ev_U647g
CitedBy_id crossref_primary_10_1016_j_jmb_2017_05_010
crossref_primary_10_1038_s41598_020_58410_y
crossref_primary_10_1089_aid_2019_0245
crossref_primary_10_3390_v12060586
crossref_primary_10_1093_jac_dkw507
crossref_primary_10_1021_acsinfecdis_2c00319
crossref_primary_10_3389_fimmu_2019_01966
crossref_primary_10_1016_S2352_3018_19_30051_7
crossref_primary_10_1093_infdis_jiae131
crossref_primary_10_1093_infdis_jix338
crossref_primary_10_1097_QAD_0000000000002102
crossref_primary_10_1128_JVI_00828_17
crossref_primary_10_1038_s41467_021_27647_0
crossref_primary_10_1146_annurev_virology_101416_041718
crossref_primary_10_1089_aid_2020_0109
crossref_primary_10_1128_JVI_00229_20
crossref_primary_10_1128_JVI_01217_18
crossref_primary_10_1073_pnas_1709166114
crossref_primary_10_7554_eLife_57246
crossref_primary_10_1089_aid_2015_0202
crossref_primary_10_7554_eLife_80328
crossref_primary_10_1126_scitranslmed_aaw5589
crossref_primary_10_1093_infdis_jiad211
crossref_primary_10_1073_pnas_1607580113
crossref_primary_10_1128_JCM_00382_20
crossref_primary_10_1016_j_chom_2025_01_004
crossref_primary_10_1007_s13365_017_0605_1
crossref_primary_10_3390_v13030513
crossref_primary_10_1186_s12864_016_2388_9
crossref_primary_10_1111_tmi_13851
crossref_primary_10_1038_nm_4268
crossref_primary_10_1016_j_jmb_2024_168815
crossref_primary_10_1093_bioinformatics_btad002
crossref_primary_10_1093_infdis_jiab487
crossref_primary_10_1172_JCI176358
crossref_primary_10_1038_s41598_020_65085_y
crossref_primary_10_1016_j_xcrm_2023_100943
crossref_primary_10_1016_j_virusres_2016_10_019
crossref_primary_10_1371_journal_ppat_1012574
crossref_primary_10_1016_j_celrep_2020_108430
crossref_primary_10_1172_jci_insight_130118
crossref_primary_10_1016_j_chom_2018_03_012
crossref_primary_10_1128_JVI_00441_16
crossref_primary_10_3390_v12070694
crossref_primary_10_3390_v14020406
crossref_primary_10_1016_j_jmb_2016_04_005
crossref_primary_10_3390_v17020173
crossref_primary_10_1371_journal_pcbi_1005480
crossref_primary_10_1016_j_virusres_2016_12_008
crossref_primary_10_1093_infdis_jiaa417
crossref_primary_10_1038_s41564_022_01306_6
crossref_primary_10_7554_eLife_26437
crossref_primary_10_1093_ve_vez011
crossref_primary_10_1093_infdis_jiae213
crossref_primary_10_1128_JVI_00667_16
crossref_primary_10_1128_JCM_00105_18
crossref_primary_10_1371_journal_ppat_1006964
crossref_primary_10_1002_jia2_25833
crossref_primary_10_1093_cid_ciy1066
crossref_primary_10_1128_JVI_00787_20
crossref_primary_10_3390_v12060666
crossref_primary_10_1016_j_xcrm_2020_100162
crossref_primary_10_3389_fmicb_2019_02878
crossref_primary_10_1016_j_tibtech_2020_06_008
crossref_primary_10_1016_j_bsheal_2021_06_002
crossref_primary_10_1128_JVI_00151_20
crossref_primary_10_1038_s41598_018_29325_6
crossref_primary_10_1097_QAI_0000000000001187
crossref_primary_10_1371_journal_ppat_1006796
crossref_primary_10_1128_JVI_01420_19
crossref_primary_10_1128_JVI_01589_17
crossref_primary_10_3390_v16040510
crossref_primary_10_1186_s12977_016_0321_6
crossref_primary_10_1016_j_virusres_2020_197963
crossref_primary_10_1093_bioinformatics_bty919
crossref_primary_10_1093_jac_dkac372
crossref_primary_10_1371_journal_pone_0190438
crossref_primary_10_1016_j_antiviral_2018_07_024
crossref_primary_10_1371_journal_ppat_1011974
crossref_primary_10_3390_pathogens12060767
crossref_primary_10_22207_JPAM_17_2_08
crossref_primary_10_1128_JVI_01357_16
crossref_primary_10_1016_j_jmb_2019_04_038
crossref_primary_10_3390_v12050550
crossref_primary_10_20411_pai_v7i2_524
crossref_primary_10_3390_v12080850
crossref_primary_10_1126_scitranslmed_abb5883
crossref_primary_10_1097_QAD_0000000000003098
crossref_primary_10_1016_j_isci_2023_107711
crossref_primary_10_1016_j_virol_2018_08_021
crossref_primary_10_1016_j_jmb_2015_12_012
crossref_primary_10_1371_journal_ppat_1007868
crossref_primary_10_1128_spectrum_01353_22
crossref_primary_10_1371_journal_pgen_1010179
crossref_primary_10_1016_j_coviro_2016_09_011
crossref_primary_10_3390_v12060617
crossref_primary_10_1128_spectrum_03454_22
crossref_primary_10_1097_COH_0000000000000344
Cites_doi 10.1101/gr.070227.107
10.1186/1471-2164-15-699
10.1016/j.jviromet.2010.07.040
10.1038/nmeth.2634
10.1073/pnas.1110064108
10.1371/journal.pcbi.1001022
10.1101/gr.6468307
10.1093/nar/18.7.1687
10.1128/AAC.03466-14
10.1093/bioinformatics/btu552
10.1093/nar/gkh340
10.1186/1471-2105-5-113
10.1371/journal.pone.0119123
10.1371/journal.pone.0049602
10.1089/AID.2014.0031
10.1093/nar/gku355
10.1126/science.273.5274.415
10.1093/biomet/26.4.404
10.1016/j.ab.2006.10.009
10.1073/pnas.1105422108
10.1371/journal.pone.0004724
10.1073/pnas.1203613109
10.1002/hep.27375
10.1084/jem.164.1.280
10.1371/journal.ppat.1002529
10.1126/science.2460925
10.1126/science.1254031
10.1186/1471-2164-13-341
10.1186/gb-2013-14-9-r95
10.1038/nature07517
10.1073/pnas.1319590110
10.1093/nar/gkl164
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7U9
8FD
FR3
H94
P64
RC3
5PM
DOI 10.1128/JVI.00522-15
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Primer ID Improves NGS in Viral Population Studies
EISSN 1098-5514
EndPage 8555
ExternalDocumentID PMC4524263
26041299
10_1128_JVI_00522_15
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R21 AI108539
– fundername: NIAID NIH HHS
  grantid: R37 AI044667
– fundername: NIAID NIH HHS
  grantid: R37 AI44667
– fundername: NCI NIH HHS
  grantid: P30 CA16068
– fundername: NIAID NIH HHS
  grantid: P30 AI050410
– fundername: NIAID NIH HHS
  grantid: P30 AI50410
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
.55
.GJ
3O-
41~
6TJ
AAYJJ
ADXHL
AFFNX
AI.
C1A
CGR
CUY
CVF
D0S
ECM
EIF
MVM
NPM
OHT
VH1
X7M
Y6R
ZGI
ZXP
7X8
7TM
7U9
8FD
FR3
H94
P64
RC3
5PM
ID FETCH-LOGICAL-c417t-2b8c28777400e55bfabe709cabd368cf7ea0c03d77d0e11ab8cff8a90f558a2f3
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:30:17 EDT 2025
Thu Jul 10 23:01:41 EDT 2025
Fri Jul 11 13:22:39 EDT 2025
Mon Jul 21 06:03:33 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Tue Jul 01 01:02:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-2b8c28777400e55bfabe709cabd368cf7ea0c03d77d0e11ab8cff8a90f558a2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Zhou S, Jones C, Mieczkowski P, Swanstrom R. 2015. Primer ID validates template sampling depth and greatly reduces the error rate of next-generation sequencing of HIV-1 genomic RNA populations. J Virol 89:8540–8555. doi:10.1128/JVI.00522-15.
OpenAccessLink https://jvi.asm.org/content/jvi/89/16/8540.full.pdf
PMID 26041299
PQID 1698390731
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4524263
proquest_miscellaneous_1709165392
proquest_miscellaneous_1698390731
pubmed_primary_26041299
crossref_primary_10_1128_JVI_00522_15
crossref_citationtrail_10_1128_JVI_00522_15
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Team RC (e_1_3_3_15_2) 2013
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
23995388 - Nat Methods. 2013 Oct;10(10):999-1002
3014036 - J Exp Med. 1986 Jul 1;164(1):280-90
25092699 - Antimicrob Agents Chemother. 2014 Oct;58(10):6079-92
24810852 - Nucleic Acids Res. 2014 Jul;42(12):e98
25142801 - BMC Genomics. 2014;15:699
15318951 - BMC Bioinformatics. 2004 Aug 19;5:113
17600086 - Genome Res. 2007 Aug;17(8):1195-201
25741706 - PLoS One. 2015;10(3):e0119123
18987734 - Nature. 2008 Nov 6;456(7218):53-9
25013080 - Science. 2014 Jul 11;345(6193):1254031
22135472 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20166-71
25748056 - AIDS Res Hum Retroviruses. 2015 Jun;31(6):658-68
19266092 - PLoS One. 2009;4(3):e4724
15034147 - Nucleic Acids Res. 2004;32(5):1792-7
23166726 - PLoS One. 2012;7(11):e49602
16845079 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W6-9
2460925 - Science. 1988 Nov 25;242(4882):1171-3
20691210 - J Virol Methods. 2010 Oct;169(1):248-52
25123381 - Hepatology. 2015 Jan;61(1):56-65
2186361 - Nucleic Acids Res. 1990 Apr 11;18(7):1687-91
21187908 - PLoS Comput Biol. 2010;6(12):e1001022
24243955 - Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19872-7
25189781 - Bioinformatics. 2014 Dec 1;30(23):3424-6
21586637 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9530-5
22827831 - BMC Genomics. 2012;13:341
22517746 - Proc Natl Acad Sci U S A. 2012 May 22;109(21):E1330; author reply E1331
17107651 - Anal Biochem. 2007 Jan 1;360(1):84-91
24020486 - Genome Biol. 2013;14(9):R95
8677432 - Science. 1996 Jul 26;273(5274):415-6
18212088 - Genome Res. 2008 May;18(5):763-70
22412369 - PLoS Pathog. 2012;8(3):e1002529
References_xml – ident: e_1_3_3_28_2
  doi: 10.1101/gr.070227.107
– ident: e_1_3_3_26_2
  doi: 10.1186/1471-2164-15-699
– ident: e_1_3_3_3_2
  doi: 10.1016/j.jviromet.2010.07.040
– ident: e_1_3_3_17_2
  doi: 10.1038/nmeth.2634
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.1110064108
– ident: e_1_3_3_29_2
  doi: 10.1371/journal.pcbi.1001022
– ident: e_1_3_3_27_2
  doi: 10.1101/gr.6468307
– ident: e_1_3_3_2_2
  doi: 10.1093/nar/18.7.1687
– ident: e_1_3_3_22_2
  doi: 10.1128/AAC.03466-14
– ident: e_1_3_3_5_2
  doi: 10.1093/bioinformatics/btu552
– volume-title: A language and environment for statistical computing
  year: 2013
  ident: e_1_3_3_15_2
– ident: e_1_3_3_12_2
  doi: 10.1093/nar/gkh340
– ident: e_1_3_3_11_2
  doi: 10.1186/1471-2105-5-113
– ident: e_1_3_3_24_2
  doi: 10.1371/journal.pone.0119123
– ident: e_1_3_3_25_2
  doi: 10.1371/journal.pone.0049602
– ident: e_1_3_3_8_2
  doi: 10.1089/AID.2014.0031
– ident: e_1_3_3_9_2
  doi: 10.1093/nar/gku355
– ident: e_1_3_3_4_2
  doi: 10.1126/science.273.5274.415
– ident: e_1_3_3_20_2
  doi: 10.1093/biomet/26.4.404
– ident: e_1_3_3_34_2
  doi: 10.1016/j.ab.2006.10.009
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.1105422108
– ident: e_1_3_3_19_2
  doi: 10.1371/journal.pone.0004724
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.1203613109
– ident: e_1_3_3_32_2
  doi: 10.1002/hep.27375
– ident: e_1_3_3_10_2
  doi: 10.1084/jem.164.1.280
– ident: e_1_3_3_30_2
  doi: 10.1371/journal.ppat.1002529
– ident: e_1_3_3_33_2
  doi: 10.1126/science.2460925
– ident: e_1_3_3_31_2
  doi: 10.1126/science.1254031
– ident: e_1_3_3_13_2
  doi: 10.1186/1471-2164-13-341
– ident: e_1_3_3_6_2
  doi: 10.1186/gb-2013-14-9-r95
– ident: e_1_3_3_16_2
  doi: 10.1038/nature07517
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.1319590110
– ident: e_1_3_3_14_2
  doi: 10.1093/nar/gkl164
– reference: 8677432 - Science. 1996 Jul 26;273(5274):415-6
– reference: 17107651 - Anal Biochem. 2007 Jan 1;360(1):84-91
– reference: 2186361 - Nucleic Acids Res. 1990 Apr 11;18(7):1687-91
– reference: 25123381 - Hepatology. 2015 Jan;61(1):56-65
– reference: 17600086 - Genome Res. 2007 Aug;17(8):1195-201
– reference: 22412369 - PLoS Pathog. 2012;8(3):e1002529
– reference: 3014036 - J Exp Med. 1986 Jul 1;164(1):280-90
– reference: 25741706 - PLoS One. 2015;10(3):e0119123
– reference: 24243955 - Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19872-7
– reference: 22827831 - BMC Genomics. 2012;13:341
– reference: 2460925 - Science. 1988 Nov 25;242(4882):1171-3
– reference: 23166726 - PLoS One. 2012;7(11):e49602
– reference: 24020486 - Genome Biol. 2013;14(9):R95
– reference: 25189781 - Bioinformatics. 2014 Dec 1;30(23):3424-6
– reference: 22135472 - Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20166-71
– reference: 24810852 - Nucleic Acids Res. 2014 Jul;42(12):e98
– reference: 18987734 - Nature. 2008 Nov 6;456(7218):53-9
– reference: 20691210 - J Virol Methods. 2010 Oct;169(1):248-52
– reference: 25013080 - Science. 2014 Jul 11;345(6193):1254031
– reference: 25142801 - BMC Genomics. 2014;15:699
– reference: 21586637 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9530-5
– reference: 21187908 - PLoS Comput Biol. 2010;6(12):e1001022
– reference: 25748056 - AIDS Res Hum Retroviruses. 2015 Jun;31(6):658-68
– reference: 16845079 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W6-9
– reference: 15318951 - BMC Bioinformatics. 2004 Aug 19;5:113
– reference: 19266092 - PLoS One. 2009;4(3):e4724
– reference: 15034147 - Nucleic Acids Res. 2004;32(5):1792-7
– reference: 18212088 - Genome Res. 2008 May;18(5):763-70
– reference: 22517746 - Proc Natl Acad Sci U S A. 2012 May 22;109(21):E1330; author reply E1331
– reference: 23995388 - Nat Methods. 2013 Oct;10(10):999-1002
– reference: 25092699 - Antimicrob Agents Chemother. 2014 Oct;58(10):6079-92
SSID ssj0014464
Score 2.4872723
Snippet Validating the sampling depth and reducing sequencing errors are critical for studies of viral populations using next-generation sequencing (NGS). We...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8540
SubjectTerms DNA Barcoding, Taxonomic - methods
DNA Primers - genetics
DNA, Complementary - genetics
Drug Resistance, Viral - genetics
Genetic Diversity and Evolution
High-Throughput Nucleotide Sequencing - methods
HIV-1 - genetics
Human immunodeficiency virus
Human immunodeficiency virus 1
Polymerase Chain Reaction
Research Design - standards
RNA, Viral - genetics
Title Primer ID Validates Template Sampling Depth and Greatly Reduces the Error Rate of Next-Generation Sequencing of HIV-1 Genomic RNA Populations
URI https://www.ncbi.nlm.nih.gov/pubmed/26041299
https://www.proquest.com/docview/1698390731
https://www.proquest.com/docview/1709165392
https://pubmed.ncbi.nlm.nih.gov/PMC4524263
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3battAEF1MSqEvJb27acsW2iehVFrdH0OSYgdqTOIY0xexutWmrmRkidD8Qz-of9eZ3ZUsO0lJ-yKEtLKQ5nhumjlDyAcw0lYMjrhum9zQkfJc50Zm6J7hZoz7Vpxmgu1z5A4u7bOZM-v1fneqluoqOoyvb-0r-R-pwjGQK3bJ_oNk2x-FA7AP8oUtSBi295LxGLn5S214ok3BncbYfa1N0h-rJexpFxyLxfNvoFJWqn9N5AOW6HUnNVZiodN5WpZFqZ1zWS4wwkBYUlErVSIqrVVp9GA41U1kqsZWZu18dKSN2_lf6zvcXOyj62buv86LWqRc53Ve8cWmgkfNDDguymjRIvbLIo2vvxdXarr2eFFUbTXxxRVH-ttCDmoWOe5uDsN02gq6bk8BqN6ZtEpSFSPTKfpzXV0txw01mOxqXt-RtE-NFXck--9NC8Gw6-FsOjzEjDjTZTPpNhH3joFsyxZFwMT8EK4OxdUh0hs8YBChsCZRpD5gQZRtN0T1-GBNzwXzP3Xvve0N3Qhxdit1O67PZJ88VsKkRxKAT0gvzZ-Sh3KK6c9n5JeEIR2e0BaGtIEhbWBIBQwpwJAqGFIFQwowpAKGFGFIi4zuwJBuYIhnBQypgiEFGNIODJ-Ty8-nk-OBrqZ86LFtepXOIj9myEoJ1iR1nCjjUeoZQcyjxHL9OPNSbsSGlXheYqSmyWF5lvk8MDLH8TnLrBdkLweMviKUJz7nrsst7nGbJYxzO0h8K_I808aOzj7RmrcdxooCHyexLMPbJNsnH9vVK0n9cse6943gQtDN-MGN52lRr0PTDSD-ACNq_mUNPKuJ_NCsT15KYbd3Yy6y4QVBn3hbMGgXIDf89pl8MRcc8bYjRjG8vuczHJBHm__lG7JXlXX6FrztKnoncP0HlrjXiQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Primer+ID+Validates+Template+Sampling+Depth+and+Greatly+Reduces+the+Error+Rate+of+Next-Generation+Sequencing+of+HIV-1+Genomic+RNA+Populations&rft.jtitle=Journal+of+virology&rft.au=Zhou%2C+Shuntai&rft.au=Jones%2C+Corbin&rft.au=Mieczkowski%2C+Piotr&rft.au=Swanstrom%2C+Ronald&rft.date=2015-08-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=89&rft.issue=16&rft.spage=8540&rft.epage=8555&rft_id=info:doi/10.1128%2FJVI.00522-15&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_00522_15
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon