Structure–Function Analysis of SMAX1 Reveals Domains That Mediate Its Karrikin-Induced Proteolysis and Interaction with the Receptor KAI2

Karrikins (KARs) are butenolides found in smoke that can influence germination and seedling development of many plants. The KAR signaling mechanism is hypothesized to be very similar to that of the plant hormone strigolactone (SL). Both pathways require the F-box protein MORE AXILLARY GROWTH2 (MAX2)...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 32; no. 8; pp. 2639 - 2659
Main Authors Khosla, Aashima, Morffy, Nicholas, Li, Qingtian, Faure, Lionel, Chang, Sun Hyun, Yao, Jiaren, Zheng, Jiameng, Cai, Mei L., Stanga, John, Flematti, Gavin R., Waters, Mark T., Nelson, David C.
Format Journal Article
LanguageEnglish
Published England American Society of Plant Biologists 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Karrikins (KARs) are butenolides found in smoke that can influence germination and seedling development of many plants. The KAR signaling mechanism is hypothesized to be very similar to that of the plant hormone strigolactone (SL). Both pathways require the F-box protein MORE AXILLARY GROWTH2 (MAX2), and other core signaling components have shared ancestry. Putatively, KAR activates the receptor KARRIKIN INSENSITIVE2 (KAI2), triggering its association with the E3 ubiquitin ligase complex SCF and downstream targets SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2). Polyubiquitination and proteolysis of SMAX1 and SMXL2 then enable growth responses to KAR. However, many of the assumptions of this model have not been demonstrated. Therefore, we investigated the posttranslational regulation of SMAX1 from the model plant Arabidopsis ( ). We find evidence that SMAX1 is degraded by KAI2-SCF but is also subject to MAX2-independent turnover. We identify SMAX1 domains that are responsible for its nuclear localization, KAR-induced degradation, association with KAI2, and ability to interact with other SMXL proteins. KAI2 undergoes MAX2-independent degradation after KAR treatment, which we propose results from its association with SMAX1 and SMXL2. Finally, we discover an SMXL domain that mediates receptor-target interaction preferences in KAR and SL signaling, laying the foundation for understanding how these highly similar pathways evolved to fulfill different roles.
AbstractList Karrikins (KARs) are butenolides found in smoke that can influence germination and seedling development of many plants. The KAR signaling mechanism is hypothesized to be very similar to that of the plant hormone strigolactone (SL). Both pathways require the F-box protein MORE AXILLARY GROWTH2 (MAX2), and other core signaling components have shared ancestry. Putatively, KAR activates the receptor KARRIKIN INSENSITIVE2 (KAI2), triggering its association with the E3 ubiquitin ligase complex SCF and downstream targets SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2). Polyubiquitination and proteolysis of SMAX1 and SMXL2 then enable growth responses to KAR. However, many of the assumptions of this model have not been demonstrated. Therefore, we investigated the posttranslational regulation of SMAX1 from the model plant Arabidopsis ( ). We find evidence that SMAX1 is degraded by KAI2-SCF but is also subject to MAX2-independent turnover. We identify SMAX1 domains that are responsible for its nuclear localization, KAR-induced degradation, association with KAI2, and ability to interact with other SMXL proteins. KAI2 undergoes MAX2-independent degradation after KAR treatment, which we propose results from its association with SMAX1 and SMXL2. Finally, we discover an SMXL domain that mediates receptor-target interaction preferences in KAR and SL signaling, laying the foundation for understanding how these highly similar pathways evolved to fulfill different roles.
Karrikins (KARs) are butenolides found in smoke that can influence germination and seedling development of many plants. The KAR signaling mechanism is hypothesized to be very similar to that of the plant hormone strigolactone (SL). Both pathways require the F-box protein MORE AXILLARY GROWTH2 (MAX2), and other core signaling components have shared ancestry. Putatively, KAR activates the receptor KARRIKIN INSENSITIVE2 (KAI2), triggering its association with the E3 ubiquitin ligase complex SCFMAX2 and downstream targets SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2). Polyubiquitination and proteolysis of SMAX1 and SMXL2 then enable growth responses to KAR. However, many of the assumptions of this model have not been demonstrated. Therefore, we investigated the posttranslational regulation of SMAX1 from the model plant Arabidopsis (Arabidopsis thaliana). We find evidence that SMAX1 is degraded by KAI2-SCFMAX2 but is also subject to MAX2-independent turnover. We identify SMAX1 domains that are responsible for its nuclear localization, KAR-induced degradation, association with KAI2, and ability to interact with other SMXL proteins. KAI2 undergoes MAX2-independent degradation after KAR treatment, which we propose results from its association with SMAX1 and SMXL2. Finally, we discover an SMXL domain that mediates receptor-target interaction preferences in KAR and SL signaling, laying the foundation for understanding how these highly similar pathways evolved to fulfill different roles.Karrikins (KARs) are butenolides found in smoke that can influence germination and seedling development of many plants. The KAR signaling mechanism is hypothesized to be very similar to that of the plant hormone strigolactone (SL). Both pathways require the F-box protein MORE AXILLARY GROWTH2 (MAX2), and other core signaling components have shared ancestry. Putatively, KAR activates the receptor KARRIKIN INSENSITIVE2 (KAI2), triggering its association with the E3 ubiquitin ligase complex SCFMAX2 and downstream targets SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2). Polyubiquitination and proteolysis of SMAX1 and SMXL2 then enable growth responses to KAR. However, many of the assumptions of this model have not been demonstrated. Therefore, we investigated the posttranslational regulation of SMAX1 from the model plant Arabidopsis (Arabidopsis thaliana). We find evidence that SMAX1 is degraded by KAI2-SCFMAX2 but is also subject to MAX2-independent turnover. We identify SMAX1 domains that are responsible for its nuclear localization, KAR-induced degradation, association with KAI2, and ability to interact with other SMXL proteins. KAI2 undergoes MAX2-independent degradation after KAR treatment, which we propose results from its association with SMAX1 and SMXL2. Finally, we discover an SMXL domain that mediates receptor-target interaction preferences in KAR and SL signaling, laying the foundation for understanding how these highly similar pathways evolved to fulfill different roles.
Karrikins (KARs) are butenolides found in smoke that can influence germination and seedling development of many plants. The KAR signaling mechanism is hypothesized to be very similar to that of the plant hormone strigolactone (SL). Both pathways require the F-box protein MORE AXILLARY GROWTH2 (MAX2), and other core signaling components have shared ancestry. Putatively, KAR activates the receptor KARRIKIN INSENSITIVE2 (KAI2), triggering its association with the E3 ubiquitin ligase complex SCFMAX2 and downstream targets SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2). Polyubiquitination and proteolysis of SMAX1 and SMXL2 then enable growth responses to KAR. However, many of the assumptions of this model have not been demonstrated. Therefore, we investigated the posttranslational regulation of SMAX1 from the model plant Arabidopsis (Arabidopsis thaliana). We find evidence that SMAX1 is degraded by KAI2-SCFMAX2 but is also subject to MAX2-independent turnover. We identify SMAX1 domains that are responsible for its nuclear localization, KAR-induced degradation, association with KAI2, and ability to interact with other SMXL proteins. KAI2 undergoes MAX2-independent degradation after KAR treatment, which we propose results from its association with SMAX1 and SMXL2. Finally, we discover an SMXL domain that mediates receptor-target interaction preferences in KAR and SL signaling, laying the foundation for understanding how these highly similar pathways evolved to fulfill different roles.
Karrikins trigger degradation of SMAX1 through an F-box protein–mediated mechanism that is highly similar to strigolactone signaling. Karrikins (KARs) are butenolides found in smoke that can influence germination and seedling development of many plants. The KAR signaling mechanism is hypothesized to be very similar to that of the plant hormone strigolactone (SL). Both pathways require the F-box protein MORE AXILLARY GROWTH2 (MAX2), and other core signaling components have shared ancestry. Putatively, KAR activates the receptor KARRIKIN INSENSITIVE2 (KAI2), triggering its association with the E3 ubiquitin ligase complex SCF MAX2 and downstream targets SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2). Polyubiquitination and proteolysis of SMAX1 and SMXL2 then enable growth responses to KAR. However, many of the assumptions of this model have not been demonstrated. Therefore, we investigated the posttranslational regulation of SMAX1 from the model plant Arabidopsis ( Arabidopsis thaliana ). We find evidence that SMAX1 is degraded by KAI2-SCF MAX2 but is also subject to MAX2-independent turnover. We identify SMAX1 domains that are responsible for its nuclear localization, KAR-induced degradation, association with KAI2, and ability to interact with other SMXL proteins. KAI2 undergoes MAX2-independent degradation after KAR treatment, which we propose results from its association with SMAX1 and SMXL2. Finally, we discover an SMXL domain that mediates receptor–target interaction preferences in KAR and SL signaling, laying the foundation for understanding how these highly similar pathways evolved to fulfill different roles.
Author Faure, Lionel
Chang, Sun Hyun
Stanga, John
Waters, Mark T.
Li, Qingtian
Zheng, Jiameng
Khosla, Aashima
Flematti, Gavin R.
Morffy, Nicholas
Yao, Jiaren
Nelson, David C.
Cai, Mei L.
Author_xml – sequence: 1
  givenname: Aashima
  orcidid: 0000-0001-8533-4269
  surname: Khosla
  fullname: Khosla, Aashima
  organization: Department of Botany and Plant Sciences, University of California, Riverside, California 92521
– sequence: 2
  givenname: Nicholas
  orcidid: 0000-0003-3170-2032
  surname: Morffy
  fullname: Morffy, Nicholas
  organization: Department of Genetics, University of Georgia, Athens, Georgia 30602
– sequence: 3
  givenname: Qingtian
  orcidid: 0000-0001-5217-9813
  surname: Li
  fullname: Li, Qingtian
  organization: Department of Botany and Plant Sciences, University of California, Riverside, California 92521
– sequence: 4
  givenname: Lionel
  orcidid: 0000-0002-7022-3934
  surname: Faure
  fullname: Faure, Lionel
  organization: Department of Genetics, University of Georgia, Athens, Georgia 30602, Department of Biology, Texas Woman’s University, Denton, Texas 76204
– sequence: 5
  givenname: Sun Hyun
  orcidid: 0000-0001-6196-4098
  surname: Chang
  fullname: Chang, Sun Hyun
  organization: Department of Botany and Plant Sciences, University of California, Riverside, California 92521
– sequence: 6
  givenname: Jiaren
  orcidid: 0000-0003-2945-4746
  surname: Yao
  fullname: Yao, Jiaren
  organization: School of Molecular Sciences, University of Western Australia Perth, Crawley, Western Australia 6009, Australia, Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia Perth, Crawley, Western Australia 6009, Australia
– sequence: 7
  givenname: Jiameng
  orcidid: 0000-0001-8361-7361
  surname: Zheng
  fullname: Zheng, Jiameng
  organization: Department of Botany and Plant Sciences, University of California, Riverside, California 92521
– sequence: 8
  givenname: Mei L.
  orcidid: 0000-0001-9999-767X
  surname: Cai
  fullname: Cai, Mei L.
  organization: Department of Botany and Plant Sciences, University of California, Riverside, California 92521
– sequence: 9
  givenname: John
  orcidid: 0000-0003-3629-9932
  surname: Stanga
  fullname: Stanga, John
  organization: Department of Genetics, University of Georgia, Athens, Georgia 30602, Department of Biology, Mercer University, Macon, Georgia 31207
– sequence: 10
  givenname: Gavin R.
  orcidid: 0000-0003-2545-6939
  surname: Flematti
  fullname: Flematti, Gavin R.
  organization: School of Molecular Sciences, University of Western Australia Perth, Crawley, Western Australia 6009, Australia
– sequence: 11
  givenname: Mark T.
  orcidid: 0000-0001-5657-9005
  surname: Waters
  fullname: Waters, Mark T.
  organization: School of Molecular Sciences, University of Western Australia Perth, Crawley, Western Australia 6009, Australia, Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia Perth, Crawley, Western Australia 6009, Australia
– sequence: 12
  givenname: David C.
  orcidid: 0000-0001-9792-5015
  surname: Nelson
  fullname: Nelson, David C.
  organization: Department of Botany and Plant Sciences, University of California, Riverside, California 92521
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32434855$$D View this record in MEDLINE/PubMed
BookMark eNqFks9vFCEUx4mpsT_05tlw9OCsPAZ2hovJplrdtI3G1qQ3wjBvXHQWVmBqevPu0f_Qv0Tq1kaNiSdI-PDhPd53n-z44JGQh8BmAEw-zRs7AzVjrJH8DtkDWfOKq_Zip-yZYJWYS9gl-yl9YIxBA-oe2a25qEUr5R75epbjZPMU8fuXb0eTt9kFTxfejFfJJRoGena6uAD6Fi_RjIk-D2vjfKLnK5PpKfbOZKTLnOixidF9dL5a-n6y2NM3MWQMW43xPV36jNFs_Z9dXtG8wqK1uMkh0uPFkt8nd4fyBj64WQ_Iu6MX54evqpPXL5eHi5PKCmhyxU0_tPMahq7pVSuwhU7Wqu2wHTga2dcSpe26wbTC8rpTQinZgOTcKoAB-_qAPNt6N1O3xt6iz9GMehPd2sQrHYzTf554t9Lvw6VuBAMG8yJ4fCOI4dOEKeu1SxbH0XgMU9JcMjVnLQj-f1QwWdeyjKagj34v67aeX8MqwJMtYGNIKeJwiwDT11nQJQsalP6ZhYLzv3Drsrn-_9KUG_996QelB7q-
CitedBy_id crossref_primary_10_1007_s10681_022_03035_7
crossref_primary_10_1093_pcp_pcad056
crossref_primary_10_1111_nph_18110
crossref_primary_10_1093_pcp_pcae106
crossref_primary_10_1111_nph_17224
crossref_primary_10_1093_pcp_pcae105
crossref_primary_10_1093_pcp_pcad058
crossref_primary_10_1111_nph_18598
crossref_primary_10_1016_j_scitotenv_2024_171442
crossref_primary_10_1093_pcp_pcac080
crossref_primary_10_1073_pnas_2414779122
crossref_primary_10_1073_pnas_2416674122
crossref_primary_10_1007_s00344_022_10779_y
crossref_primary_10_1016_j_molp_2022_06_011
crossref_primary_10_1093_plcell_koae191
crossref_primary_10_3390_ijms26062775
crossref_primary_10_1007_s13762_021_03282_6
crossref_primary_10_1093_plphys_kiaa048
crossref_primary_10_1016_j_molp_2024_03_006
crossref_primary_10_1093_pcp_pcac055
crossref_primary_10_1093_pcp_pcad067
crossref_primary_10_1016_j_cub_2023_12_035
crossref_primary_10_1111_tpj_15087
crossref_primary_10_29109_gujsc_1217335
crossref_primary_10_1016_j_cub_2021_10_044
crossref_primary_10_1093_plcell_koae009
crossref_primary_10_1186_s12870_023_04118_w
crossref_primary_10_1093_plphys_kiab043
crossref_primary_10_1111_jipb_13602
crossref_primary_10_1093_jxb_erac281
crossref_primary_10_3389_fpls_2024_1467034
crossref_primary_10_1186_s12870_023_04421_6
crossref_primary_10_1007_s10725_024_01253_8
crossref_primary_10_1371_journal_pgen_1011447
crossref_primary_10_1016_j_cub_2023_02_022
crossref_primary_10_1016_j_envexpbot_2022_105072
crossref_primary_10_1371_journal_pgen_1009249
crossref_primary_10_1016_j_cub_2023_06_083
crossref_primary_10_3389_fpls_2022_887232
crossref_primary_10_1093_plphys_kiac336
crossref_primary_10_1186_s12870_023_04332_6
crossref_primary_10_1111_tpj_15096
crossref_primary_10_1126_science_adp0779
crossref_primary_10_1093_pcp_pcad077
crossref_primary_10_1111_nph_19101
crossref_primary_10_1016_j_bbrc_2021_03_006
crossref_primary_10_21769_BioProtoc_3747
crossref_primary_10_1093_jxb_eraf027
crossref_primary_10_1111_tpj_15651
crossref_primary_10_1126_science_adl4685
crossref_primary_10_1007_s10725_024_01227_w
crossref_primary_10_1111_tpj_15415
crossref_primary_10_1093_pcp_pcad072
crossref_primary_10_1038_s41477_022_01145_7
crossref_primary_10_1038_s41467_022_32314_z
crossref_primary_10_1093_plphys_kiaa066
crossref_primary_10_1093_plcell_koab217
crossref_primary_10_3897_imafungus_16_144989
crossref_primary_10_1093_jxb_eraa538
crossref_primary_10_1111_nph_18459
crossref_primary_10_1093_plphys_kiac328
crossref_primary_10_1111_tpj_15383
crossref_primary_10_1093_jxb_erad476
crossref_primary_10_1093_plcell_koac124
crossref_primary_10_1073_pnas_2112820119
crossref_primary_10_1016_j_jbc_2024_107593
crossref_primary_10_1016_j_pbi_2021_102071
crossref_primary_10_1093_pcp_pcac112
crossref_primary_10_1093_pcp_pcad047
crossref_primary_10_1016_j_pbi_2021_102072
crossref_primary_10_1007_s10725_021_00745_1
crossref_primary_10_1007_s00425_023_04277_y
crossref_primary_10_1016_j_pbi_2021_102070
crossref_primary_10_1038_s41467_025_57222_w
crossref_primary_10_1093_jxb_erac186
crossref_primary_10_1093_jxb_erae365
crossref_primary_10_5735_085_061_0106
crossref_primary_10_7717_peerj_16610
crossref_primary_10_1016_j_tplants_2023_03_014
crossref_primary_10_1093_plphys_kiab504
crossref_primary_10_1002_pld3_389
crossref_primary_10_1016_j_pbi_2020_101998
crossref_primary_10_3389_fpls_2021_747160
crossref_primary_10_1073_pnas_2006111117
crossref_primary_10_1016_j_trac_2023_117186
crossref_primary_10_1074_mcp_RA119_001766
crossref_primary_10_1093_plcell_koab106
crossref_primary_10_1093_pcp_pcab149
crossref_primary_10_1016_j_molp_2024_05_007
crossref_primary_10_1111_jipb_13463
crossref_primary_10_1016_j_xplc_2022_100303
ContentType Journal Article
Copyright 2020 American Society of Plant Biologists. All rights reserved.
2020 American Society of Plant Biologists. All rights reserved. 2020
Copyright_xml – notice: 2020 American Society of Plant Biologists. All rights reserved.
– notice: 2020 American Society of Plant Biologists. All rights reserved. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1105/tpc.19.00752
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 2659
ExternalDocumentID PMC7401016
32434855
10_1105_tpc_19_00752
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007103
– fundername: ;
  grantid: FT150100162; DP160102888
– fundername: ;
  grantid: IOS-1737153; IOS-1740560
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2FS
2WC
2~F
4.4
53G
5VS
5WD
7X2
7X7
85S
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAXTN
AAYJJ
AAYXX
ABBHK
ABDFA
ABEJV
ABGNP
ABIME
ABJNI
ABMNT
ABPIB
ABPLY
ABPPZ
ABPTD
ABTLG
ABUWG
ABVGC
ABXSQ
ABXVV
ABXZS
ABZEO
ACBTR
ACFRR
ACGFO
ACGOD
ACHIC
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ACVCV
ACZBC
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADXHL
ADYHW
AEEJZ
AENEX
AEUPB
AEUYN
AFAZZ
AFFNX
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGCDD
AGMDO
AGORE
AGUYK
AHGBF
AHMBA
AHXOZ
AICQM
AJBYB
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
APJGH
AQDSO
AQVQM
AS~
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
BVXVI
C1A
CBGCD
CCPQU
CITATION
CS3
D1J
DATOO
DIK
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
F8P
F9R
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GX1
H13
HCIFZ
HGD
HMCUK
HTVGU
H~9
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
LK8
M0K
M1P
M2P
M2Q
M7P
MV1
MVM
N9A
NEJ
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RHI
ROX
RPB
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
U5U
UBC
UKHRP
UKR
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YR2
YSK
ZCA
ZCG
ZCN
~KM
ADYWZ
CGR
CUY
CVF
ECM
EIF
FRP
NPM
7X8
5PM
ID FETCH-LOGICAL-c417t-2adf8631fb7d984e81b5398be8f2ea5d35e5cbbfa84c23b9499571522c911fed3
ISSN 1040-4651
1532-298X
IngestDate Thu Aug 21 14:14:22 EDT 2025
Fri Jul 11 11:54:29 EDT 2025
Thu Jul 10 19:17:32 EDT 2025
Thu Apr 03 06:52:28 EDT 2025
Tue Jul 01 03:49:52 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2020 American Society of Plant Biologists. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-2adf8631fb7d984e81b5398be8f2ea5d35e5cbbfa84c23b9499571522c911fed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: David C. Nelson (david.nelson@ucr.edu).
www.plantcell.org/cgi/doi/10.1105/tpc.19.00752
ORCID 0000-0001-8533-4269
0000-0001-9792-5015
0000-0001-8361-7361
0000-0001-5217-9813
0000-0003-2945-4746
0000-0001-5657-9005
0000-0001-6196-4098
0000-0001-9999-767X
0000-0003-3629-9932
0000-0002-7022-3934
0000-0003-2545-6939
0000-0003-3170-2032
OpenAccessLink https://academic.oup.com/plcell/article-pdf/32/8/2639/36892533/plcell_v32_8_2639.pdf
PMID 32434855
PQID 2405335000
PQPubID 23479
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7401016
proquest_miscellaneous_2509608142
proquest_miscellaneous_2405335000
pubmed_primary_32434855
crossref_primary_10_1105_tpc_19_00752
crossref_citationtrail_10_1105_tpc_19_00752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2020
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
SSID ssj0001719
Score 2.5900106
Snippet Karrikins (KARs) are butenolides found in smoke that can influence germination and seedling development of many plants. The KAR signaling mechanism is...
Karrikins trigger degradation of SMAX1 through an F-box protein–mediated mechanism that is highly similar to strigolactone signaling. Karrikins (KARs) are...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2639
SubjectTerms Amino Acid Motifs
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - metabolism
Carrier Proteins - metabolism
Cell Nucleus - drug effects
Cell Nucleus - metabolism
Conserved Sequence
Furans - pharmacology
Green Fluorescent Proteins - metabolism
Heterocyclic Compounds, 3-Ring - pharmacology
Hydrolases - chemistry
Hydrolases - metabolism
Intracellular Signaling Peptides and Proteins - chemistry
Intracellular Signaling Peptides and Proteins - metabolism
Lactones - pharmacology
Nicotiana - drug effects
Plant Extracts
Protein Binding - drug effects
Protein Domains
Protein Transport - drug effects
Proteolysis - drug effects
Pyrans - pharmacology
Sequence Deletion
Structure-Activity Relationship
Title Structure–Function Analysis of SMAX1 Reveals Domains That Mediate Its Karrikin-Induced Proteolysis and Interaction with the Receptor KAI2
URI https://www.ncbi.nlm.nih.gov/pubmed/32434855
https://www.proquest.com/docview/2405335000
https://www.proquest.com/docview/2509608142
https://pubmed.ncbi.nlm.nih.gov/PMC7401016
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9NAEMdXoSDBBUF5hZcWCU7Rlnj9PobSqKVJoaoj5WZ57V0lothV6giVb8C3ZmbXrzSAChcrcqy15Pl5d2Y98x9C3nJlh5ayJXOdbMgccAlY4MmMQQDkDZUvhKfLxaYn3uHM-TR3573e9251SSn20h-_rSv5H6vCObArVsn-g2WbQeEE_Ab7whEsDMcb2fhMi7-uV5KNYXnSluyKjJxNR3MLd_8laiR_LL4lmA8TLZJSf58BL3NwVF5iPdhq-XWZM2zjgekAX1C7oTDDmHRhLFM245t92wV2e8CEmGI1OB4d8a6Li-BhK6RygB8Fmgl9UQB8eibC9k3tajAtVkpdVVBioN04-ROdaHCKKf4dhsfJ2mybT1Bj6by7a8HbnDlYdOqZljMe6r7CzVTcbnWu61Teal71jORRtUZzz8iIb8__Q5TKKC_SPQt1SH2jjrsps33yOR7PJpM4OphHt8htDvEFtr44Pm1l5i3fCpsqCfd9d7xN_2UrKLmeW9txVqIH5H4VZdCRQeYh6cl8l9z5UEAkcLVL7u7XXf4ekZ_bDNGaIVooqhmiFUO0YogiQ7RiiAJD9DpDtMMQBYZohyGKDFFgiNYMUWToMZmND6L9Q1a152CpY_kl40mmAs-2lPCzMHAkBECuHQZCBorLxM1sV7qpECoJnJTbAlWQXB_cRZ7CAqtkZj8hOzmQ8oxQmfqOtFOI9nzLyUQYKM_maSK9AOX3MtEng_qhx2mlXY8tVM5jHcMO3RhMFFthrE3UJ--aqy-MZssfrntT2y-Gp44vRZLLYn0Zg5sLYRD2CvnLNSicBA61A-M8NTZv7gZRio2qS33ib9DQXICi7pv_5MuFFnfHDpkQhj2_wX1fkHvtq_WS7AAv8hW4yKV4rXH-BdHyxAg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-Function+Analysis+of+SMAX1+Reveals+Domains+That+Mediate+Its+Karrikin-Induced+Proteolysis+and+Interaction+with+the+Receptor+KAI2&rft.jtitle=The+Plant+cell&rft.au=Khosla%2C+Aashima&rft.au=Morffy%2C+Nicholas&rft.au=Li%2C+Qingtian&rft.au=Faure%2C+Lionel&rft.date=2020-08-01&rft.eissn=1532-298X&rft.volume=32&rft.issue=8&rft.spage=2639&rft.epage=2659&rft_id=info:doi/10.1105%2Ftpc.19.00752&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon