Photophilic hadronic axion from heavy magnetic monopoles

A bstract We propose a model for the QCD axion which is realized through a coupling of the Peccei-Quinn scalar field to magnetically charged fermions at high energies. We show that the axion of this model solves the strong CP problem and then integrate out heavy magnetic monopoles using the Schwinge...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2021; no. 6; pp. 1 - 23
Main Authors Sokolov, Anton V., Ringwald, Andreas
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We propose a model for the QCD axion which is realized through a coupling of the Peccei-Quinn scalar field to magnetically charged fermions at high energies. We show that the axion of this model solves the strong CP problem and then integrate out heavy magnetic monopoles using the Schwinger proper time method. We find that the model discussed yields axion couplings to the Standard Model which are drastically different from the ones calculated within the KSVZ/DFSZ-type models, so that large part of the corresponding parameter space can be probed by various projected experiments. Moreover, the axion we introduce is consistent with the astrophysical hints suggested both by anomalous TeV-transparency of the Universe and by excessive cooling of horizontal branch stars in globular clusters. We argue that the leading term for the cosmic axion abundance is not changed compared to the conventional pre-inflationary QCD axion case for axion decay constant f a > 10 12 GeV.
AbstractList We propose a model for the QCD axion which is realized through a coupling of the Peccei-Quinn scalar field to magnetically charged fermions at high energies. We show that the axion of this model solves the strong CP problem and then integrate out heavy magnetic monopoles using the Schwinger proper time method. We find that the model discussed yields axion couplings to the Standard Model which are drastically different from the ones calculated within the KSVZ/DFSZ-type models, so that large part of the corresponding parameter space can be probed by various projected experiments. Moreover, the axion we introduce is consistent with the astrophysical hints suggested both by anomalous TeV-transparency of the Universe and by excessive cooling of horizontal branch stars in globular clusters. We argue that the leading term for the cosmic axion abundance is not changed compared to the conventional pre-inflationary QCD axion case for axion decay constant fa> 1012 GeV.
A bstract We propose a model for the QCD axion which is realized through a coupling of the Peccei-Quinn scalar field to magnetically charged fermions at high energies. We show that the axion of this model solves the strong CP problem and then integrate out heavy magnetic monopoles using the Schwinger proper time method. We find that the model discussed yields axion couplings to the Standard Model which are drastically different from the ones calculated within the KSVZ/DFSZ-type models, so that large part of the corresponding parameter space can be probed by various projected experiments. Moreover, the axion we introduce is consistent with the astrophysical hints suggested both by anomalous TeV-transparency of the Universe and by excessive cooling of horizontal branch stars in globular clusters. We argue that the leading term for the cosmic axion abundance is not changed compared to the conventional pre-inflationary QCD axion case for axion decay constant f a > 10 12 GeV.
Abstract We propose a model for the QCD axion which is realized through a coupling of the Peccei-Quinn scalar field to magnetically charged fermions at high energies. We show that the axion of this model solves the strong CP problem and then integrate out heavy magnetic monopoles using the Schwinger proper time method. We find that the model discussed yields axion couplings to the Standard Model which are drastically different from the ones calculated within the KSVZ/DFSZ-type models, so that large part of the corresponding parameter space can be probed by various projected experiments. Moreover, the axion we introduce is consistent with the astrophysical hints suggested both by anomalous TeV-transparency of the Universe and by excessive cooling of horizontal branch stars in globular clusters. We argue that the leading term for the cosmic axion abundance is not changed compared to the conventional pre-inflationary QCD axion case for axion decay constant f a > 1012 GeV.
ArticleNumber 123
Author Sokolov, Anton V.
Ringwald, Andreas
Author_xml – sequence: 1
  givenname: Anton V.
  surname: Sokolov
  fullname: Sokolov, Anton V.
  email: anton.sokolov@desy.de
  organization: Deutsches Elektronen Synchrotron
– sequence: 2
  givenname: Andreas
  surname: Ringwald
  fullname: Ringwald, Andreas
  organization: Deutsches Elektronen Synchrotron
BookMark eNp1UDtPwzAQtlCRaAszayQWGEJtx46dEVWFFlWiA8yW40eTKrGDUxD997gEAQvTne6-l74JGDnvDACXCN4iCNnscbnYwPwaQ4xuEM5OwBhBXKScsGL0Zz8Dk77fQYgoKuAY8E3l976r6qZWSSV18C4u8qP2LrHBt0ll5PshaeXWmX38tN75zjemPwenVja9ufieU_Byv3ieL9P108NqfrdOFUFsn2JKSoZ4nmurLKNaEoYKVGayyHMKCVdSG2mUzDSjBmXGWpVbW1ICGeaUm2wKVoOu9nInulC3MhyEl7X4OviwFTLEZI0RpeQsL0oVDQyhXMuSm-hEIS80YRBHratBqwv-9c30e7Hzb8HF-CLmxDSLpiyiZgNKBd_3wdgfVwTFsWoxVC2OVYtYdWTAgdFHpNua8Kv7H-UTMYyBnQ
CitedBy_id crossref_primary_10_1088_1475_7516_2022_09_021
crossref_primary_10_21468_SciPostPhysProc_12_039
crossref_primary_10_1103_PhysRevD_108_063013
crossref_primary_10_1103_PhysRevLett_128_071102
crossref_primary_10_1088_1742_6596_2502_1_012003
crossref_primary_10_1103_PhysRevD_105_045009
crossref_primary_10_1103_PhysRevD_106_112003
crossref_primary_10_1103_PhysRevD_108_025015
crossref_primary_10_3390_sym14102165
crossref_primary_10_1088_1475_7516_2022_04_005
crossref_primary_10_1002_andp_202200545
crossref_primary_10_1002_andp_202200622
crossref_primary_10_3390_galaxies10020039
crossref_primary_10_3103_S002713492202045X
crossref_primary_10_1103_PhysRevLett_129_251102
crossref_primary_10_1007_JHEP01_2024_120
crossref_primary_10_1016_j_nima_2022_167588
crossref_primary_10_1126_sciadv_abq3765
crossref_primary_10_1103_PhysRevD_109_042004
crossref_primary_10_1007_JHEP05_2023_030
crossref_primary_10_1103_PhysRevD_106_023003
crossref_primary_10_1002_andp_202300112
crossref_primary_10_1140_epjc_s10052_023_12168_5
crossref_primary_10_1103_PhysRevD_107_112003
crossref_primary_10_1103_PhysRevD_108_052014
crossref_primary_10_1088_1475_7516_2022_11_042
Cites_doi 10.1103/PhysRevLett.125.261102
10.1103/PhysRevD.14.2728
10.1103/PhysRevD.97.034501
10.1016/0370-2693(77)90076-4
10.1016/0550-3213(79)90211-6
10.1016/j.aop.2009.07.009
10.1016/0550-3213(74)90486-6
10.1007/JHEP01(2017)095
10.1103/PhysRevLett.101.162302
10.1016/0370-2693(78)90232-0
10.1007/978-3-030-43761-9_13
10.1103/PhysRevD.87.055016
10.1103/PhysRevLett.40.223
10.1103/PhysRevLett.43.1365
10.1103/PhysRevC.98.035802
10.1016/0370-2693(83)90638-X
10.1016/0370-2693(83)90639-1
10.1103/PhysRevD.96.075003
10.1103/PhysRevD.3.880
10.1103/PhysRevLett.53.535
10.1016/0550-3213(80)90507-6
10.1143/PTPS.66.1
10.1098/rspa.1931.0130
10.1103/PhysRevD.42.4257
10.1111/j.1745-3933.2008.00602.x
10.1016/0550-3213(77)90221-8
10.1016/0550-3213(85)90054-9
10.1007/JHEP01(2016)034
10.1103/PhysRevLett.124.241101
10.1016/j.physrep.2020.06.002
10.1038/nphys4109
10.1103/PhysRevLett.123.111301
10.1016/0370-2693(93)90656-3
10.1103/PhysRevLett.113.191302
10.1103/PhysRevD.19.1153
10.1103/PhysRevLett.40.147
10.1016/0550-3213(81)90442-9
10.1016/j.ppnp.2016.04.003
10.1103/PhysRevD.60.114509
10.1103/PhysRevLett.95.261602
10.1038/s41567-020-1006-6
10.1103/PhysRevLett.43.103
10.1016/j.nuclphysb.2013.10.004
10.1103/PhysRevD.81.085022
10.1016/j.physletb.2020.135252
10.1103/PhysRevLett.40.279
10.1088/1748-0221/8/09/T09001
10.1103/PhysRevD.16.1791
10.1016/0370-2693(79)90838-4
10.1103/PhysRevLett.36.1122
10.1016/0370-2693(83)90637-8
10.1103/PhysRevD.53.7293
10.1016/0003-4916(86)90144-2
10.1088/1475-7516/2015/02/006
10.1016/j.physrep.2015.03.002
10.4310/CNTP.2007.v1.n1.a1
10.1007/JHEP05(2021)184
10.1103/PhysRevD.50.3399
10.1016/0550-3213(80)90209-6
10.1103/PhysRevLett.117.141801
10.1103/PhysRev.82.664
10.1103/PhysRevLett.118.011103
10.1103/PhysRevLett.38.1440
10.1016/0370-2693(81)90590-6
10.1103/PhysRevLett.120.261802
10.1038/nature20115
10.1103/PhysRevD.26.2058
10.1088/1475-7516/2012/02/033
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP06(2021)123
DatabaseName Springer_OA刊
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer_OA刊
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 23
ExternalDocumentID oai_doaj_org_article_ba8769bc191e458dab8eb3a5089d4702
10_1007_JHEP06_2021_123
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
AAYZJ
ACACY
ACGFS
ACHIP
ACREN
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AFWTZ
AHBXF
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1PV
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
ABEEZ
ABTEG
ACAFW
ACBXY
ACMRT
ACULB
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AFLOW
AGJBK
AHSBF
AHSEE
AIYBF
AKPSB
AOAED
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
HAK
IJHAN
IOP
IZVLO
JCGBZ
KC5
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c417t-254b71866dfcf75da47191b3a9665048cadeaeca3d75e13effc6ffb54072858e3
IEDL.DBID C24
ISSN 1029-8479
IngestDate Thu Jul 04 21:09:01 EDT 2024
Thu Oct 10 16:47:11 EDT 2024
Thu Sep 26 17:07:48 EDT 2024
Sat Dec 16 12:09:21 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Cosmology of Theories beyond the SM
Beyond Standard Model
CP violation
Solitons Monopoles and Instantons
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-254b71866dfcf75da47191b3a9665048cadeaeca3d75e13effc6ffb54072858e3
OpenAccessLink http://link.springer.com/10.1007/JHEP06(2021)123
PQID 2542530727
PQPubID 2034718
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_ba8769bc191e458dab8eb3a5089d4702
proquest_journals_2542530727
crossref_primary_10_1007_JHEP06_2021_123
springer_journals_10_1007_JHEP06_2021_123
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References PreskillJWiseMBWilczekFCosmology of the Invisible AxionPhys. Lett. B198312012710.1016/0370-2693(83)90637-81983PhLB..120..127P[INSPIRE]
AyalaADomínguezIGiannottiMMirizziAStranieroORevisiting the bound on axion-photon coupling from Globular ClustersPhys. Rev. Lett.201411319130210.1103/PhysRevLett.113.1913022014PhRvL.113s1302A[arXiv:1406.6053] [INSPIRE]
G. A. Pallathadka et al., Reconciling hints on axion-like-particles from high-energy gamma rays with stellar bounds, arXiv:2008.08100 [INSPIRE].
VafaCWittenEParity Conservation in QCDPhys. Rev. Lett.19845353510.1103/PhysRevLett.53.5351984PhRvL..53..535V[INSPIRE]
CAST collaboration, New CAST Limit on the Axion-Photon Interaction, Nature Phys.13 (2017) 584 [arXiv:1705.02290] [INSPIRE].
BeznogovMVRrapajEPageDReddySConstraints on Axion-like Particles and Nucleon Pairing in Dense Matter from the Hot Neutron Star in HESS J1731-347Phys. Rev. C20189803580210.1103/PhysRevC.98.0358022018PhRvC..98c5802B[arXiv:1806.07991] [INSPIRE]
S. Chang and K. Choi, Hadronic axion window and the big bang nucleosynthesis, Phys. Lett. B316 (1993) 51 [hep-ph/9306216] [INSPIRE].
DessertCFosterJWSafdiBRX-ray Searches for Axions from Super Star ClustersPhys. Rev. Lett.202012526110210.1103/PhysRevLett.125.2611022020PhRvL.125z1102D[arXiv:2008.03305] [INSPIRE]
HookASolving the Hierarchy Problem DiscretelyPhys. Rev. Lett.201812026180210.1103/PhysRevLett.120.2618022018PhRvL.120z1802H[arXiv:1802.10093] [INSPIRE]
BrandtRANeriFZwanzigerDLorentz Invariance From Classical Particle Paths in Quantum Field Theory of Electric and Magnetic ChargePhys. Rev. D197919115352758810.1103/PhysRevD.19.11531979PhRvD..19.1153B[INSPIRE]
nEDM collaboration, Measurement of the permanent electric dipole moment of the neutron, Phys. Rev. Lett.124 (2020) 081803 [arXiv:2001.11966] [INSPIRE].
Di LuzioLGavelaBQuilezPRingwaldAAn even lighter QCD axionJHEP202105184430162010.1007/JHEP05(2021)1842021JHEP...05..184D[arXiv:2102.00012] [INSPIRE]
BonatiCDi GiacomoALeporiLPucciFMonopoles, Abelian projection and gauge invariancePhys. Rev. D201081085022265356410.1103/PhysRevD.81.0850222010PhRvD..81h5022B[arXiv:1002.3874] [INSPIRE]
ChanH-MTsouSTGauge Theories in Loop SpaceActa Phys. Polon. B198617259844388[INSPIRE]
PolyakovAMGauge Fields as Rings of GlueNucl. Phys. B198016417156163810.1016/0550-3213(80)90507-61980NuPhB.164..171P[INSPIRE]
GoldhaberASSpin and Statistics Connection for Charge-Monopole CompositesPhys. Rev. Lett.197636112210.1103/PhysRevLett.36.11221976PhRvL..36.1122G[INSPIRE]
DineMFischlerWSrednickiMA Simple Solution to the Strong CP Problem with a Harmless AxionPhys. Lett. B198110419910.1016/0370-2693(81)90590-61981PhLB..104..199D[INSPIRE]
FischerCSMaasAPawlowskiJMOn the infrared behavior of Landau gauge Yang-Mills theoryAnnals Phys.2009324240825732041176.8108210.1016/j.aop.2009.07.0092009AnPhy.324.2408F[arXiv:0810.1987] [INSPIRE]
D. F. Jackson Kimball et al., Overview of the Cosmic Axion Spin Precession Experiment (CASPEr), in Springer Proceedings in Physics245, Springer, Cham Switzerland (2020), pp. 105–121 [arXiv:1711.08999] [INSPIRE].
T. Suzuki, K. Ishiguro and V. Bornyakov, New scheme for color confinement and violation of the non-Abelian Bianchi identities, Phys. Rev. D97 (2018) 034501 [Erratum ibid.97 (2018) 099905] [arXiv:1712.05941] [INSPIRE].
A. Deur, S. J. Brodsky and G. F. de Teramond, The QCD Running Coupling, Prog. Part. Nucl. Phys.90 (2016) 1 [Nucl. Phys.90 (2016) 1] [arXiv:1604.08082] [INSPIRE].
BorsányiSCalculation of the axion mass based on high-temperature lattice quantum chromodynamicsNature20165396910.1038/nature201152016Natur.539...69B[arXiv:1606.07494] [INSPIRE]
SuzukiTYotsuyanagiIA possible evidence for Abelian dominance in quark confinementPhys. Rev. D199042425710.1103/PhysRevD.42.42571990PhRvD..42.4257S[INSPIRE]
Di LuzioLGiannottiMNardiEVisinelliLThe landscape of QCD axion modelsPhys. Rept.20208701413622710.1016/j.physrep.2020.06.0022020PhR...870....1D[arXiv:2003.01100] [INSPIRE]
ChanH-MScharbachPTsouSTOn Loop Space Formulation of Gauge TheoriesAnnals Phys.198616639683051810.1016/0003-4916(86)90144-21986AnPhy.166..396H[INSPIRE]
KimJEWeak Interaction Singlet and Strong CP InvariancePhys. Rev. Lett.19794310310.1103/PhysRevLett.43.1031979PhRvL..43..103K[INSPIRE]
GoddardPNuytsJOliveDIGauge Theories and Magnetic ChargeNucl. Phys. B1977125144369610.1016/0550-3213(77)90221-81977NuPhB.125....1G[INSPIRE]
SchwingerJSOn gauge invariance and vacuum polarizationPhys. Rev.195182664417270043.4220110.1103/PhysRev.82.6641951PhRv...82..664S[INSPIRE]
C. S. Reynolds et al., Astrophysical limits on very light axion-like particles from Chandra grating spectroscopy of NGC 1275, arXiv:1907.05475 [INSPIRE].
BrandtRANeriFStability Analysis for Singular Nonabelian Magnetic MonopolesNucl. Phys. B197916125310.1016/0550-3213(79)90211-61979NuPhB.161..253B[INSPIRE]
DiracPAMQuantised singularities in the electromagnetic fieldProc. Roy. Soc. Lond. A1931133600002.3050210.1098/rspa.1931.01301931RSPSA.133...60D[INSPIRE]
DineMFischlerWThe Not So Harmless AxionPhys. Lett. B198312013710.1016/0370-2693(83)90639-11983PhLB..120..137D[INSPIRE]
R. Bähre et al., Any light particle search II — Technical Design Report, 2013 JINST8 T09001 [arXiv:1302.5647] [INSPIRE].
AbbottLFSikiviePA Cosmological Bound on the Invisible AxionPhys. Lett. B198312013310.1016/0370-2693(83)90638-X1983PhLB..120..133A[INSPIRE]
HornsDMeyerMIndications for a pair-production anomaly from the propagation of VHE gamma-raysJCAP20120203310.1088/1475-7516/2012/02/0332012JCAP...02..033H[arXiv:1201.4711] [INSPIRE]
J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett.95 (2005) 261602 [hep-ph/0501128] [INSPIRE].
BonatiCD’EliaMThe Maximal Abelian Gauge in SU(N) gauge theories and thermal monopoles for N = 3Nucl. Phys. B201387723331248391284.8119810.1016/j.nuclphysb.2013.10.0042013NuPhB.877..233B[arXiv:1308.0302] [INSPIRE]
V. A. Rubakov, Superheavy Magnetic Monopoles and Proton Decay, JETP Lett.33 (1981) 644 [Pisma Zh. Eksp. Teor. Fiz.33 (1981) 658] [INSPIRE].
G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B79 (1974) 276 [INSPIRE].
ChanH-MFaridaniJTsouS-TA Generalized duality symmetry for nonAbelian Yang-Mills fieldsPhys. Rev. D1996537293139291110.1103/PhysRevD.53.72931996PhRvD..53.7293C[hep-th/9512173] [INSPIRE]
PreskillJCosmological Production of Superheavy Magnetic MonopolesPhys. Rev. Lett.197943136510.1103/PhysRevLett.43.13651979PhRvL..43.1365P[INSPIRE]
PayezAEvoliCFischerTGiannottiMMirizziARingwaldARevisiting the SN1987A gamma-ray limit on ultralight axion-like particlesJCAP20150200610.1088/1475-7516/2015/02/0062015JCAP...02..006P[arXiv:1410.3747] [INSPIRE]
PecceiRDQuinnHRCP Conservation in the Presence of InstantonsPhys. Rev. Lett.197738144010.1103/PhysRevLett.38.14401977PhRvL..38.1440P[INSPIRE]
K. Amemiya and H. Suganuma, Off diagonal gluon mass generation and infrared Abelian dominance in the maximally Abelian gauge in lattice QCD, Phys. Rev. D60 (1999) 114509 [hep-lat/9811035] [INSPIRE].
A. R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys.31 (1980) 260 [Yad. Fiz.31 (1980) 497] [INSPIRE].
FarinaMPappadopuloDRompineveFTesiAThe photo-philic QCD axionJHEP20170109510.1007/JHEP01(2017)0952017JHEP...01..095F[arXiv:1611.09855] [INSPIRE]
LibanovMTroitskySOn the impact of magnetic-field models in galaxy clusters on constraints on axion-like particles from the lack of irregularities in high-energy spectra of astrophysical sourcesPhys. Lett. B202080213525210.1016/j.physletb.2020.135252[arXiv:1908.03084] [INSPIRE]
BrandtRANeriFZwanzigerDLorentz Invariance of the Quantum Field Theory of Electric and Magnetic ChargePhys. Rev. Lett.19784014745600610.1103/PhysRevLett.40.1471978PhRvL..40..147B[INSPIRE]
WittenEDyons of Charge eθ/2πPhys. Lett. B19798628310.1016/0370-2693(79)90838-41979PhLB...86..283W[INSPIRE]
Grilli di CortonaGHardyEPardo VegaJVilladoroGThe QCD axion, preciselyJHEP20160103410.1007/JHEP01(2016)034[arXiv:1511.02867] [INSPIRE]
KondoK-IKatoSShibataAShinoharaTQuark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theoryPhys. Rept.2015579133465801357.7002910.1016/j.physrep.2015.03.0022015PhR...579....1K[arXiv:1409.1599] [INSPIRE]
CallanCGJrDyon-Fermion DynamicsPhys. Rev. D198226205810.1103/PhysRevD.26.20581982PhRvD..26.2058C[INSPIRE]
MontonenCOliveDIMagnetic Monopoles as Gauge Particles?Phys. Lett. B19777211710.1016/0370-2693(77)90076-41977PhLB...72..117M[INSPIRE]
BabyIAXO collaboration, Conceptual Design of BabyIAXO, the intermediate stage towards the International Axion Observatory, arXiv:2010.12076 [INSPIRE].
NaganoKFujitaTMichimuraYObataIAxion Dark Matter Search with Interferometric Gravitational Wave DetectorsPhys. Rev. Lett.201912311130110.1103/PhysRevLett.123.1113012019PhRvL.123k1301N[arXiv:1903.02017] [INSPIRE]
A. M. Polyakov, Particle Spectrum in the Quantum Field Theory, JETP Lett.20 (1974) 194 [Pisma Zh. Eksp. Teor. Fiz.20 (1974) 430] [INSPIRE].
GramolinAVAybasDJohnsonDAdamJSushkovAOSearch for axion-like dark matter with ferromagnetsNature Phys.2021177910.1038/s41567-020-1006-62021NatPh..17...79G[arXiv:2003.03348] [INSPIRE]
LiaoJShuryakEMagnetic Component of Quark-Gluon Plasma is also a Liquid!Phys. Rev. Lett.200810116230210.1103/PhysRevLett.101.1623022008PhRvL.101p2302L[arXiv:0804.0255] [INSPIRE]
KapustinAWittenEElectric-Magnetic Duality And The Geometric Langlands ProgramCommun. Num. Theor. Phys.20071123065661128.2201310.4310/CNTP.2007.v1.n1.a1[hep-th/0604151] [INSPIRE]
D. Alesini, D. Babusci, D. Di Gioacchino, C. Gatti, G. Lamanna and C. Ligi, The KLASH Proposal, arXiv:1707.06010 [INSPIRE].
S. R. Coleman, The Magnetic Monopole Fifty Years Later, in proceedings of the Les Houches Summer School in Theoretical Physics: Gauge Theories in High Energy Physics, Les Houches, France, 3 August–11 September 1981, pp. 461–552 [HUTP-82-A032] [INSPIRE].
WeinbergSA New Light Boson?Phys. Rev. Lett.19784022310.1103/PhysRevLett.40.2231978PhRvL..40..223W[IN
15989_CR33
D Horns (15989_CR18) 2012; 02
15989_CR36
AS Goldhaber (15989_CR72) 1976; 36
H-M Chan (15989_CR29) 1996; 53
15989_CR37
C Vafa (15989_CR39) 1984; 53
CG Callan Jr (15989_CR24) 1982; 26
AV Gramolin (15989_CR79) 2021; 17
M Dine (15989_CR11) 1981; 104
15989_CR70
15989_CR71
15989_CR32
MV Beznogov (15989_CR58) 2018; 98
F Wilczek (15989_CR5) 1978; 40
S Weinberg (15989_CR4) 1978; 40
PAM Dirac (15989_CR19) 1931; 133
K Nagano (15989_CR46) 2019; 123
T Kugo (15989_CR51) 1979; 66
Y Kahn (15989_CR69) 2016; 117
AM Polyakov (15989_CR73) 1980; 164
TT Wu (15989_CR30) 1975; 12
J Liao (15989_CR52) 2008; 101
15989_CR44
15989_CR45
RD Peccei (15989_CR3) 1977; 16
15989_CR48
H-M Chan (15989_CR75) 1986; 166
15989_CR49
E Witten (15989_CR38) 1979; 86
L Di Luzio (15989_CR15) 2021; 05
C-Y Chen (15989_CR60) 2013; 87
M Dine (15989_CR8) 1983; 120
RA Brandt (15989_CR22) 1979; 19
P Goddard (15989_CR26) 1977; 125
J Preskill (15989_CR62) 1979; 43
15989_CR42
C Dessert (15989_CR76) 2020; 125
RA Brandt (15989_CR21) 1978; 40
L Di Luzio (15989_CR43) 2020; 870
RA Brandt (15989_CR31) 1979; 161
N Crisosto (15989_CR80) 2020; 124
15989_CR55
G Grilli di Cortona (15989_CR57) 2016; 01
15989_CR12
15989_CR56
S Borsányi (15989_CR63) 2016; 539
15989_CR59
YB Zeldovich (15989_CR61) 1978; 79
RD Peccei (15989_CR2) 1977; 38
L Di Luzio (15989_CR47) 2017; 96
A Ayala (15989_CR16) 2014; 113
J Preskill (15989_CR6) 1983; 120
C Bonati (15989_CR53) 2013; 877
K-I Kondo (15989_CR35) 2015; 579
15989_CR54
A De Angelis (15989_CR17) 2009; 394
CS Fischer (15989_CR50) 2009; 324
M Farina (15989_CR13) 2017; 01
F Englert (15989_CR25) 1976; 14
JE Kim (15989_CR9) 1979; 43
M Libanov (15989_CR78) 2020; 802
15989_CR1
15989_CR66
15989_CR23
15989_CR68
MA Shifman (15989_CR10) 1980; 166
A Hook (15989_CR14) 2018; 120
A Kapustin (15989_CR28) 2007; 1
T Suzuki (15989_CR41) 1990; 42
M Meyer (15989_CR67) 2017; 118
C Bonati (15989_CR34) 2010; 81
15989_CR64
D Zwanziger (15989_CR20) 1971; 3
15989_CR65
H-M Chan (15989_CR74) 1986; 17
JS Schwinger (15989_CR40) 1951; 82
LF Abbott (15989_CR7) 1983; 120
C Montonen (15989_CR27) 1977; 72
A Payez (15989_CR77) 2015; 02
References_xml – volume: 125
  start-page: 261102
  year: 2020
  ident: 15989_CR76
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.261102
  contributor:
    fullname: C Dessert
– volume: 14
  start-page: 2728
  year: 1976
  ident: 15989_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.14.2728
  contributor:
    fullname: F Englert
– ident: 15989_CR37
  doi: 10.1103/PhysRevD.97.034501
– volume: 72
  start-page: 117
  year: 1977
  ident: 15989_CR27
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(77)90076-4
  contributor:
    fullname: C Montonen
– volume: 161
  start-page: 253
  year: 1979
  ident: 15989_CR31
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(79)90211-6
  contributor:
    fullname: RA Brandt
– volume: 324
  start-page: 2408
  year: 2009
  ident: 15989_CR50
  publication-title: Annals Phys.
  doi: 10.1016/j.aop.2009.07.009
  contributor:
    fullname: CS Fischer
– ident: 15989_CR70
  doi: 10.1016/0550-3213(74)90486-6
– volume: 01
  start-page: 095
  year: 2017
  ident: 15989_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP01(2017)095
  contributor:
    fullname: M Farina
– volume: 101
  start-page: 162302
  year: 2008
  ident: 15989_CR52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.162302
  contributor:
    fullname: J Liao
– volume: 79
  start-page: 239
  year: 1978
  ident: 15989_CR61
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(78)90232-0
  contributor:
    fullname: YB Zeldovich
– ident: 15989_CR59
  doi: 10.1007/978-3-030-43761-9_13
– volume: 87
  start-page: 055016
  year: 2013
  ident: 15989_CR60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.055016
  contributor:
    fullname: C-Y Chen
– volume: 40
  start-page: 223
  year: 1978
  ident: 15989_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.40.223
  contributor:
    fullname: S Weinberg
– volume: 43
  start-page: 1365
  year: 1979
  ident: 15989_CR62
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.43.1365
  contributor:
    fullname: J Preskill
– volume: 98
  start-page: 035802
  year: 2018
  ident: 15989_CR58
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.98.035802
  contributor:
    fullname: MV Beznogov
– ident: 15989_CR65
– volume: 120
  start-page: 133
  year: 1983
  ident: 15989_CR7
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)90638-X
  contributor:
    fullname: LF Abbott
– ident: 15989_CR71
– volume: 120
  start-page: 137
  year: 1983
  ident: 15989_CR8
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)90639-1
  contributor:
    fullname: M Dine
– volume: 96
  start-page: 075003
  year: 2017
  ident: 15989_CR47
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.075003
  contributor:
    fullname: L Di Luzio
– volume: 3
  start-page: 880
  year: 1971
  ident: 15989_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.3.880
  contributor:
    fullname: D Zwanziger
– volume: 53
  start-page: 535
  year: 1984
  ident: 15989_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.53.535
  contributor:
    fullname: C Vafa
– volume: 164
  start-page: 171
  year: 1980
  ident: 15989_CR73
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(80)90507-6
  contributor:
    fullname: AM Polyakov
– ident: 15989_CR23
– volume: 66
  start-page: 1
  year: 1979
  ident: 15989_CR51
  publication-title: Prog. Theor. Phys. Suppl.
  doi: 10.1143/PTPS.66.1
  contributor:
    fullname: T Kugo
– ident: 15989_CR32
– volume: 133
  start-page: 60
  year: 1931
  ident: 15989_CR19
  publication-title: Proc. Roy. Soc. Lond. A
  doi: 10.1098/rspa.1931.0130
  contributor:
    fullname: PAM Dirac
– volume: 42
  start-page: 4257
  year: 1990
  ident: 15989_CR41
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.42.4257
  contributor:
    fullname: T Suzuki
– volume: 394
  start-page: L21
  year: 2009
  ident: 15989_CR17
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1111/j.1745-3933.2008.00602.x
  contributor:
    fullname: A De Angelis
– volume: 125
  start-page: 1
  year: 1977
  ident: 15989_CR26
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(77)90221-8
  contributor:
    fullname: P Goddard
– ident: 15989_CR55
  doi: 10.1016/0550-3213(85)90054-9
– volume: 01
  start-page: 034
  year: 2016
  ident: 15989_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP01(2016)034
  contributor:
    fullname: G Grilli di Cortona
– volume: 124
  start-page: 241101
  year: 2020
  ident: 15989_CR80
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.241101
  contributor:
    fullname: N Crisosto
– volume: 870
  start-page: 1
  year: 2020
  ident: 15989_CR43
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2020.06.002
  contributor:
    fullname: L Di Luzio
– ident: 15989_CR56
  doi: 10.1038/nphys4109
– volume: 123
  start-page: 111301
  year: 2019
  ident: 15989_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.111301
  contributor:
    fullname: K Nagano
– ident: 15989_CR54
  doi: 10.1016/0370-2693(93)90656-3
– ident: 15989_CR1
– volume: 113
  start-page: 191302
  year: 2014
  ident: 15989_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.191302
  contributor:
    fullname: A Ayala
– volume: 19
  start-page: 1153
  year: 1979
  ident: 15989_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.19.1153
  contributor:
    fullname: RA Brandt
– ident: 15989_CR68
– volume: 40
  start-page: 147
  year: 1978
  ident: 15989_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.40.147
  contributor:
    fullname: RA Brandt
– ident: 15989_CR33
  doi: 10.1016/0550-3213(81)90442-9
– ident: 15989_CR48
  doi: 10.1016/j.ppnp.2016.04.003
– ident: 15989_CR36
  doi: 10.1103/PhysRevD.60.114509
– volume: 17
  start-page: 259
  year: 1986
  ident: 15989_CR74
  publication-title: Acta Phys. Polon. B
  contributor:
    fullname: H-M Chan
– volume: 12
  start-page: 3845
  year: 1975
  ident: 15989_CR30
  publication-title: Phys. Rev. D
  contributor:
    fullname: TT Wu
– ident: 15989_CR49
  doi: 10.1103/PhysRevLett.95.261602
– volume: 17
  start-page: 79
  year: 2021
  ident: 15989_CR79
  publication-title: Nature Phys.
  doi: 10.1038/s41567-020-1006-6
  contributor:
    fullname: AV Gramolin
– volume: 43
  start-page: 103
  year: 1979
  ident: 15989_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.43.103
  contributor:
    fullname: JE Kim
– volume: 877
  start-page: 233
  year: 2013
  ident: 15989_CR53
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2013.10.004
  contributor:
    fullname: C Bonati
– volume: 81
  start-page: 085022
  year: 2010
  ident: 15989_CR34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.085022
  contributor:
    fullname: C Bonati
– volume: 802
  start-page: 135252
  year: 2020
  ident: 15989_CR78
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2020.135252
  contributor:
    fullname: M Libanov
– volume: 40
  start-page: 279
  year: 1978
  ident: 15989_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.40.279
  contributor:
    fullname: F Wilczek
– ident: 15989_CR64
  doi: 10.1088/1748-0221/8/09/T09001
– volume: 16
  start-page: 1791
  year: 1977
  ident: 15989_CR3
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.16.1791
  contributor:
    fullname: RD Peccei
– volume: 86
  start-page: 283
  year: 1979
  ident: 15989_CR38
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(79)90838-4
  contributor:
    fullname: E Witten
– volume: 36
  start-page: 1122
  year: 1976
  ident: 15989_CR72
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.36.1122
  contributor:
    fullname: AS Goldhaber
– ident: 15989_CR12
– ident: 15989_CR44
– volume: 120
  start-page: 127
  year: 1983
  ident: 15989_CR6
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(83)90637-8
  contributor:
    fullname: J Preskill
– volume: 53
  start-page: 7293
  year: 1996
  ident: 15989_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.53.7293
  contributor:
    fullname: H-M Chan
– volume: 166
  start-page: 396
  year: 1986
  ident: 15989_CR75
  publication-title: Annals Phys.
  doi: 10.1016/0003-4916(86)90144-2
  contributor:
    fullname: H-M Chan
– volume: 02
  start-page: 006
  year: 2015
  ident: 15989_CR77
  publication-title: JCAP
  doi: 10.1088/1475-7516/2015/02/006
  contributor:
    fullname: A Payez
– volume: 579
  start-page: 1
  year: 2015
  ident: 15989_CR35
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2015.03.002
  contributor:
    fullname: K-I Kondo
– volume: 1
  start-page: 1
  year: 2007
  ident: 15989_CR28
  publication-title: Commun. Num. Theor. Phys.
  doi: 10.4310/CNTP.2007.v1.n1.a1
  contributor:
    fullname: A Kapustin
– volume: 05
  start-page: 184
  year: 2021
  ident: 15989_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)184
  contributor:
    fullname: L Di Luzio
– ident: 15989_CR45
– ident: 15989_CR42
  doi: 10.1103/PhysRevD.50.3399
– volume: 166
  start-page: 493
  year: 1980
  ident: 15989_CR10
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(80)90209-6
  contributor:
    fullname: MA Shifman
– volume: 117
  start-page: 141801
  year: 2016
  ident: 15989_CR69
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.141801
  contributor:
    fullname: Y Kahn
– ident: 15989_CR66
– volume: 82
  start-page: 664
  year: 1951
  ident: 15989_CR40
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.82.664
  contributor:
    fullname: JS Schwinger
– volume: 118
  start-page: 011103
  year: 2017
  ident: 15989_CR67
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.011103
  contributor:
    fullname: M Meyer
– volume: 38
  start-page: 1440
  year: 1977
  ident: 15989_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.38.1440
  contributor:
    fullname: RD Peccei
– volume: 104
  start-page: 199
  year: 1981
  ident: 15989_CR11
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(81)90590-6
  contributor:
    fullname: M Dine
– volume: 120
  start-page: 261802
  year: 2018
  ident: 15989_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.261802
  contributor:
    fullname: A Hook
– volume: 539
  start-page: 69
  year: 2016
  ident: 15989_CR63
  publication-title: Nature
  doi: 10.1038/nature20115
  contributor:
    fullname: S Borsányi
– volume: 26
  start-page: 2058
  year: 1982
  ident: 15989_CR24
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.26.2058
  contributor:
    fullname: CG Callan Jr
– volume: 02
  start-page: 033
  year: 2012
  ident: 15989_CR18
  publication-title: JCAP
  doi: 10.1088/1475-7516/2012/02/033
  contributor:
    fullname: D Horns
SSID ssj0015190
Score 2.5854523
Snippet A bstract We propose a model for the QCD axion which is realized through a coupling of the Peccei-Quinn scalar field to magnetically charged fermions at high...
We propose a model for the QCD axion which is realized through a coupling of the Peccei-Quinn scalar field to magnetically charged fermions at high energies....
Abstract We propose a model for the QCD axion which is realized through a coupling of the Peccei-Quinn scalar field to magnetically charged fermions at high...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Beyond Standard Model
Classical and Quantum Gravitation
Cosmology
Cosmology of Theories beyond the SM
Couplings
CP violation
Decay rate
Elementary Particles
Fermions
Globular clusters
High energy physics
Horizontal branch stars
Magnetic monopoles
Phenomenology
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Scalars
Solitons Monopoles and Instantons
String Theory
Symmetry
Universe
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT1ytkoOH9rB0s7t57FGlpRSUHiz0FvK0BW3FVtF_72QfvkC8eN1dQvJNJplvM_kGoXPPhGIGPI0JJuLcpDYuBAXiWrDCO2s40eE_5PUNG07y0ZROv5T6CjlhlTxwBVxPK_DXQhvgFS6nwiotgP8piCsKm_NaRpLQhkzV5wcQlySNkE_Ce6Nhf5ywDhB90iVp9m0PKqX6v8WXP45Ey51msIO26xARX1Rd20UbbrGHNstUTbPaR2I8WwY1gPn93OCZsqW4LVavADAOl0UwLK8vb_hB3S3CBUUM8ywUQnCrAzQZ9G-vhnFd_yA2OeHrGLib5kGQznrjObUKNpKCwOCBolDwvJBAr5xRmeXUkcx5b5j3OkjqpYIKlx2i1mK5cEcIUwWhhdC5zUImoSdK2dxqniieugxWuAh1GkTkYyVzIRtB4wo8GcCTAF6ELgNiH58FferyAVhN1laTf1ktQu0Gb1k7zUrCeFMKa07KI9RtbPD5-pf-HP9Hf07QVmivygFro9b66dmdQrSx1mflxHoHpG7QJg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60IngRn1itkoOH9hCa12Y3J1FpLQWlBwu9hX22gqa1raL_3pk8WiroNVnC5NvdeezMfkPItY25iBXstJjH3I1UoN2EUwhckzixRivmSzyHfHyKe8OoP6Kj8sBtUZZVVjoxV9R6qvCMvA2BTEBhQQbsZvbuYtcozK6WLTS2yY6PTHh4U7z7sMoigHfiVXQ-Hmv3e52BFzch3PdbfhBuWKKcsH_Dy_yVGM3tTfeA7JeOonNbzOwh2TLZEdnNCzbV4pjwwWSKnAAvry_KmQidU9w64gtgdvDKiANK9vPbeRPjDK8pOiA-tkMwixMy7Hae73tu2QXBVZHPli78uGRIS6etsoxqAeYk8WUoIFChsP-wjF4YJULNqPFDY62KrZVIrBdwyk14SmrZNDNnxKECHAwuIx1iPaH1hdCRlswTLDAh6Lk6aVaIpLOC7CKtaI0L8FIELwXw6uQOEVsNQ5bq_MF0Pk7LRQ-GGHRtIhXIayLKtZAcYncBPmGiI-YFddKo8E7LrbNI1xNdJ61qDtav_5Dn_P9PXZA9HFnUeDVIbTn_MJfgTSzlVb5kfgDC_cd5
  priority: 102
  providerName: ProQuest
Title Photophilic hadronic axion from heavy magnetic monopoles
URI https://link.springer.com/article/10.1007/JHEP06(2021)123
https://www.proquest.com/docview/2542530727
https://doaj.org/article/ba8769bc191e458dab8eb3a5089d4702
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH64IHgRV6xLycGDHiLZZslRS2sRlCIWvIVZVdRU2ir6730vTRQVD16GkEwg-ebNW2be-wbgwHOpuMGZxiWXYWYSG-aSYeCa89w7a0SsaR3y4pL3h9n5DbuZg-hz6aJ8OG52JCtF3dS6nfe7g4gfYqweH6G2nYdF8hxIpjtU31DvG6A_EjUEPr9f-mZ7Kor-b37lj63QysL0VmGldg2Dk9lYrsGcK9dhqUrRNJMNkIO7EbEA3D_em-BO2YrUNlBvCGxARSIBqtXX9-BJ3ZZUmBigfNEBCG6yCcNe97rTD-tzD0KTxWIaYsymBRHRWW-8YFahAcljnSoMTRjOOEqcV86o1Arm4tR5b7j3mqj0EsmkS7dgoRyVbhsCptClkDqzKWUQ-lgpm1ktIiUSl6Jma8Fhg0jxPKO3KBoi4xl4BYFXIHgtOCXEPrsRL3V1YzS-LWoxR9OL2jXXBr_XZUxapSVG6wq9wNxmIkpasNfgXdSTZVLg_yYMdU0iWnDUjMHX4z--Z-cffXdhmS5nKV57sDAdv7h9dCamug3zsnfWhsXT7uXgql1JE7W8067Cc2yHyckHiyjHsg
link.rule.ids 315,786,790,870,2115,12792,21416,27955,27956,33406,33777,41152,41153,41556,42221,42222,42625,43633,43838,51609,52266,52267,74390,74657
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfQiPrE-c_Cgh2Bem92cRKVSq5YiCt7CPqugrdoq-u-dSZMWBb0m2bD77e48dma_Adh3qZCpxp2WilT4iY6MnwmGjmuWZs4azUNF55DXnbR1l7Tv2X154DYs0yormVgIajPQdEZ-hI5MxHBBRvz45dWnqlEUXS1LaMxCnSg3RQ3qp81O92YSR0D7JKgIfQJ-1G41u0F6gA5_eBhG8Q9dVFD2_7Azf4VGC41zvgSLpanonYzndhlmbH8F5oqUTT1cBdF9GBArwOPTo_YepClIbj35iUB7dGnEQzH78eU9y16fLip6OAAqiGCHa3B33rw9a_llHQRfJyEf-Th0xYmYzjjtODMSFUoWqliiq8JwB1IivbRaxoYzG8bWOZ06p4haLxJM2Hgdav1B326AxySaGEIlJqaMQhdKaRKjeCB5ZGOUdA04qBDJX8Z0F3lFbDwGLyfwcgSvAaeE2OQz4qkuHgzeenm57FEVo7TNlMb-2oQJI5VA712iVZiZhAdRA7YrvPNy8wzz6VQ34LCag-nrP_qz-f-v9mC-dXt9lV9ddC63YIFajTO-tqE2enu3O2hbjNRuuYC-AcDzy9A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bLwNBFD5xCfEirlGKffDAw8be5rJPorSpommExNtmrkho0RL-vTPb2QoJr3vL7DdzbnPOfAdgz1IuqEJJo5zyMFOJDnNOMHDNaW6NViyWbh_yskvbN1nnltz6-qehL6usdGKpqPVAuT3yQwxkEoILEkN168sieqeto-eX0HWQcplW305jGmZZRgkGYrONZrd3NckpoK8SVeQ-ETvstJu9iO5j8B8fxEn6wy6V9P0_fM5fadLS-rSWYNG7jcHxeJ6XYcr0V2CuLN9Uw1XgvfuBYwh4eHxQwb3QJeFtID4Q9MAdIAlQ5b5_Bk_iru8OLQb4A645ghmuwU2reX3SDn1PhFBlMRuFCINkjqROW2UZ0QKNSx7LVGDYQlAaXVG9MEqkmhETp8ZaRa2VjmYv4YSbdB1m-oO-2YCACHQ3uMx06qoLbSyEzrRkkWCJSVHr1WC_QqR4HlNfFBXJ8Ri8woFXIHg1aDjEJo85zurywuD1rvAigGYZNW8uFY7XZIRrITlG8gI9xFxnLEpqUK_wLrwgDYvvaa_BQTUH37f_GM_m_5_ahXlcO8XFWfd8CxbcS-PirzrMjF7fzDa6GSO549fPFzkA0AQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photophilic+hadronic+axion+from+heavy+magnetic+monopoles&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Sokolov%2C+Anton+V.&rft.au=Ringwald%2C+Andreas&rft.date=2021-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2021&rft.issue=6&rft_id=info:doi/10.1007%2FJHEP06%282021%29123&rft.externalDocID=10_1007_JHEP06_2021_123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon