JCS: An Explainable COVID-19 Diagnosis System by Joint Classification and Segmentation

Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnostic tool is the Reverse Transcription Polymerase C...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 30; pp. 3113 - 3126
Main Authors Wu, Yu-Huan, Gao, Shang-Hua, Mei, Jie, Xu, Jun, Fan, Deng-Ping, Zhang, Rong-Guo, Cheng, Ming-Ming
Format Journal Article
LanguageEnglish
Published United States IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnostic tool is the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Still, the sensitivity of the RT-PCR test is not high enough to effectively prevent the pandemic. The chest CT scan test provides a valuable complementary tool to the RT-PCR test, and it can identify the patients in the early-stage with high sensitivity. However, the chest CT scan test is usually time-consuming, requiring about 21.5 minutes per case. This paper develops a novel Joint Classification and Segmentation ( JCS ) system to perform real-time and explainable COVID- 19 chest CT diagnosis. To train our JCS system, we construct a large scale COVID- 19 Classification and Segmentation ( COVID-CS ) dataset, with 144,167 chest CT images of 400 COVID- 19 patients and 350 uninfected cases. 3,855 chest CT images of 200 patients are annotated with fine-grained pixel-level labels of opacifications, which are increased attenuation of the lung parenchyma. We also have annotated lesion counts, opacification areas, and locations and thus benefit various diagnosis aspects. Extensive experiments demonstrate that the proposed JCS diagnosis system is very efficient for COVID-19 classification and segmentation. It obtains an average sensitivity of 95.0% and a specificity of 93.0% on the classification test set, and 78.5% Dice score on the segmentation test set of our COVID-CS dataset. The COVID-CS dataset and code are available at https://github.com/yuhuan-wu/JCS .
AbstractList Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnostic tool is the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Still, the sensitivity of the RT-PCR test is not high enough to effectively prevent the pandemic. The chest CT scan test provides a valuable complementary tool to the RT-PCR test, and it can identify the patients in the early-stage with high sensitivity. However, the chest CT scan test is usually time-consuming, requiring about 21.5 minutes per case. This paper develops a novel Joint Classification and Segmentation (JCS) system to perform real-time and explainable COVID- 19 chest CT diagnosis. To train our JCS system, we construct a large scale COVID- 19 Classification and Segmentation (COVID-CS) dataset, with 144,167 chest CT images of 400 COVID- 19 patients and 350 uninfected cases. 3,855 chest CT images of 200 patients are annotated with fine-grained pixel-level labels of opacifications, which are increased attenuation of the lung parenchyma. We also have annotated lesion counts, opacification areas, and locations and thus benefit various diagnosis aspects. Extensive experiments demonstrate that the proposed JCS diagnosis system is very efficient for COVID-19 classification and segmentation. It obtains an average sensitivity of 95.0% and a specificity of 93.0% on the classification test set, and 78.5% Dice score on the segmentation test set of our COVID-CS dataset. The COVID-CS dataset and code are available at https://github.com/yuhuan-wu/JCS.
Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnostic tool is the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Still, the sensitivity of the RT-PCR test is not high enough to effectively prevent the pandemic. The chest CT scan test provides a valuable complementary tool to the RT-PCR test, and it can identify the patients in the early-stage with high sensitivity. However, the chest CT scan test is usually time-consuming, requiring about 21.5 minutes per case. This paper develops a novel Joint Classification and Segmentation (JCS) system to perform real-time and explainable COVID- 19 chest CT diagnosis. To train our JCS system, we construct a large scale COVID- 19 Classification and Segmentation (COVID-CS) dataset, with 144,167 chest CT images of 400 COVID- 19 patients and 350 uninfected cases. 3,855 chest CT images of 200 patients are annotated with fine-grained pixel-level labels of opacifications, which are increased attenuation of the lung parenchyma. We also have annotated lesion counts, opacification areas, and locations and thus benefit various diagnosis aspects. Extensive experiments demonstrate that the proposed JCS diagnosis system is very efficient for COVID-19 classification and segmentation. It obtains an average sensitivity of 95.0% and a specificity of 93.0% on the classification test set, and 78.5% Dice score on the segmentation test set of our COVID-CS dataset. The COVID-CS dataset and code are available at https://github.com/yuhuan-wu/JCS.Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnostic tool is the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Still, the sensitivity of the RT-PCR test is not high enough to effectively prevent the pandemic. The chest CT scan test provides a valuable complementary tool to the RT-PCR test, and it can identify the patients in the early-stage with high sensitivity. However, the chest CT scan test is usually time-consuming, requiring about 21.5 minutes per case. This paper develops a novel Joint Classification and Segmentation (JCS) system to perform real-time and explainable COVID- 19 chest CT diagnosis. To train our JCS system, we construct a large scale COVID- 19 Classification and Segmentation (COVID-CS) dataset, with 144,167 chest CT images of 400 COVID- 19 patients and 350 uninfected cases. 3,855 chest CT images of 200 patients are annotated with fine-grained pixel-level labels of opacifications, which are increased attenuation of the lung parenchyma. We also have annotated lesion counts, opacification areas, and locations and thus benefit various diagnosis aspects. Extensive experiments demonstrate that the proposed JCS diagnosis system is very efficient for COVID-19 classification and segmentation. It obtains an average sensitivity of 95.0% and a specificity of 93.0% on the classification test set, and 78.5% Dice score on the segmentation test set of our COVID-CS dataset. The COVID-CS dataset and code are available at https://github.com/yuhuan-wu/JCS.
Author Cheng, Ming-Ming
Xu, Jun
Wu, Yu-Huan
Mei, Jie
Zhang, Rong-Guo
Gao, Shang-Hua
Fan, Deng-Ping
Author_xml – sequence: 1
  givenname: Yu-Huan
  orcidid: 0000-0001-8666-3435
  surname: Wu
  fullname: Wu, Yu-Huan
  email: wuyuhuan@mail.nankai.edu.cn
  organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China
– sequence: 2
  givenname: Shang-Hua
  surname: Gao
  fullname: Gao, Shang-Hua
  email: shgao@mail.nankai.edu.cn
  organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0002-9789-4025
  surname: Mei
  fullname: Mei, Jie
  email: meijie0507@gmail.com
  organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0002-1602-538X
  surname: Xu
  fullname: Xu, Jun
  email: nankaimathxujun@gmail.com
  organization: School of Statistics and Data Science, Nankai University, Tianjin, China
– sequence: 5
  givenname: Deng-Ping
  orcidid: 0000-0002-5245-7518
  surname: Fan
  fullname: Fan, Deng-Ping
  email: dengpfan@gmail.com
  organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China
– sequence: 6
  givenname: Rong-Guo
  orcidid: 0000-0001-6566-8843
  surname: Zhang
  fullname: Zhang, Rong-Guo
  email: zrongguo@infervision.com
  organization: InferVision, Beijing, China
– sequence: 7
  givenname: Ming-Ming
  orcidid: 0000-0001-5550-8758
  surname: Cheng
  fullname: Cheng, Ming-Ming
  email: cmm@nankai.edu.cn
  organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33600316$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1P3DAQxS1EVb56R0JClrj0ku2M7TgxNxQoXYREpQWuke04yChxljgrdf_7ersLBw49zWj0ezNP847IfhiCI-QUYYYI6sfj_PeMAcMZh7wsSr5HDlEJzAAE20895EVWoFAH5CjGVwAUOcqv5IBzCcBRHpLnu2pxSa8Cvfmz7LQP2nSOVg_P8-sMFb32-iUM0Ue6WMfJ9dSs6d3gw0SrTsfoW2_15IdAdWjowr30Lkz_BifkS6u76L7t6jF5-nnzWP3K7h9u59XVfWYFFlPGhNVGWzScATdl2eYtN1wpx2xjZWGwKZm0bWm0glYxI6UTMvkuGGuaVjX8mHzf7l2Ow9vKxanufbSu63RwwyrWTChUOStBJvTiE_o6rMaQ3G0onisloEzU-Y5amd419XL0vR7X9fvHEgBbwI5DjKNrPxCEehNKnUKpN6HUu1CSRH6SWL990zRq3_1PeLYVeufcx53ktVAS-V8Fg5ZS
CODEN IIPRE4
CitedBy_id crossref_primary_10_3390_electronics11152296
crossref_primary_10_1007_s00500_024_10362_5
crossref_primary_10_1109_TPAMI_2021_3134684
crossref_primary_10_1002_ima_22770
crossref_primary_10_1007_s41095_020_0199_z
crossref_primary_10_1615_IntJMultCompEng_2023050009
crossref_primary_10_3390_tomography10080091
crossref_primary_10_1109_TPDS_2021_3127128
crossref_primary_10_32604_cmes_2024_030052
crossref_primary_10_3390_app12083895
crossref_primary_10_1109_TETCI_2022_3189054
crossref_primary_10_31590_ejosat_950941
crossref_primary_10_1016_j_asoc_2022_109055
crossref_primary_10_1002_smll_202307815
crossref_primary_10_1136_bmj_m1328
crossref_primary_10_1007_s00521_022_07653_z
crossref_primary_10_3390_math10214153
crossref_primary_10_1016_j_cpet_2021_06_005
crossref_primary_10_1038_s41598_020_71294_2
crossref_primary_10_1016_j_eswa_2021_114848
crossref_primary_10_1007_s11063_021_10712_6
crossref_primary_10_3390_diagnostics12071543
crossref_primary_10_1002_int_23095
crossref_primary_10_1109_TPAMI_2023_3240886
crossref_primary_10_1088_1742_6596_2891_12_122003
crossref_primary_10_1051_e3sconf_202129202014
crossref_primary_10_1109_JSTARS_2024_3365729
crossref_primary_10_3390_s23010527
crossref_primary_10_1007_s11042_021_11153_y
crossref_primary_10_1016_j_patter_2023_100830
crossref_primary_10_1016_j_bspc_2021_103326
crossref_primary_10_1007_s11042_023_14831_1
crossref_primary_10_1016_j_imavis_2024_104973
crossref_primary_10_1049_ipr2_12736
crossref_primary_10_1016_j_chaos_2020_110338
crossref_primary_10_3390_tomography8030134
crossref_primary_10_1109_TIP_2021_3130526
crossref_primary_10_3390_s23135789
crossref_primary_10_3389_frai_2024_1347898
crossref_primary_10_3390_app11178039
crossref_primary_10_1007_s11633_022_1365_9
crossref_primary_10_1109_TMI_2022_3232572
crossref_primary_10_1016_j_vrih_2022_03_002
crossref_primary_10_1109_TCDS_2022_3172331
crossref_primary_10_1186_s43067_023_00129_7
crossref_primary_10_1016_j_compbiomed_2022_106496
crossref_primary_10_1109_TIP_2023_3304518
crossref_primary_10_1016_j_compbiomed_2022_106136
crossref_primary_10_1016_j_acra_2023_02_027
crossref_primary_10_1016_j_dsm_2023_03_005
crossref_primary_10_1007_s10462_024_10717_2
crossref_primary_10_1109_TAI_2022_3147440
crossref_primary_10_1109_TMI_2022_3217501
crossref_primary_10_1109_TIE_2021_3078379
crossref_primary_10_1007_s41095_023_0353_5
crossref_primary_10_1109_TAI_2022_3225372
crossref_primary_10_1109_TIP_2022_3223216
crossref_primary_10_1007_s00138_024_01588_2
crossref_primary_10_1002_ima_22865
crossref_primary_10_3390_jcdd9080268
crossref_primary_10_1093_infdis_jiad158
crossref_primary_10_1016_j_compbiomed_2023_106668
crossref_primary_10_1117_1_JEI_31_4_043032
crossref_primary_10_3389_fonc_2021_811355
crossref_primary_10_1007_s00500_021_06137_x
crossref_primary_10_3390_jimaging8100267
crossref_primary_10_1016_j_sbi_2024_102778
crossref_primary_10_3390_s23020634
crossref_primary_10_1007_s12553_024_00879_y
crossref_primary_10_32604_cmc_2023_033413
crossref_primary_10_1007_s12539_024_00650_x
crossref_primary_10_1007_s11042_023_15099_1
crossref_primary_10_3390_diagnostics11122367
crossref_primary_10_1007_s00521_023_09262_w
crossref_primary_10_1016_j_bspc_2024_106376
crossref_primary_10_3390_app14072741
crossref_primary_10_1038_s42256_022_00557_6
crossref_primary_10_1016_j_bspc_2023_104905
crossref_primary_10_1007_s10278_024_01062_5
crossref_primary_10_1016_j_future_2021_10_001
crossref_primary_10_1007_s11036_024_02301_3
crossref_primary_10_3390_ijerph20021158
crossref_primary_10_1007_s00521_022_07052_4
crossref_primary_10_1016_j_media_2022_102722
crossref_primary_10_3390_electronics10202475
crossref_primary_10_1016_j_bspc_2022_104486
crossref_primary_10_1016_j_bspc_2022_104366
crossref_primary_10_1038_s41598_022_06931_z
crossref_primary_10_1109_TSMC_2024_3418411
crossref_primary_10_1016_j_patcog_2022_108826
crossref_primary_10_1007_s00521_022_08021_7
crossref_primary_10_1016_j_imu_2022_100941
crossref_primary_10_3389_fmed_2022_936816
crossref_primary_10_1016_j_ipm_2020_102411
crossref_primary_10_1007_s11042_024_20236_5
crossref_primary_10_1007_s11042_023_15981_y
crossref_primary_10_1007_s00521_024_09459_7
crossref_primary_10_1007_s00371_022_02611_1
crossref_primary_10_1088_2057_1976_ad1e76
crossref_primary_10_1016_j_bspc_2022_104499
crossref_primary_10_1016_j_cmpb_2022_107200
crossref_primary_10_1016_j_eswa_2022_116540
crossref_primary_10_1145_3653303
crossref_primary_10_1109_TCSVT_2023_3255304
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_61189_323428onxlas
crossref_primary_10_1016_j_compbiomed_2023_106698
crossref_primary_10_1109_TIP_2022_3195638
crossref_primary_10_1088_1742_6596_2161_1_012020
crossref_primary_10_1007_s00138_022_01312_y
crossref_primary_10_1007_s11042_022_13274_4
crossref_primary_10_1016_j_media_2021_102205
crossref_primary_10_1080_24725579_2022_2142866
crossref_primary_10_1109_TIP_2024_3361217
crossref_primary_10_1109_TBDATA_2022_3177170
crossref_primary_10_1631_FITEE_2300493
crossref_primary_10_3390_s24072374
crossref_primary_10_1007_s42979_022_01464_8
crossref_primary_10_1007_s10489_020_01826_w
crossref_primary_10_1016_j_chaos_2021_111310
crossref_primary_10_3390_jpm12020310
crossref_primary_10_1016_j_engappai_2022_105398
crossref_primary_10_1016_j_media_2020_101844
crossref_primary_10_1109_TGRS_2023_3242987
crossref_primary_10_1016_j_cmpb_2022_106731
crossref_primary_10_1016_j_displa_2024_102650
crossref_primary_10_1016_j_egyr_2023_01_019
crossref_primary_10_1038_s41598_022_20969_z
crossref_primary_10_1002_mp_16312
crossref_primary_10_1002_ima_22930
crossref_primary_10_1007_s00354_024_00255_4
crossref_primary_10_3390_bioengineering10030321
crossref_primary_10_1016_j_jvcir_2023_103949
crossref_primary_10_3390_electronics12051167
crossref_primary_10_1016_j_neucom_2023_127050
crossref_primary_10_1038_s41598_022_06854_9
crossref_primary_10_3389_fphys_2022_1066999
crossref_primary_10_1016_j_asoc_2021_108088
crossref_primary_10_1007_s11042_023_15247_7
crossref_primary_10_1016_j_aej_2023_02_020
crossref_primary_10_1016_j_neucom_2022_11_031
crossref_primary_10_3390_diagnostics11071155
crossref_primary_10_1016_j_array_2024_100357
crossref_primary_10_1007_s12204_024_2794_0
crossref_primary_10_1002_mp_17753
crossref_primary_10_1109_ACCESS_2023_3279402
crossref_primary_10_21015_vtse_v10i2_911
crossref_primary_10_3390_app12104825
crossref_primary_10_1038_s41598_023_46625_8
crossref_primary_10_3390_s21175878
crossref_primary_10_1038_s41598_022_15268_6
crossref_primary_10_1016_j_eswa_2023_120477
crossref_primary_10_1016_j_bspc_2023_104939
crossref_primary_10_1016_j_compbiomed_2022_106065
crossref_primary_10_3390_jimaging9090177
crossref_primary_10_1016_j_asoc_2022_109683
crossref_primary_10_1016_j_eswa_2024_125067
crossref_primary_10_1007_s12559_020_09751_3
crossref_primary_10_1007_s12650_022_00882_3
crossref_primary_10_3390_diagnostics14242791
crossref_primary_10_1109_MSMC_2022_3228381
crossref_primary_10_3934_mbe_2023294
crossref_primary_10_1109_TNNLS_2021_3114747
crossref_primary_10_1007_s00138_023_01424_z
crossref_primary_10_32604_cmc_2022_019331
crossref_primary_10_1016_j_engappai_2025_110245
crossref_primary_10_1016_j_jvcir_2021_103356
crossref_primary_10_1049_ipr2_12904
crossref_primary_10_1007_s00354_024_00289_8
crossref_primary_10_1007_s10489_025_06264_0
crossref_primary_10_1016_j_compbiomed_2021_105123
crossref_primary_10_1016_j_media_2023_102797
crossref_primary_10_1007_s00521_023_08683_x
crossref_primary_10_1007_s42979_021_00823_1
crossref_primary_10_3390_app112311185
crossref_primary_10_1007_s10489_021_02731_6
crossref_primary_10_1016_j_comcom_2022_10_013
crossref_primary_10_1109_TIP_2022_3164550
crossref_primary_10_1002_mp_15231
crossref_primary_10_1111_eci_14176
crossref_primary_10_1109_TIP_2022_3203223
crossref_primary_10_15302_J_QB_021_0274
crossref_primary_10_1007_s10278_022_00701_z
crossref_primary_10_1016_j_bspc_2024_106167
crossref_primary_10_1016_j_compbiomed_2021_104605
crossref_primary_10_1109_TPAMI_2021_3065086
crossref_primary_10_1002_ima_22905
crossref_primary_10_1016_j_ibmed_2024_100156
crossref_primary_10_1016_j_patcog_2023_109514
crossref_primary_10_1109_TCSVT_2021_3126591
crossref_primary_10_1186_s13244_024_01620_z
crossref_primary_10_1109_RBME_2022_3185953
crossref_primary_10_1109_TIP_2024_3515878
crossref_primary_10_1109_TSMC_2023_3307393
crossref_primary_10_1109_TCDS_2022_3193121
crossref_primary_10_1109_TIP_2021_3065822
crossref_primary_10_1016_j_patcog_2023_109861
crossref_primary_10_1016_j_cmpbup_2021_100022
crossref_primary_10_1016_j_eswa_2025_126806
crossref_primary_10_1109_TIM_2024_3381260
crossref_primary_10_1109_TMI_2021_3083586
crossref_primary_10_1016_j_imavis_2024_105358
crossref_primary_10_1007_s10845_022_01936_x
crossref_primary_10_1109_TCBB_2023_3253901
crossref_primary_10_1016_j_compbiomed_2022_105340
crossref_primary_10_1109_TCE_2022_3205376
crossref_primary_10_1109_TPAMI_2024_3435571
crossref_primary_10_1049_ipr2_12249
crossref_primary_10_1007_s00530_022_00960_4
crossref_primary_10_1109_TCSVT_2021_3124952
crossref_primary_10_1007_s11831_021_09641_3
crossref_primary_10_1016_j_bbe_2022_06_005
crossref_primary_10_3390_diagnostics12051283
crossref_primary_10_1016_j_patcog_2025_111371
crossref_primary_10_1007_s11548_021_02418_w
crossref_primary_10_1007_s11042_022_12508_9
crossref_primary_10_1016_j_bspc_2022_104099
crossref_primary_10_1016_j_displa_2023_102395
crossref_primary_10_1016_j_patcog_2021_108035
crossref_primary_10_1007_s10462_022_10152_1
crossref_primary_10_3390_app11041424
crossref_primary_10_3389_frai_2024_1304483
crossref_primary_10_1007_s00354_023_00232_3
crossref_primary_10_1109_MIS_2021_3135474
crossref_primary_10_1007_s00371_023_02870_6
crossref_primary_10_1155_2021_3257035
crossref_primary_10_7336_academicus_2022_25_02
crossref_primary_10_1007_s40846_021_00653_9
crossref_primary_10_3390_diagnostics11112025
crossref_primary_10_1007_s00371_024_03658_y
crossref_primary_10_1142_S0129183123500286
crossref_primary_10_1007_s10278_024_01068_z
crossref_primary_10_1038_s41598_023_49218_7
crossref_primary_10_1016_j_ipemt_2022_100008
crossref_primary_10_1016_j_knosys_2022_109278
crossref_primary_10_1007_s42979_021_00874_4
crossref_primary_10_1016_j_eswa_2023_122317
crossref_primary_10_3934_mbe_2023892
crossref_primary_10_7717_peerj_cs_2535
crossref_primary_10_1007_s11517_024_03205_w
crossref_primary_10_1007_s13369_021_06240_z
crossref_primary_10_1109_ACCESS_2021_3080180
crossref_primary_10_1016_j_compbiomed_2022_105350
crossref_primary_10_1080_21681163_2022_2061376
crossref_primary_10_1007_s13721_023_00437_y
crossref_primary_10_1080_21681163_2023_2219767
Cites_doi 10.1109/CVPR.2018.00745
10.1109/TPAMI.2019.2943860
10.1007/s00330-020-06817-6
10.1109/CVPR42600.2020.00893
10.1109/TPAMI.2019.2921543
10.1109/TPAMI.2018.2844175
10.1109/CVPR.2016.90
10.5607/en20009e1
10.1109/TPAMI.2020.3023152
10.1109/CVPR.2017.243
10.1109/TMI.2020.2996645
10.1007/s11427-020-1661-4
10.1109/ICCV.2019.00745
10.1109/CVPR.2009.5206848
10.1007/978-3-319-46487-9_53
10.1148/radiol.2020200905
10.24963/ijcai.2018/120
10.1109/CVPR.2017.106
10.1097/RLI.0000000000000674
10.1021/acsnano.0c02624
10.1148/radiol.2020200702
10.1016/j.ejrad.2020.108961
10.1109/CVPR.2019.00123
10.1109/TIP.2019.2910667
10.1016/j.jacr.2020.03.011
10.1109/TIP.2020.3026622
10.1148/radiol.2020200463
10.1109/ICCV.2019.00887
10.1148/radiology.188.1.8511299
10.1148/radiol.2020200432
10.1109/TMI.2019.2959609
10.1148/ryct.2020200047
10.1109/TCYB.2020.3035613
10.1109/ICCV.2017.74
10.1148/radiol.2020200843
10.1109/TPAMI.2019.2938758
10.1148/radiol.2020200642
10.1007/s41095-018-0123-y
10.1109/3DV.2016.79
10.1109/TPAMI.2018.2815688
10.1136/bmj.m1328
10.1109/CVPR.2019.00404
10.1148/radiol.2020200230
10.1016/S1473-3099(20)30086-4
10.1109/TIP.2019.2936746
10.1109/CVPR.2015.7298965
10.24963/ijcai.2018/97
10.1148/ryct.2020204002
10.7189/jogh.10.010347
10.3233/FI-2000-411207
10.1007/s00330-020-06816-7
10.1109/TPAMI.2017.2699184
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2021.3058783
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE

Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3126
ExternalDocumentID 33600316
10_1109_TIP_2021_3058783
9357961
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Tianjin Natural Science Foundation
  grantid: 17JCJQJC43700; 18ZXZNGX00110
  funderid: 10.13039/501100006606
– fundername: Major Project for New Generation of AI
  grantid: 2018AAA0100400
– fundername: NSFC
  grantid: 61922046; 62002176
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c417t-24cabac1b3203b88f5f3b399e2cdc67b1d826cf8ba90f92b66e46316722ddf9d3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Thu Jul 10 22:45:41 EDT 2025
Mon Jun 30 10:17:00 EDT 2025
Wed Feb 19 02:28:59 EST 2025
Tue Jul 01 02:03:25 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Wed Aug 27 02:48:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-24cabac1b3203b88f5f3b399e2cdc67b1d826cf8ba90f92b66e46316722ddf9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8666-3435
0000-0002-9789-4025
0000-0002-1602-538X
0000-0001-6566-8843
0000-0001-5550-8758
0000-0002-5245-7518
PMID 33600316
PQID 2493599408
PQPubID 85429
PageCount 14
ParticipantIDs proquest_journals_2493599408
pubmed_primary_33600316
crossref_citationtrail_10_1109_TIP_2021_3058783
crossref_primary_10_1109_TIP_2021_3058783
ieee_primary_9357961
proquest_miscellaneous_2491952806
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref15
ref14
ref53
ref52
krizhevsky (ref37) 2012
sajid (ref11) 2020
ref54
rajinikanth (ref33) 2020
ref17
shan (ref71) 2020
wu (ref55) 2020
ref16
ref19
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
zhou (ref35) 2020
ref49
ref8
ref7
kingma (ref76) 2015
paul cohen (ref9) 2020
(ref1) 2020
liu (ref26) 2020
ref4
shi (ref70) 2020
bian (ref48) 2019
ref5
lee (ref68) 2015
ref40
yang (ref10) 2020
ref34
ref36
çiçek (ref59) 2016
ref75
ref31
zhang (ref64) 2018
ref74
ref30
ref32
ai (ref3) 2020; 296
ref39
zhang (ref6) 2020
jenssen (ref2) 2020
jenssen (ref12) 2020
ref73
ref72
ref24
ref67
ref23
ref69
ref25
ref20
ref63
ref66
ref22
ref65
ref21
ronneberger (ref58) 2015
ref27
ref29
qiu (ref18) 2020
ref62
ref61
simonyan (ref38) 2015
iglovikov (ref60) 2018
farooq (ref28) 2020
References_xml – ident: ref66
  doi: 10.1109/CVPR.2018.00745
– ident: ref49
  doi: 10.1109/TPAMI.2019.2943860
– year: 2020
  ident: ref71
  article-title: Lung infection quantification of COVID-19 in CT images with deep learning
  publication-title: arXiv 2003 04655
– ident: ref30
  doi: 10.1007/s00330-020-06817-6
– start-page: 1
  year: 2018
  ident: ref64
  article-title: Mixup: Beyond empirical risk minimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref46
  doi: 10.1109/CVPR42600.2020.00893
– ident: ref65
  doi: 10.1109/TPAMI.2019.2921543
– ident: ref56
  doi: 10.1109/TPAMI.2018.2844175
– start-page: 1
  year: 2015
  ident: ref76
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– year: 2018
  ident: ref60
  article-title: TernausNet: U-Net with VGG11 encoder pre-trained on ImageNet for image segmentation
  publication-title: arXiv 1801 05746
– ident: ref27
  doi: 10.1109/CVPR.2016.90
– year: 2020
  ident: ref9
  article-title: COVID-19 image data collection
  publication-title: arXiv 2003 11597
– ident: ref21
  doi: 10.5607/en20009e1
– ident: ref54
  doi: 10.1109/TPAMI.2020.3023152
– start-page: 2646
  year: 2020
  ident: ref26
  article-title: Rethinking computer-aided tuberculosis diagnosis
  publication-title: Proc IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref39
  doi: 10.1109/CVPR.2017.243
– ident: ref19
  doi: 10.1109/TMI.2020.2996645
– start-page: 562
  year: 2015
  ident: ref68
  article-title: Deeply-supervised nets
  publication-title: Artificial Intelligence and Statistics
– ident: ref24
  doi: 10.1007/s11427-020-1661-4
– start-page: 424
  year: 2016
  ident: ref59
  article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation
  publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI
– year: 2020
  ident: ref28
  article-title: COVID-ResNet: A deep learning framework for screening of COVID19 from radiographs
  publication-title: arXiv 2003 14395
– ident: ref57
  doi: 10.1109/ICCV.2019.00745
– year: 2020
  ident: ref11
  publication-title: COVID-19 Patients Lungs X Ray Images 10000
– ident: ref36
  doi: 10.1109/CVPR.2009.5206848
– year: 2020
  ident: ref1
  publication-title: Coronavirus disease (COVID-19) outbreak situation
– ident: ref41
  doi: 10.1007/978-3-319-46487-9_53
– ident: ref13
  doi: 10.1148/radiol.2020200905
– start-page: 1
  year: 2019
  ident: ref48
  article-title: An evaluation of feature matchers for fundamental matrix estimation
  publication-title: Proc Brit Mach Vis Conf
– ident: ref42
  doi: 10.24963/ijcai.2018/120
– ident: ref67
  doi: 10.1109/CVPR.2017.106
– ident: ref62
  doi: 10.1097/RLI.0000000000000674
– ident: ref22
  doi: 10.1021/acsnano.0c02624
– ident: ref23
  doi: 10.1148/radiol.2020200702
– ident: ref25
  doi: 10.1016/j.ejrad.2020.108961
– ident: ref45
  doi: 10.1109/CVPR.2019.00123
– ident: ref51
  doi: 10.1109/TIP.2019.2910667
– year: 2020
  ident: ref55
  article-title: Regularized densely-connected pyramid network for salient instance segmentation
  publication-title: arXiv 2008 12416
– year: 2020
  ident: ref6
  article-title: COVID-19 screening on chest X-Ray images using deep learning based anomaly detection
  publication-title: arXiv 2003 12338
– ident: ref8
  doi: 10.1016/j.jacr.2020.03.011
– start-page: 234
  year: 2015
  ident: ref58
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI
– ident: ref50
  doi: 10.1109/TIP.2020.3026622
– ident: ref15
  doi: 10.1148/radiol.2020200463
– ident: ref75
  doi: 10.1109/ICCV.2019.00887
– ident: ref63
  doi: 10.1148/radiology.188.1.8511299
– ident: ref4
  doi: 10.1148/radiol.2020200432
– ident: ref61
  doi: 10.1109/TMI.2019.2959609
– ident: ref29
  doi: 10.1148/ryct.2020200047
– ident: ref44
  doi: 10.1109/TCYB.2020.3035613
– year: 2020
  ident: ref18
  article-title: MiniSeg: An extremely minimum network for efficient COVID-19 segmentation
  publication-title: arXiv 2004 09750
– ident: ref20
  doi: 10.1109/ICCV.2017.74
– start-page: 1097
  year: 2012
  ident: ref37
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inform Process Syst
– year: 2020
  ident: ref10
  article-title: COVID-CT-dataset: A CT scan dataset about COVID-19
  publication-title: arXiv 2003 13865
– year: 2020
  ident: ref12
  publication-title: COVID-19 CT Segmentation Dataset
– ident: ref16
  doi: 10.1148/radiol.2020200843
– ident: ref40
  doi: 10.1109/TPAMI.2019.2938758
– volume: 296
  start-page: 32e
  year: 2020
  ident: ref3
  article-title: Correlation of chest ct and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases
  publication-title: Radiology
  doi: 10.1148/radiol.2020200642
– year: 2020
  ident: ref2
  publication-title: China National Health Commission Diagnosis and Treatment of Pneumonitis Caused by New Coronavirus (Trial Version 6)
– ident: ref43
  doi: 10.1007/s41095-018-0123-y
– ident: ref69
  doi: 10.1109/3DV.2016.79
– ident: ref73
  doi: 10.1109/TPAMI.2018.2815688
– year: 2020
  ident: ref35
  article-title: An automatic COVID-19 CT segmentation network using spatial and channel attention mechanism
  publication-title: arXiv 2004 06673
– ident: ref32
  doi: 10.1136/bmj.m1328
– ident: ref74
  doi: 10.1109/CVPR.2019.00404
– ident: ref14
  doi: 10.1148/radiol.2020200230
– ident: ref17
  doi: 10.1016/S1473-3099(20)30086-4
– ident: ref47
  doi: 10.1109/TIP.2019.2936746
– year: 2020
  ident: ref70
  article-title: Large-scale screening of COVID-19 from community acquired pneumonia using infection size-aware classification
  publication-title: arXiv 2003 09860
– ident: ref52
  doi: 10.1109/CVPR.2015.7298965
– ident: ref72
  doi: 10.24963/ijcai.2018/97
– start-page: 1
  year: 2015
  ident: ref38
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Represent
– ident: ref7
  doi: 10.1148/ryct.2020204002
– ident: ref5
  doi: 10.7189/jogh.10.010347
– ident: ref34
  doi: 10.3233/FI-2000-411207
– ident: ref31
  doi: 10.1007/s00330-020-06816-7
– year: 2020
  ident: ref33
  article-title: Harmony-search and otsu based system for coronavirus disease (COVID-19) detection using lung CT scan images
  publication-title: arXiv 2004 03431
– ident: ref53
  doi: 10.1109/TPAMI.2017.2699184
SSID ssj0014516
Score 2.692734
Snippet Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3113
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Attenuation
Chest
Classification
Computed tomography
Coronaviruses
COVID-19
COVID-19 - diagnostic imaging
COVID-19 dataset
CT classification
CT segmentation
Databases, Factual
Datasets
Deep Learning
Diagnosis
Female
Humans
Image classification
Image segmentation
joint diagnosis
Lung
Lung - diagnostic imaging
Male
Medical imaging
Middle Aged
Pandemics
Polymerase chain reaction
Radiographic Image Interpretation, Computer-Assisted - methods
SARS-CoV-2
Sensitivity
Test sets
Tomography, X-Ray Computed
Viral diseases
X-rays
Young Adult
Title JCS: An Explainable COVID-19 Diagnosis System by Joint Classification and Segmentation
URI https://ieeexplore.ieee.org/document/9357961
https://www.ncbi.nlm.nih.gov/pubmed/33600316
https://www.proquest.com/docview/2493599408
https://www.proquest.com/docview/2491952806
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBAoeURKMhIXJDIbpw4ccyt2lK1KxWQaKveIo_toAqardjsAX49HseJAAHiFilObOubkefzvABellmOwtQiNf5sSUVpvM4Rca2NRCucllVFicKn76rjc7G8LC-34PWUC-OcC8FnbkaPwZdvV2ZDV2VzVVDmpOc6tzxxG3K1Jo8BNZwNns1SptKb_aNLMlPzs5MPngjmfOZlu5Y1tc4piorEufrlNArtVf5uaYYT52gHTse1DoEmn2ebHmfm-29lHP93M_fgbjQ92cEgK_dhy3W7sBPNUBaVfL0Ld36qUbgHF8vFxzfsoGMUrRdTrdji_cXJYcoVOxwi9a7WbCh9zvAbW66uup6FbpsUhxSgZ7rzU7hP1zHVqXsA50dvzxbHaWzGkBrBZZ_mwmjUhmORZwXWdVu2BXrrxuXGmkoit56omLZGrbJW5egxFhWl2ee5ta2yxUPY7ladewzMU0SLnOsMUQpvLqKWZWvRWM0lCqkTmI-gNCZWKqeGGV-awFgy1XhEG0K0iYgm8Gr64mao0vGPsXsExjQu4pDA_oh7E9V43XhuWpRKiaxO4MX02isgeVV051abMIarkhzUCTwa5GX69yhmT_4851O4TSsbbnT2Ybv_unHPvI3T4_Mg3D8Aad7ziQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOFFoegQJGggOH7MaOE8dIHKpdqt3tAyS2VW_Br1RVIYvYrFD5LfwV_hu240SAgFslbpHi2I79jWfG8wJ4liVEUlXQWFneEtNMWZpzimuhmNTUCJbnLlD44DCfHNHZSXayBt_6WBhjjHc-MwP36G35eqFW7qpsyFMXOYmDC-WeufhiFbTlq-nY7uZzQnZfz0eTONQQiBXFrIkJVUIKhWVKklQWRZVVqbRM2RClVc4k1la-VlUhBU8qTqSdGs1ddDghWldcp7bfK3DVyhkZaaPDehuFK3HrbakZi5lVNDojaMKH8-lbq3oSPLDUVLDCFetJ09wRUP4L__MFXf4u23oet7sB37vVaV1bzgerRg7U198SR_6vy3cLbgbhGu201HAb1ky9CRtB0EbhGFtuwo2fsjBuwfFs9O4l2qmR80cMwWRo9OZ4Oo4xR-PWF_Fsidrk7kheoNnirG6QryfqPK08uJGo7RDm9GMI5qrvwNGl_OtdWK8XtbkPyCrBWmIsEikZtQKxFCyrtFRaYCYpExEMOxCUKuRidyVBPpReJ0t4aRFUOgSVAUERvOi_-NTmIflH2y23-X27sO8RbHc4K8NBtSyt9p1mnNOkiOBp_9oeMc5uJGqzWPk2mGfOBB_BvRaffd8drB_8ecwncG0yP9gv96eHew_huptle3-1DevN55V5ZCW6Rj72hIXg_WVD8Qdxz1J8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=JCS%3A+An+Explainable+COVID-19+Diagnosis+System+by+Joint+Classification+and+Segmentation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wu%2C+Yu-Huan&rft.au=Gao%2C+Shang-Hua&rft.au=Mei%2C+Jie&rft.au=Xu%2C+Jun&rft.date=2021&rft.eissn=1941-0042&rft.volume=30&rft.spage=3113&rft_id=info:doi/10.1109%2FTIP.2021.3058783&rft_id=info%3Apmid%2F33600316&rft.externalDocID=33600316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon