JCS: An Explainable COVID-19 Diagnosis System by Joint Classification and Segmentation
Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnostic tool is the Reverse Transcription Polymerase C...
Saved in:
Published in | IEEE transactions on image processing Vol. 30; pp. 3113 - 3126 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnostic tool is the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Still, the sensitivity of the RT-PCR test is not high enough to effectively prevent the pandemic. The chest CT scan test provides a valuable complementary tool to the RT-PCR test, and it can identify the patients in the early-stage with high sensitivity. However, the chest CT scan test is usually time-consuming, requiring about 21.5 minutes per case. This paper develops a novel Joint Classification and Segmentation ( JCS ) system to perform real-time and explainable COVID- 19 chest CT diagnosis. To train our JCS system, we construct a large scale COVID- 19 Classification and Segmentation ( COVID-CS ) dataset, with 144,167 chest CT images of 400 COVID- 19 patients and 350 uninfected cases. 3,855 chest CT images of 200 patients are annotated with fine-grained pixel-level labels of opacifications, which are increased attenuation of the lung parenchyma. We also have annotated lesion counts, opacification areas, and locations and thus benefit various diagnosis aspects. Extensive experiments demonstrate that the proposed JCS diagnosis system is very efficient for COVID-19 classification and segmentation. It obtains an average sensitivity of 95.0% and a specificity of 93.0% on the classification test set, and 78.5% Dice score on the segmentation test set of our COVID-CS dataset. The COVID-CS dataset and code are available at https://github.com/yuhuan-wu/JCS . |
---|---|
AbstractList | Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnostic tool is the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Still, the sensitivity of the RT-PCR test is not high enough to effectively prevent the pandemic. The chest CT scan test provides a valuable complementary tool to the RT-PCR test, and it can identify the patients in the early-stage with high sensitivity. However, the chest CT scan test is usually time-consuming, requiring about 21.5 minutes per case. This paper develops a novel Joint Classification and Segmentation (JCS) system to perform real-time and explainable COVID- 19 chest CT diagnosis. To train our JCS system, we construct a large scale COVID- 19 Classification and Segmentation (COVID-CS) dataset, with 144,167 chest CT images of 400 COVID- 19 patients and 350 uninfected cases. 3,855 chest CT images of 200 patients are annotated with fine-grained pixel-level labels of opacifications, which are increased attenuation of the lung parenchyma. We also have annotated lesion counts, opacification areas, and locations and thus benefit various diagnosis aspects. Extensive experiments demonstrate that the proposed JCS diagnosis system is very efficient for COVID-19 classification and segmentation. It obtains an average sensitivity of 95.0% and a specificity of 93.0% on the classification test set, and 78.5% Dice score on the segmentation test set of our COVID-CS dataset. The COVID-CS dataset and code are available at https://github.com/yuhuan-wu/JCS. Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnostic tool is the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Still, the sensitivity of the RT-PCR test is not high enough to effectively prevent the pandemic. The chest CT scan test provides a valuable complementary tool to the RT-PCR test, and it can identify the patients in the early-stage with high sensitivity. However, the chest CT scan test is usually time-consuming, requiring about 21.5 minutes per case. This paper develops a novel Joint Classification and Segmentation (JCS) system to perform real-time and explainable COVID- 19 chest CT diagnosis. To train our JCS system, we construct a large scale COVID- 19 Classification and Segmentation (COVID-CS) dataset, with 144,167 chest CT images of 400 COVID- 19 patients and 350 uninfected cases. 3,855 chest CT images of 200 patients are annotated with fine-grained pixel-level labels of opacifications, which are increased attenuation of the lung parenchyma. We also have annotated lesion counts, opacification areas, and locations and thus benefit various diagnosis aspects. Extensive experiments demonstrate that the proposed JCS diagnosis system is very efficient for COVID-19 classification and segmentation. It obtains an average sensitivity of 95.0% and a specificity of 93.0% on the classification test set, and 78.5% Dice score on the segmentation test set of our COVID-CS dataset. The COVID-CS dataset and code are available at https://github.com/yuhuan-wu/JCS.Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the infection, identifying and separating the infected people is the most crucial step. The main diagnostic tool is the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Still, the sensitivity of the RT-PCR test is not high enough to effectively prevent the pandemic. The chest CT scan test provides a valuable complementary tool to the RT-PCR test, and it can identify the patients in the early-stage with high sensitivity. However, the chest CT scan test is usually time-consuming, requiring about 21.5 minutes per case. This paper develops a novel Joint Classification and Segmentation (JCS) system to perform real-time and explainable COVID- 19 chest CT diagnosis. To train our JCS system, we construct a large scale COVID- 19 Classification and Segmentation (COVID-CS) dataset, with 144,167 chest CT images of 400 COVID- 19 patients and 350 uninfected cases. 3,855 chest CT images of 200 patients are annotated with fine-grained pixel-level labels of opacifications, which are increased attenuation of the lung parenchyma. We also have annotated lesion counts, opacification areas, and locations and thus benefit various diagnosis aspects. Extensive experiments demonstrate that the proposed JCS diagnosis system is very efficient for COVID-19 classification and segmentation. It obtains an average sensitivity of 95.0% and a specificity of 93.0% on the classification test set, and 78.5% Dice score on the segmentation test set of our COVID-CS dataset. The COVID-CS dataset and code are available at https://github.com/yuhuan-wu/JCS. |
Author | Cheng, Ming-Ming Xu, Jun Wu, Yu-Huan Mei, Jie Zhang, Rong-Guo Gao, Shang-Hua Fan, Deng-Ping |
Author_xml | – sequence: 1 givenname: Yu-Huan orcidid: 0000-0001-8666-3435 surname: Wu fullname: Wu, Yu-Huan email: wuyuhuan@mail.nankai.edu.cn organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China – sequence: 2 givenname: Shang-Hua surname: Gao fullname: Gao, Shang-Hua email: shgao@mail.nankai.edu.cn organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China – sequence: 3 givenname: Jie orcidid: 0000-0002-9789-4025 surname: Mei fullname: Mei, Jie email: meijie0507@gmail.com organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China – sequence: 4 givenname: Jun orcidid: 0000-0002-1602-538X surname: Xu fullname: Xu, Jun email: nankaimathxujun@gmail.com organization: School of Statistics and Data Science, Nankai University, Tianjin, China – sequence: 5 givenname: Deng-Ping orcidid: 0000-0002-5245-7518 surname: Fan fullname: Fan, Deng-Ping email: dengpfan@gmail.com organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China – sequence: 6 givenname: Rong-Guo orcidid: 0000-0001-6566-8843 surname: Zhang fullname: Zhang, Rong-Guo email: zrongguo@infervision.com organization: InferVision, Beijing, China – sequence: 7 givenname: Ming-Ming orcidid: 0000-0001-5550-8758 surname: Cheng fullname: Cheng, Ming-Ming email: cmm@nankai.edu.cn organization: TKLNDST, College of Computer Science, Nankai University, Tianjin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33600316$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1P3DAQxS1EVb56R0JClrj0ku2M7TgxNxQoXYREpQWuke04yChxljgrdf_7ersLBw49zWj0ezNP847IfhiCI-QUYYYI6sfj_PeMAcMZh7wsSr5HDlEJzAAE20895EVWoFAH5CjGVwAUOcqv5IBzCcBRHpLnu2pxSa8Cvfmz7LQP2nSOVg_P8-sMFb32-iUM0Ue6WMfJ9dSs6d3gw0SrTsfoW2_15IdAdWjowr30Lkz_BifkS6u76L7t6jF5-nnzWP3K7h9u59XVfWYFFlPGhNVGWzScATdl2eYtN1wpx2xjZWGwKZm0bWm0glYxI6UTMvkuGGuaVjX8mHzf7l2Ow9vKxanufbSu63RwwyrWTChUOStBJvTiE_o6rMaQ3G0onisloEzU-Y5amd419XL0vR7X9fvHEgBbwI5DjKNrPxCEehNKnUKpN6HUu1CSRH6SWL990zRq3_1PeLYVeufcx53ktVAS-V8Fg5ZS |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_3390_electronics11152296 crossref_primary_10_1007_s00500_024_10362_5 crossref_primary_10_1109_TPAMI_2021_3134684 crossref_primary_10_1002_ima_22770 crossref_primary_10_1007_s41095_020_0199_z crossref_primary_10_1615_IntJMultCompEng_2023050009 crossref_primary_10_3390_tomography10080091 crossref_primary_10_1109_TPDS_2021_3127128 crossref_primary_10_32604_cmes_2024_030052 crossref_primary_10_3390_app12083895 crossref_primary_10_1109_TETCI_2022_3189054 crossref_primary_10_31590_ejosat_950941 crossref_primary_10_1016_j_asoc_2022_109055 crossref_primary_10_1002_smll_202307815 crossref_primary_10_1136_bmj_m1328 crossref_primary_10_1007_s00521_022_07653_z crossref_primary_10_3390_math10214153 crossref_primary_10_1016_j_cpet_2021_06_005 crossref_primary_10_1038_s41598_020_71294_2 crossref_primary_10_1016_j_eswa_2021_114848 crossref_primary_10_1007_s11063_021_10712_6 crossref_primary_10_3390_diagnostics12071543 crossref_primary_10_1002_int_23095 crossref_primary_10_1109_TPAMI_2023_3240886 crossref_primary_10_1088_1742_6596_2891_12_122003 crossref_primary_10_1051_e3sconf_202129202014 crossref_primary_10_1109_JSTARS_2024_3365729 crossref_primary_10_3390_s23010527 crossref_primary_10_1007_s11042_021_11153_y crossref_primary_10_1016_j_patter_2023_100830 crossref_primary_10_1016_j_bspc_2021_103326 crossref_primary_10_1007_s11042_023_14831_1 crossref_primary_10_1016_j_imavis_2024_104973 crossref_primary_10_1049_ipr2_12736 crossref_primary_10_1016_j_chaos_2020_110338 crossref_primary_10_3390_tomography8030134 crossref_primary_10_1109_TIP_2021_3130526 crossref_primary_10_3390_s23135789 crossref_primary_10_3389_frai_2024_1347898 crossref_primary_10_3390_app11178039 crossref_primary_10_1007_s11633_022_1365_9 crossref_primary_10_1109_TMI_2022_3232572 crossref_primary_10_1016_j_vrih_2022_03_002 crossref_primary_10_1109_TCDS_2022_3172331 crossref_primary_10_1186_s43067_023_00129_7 crossref_primary_10_1016_j_compbiomed_2022_106496 crossref_primary_10_1109_TIP_2023_3304518 crossref_primary_10_1016_j_compbiomed_2022_106136 crossref_primary_10_1016_j_acra_2023_02_027 crossref_primary_10_1016_j_dsm_2023_03_005 crossref_primary_10_1007_s10462_024_10717_2 crossref_primary_10_1109_TAI_2022_3147440 crossref_primary_10_1109_TMI_2022_3217501 crossref_primary_10_1109_TIE_2021_3078379 crossref_primary_10_1007_s41095_023_0353_5 crossref_primary_10_1109_TAI_2022_3225372 crossref_primary_10_1109_TIP_2022_3223216 crossref_primary_10_1007_s00138_024_01588_2 crossref_primary_10_1002_ima_22865 crossref_primary_10_3390_jcdd9080268 crossref_primary_10_1093_infdis_jiad158 crossref_primary_10_1016_j_compbiomed_2023_106668 crossref_primary_10_1117_1_JEI_31_4_043032 crossref_primary_10_3389_fonc_2021_811355 crossref_primary_10_1007_s00500_021_06137_x crossref_primary_10_3390_jimaging8100267 crossref_primary_10_1016_j_sbi_2024_102778 crossref_primary_10_3390_s23020634 crossref_primary_10_1007_s12553_024_00879_y crossref_primary_10_32604_cmc_2023_033413 crossref_primary_10_1007_s12539_024_00650_x crossref_primary_10_1007_s11042_023_15099_1 crossref_primary_10_3390_diagnostics11122367 crossref_primary_10_1007_s00521_023_09262_w crossref_primary_10_1016_j_bspc_2024_106376 crossref_primary_10_3390_app14072741 crossref_primary_10_1038_s42256_022_00557_6 crossref_primary_10_1016_j_bspc_2023_104905 crossref_primary_10_1007_s10278_024_01062_5 crossref_primary_10_1016_j_future_2021_10_001 crossref_primary_10_1007_s11036_024_02301_3 crossref_primary_10_3390_ijerph20021158 crossref_primary_10_1007_s00521_022_07052_4 crossref_primary_10_1016_j_media_2022_102722 crossref_primary_10_3390_electronics10202475 crossref_primary_10_1016_j_bspc_2022_104486 crossref_primary_10_1016_j_bspc_2022_104366 crossref_primary_10_1038_s41598_022_06931_z crossref_primary_10_1109_TSMC_2024_3418411 crossref_primary_10_1016_j_patcog_2022_108826 crossref_primary_10_1007_s00521_022_08021_7 crossref_primary_10_1016_j_imu_2022_100941 crossref_primary_10_3389_fmed_2022_936816 crossref_primary_10_1016_j_ipm_2020_102411 crossref_primary_10_1007_s11042_024_20236_5 crossref_primary_10_1007_s11042_023_15981_y crossref_primary_10_1007_s00521_024_09459_7 crossref_primary_10_1007_s00371_022_02611_1 crossref_primary_10_1088_2057_1976_ad1e76 crossref_primary_10_1016_j_bspc_2022_104499 crossref_primary_10_1016_j_cmpb_2022_107200 crossref_primary_10_1016_j_eswa_2022_116540 crossref_primary_10_1145_3653303 crossref_primary_10_1109_TCSVT_2023_3255304 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_61189_323428onxlas crossref_primary_10_1016_j_compbiomed_2023_106698 crossref_primary_10_1109_TIP_2022_3195638 crossref_primary_10_1088_1742_6596_2161_1_012020 crossref_primary_10_1007_s00138_022_01312_y crossref_primary_10_1007_s11042_022_13274_4 crossref_primary_10_1016_j_media_2021_102205 crossref_primary_10_1080_24725579_2022_2142866 crossref_primary_10_1109_TIP_2024_3361217 crossref_primary_10_1109_TBDATA_2022_3177170 crossref_primary_10_1631_FITEE_2300493 crossref_primary_10_3390_s24072374 crossref_primary_10_1007_s42979_022_01464_8 crossref_primary_10_1007_s10489_020_01826_w crossref_primary_10_1016_j_chaos_2021_111310 crossref_primary_10_3390_jpm12020310 crossref_primary_10_1016_j_engappai_2022_105398 crossref_primary_10_1016_j_media_2020_101844 crossref_primary_10_1109_TGRS_2023_3242987 crossref_primary_10_1016_j_cmpb_2022_106731 crossref_primary_10_1016_j_displa_2024_102650 crossref_primary_10_1016_j_egyr_2023_01_019 crossref_primary_10_1038_s41598_022_20969_z crossref_primary_10_1002_mp_16312 crossref_primary_10_1002_ima_22930 crossref_primary_10_1007_s00354_024_00255_4 crossref_primary_10_3390_bioengineering10030321 crossref_primary_10_1016_j_jvcir_2023_103949 crossref_primary_10_3390_electronics12051167 crossref_primary_10_1016_j_neucom_2023_127050 crossref_primary_10_1038_s41598_022_06854_9 crossref_primary_10_3389_fphys_2022_1066999 crossref_primary_10_1016_j_asoc_2021_108088 crossref_primary_10_1007_s11042_023_15247_7 crossref_primary_10_1016_j_aej_2023_02_020 crossref_primary_10_1016_j_neucom_2022_11_031 crossref_primary_10_3390_diagnostics11071155 crossref_primary_10_1016_j_array_2024_100357 crossref_primary_10_1007_s12204_024_2794_0 crossref_primary_10_1002_mp_17753 crossref_primary_10_1109_ACCESS_2023_3279402 crossref_primary_10_21015_vtse_v10i2_911 crossref_primary_10_3390_app12104825 crossref_primary_10_1038_s41598_023_46625_8 crossref_primary_10_3390_s21175878 crossref_primary_10_1038_s41598_022_15268_6 crossref_primary_10_1016_j_eswa_2023_120477 crossref_primary_10_1016_j_bspc_2023_104939 crossref_primary_10_1016_j_compbiomed_2022_106065 crossref_primary_10_3390_jimaging9090177 crossref_primary_10_1016_j_asoc_2022_109683 crossref_primary_10_1016_j_eswa_2024_125067 crossref_primary_10_1007_s12559_020_09751_3 crossref_primary_10_1007_s12650_022_00882_3 crossref_primary_10_3390_diagnostics14242791 crossref_primary_10_1109_MSMC_2022_3228381 crossref_primary_10_3934_mbe_2023294 crossref_primary_10_1109_TNNLS_2021_3114747 crossref_primary_10_1007_s00138_023_01424_z crossref_primary_10_32604_cmc_2022_019331 crossref_primary_10_1016_j_engappai_2025_110245 crossref_primary_10_1016_j_jvcir_2021_103356 crossref_primary_10_1049_ipr2_12904 crossref_primary_10_1007_s00354_024_00289_8 crossref_primary_10_1007_s10489_025_06264_0 crossref_primary_10_1016_j_compbiomed_2021_105123 crossref_primary_10_1016_j_media_2023_102797 crossref_primary_10_1007_s00521_023_08683_x crossref_primary_10_1007_s42979_021_00823_1 crossref_primary_10_3390_app112311185 crossref_primary_10_1007_s10489_021_02731_6 crossref_primary_10_1016_j_comcom_2022_10_013 crossref_primary_10_1109_TIP_2022_3164550 crossref_primary_10_1002_mp_15231 crossref_primary_10_1111_eci_14176 crossref_primary_10_1109_TIP_2022_3203223 crossref_primary_10_15302_J_QB_021_0274 crossref_primary_10_1007_s10278_022_00701_z crossref_primary_10_1016_j_bspc_2024_106167 crossref_primary_10_1016_j_compbiomed_2021_104605 crossref_primary_10_1109_TPAMI_2021_3065086 crossref_primary_10_1002_ima_22905 crossref_primary_10_1016_j_ibmed_2024_100156 crossref_primary_10_1016_j_patcog_2023_109514 crossref_primary_10_1109_TCSVT_2021_3126591 crossref_primary_10_1186_s13244_024_01620_z crossref_primary_10_1109_RBME_2022_3185953 crossref_primary_10_1109_TIP_2024_3515878 crossref_primary_10_1109_TSMC_2023_3307393 crossref_primary_10_1109_TCDS_2022_3193121 crossref_primary_10_1109_TIP_2021_3065822 crossref_primary_10_1016_j_patcog_2023_109861 crossref_primary_10_1016_j_cmpbup_2021_100022 crossref_primary_10_1016_j_eswa_2025_126806 crossref_primary_10_1109_TIM_2024_3381260 crossref_primary_10_1109_TMI_2021_3083586 crossref_primary_10_1016_j_imavis_2024_105358 crossref_primary_10_1007_s10845_022_01936_x crossref_primary_10_1109_TCBB_2023_3253901 crossref_primary_10_1016_j_compbiomed_2022_105340 crossref_primary_10_1109_TCE_2022_3205376 crossref_primary_10_1109_TPAMI_2024_3435571 crossref_primary_10_1049_ipr2_12249 crossref_primary_10_1007_s00530_022_00960_4 crossref_primary_10_1109_TCSVT_2021_3124952 crossref_primary_10_1007_s11831_021_09641_3 crossref_primary_10_1016_j_bbe_2022_06_005 crossref_primary_10_3390_diagnostics12051283 crossref_primary_10_1016_j_patcog_2025_111371 crossref_primary_10_1007_s11548_021_02418_w crossref_primary_10_1007_s11042_022_12508_9 crossref_primary_10_1016_j_bspc_2022_104099 crossref_primary_10_1016_j_displa_2023_102395 crossref_primary_10_1016_j_patcog_2021_108035 crossref_primary_10_1007_s10462_022_10152_1 crossref_primary_10_3390_app11041424 crossref_primary_10_3389_frai_2024_1304483 crossref_primary_10_1007_s00354_023_00232_3 crossref_primary_10_1109_MIS_2021_3135474 crossref_primary_10_1007_s00371_023_02870_6 crossref_primary_10_1155_2021_3257035 crossref_primary_10_7336_academicus_2022_25_02 crossref_primary_10_1007_s40846_021_00653_9 crossref_primary_10_3390_diagnostics11112025 crossref_primary_10_1007_s00371_024_03658_y crossref_primary_10_1142_S0129183123500286 crossref_primary_10_1007_s10278_024_01068_z crossref_primary_10_1038_s41598_023_49218_7 crossref_primary_10_1016_j_ipemt_2022_100008 crossref_primary_10_1016_j_knosys_2022_109278 crossref_primary_10_1007_s42979_021_00874_4 crossref_primary_10_1016_j_eswa_2023_122317 crossref_primary_10_3934_mbe_2023892 crossref_primary_10_7717_peerj_cs_2535 crossref_primary_10_1007_s11517_024_03205_w crossref_primary_10_1007_s13369_021_06240_z crossref_primary_10_1109_ACCESS_2021_3080180 crossref_primary_10_1016_j_compbiomed_2022_105350 crossref_primary_10_1080_21681163_2022_2061376 crossref_primary_10_1007_s13721_023_00437_y crossref_primary_10_1080_21681163_2023_2219767 |
Cites_doi | 10.1109/CVPR.2018.00745 10.1109/TPAMI.2019.2943860 10.1007/s00330-020-06817-6 10.1109/CVPR42600.2020.00893 10.1109/TPAMI.2019.2921543 10.1109/TPAMI.2018.2844175 10.1109/CVPR.2016.90 10.5607/en20009e1 10.1109/TPAMI.2020.3023152 10.1109/CVPR.2017.243 10.1109/TMI.2020.2996645 10.1007/s11427-020-1661-4 10.1109/ICCV.2019.00745 10.1109/CVPR.2009.5206848 10.1007/978-3-319-46487-9_53 10.1148/radiol.2020200905 10.24963/ijcai.2018/120 10.1109/CVPR.2017.106 10.1097/RLI.0000000000000674 10.1021/acsnano.0c02624 10.1148/radiol.2020200702 10.1016/j.ejrad.2020.108961 10.1109/CVPR.2019.00123 10.1109/TIP.2019.2910667 10.1016/j.jacr.2020.03.011 10.1109/TIP.2020.3026622 10.1148/radiol.2020200463 10.1109/ICCV.2019.00887 10.1148/radiology.188.1.8511299 10.1148/radiol.2020200432 10.1109/TMI.2019.2959609 10.1148/ryct.2020200047 10.1109/TCYB.2020.3035613 10.1109/ICCV.2017.74 10.1148/radiol.2020200843 10.1109/TPAMI.2019.2938758 10.1148/radiol.2020200642 10.1007/s41095-018-0123-y 10.1109/3DV.2016.79 10.1109/TPAMI.2018.2815688 10.1136/bmj.m1328 10.1109/CVPR.2019.00404 10.1148/radiol.2020200230 10.1016/S1473-3099(20)30086-4 10.1109/TIP.2019.2936746 10.1109/CVPR.2015.7298965 10.24963/ijcai.2018/97 10.1148/ryct.2020204002 10.7189/jogh.10.010347 10.3233/FI-2000-411207 10.1007/s00330-020-06816-7 10.1109/TPAMI.2017.2699184 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TIP.2021.3058783 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 3126 |
ExternalDocumentID | 33600316 10_1109_TIP_2021_3058783 9357961 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Tianjin Natural Science Foundation grantid: 17JCJQJC43700; 18ZXZNGX00110 funderid: 10.13039/501100006606 – fundername: Major Project for New Generation of AI grantid: 2018AAA0100400 – fundername: NSFC grantid: 61922046; 62002176 funderid: 10.13039/501100001809 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM PKN Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c417t-24cabac1b3203b88f5f3b399e2cdc67b1d826cf8ba90f92b66e46316722ddf9d3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Thu Jul 10 22:45:41 EDT 2025 Mon Jun 30 10:17:00 EDT 2025 Wed Feb 19 02:28:59 EST 2025 Tue Jul 01 02:03:25 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Wed Aug 27 02:48:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-009 https://doi.org/10.15223/policy-001 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-24cabac1b3203b88f5f3b399e2cdc67b1d826cf8ba90f92b66e46316722ddf9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8666-3435 0000-0002-9789-4025 0000-0002-1602-538X 0000-0001-6566-8843 0000-0001-5550-8758 0000-0002-5245-7518 |
PMID | 33600316 |
PQID | 2493599408 |
PQPubID | 85429 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2493599408 pubmed_primary_33600316 crossref_citationtrail_10_1109_TIP_2021_3058783 crossref_primary_10_1109_TIP_2021_3058783 ieee_primary_9357961 proquest_miscellaneous_2491952806 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref15 ref14 ref53 ref52 krizhevsky (ref37) 2012 sajid (ref11) 2020 ref54 rajinikanth (ref33) 2020 ref17 shan (ref71) 2020 wu (ref55) 2020 ref16 ref19 ref51 ref50 ref46 ref45 ref47 ref42 ref41 ref44 ref43 zhou (ref35) 2020 ref49 ref8 ref7 kingma (ref76) 2015 paul cohen (ref9) 2020 (ref1) 2020 liu (ref26) 2020 ref4 shi (ref70) 2020 bian (ref48) 2019 ref5 lee (ref68) 2015 ref40 yang (ref10) 2020 ref34 ref36 çiçek (ref59) 2016 ref75 ref31 zhang (ref64) 2018 ref74 ref30 ref32 ai (ref3) 2020; 296 ref39 zhang (ref6) 2020 jenssen (ref2) 2020 jenssen (ref12) 2020 ref73 ref72 ref24 ref67 ref23 ref69 ref25 ref20 ref63 ref66 ref22 ref65 ref21 ronneberger (ref58) 2015 ref27 ref29 qiu (ref18) 2020 ref62 ref61 simonyan (ref38) 2015 iglovikov (ref60) 2018 farooq (ref28) 2020 |
References_xml | – ident: ref66 doi: 10.1109/CVPR.2018.00745 – ident: ref49 doi: 10.1109/TPAMI.2019.2943860 – year: 2020 ident: ref71 article-title: Lung infection quantification of COVID-19 in CT images with deep learning publication-title: arXiv 2003 04655 – ident: ref30 doi: 10.1007/s00330-020-06817-6 – start-page: 1 year: 2018 ident: ref64 article-title: Mixup: Beyond empirical risk minimization publication-title: Proc Int Conf Learn Represent – ident: ref46 doi: 10.1109/CVPR42600.2020.00893 – ident: ref65 doi: 10.1109/TPAMI.2019.2921543 – ident: ref56 doi: 10.1109/TPAMI.2018.2844175 – start-page: 1 year: 2015 ident: ref76 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent – year: 2018 ident: ref60 article-title: TernausNet: U-Net with VGG11 encoder pre-trained on ImageNet for image segmentation publication-title: arXiv 1801 05746 – ident: ref27 doi: 10.1109/CVPR.2016.90 – year: 2020 ident: ref9 article-title: COVID-19 image data collection publication-title: arXiv 2003 11597 – ident: ref21 doi: 10.5607/en20009e1 – ident: ref54 doi: 10.1109/TPAMI.2020.3023152 – start-page: 2646 year: 2020 ident: ref26 article-title: Rethinking computer-aided tuberculosis diagnosis publication-title: Proc IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR) – ident: ref39 doi: 10.1109/CVPR.2017.243 – ident: ref19 doi: 10.1109/TMI.2020.2996645 – start-page: 562 year: 2015 ident: ref68 article-title: Deeply-supervised nets publication-title: Artificial Intelligence and Statistics – ident: ref24 doi: 10.1007/s11427-020-1661-4 – start-page: 424 year: 2016 ident: ref59 article-title: 3D U-Net: Learning dense volumetric segmentation from sparse annotation publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI – year: 2020 ident: ref28 article-title: COVID-ResNet: A deep learning framework for screening of COVID19 from radiographs publication-title: arXiv 2003 14395 – ident: ref57 doi: 10.1109/ICCV.2019.00745 – year: 2020 ident: ref11 publication-title: COVID-19 Patients Lungs X Ray Images 10000 – ident: ref36 doi: 10.1109/CVPR.2009.5206848 – year: 2020 ident: ref1 publication-title: Coronavirus disease (COVID-19) outbreak situation – ident: ref41 doi: 10.1007/978-3-319-46487-9_53 – ident: ref13 doi: 10.1148/radiol.2020200905 – start-page: 1 year: 2019 ident: ref48 article-title: An evaluation of feature matchers for fundamental matrix estimation publication-title: Proc Brit Mach Vis Conf – ident: ref42 doi: 10.24963/ijcai.2018/120 – ident: ref67 doi: 10.1109/CVPR.2017.106 – ident: ref62 doi: 10.1097/RLI.0000000000000674 – ident: ref22 doi: 10.1021/acsnano.0c02624 – ident: ref23 doi: 10.1148/radiol.2020200702 – ident: ref25 doi: 10.1016/j.ejrad.2020.108961 – ident: ref45 doi: 10.1109/CVPR.2019.00123 – ident: ref51 doi: 10.1109/TIP.2019.2910667 – year: 2020 ident: ref55 article-title: Regularized densely-connected pyramid network for salient instance segmentation publication-title: arXiv 2008 12416 – year: 2020 ident: ref6 article-title: COVID-19 screening on chest X-Ray images using deep learning based anomaly detection publication-title: arXiv 2003 12338 – ident: ref8 doi: 10.1016/j.jacr.2020.03.011 – start-page: 234 year: 2015 ident: ref58 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI – ident: ref50 doi: 10.1109/TIP.2020.3026622 – ident: ref15 doi: 10.1148/radiol.2020200463 – ident: ref75 doi: 10.1109/ICCV.2019.00887 – ident: ref63 doi: 10.1148/radiology.188.1.8511299 – ident: ref4 doi: 10.1148/radiol.2020200432 – ident: ref61 doi: 10.1109/TMI.2019.2959609 – ident: ref29 doi: 10.1148/ryct.2020200047 – ident: ref44 doi: 10.1109/TCYB.2020.3035613 – year: 2020 ident: ref18 article-title: MiniSeg: An extremely minimum network for efficient COVID-19 segmentation publication-title: arXiv 2004 09750 – ident: ref20 doi: 10.1109/ICCV.2017.74 – start-page: 1097 year: 2012 ident: ref37 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inform Process Syst – year: 2020 ident: ref10 article-title: COVID-CT-dataset: A CT scan dataset about COVID-19 publication-title: arXiv 2003 13865 – year: 2020 ident: ref12 publication-title: COVID-19 CT Segmentation Dataset – ident: ref16 doi: 10.1148/radiol.2020200843 – ident: ref40 doi: 10.1109/TPAMI.2019.2938758 – volume: 296 start-page: 32e year: 2020 ident: ref3 article-title: Correlation of chest ct and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases publication-title: Radiology doi: 10.1148/radiol.2020200642 – year: 2020 ident: ref2 publication-title: China National Health Commission Diagnosis and Treatment of Pneumonitis Caused by New Coronavirus (Trial Version 6) – ident: ref43 doi: 10.1007/s41095-018-0123-y – ident: ref69 doi: 10.1109/3DV.2016.79 – ident: ref73 doi: 10.1109/TPAMI.2018.2815688 – year: 2020 ident: ref35 article-title: An automatic COVID-19 CT segmentation network using spatial and channel attention mechanism publication-title: arXiv 2004 06673 – ident: ref32 doi: 10.1136/bmj.m1328 – ident: ref74 doi: 10.1109/CVPR.2019.00404 – ident: ref14 doi: 10.1148/radiol.2020200230 – ident: ref17 doi: 10.1016/S1473-3099(20)30086-4 – ident: ref47 doi: 10.1109/TIP.2019.2936746 – year: 2020 ident: ref70 article-title: Large-scale screening of COVID-19 from community acquired pneumonia using infection size-aware classification publication-title: arXiv 2003 09860 – ident: ref52 doi: 10.1109/CVPR.2015.7298965 – ident: ref72 doi: 10.24963/ijcai.2018/97 – start-page: 1 year: 2015 ident: ref38 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Proc Int Conf Learn Represent – ident: ref7 doi: 10.1148/ryct.2020204002 – ident: ref5 doi: 10.7189/jogh.10.010347 – ident: ref34 doi: 10.3233/FI-2000-411207 – ident: ref31 doi: 10.1007/s00330-020-06816-7 – year: 2020 ident: ref33 article-title: Harmony-search and otsu based system for coronavirus disease (COVID-19) detection using lung CT scan images publication-title: arXiv 2004 03431 – ident: ref53 doi: 10.1109/TPAMI.2017.2699184 |
SSID | ssj0014516 |
Score | 2.692734 |
Snippet | Recently, the coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries, influencing billions of humans. To control the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3113 |
SubjectTerms | Adolescent Adult Aged Aged, 80 and over Attenuation Chest Classification Computed tomography Coronaviruses COVID-19 COVID-19 - diagnostic imaging COVID-19 dataset CT classification CT segmentation Databases, Factual Datasets Deep Learning Diagnosis Female Humans Image classification Image segmentation joint diagnosis Lung Lung - diagnostic imaging Male Medical imaging Middle Aged Pandemics Polymerase chain reaction Radiographic Image Interpretation, Computer-Assisted - methods SARS-CoV-2 Sensitivity Test sets Tomography, X-Ray Computed Viral diseases X-rays Young Adult |
Title | JCS: An Explainable COVID-19 Diagnosis System by Joint Classification and Segmentation |
URI | https://ieeexplore.ieee.org/document/9357961 https://www.ncbi.nlm.nih.gov/pubmed/33600316 https://www.proquest.com/docview/2493599408 https://www.proquest.com/docview/2491952806 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBAoeURKMhIXJDIbpw4ccyt2lK1KxWQaKveIo_toAqardjsAX49HseJAAHiFilObOubkefzvABellmOwtQiNf5sSUVpvM4Rca2NRCucllVFicKn76rjc7G8LC-34PWUC-OcC8FnbkaPwZdvV2ZDV2VzVVDmpOc6tzxxG3K1Jo8BNZwNns1SptKb_aNLMlPzs5MPngjmfOZlu5Y1tc4piorEufrlNArtVf5uaYYT52gHTse1DoEmn2ebHmfm-29lHP93M_fgbjQ92cEgK_dhy3W7sBPNUBaVfL0Ld36qUbgHF8vFxzfsoGMUrRdTrdji_cXJYcoVOxwi9a7WbCh9zvAbW66uup6FbpsUhxSgZ7rzU7hP1zHVqXsA50dvzxbHaWzGkBrBZZ_mwmjUhmORZwXWdVu2BXrrxuXGmkoit56omLZGrbJW5egxFhWl2ee5ta2yxUPY7ladewzMU0SLnOsMUQpvLqKWZWvRWM0lCqkTmI-gNCZWKqeGGV-awFgy1XhEG0K0iYgm8Gr64mao0vGPsXsExjQu4pDA_oh7E9V43XhuWpRKiaxO4MX02isgeVV051abMIarkhzUCTwa5GX69yhmT_4851O4TSsbbnT2Ybv_unHPvI3T4_Mg3D8Aad7ziQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOFFoegQJGggOH7MaOE8dIHKpdqt3tAyS2VW_Br1RVIYvYrFD5LfwV_hu240SAgFslbpHi2I79jWfG8wJ4liVEUlXQWFneEtNMWZpzimuhmNTUCJbnLlD44DCfHNHZSXayBt_6WBhjjHc-MwP36G35eqFW7qpsyFMXOYmDC-WeufhiFbTlq-nY7uZzQnZfz0eTONQQiBXFrIkJVUIKhWVKklQWRZVVqbRM2RClVc4k1la-VlUhBU8qTqSdGs1ddDghWldcp7bfK3DVyhkZaaPDehuFK3HrbakZi5lVNDojaMKH8-lbq3oSPLDUVLDCFetJ09wRUP4L__MFXf4u23oet7sB37vVaV1bzgerRg7U198SR_6vy3cLbgbhGu201HAb1ky9CRtB0EbhGFtuwo2fsjBuwfFs9O4l2qmR80cMwWRo9OZ4Oo4xR-PWF_Fsidrk7kheoNnirG6QryfqPK08uJGo7RDm9GMI5qrvwNGl_OtdWK8XtbkPyCrBWmIsEikZtQKxFCyrtFRaYCYpExEMOxCUKuRidyVBPpReJ0t4aRFUOgSVAUERvOi_-NTmIflH2y23-X27sO8RbHc4K8NBtSyt9p1mnNOkiOBp_9oeMc5uJGqzWPk2mGfOBB_BvRaffd8drB_8ecwncG0yP9gv96eHew_huptle3-1DevN55V5ZCW6Rj72hIXg_WVD8Qdxz1J8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=JCS%3A+An+Explainable+COVID-19+Diagnosis+System+by+Joint+Classification+and+Segmentation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wu%2C+Yu-Huan&rft.au=Gao%2C+Shang-Hua&rft.au=Mei%2C+Jie&rft.au=Xu%2C+Jun&rft.date=2021&rft.eissn=1941-0042&rft.volume=30&rft.spage=3113&rft_id=info:doi/10.1109%2FTIP.2021.3058783&rft_id=info%3Apmid%2F33600316&rft.externalDocID=33600316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |