Shear-induced suppression of rupture in two-layer thin liquid films

The effect of shear on the van-der-Waals-driven rupture of stratified thin liquid films confined between surfaces which may be chemically heterogeneous is examined. The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals fo...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 348; no. 1; pp. 271 - 279
Main Authors Kalpathy, Sreeram K., Francis, Lorraine F., Kumar, Satish
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.08.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2010.04.028

Cover

Abstract The effect of shear on the van-der-Waals-driven rupture of stratified thin liquid films confined between surfaces which may be chemically heterogeneous is examined. The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this work. Lubrication theory is applied to derive a one-dimensional nonlinear evolution equation for the height of the liquid–liquid interface. Linear stability analysis reveals that the real part of the growth rate and the wavelength of the fastest growing interfacial disturbance are unaffected by shear. However, the growth rate has an imaginary part which is non-zero in the presence of shear, indicating the existence of traveling waves. Nonlinear simulations of interface behavior on homogeneous surfaces show that shear delays interfacial rupture, and suppression of rupture occurs beyond a critical shear rate. Propagation of traveling waves along the interface, and subsequent weakening of van-der-Waals-driven dewetting, is found to be the cause of the rupture delay. Analysis of flow on chemically heterogeneous surfaces also suggests a delay in interfacial rupture in the presence of shear. The problem studied here can serve as an idealized model for the lithographic printing process, and the results suggest that in the regime of shear rates relevant to printing, mechanisms of emulsification of one liquid into the other can be understood without incorporating shear. However, shear could be relevant in other physical systems such as nanofluidic and microfluidic flows.
AbstractList The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this work. Lubrication theory is applied to derive a one-dimensional nonlinear evolution equation for the height of the liquid-liquid interface. Linear stability analysis reveals that the real part of the growth rate and the wavelength of the fastest growing interfacial disturbance are unaffected by shear. However, the growth rate has an imaginary part which is non-zero in the presence of shear, indicating the existence of traveling waves. Nonlinear simulations of interface behavior on homogeneous surfaces show that shear delays interfacial rupture, and suppression of rupture occurs beyond a critical shear rate. Propagation of traveling waves along the interface, and subsequent weakening of van-der-Waals-driven dewetting, is found to be the cause of the rupture delay. Analysis of flow on chemically heterogeneous surfaces also suggests a delay in interfacial rupture in the presence of shear. The problem studied here can serve as an idealized model for the lithographic printing process, and the results suggest that in the regime of shear rates relevant to printing, mechanisms of emulsification of one liquid into the other can be understood without incorporating shear. However, shear could be relevant in other physical systems such as nanofluidic and microfluidic flows.
The effect of shear on the van-der-Waals-driven rupture of stratified thin liquid films confined between surfaces which may be chemically heterogeneous is examined. The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this work. Lubrication theory is applied to derive a one-dimensional nonlinear evolution equation for the height of the liquid–liquid interface. Linear stability analysis reveals that the real part of the growth rate and the wavelength of the fastest growing interfacial disturbance are unaffected by shear. However, the growth rate has an imaginary part which is non-zero in the presence of shear, indicating the existence of traveling waves. Nonlinear simulations of interface behavior on homogeneous surfaces show that shear delays interfacial rupture, and suppression of rupture occurs beyond a critical shear rate. Propagation of traveling waves along the interface, and subsequent weakening of van-der-Waals-driven dewetting, is found to be the cause of the rupture delay. Analysis of flow on chemically heterogeneous surfaces also suggests a delay in interfacial rupture in the presence of shear. The problem studied here can serve as an idealized model for the lithographic printing process, and the results suggest that in the regime of shear rates relevant to printing, mechanisms of emulsification of one liquid into the other can be understood without incorporating shear. However, shear could be relevant in other physical systems such as nanofluidic and microfluidic flows.
The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this work. Lubrication theory is applied to derive a one-dimensional nonlinear evolution equation for the height of the liquid-liquid interface. Linear stability analysis reveals that the real part of the growth rate and the wavelength of the fastest growing interfacial disturbance are unaffected by shear. However, the growth rate has an imaginary part which is non-zero in the presence of shear, indicating the existence of traveling waves. Nonlinear simulations of interface behavior on homogeneous surfaces show that shear delays interfacial rupture, and suppression of rupture occurs beyond a critical shear rate. Propagation of traveling waves along the interface, and subsequent weakening of van-der-Waals-driven dewetting, is found to be the cause of the rupture delay. Analysis of flow on chemically heterogeneous surfaces also suggests a delay in interfacial rupture in the presence of shear. The problem studied here can serve as an idealized model for the lithographic printing process, and the results suggest that in the regime of shear rates relevant to printing, mechanisms of emulsification of one liquid into the other can be understood without incorporating shear. However, shear could be relevant in other physical systems such as nanofluidic and microfluidic flows.The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this work. Lubrication theory is applied to derive a one-dimensional nonlinear evolution equation for the height of the liquid-liquid interface. Linear stability analysis reveals that the real part of the growth rate and the wavelength of the fastest growing interfacial disturbance are unaffected by shear. However, the growth rate has an imaginary part which is non-zero in the presence of shear, indicating the existence of traveling waves. Nonlinear simulations of interface behavior on homogeneous surfaces show that shear delays interfacial rupture, and suppression of rupture occurs beyond a critical shear rate. Propagation of traveling waves along the interface, and subsequent weakening of van-der-Waals-driven dewetting, is found to be the cause of the rupture delay. Analysis of flow on chemically heterogeneous surfaces also suggests a delay in interfacial rupture in the presence of shear. The problem studied here can serve as an idealized model for the lithographic printing process, and the results suggest that in the regime of shear rates relevant to printing, mechanisms of emulsification of one liquid into the other can be understood without incorporating shear. However, shear could be relevant in other physical systems such as nanofluidic and microfluidic flows.
Author Kalpathy, Sreeram K.
Francis, Lorraine F.
Kumar, Satish
Author_xml – sequence: 1
  givenname: Sreeram K.
  surname: Kalpathy
  fullname: Kalpathy, Sreeram K.
– sequence: 2
  givenname: Lorraine F.
  surname: Francis
  fullname: Francis, Lorraine F.
– sequence: 3
  givenname: Satish
  surname: Kumar
  fullname: Kumar, Satish
  email: kumar@cems.umn.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22997109$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20471656$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaDbb_oEeii8lJ29mLFm2oJey5KMQyCHJWcjymNXitR1Jbsi_r5bdtNBDehIjnncG3uecnQzjQIx9QVghoLzcrrbWhVUB6QPECor6A1sgqDKvEPgJWwAUmKtKVWfsPIQtAGJZqo_srABRoSzlgq0fNmR87oZ2ttRmYZ4mTyG4ccjGLvPzFGdPmRuy-DLmvXkln8VNGnv3PLs261y_C5_YaWf6QJ-P75I9XV89rm_zu_ubn-sfd7kVWMW8KATYtoEGsaobRUoil6rBprachK2tJFODrTmvW1AgsaGuVNCRQILSCr5kF4e9kx-fZwpR71yw1PdmoHEOuiq5rLiU6v8k5wJKRJ7Ir0dybnbU6sm7nfGv-q2hBHw7AiZY03feDKn0v1yhVGp7f7I4cNaPIXjq_iAIeq9Lb_Vel97r0iB00pVC9T8h66KJqf3ojevfj34_RCk1_suR18E6GpJE58lG3Y7uvfhvlsSukg
CODEN JCISA5
CitedBy_id crossref_primary_10_1016_j_jcis_2024_03_049
crossref_primary_10_1016_j_polymer_2016_03_005
crossref_primary_10_1021_la202759j
crossref_primary_10_1021_acs_macromol_7b00176
crossref_primary_10_1103_PhysRevFluids_2_104002
crossref_primary_10_1016_j_polymer_2021_124283
crossref_primary_10_1017_jfm_2017_17
crossref_primary_10_1155_2013_748613
crossref_primary_10_1088_1873_7005_aaaeef
crossref_primary_10_1017_jfm_2015_346
crossref_primary_10_1016_j_jcis_2013_06_035
crossref_primary_10_1007_s10404_011_0836_z
crossref_primary_10_1021_acsmacrolett_2c00070
crossref_primary_10_1063_1_4984610
crossref_primary_10_1103_PhysRevFluids_2_063601
crossref_primary_10_1103_PhysRevFluids_9_024201
crossref_primary_10_1016_j_jcis_2012_05_017
crossref_primary_10_1063_5_0209750
crossref_primary_10_1017_S002211201000323X
crossref_primary_10_1039_D4SM00562G
crossref_primary_10_1146_annurev_fluid_010814_014620
crossref_primary_10_1063_1_5099661
Cites_doi 10.1016/S0169-5983(99)00026-X
10.1103/RevModPhys.69.931
10.1063/1.1590978
10.1017/S0022112088002484
10.1098/rspa.1972.0163
10.1021/la010469n
10.1103/PhysRevLett.86.4536
10.1007/BF02699567
10.1016/S0927-7757(02)00082-1
10.1140/epje/i2003-10019-5
10.1017/S0022112089000960
10.1016/j.jcis.2003.11.044
10.1115/1.3005092
10.1103/RevModPhys.77.977
10.1063/1.1935487
10.1017/S0022112006003004
10.1016/0021-9797(80)90501-9
10.1007/s10404-004-0012-9
10.1016/0021-9797(82)90415-5
ContentType Journal Article
Copyright 2010 Elsevier Inc.
2015 INIST-CNRS
Copyright (c) 2010 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright (c) 2010 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
IQODW
NPM
7X8
7U5
8FD
L7M
DOI 10.1016/j.jcis.2010.04.028
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 279
ExternalDocumentID 20471656
22997109
10_1016_j_jcis_2010_04_028
S0021979710004121
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
NPM
7X8
7U5
8FD
L7M
ID FETCH-LOGICAL-c417t-2240cdb0b1178b9e961369b1b8c3e4c8c6ea80c8338d09061bef590fe41e05c43
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Sep 05 03:57:09 EDT 2025
Fri Sep 05 05:04:14 EDT 2025
Mon Jul 21 05:55:22 EDT 2025
Mon Jul 21 09:11:40 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Tue Jul 01 01:17:55 EDT 2025
Fri Feb 23 02:22:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lithographic printing
Thin liquid films
Shear
Rupture
Confinement
Growth rate
Emulsification
Force
Theory
Evolution equation
Mechanism
Thin film
Liquid liquid interface
Lubrication
Parallel plate
Liquid film
Printing
Heterogeneous surface
Stability
Wavelength
Homogeneous surface
Dewetting
Liquid
Simulation
Models
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright (c) 2010 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-2240cdb0b1178b9e961369b1b8c3e4c8c6ea80c8338d09061bef590fe41e05c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20471656
PQID 733405113
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_753673669
proquest_miscellaneous_733405113
pubmed_primary_20471656
pascalfrancis_primary_22997109
crossref_primary_10_1016_j_jcis_2010_04_028
crossref_citationtrail_10_1016_j_jcis_2010_04_028
elsevier_sciencedirect_doi_10_1016_j_jcis_2010_04_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-08-01
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2010
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Thiele, Brusch, Bestehorn, Bar (bib14) 2003; 11
Speight (bib5) 2007
Preziosi, Chen, Joseph (bib4) 1989; 201
Kargupta, Sharma (bib12) 2001; 86
Merkt, Pototsky, Bestehorn, Thiele (bib15) 2005; 17
Kargupta, Sharma (bib13) 2002; 18
Maldarelli, Jain, Ivanov, Ruckenstein (bib18) 1980; 78
Bielarz, Kalliadasis (bib16) 2003; 15
Lenz, Kumar (bib7) 2007; 571
Israelachvili (bib19) 1992
Israelachvili (bib20) 1972; 331
M.J. Davis, M.B. Gratton, S.H. Davis, J. Fluid Mech., submitted for publication.
Joo, Hsieh (bib11) 2000; 26
Thiele, Velarde, Neuffer, Bestehorn, Pomeau (bib23) 2001; 64
Powell, Savage, Guthrie (bib3) 2005; 88
Squires, Quake (bib9) 2005; 77
Kumar, Matar (bib17) 2004; 273
Thiele, Neuffer, Bestehorn, Pomeau, Velarde (bib24) 2002; 206
Williams, Davis (bib21) 1982; 90
Eijkel, van den Berg (bib10) 2005; 1
Oron, Davis, Bankoff (bib1) 1997; 69
Kistler, Schweizer (bib2) 1994
Burelbach, Bankoff, Davis (bib22) 1988; 195
MacPhee (bib6) 1998
Chen (bib8) 1995; 48
10.1016/j.jcis.2010.04.028_bib25
Chen (10.1016/j.jcis.2010.04.028_bib8) 1995; 48
Burelbach (10.1016/j.jcis.2010.04.028_bib22) 1988; 195
Powell (10.1016/j.jcis.2010.04.028_bib3) 2005; 88
Lenz (10.1016/j.jcis.2010.04.028_bib7) 2007; 571
Israelachvili (10.1016/j.jcis.2010.04.028_bib20) 1972; 331
Eijkel (10.1016/j.jcis.2010.04.028_bib10) 2005; 1
Speight (10.1016/j.jcis.2010.04.028_bib5) 2007
Kargupta (10.1016/j.jcis.2010.04.028_bib12) 2001; 86
Thiele (10.1016/j.jcis.2010.04.028_bib14) 2003; 11
Squires (10.1016/j.jcis.2010.04.028_bib9) 2005; 77
Thiele (10.1016/j.jcis.2010.04.028_bib24) 2002; 206
MacPhee (10.1016/j.jcis.2010.04.028_bib6) 1998
Kargupta (10.1016/j.jcis.2010.04.028_bib13) 2002; 18
Thiele (10.1016/j.jcis.2010.04.028_bib23) 2001; 64
Israelachvili (10.1016/j.jcis.2010.04.028_bib19) 1992
Merkt (10.1016/j.jcis.2010.04.028_bib15) 2005; 17
Maldarelli (10.1016/j.jcis.2010.04.028_bib18) 1980; 78
Preziosi (10.1016/j.jcis.2010.04.028_bib4) 1989; 201
Kumar (10.1016/j.jcis.2010.04.028_bib17) 2004; 273
Joo (10.1016/j.jcis.2010.04.028_bib11) 2000; 26
Oron (10.1016/j.jcis.2010.04.028_bib1) 1997; 69
Williams (10.1016/j.jcis.2010.04.028_bib21) 1982; 90
Bielarz (10.1016/j.jcis.2010.04.028_bib16) 2003; 15
Kistler (10.1016/j.jcis.2010.04.028_bib2) 1994
References_xml – volume: 69
  start-page: 931
  year: 1997
  ident: bib1
  publication-title: Rev. Mod. Phys.
– volume: 88
  start-page: 157
  year: 2005
  ident: bib3
  publication-title: Surf. Coat. Int. B
– volume: 48
  start-page: 763
  year: 1995
  ident: bib8
  publication-title: Appl. Mech. Rev.
– year: 1998
  ident: bib6
  article-title: Fundamentals of Lithographic Printing
– volume: 206
  start-page: 87
  year: 2002
  ident: bib24
  publication-title: Colloids Surf. A
– volume: 17
  year: 2005
  ident: bib15
  publication-title: Phys. Fluids
– volume: 90
  start-page: 220
  year: 1982
  ident: bib21
  publication-title: J. Colloid Interface Sci.
– year: 2007
  ident: bib5
  article-title: The Chemistry and Technology of Petroleum
– volume: 11
  start-page: 255
  year: 2003
  ident: bib14
  publication-title: Eur. Phys. J. E
– volume: 18
  start-page: 1893
  year: 2002
  ident: bib13
  publication-title: Langmuir
– volume: 86
  start-page: 4536
  year: 2001
  ident: bib12
  publication-title: Phys. Rev. Lett.
– volume: 78
  start-page: 118
  year: 1980
  ident: bib18
  publication-title: J. Colloid Interface Sci.
– volume: 26
  start-page: 203
  year: 2000
  ident: bib11
  publication-title: Fluid Dyn. Res.
– volume: 1
  start-page: 249
  year: 2005
  ident: bib10
  publication-title: Microfluid. Nanofluid.
– year: 1994
  ident: bib2
  article-title: Liquid Film Coating: Scientific Principles and their Technological Implications
– volume: 195
  start-page: 463
  year: 1988
  ident: bib22
  publication-title: J. Fluid Mech.
– reference: M.J. Davis, M.B. Gratton, S.H. Davis, J. Fluid Mech., submitted for publication.
– volume: 331
  start-page: 39
  year: 1972
  ident: bib20
  publication-title: Proc. R. Soc. Lond. A
– volume: 64
  year: 2001
  ident: bib23
  publication-title: Phys. Rev. E
– year: 1992
  ident: bib19
  article-title: Intermolecular and Surface Forces
– volume: 15
  start-page: 2512
  year: 2003
  ident: bib16
  publication-title: Phys. Fluids
– volume: 571
  start-page: 33
  year: 2007
  ident: bib7
  publication-title: J. Fluid Mech.
– volume: 77
  start-page: 977
  year: 2005
  ident: bib9
  publication-title: Rev. Mod. Phys.
– volume: 201
  start-page: 323
  year: 1989
  ident: bib4
  publication-title: J. Fluid Mech.
– volume: 273
  start-page: 581
  year: 2004
  ident: bib17
  publication-title: J. Colloid Interface Sci.
– volume: 26
  start-page: 203
  issue: 3
  year: 2000
  ident: 10.1016/j.jcis.2010.04.028_bib11
  publication-title: Fluid Dyn. Res.
  doi: 10.1016/S0169-5983(99)00026-X
– volume: 69
  start-page: 931
  year: 1997
  ident: 10.1016/j.jcis.2010.04.028_bib1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.69.931
– volume: 15
  start-page: 2512
  issue: 9
  year: 2003
  ident: 10.1016/j.jcis.2010.04.028_bib16
  publication-title: Phys. Fluids
  doi: 10.1063/1.1590978
– volume: 195
  start-page: 463
  year: 1988
  ident: 10.1016/j.jcis.2010.04.028_bib22
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112088002484
– volume: 331
  start-page: 39
  year: 1972
  ident: 10.1016/j.jcis.2010.04.028_bib20
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1972.0163
– volume: 18
  start-page: 1893
  issue: 5
  year: 2002
  ident: 10.1016/j.jcis.2010.04.028_bib13
  publication-title: Langmuir
  doi: 10.1021/la010469n
– ident: 10.1016/j.jcis.2010.04.028_bib25
– volume: 86
  start-page: 4536
  issue: 20
  year: 2001
  ident: 10.1016/j.jcis.2010.04.028_bib12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.4536
– volume: 88
  start-page: 157
  year: 2005
  ident: 10.1016/j.jcis.2010.04.028_bib3
  publication-title: Surf. Coat. Int. B
  doi: 10.1007/BF02699567
– volume: 64
  year: 2001
  ident: 10.1016/j.jcis.2010.04.028_bib23
  publication-title: Phys. Rev. E
– volume: 206
  start-page: 87
  year: 2002
  ident: 10.1016/j.jcis.2010.04.028_bib24
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(02)00082-1
– year: 1998
  ident: 10.1016/j.jcis.2010.04.028_bib6
– volume: 11
  start-page: 255
  year: 2003
  ident: 10.1016/j.jcis.2010.04.028_bib14
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2003-10019-5
– volume: 201
  start-page: 323
  year: 1989
  ident: 10.1016/j.jcis.2010.04.028_bib4
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112089000960
– year: 2007
  ident: 10.1016/j.jcis.2010.04.028_bib5
– volume: 273
  start-page: 581
  issue: 2
  year: 2004
  ident: 10.1016/j.jcis.2010.04.028_bib17
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2003.11.044
– volume: 48
  start-page: 763
  issue: 11
  year: 1995
  ident: 10.1016/j.jcis.2010.04.028_bib8
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.3005092
– year: 1992
  ident: 10.1016/j.jcis.2010.04.028_bib19
– year: 1994
  ident: 10.1016/j.jcis.2010.04.028_bib2
– volume: 77
  start-page: 977
  issue: 3
  year: 2005
  ident: 10.1016/j.jcis.2010.04.028_bib9
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.977
– volume: 17
  issue: 6
  year: 2005
  ident: 10.1016/j.jcis.2010.04.028_bib15
  publication-title: Phys. Fluids
  doi: 10.1063/1.1935487
– volume: 571
  start-page: 33
  year: 2007
  ident: 10.1016/j.jcis.2010.04.028_bib7
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112006003004
– volume: 78
  start-page: 118
  issue: 1
  year: 1980
  ident: 10.1016/j.jcis.2010.04.028_bib18
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(80)90501-9
– volume: 1
  start-page: 249
  issue: 3
  year: 2005
  ident: 10.1016/j.jcis.2010.04.028_bib10
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-004-0012-9
– volume: 90
  start-page: 220
  issue: 1
  year: 1982
  ident: 10.1016/j.jcis.2010.04.028_bib21
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(82)90415-5
SSID ssj0011559
Score 2.115367
Snippet The effect of shear on the van-der-Waals-driven rupture of stratified thin liquid films confined between surfaces which may be chemically heterogeneous is...
The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 271
SubjectTerms Chemistry
Delay
Exact sciences and technology
General and physical chemistry
Liquid films
Lithographic printing
Nanostructure
Printing
Rupture
Shear
Shear rate
Thin liquid films
Traveling waves
Title Shear-induced suppression of rupture in two-layer thin liquid films
URI https://dx.doi.org/10.1016/j.jcis.2010.04.028
https://www.ncbi.nlm.nih.gov/pubmed/20471656
https://www.proquest.com/docview/733405113
https://www.proquest.com/docview/753673669
Volume 348
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHNoKIUpfy2PlQ2-VwV7nYR_RCrS0KqcicbNsx1aDttmUJOLW395x4ixFKnvgmMh2rJnJfGP5mxmEPnMtcl_IGdEu1QTif0EMACHxBcucz6hP-_4p36-zxU3y9Ta93ULzMRcm0Cqj7x98eu-t45uzKM2zuixDji_8bbkM5WlC0ag-gz3Jg62f_lnTPFi4dhtoHoyE0TFxZuB43dmyifSu5JSGjuz_B6fdWjcgMj_0ung-GO1B6XIf7cVoEp8PG36Ltlx1gF7NxyZuB-jNP_UG36F537-awDEcFFrgpqsjDbbCK4_vuzpcJ-Cywu3Diiw1ROO4_QmPy_J3VxbYl8tfzXt0c3nxY74gsYsCsQnLWxIw2xaGGsZyYaSTAOCZNMwIy11ihc2cFtQKOKsWVAK8G-dTSb1LmKOpTfgHtF2tKvcJYfBI3AmdMy8gjJLCcPCz1mmepUZmejZBbBSfsrHEeOh0sVQjl-xOBZGrIHJFEwUin6Av6zn1UGBj4-h01Ip6YiYKEGDjvOkTFa4_NQM4DnTUCcKjThWoKNya6MqtukblnENQyxjfMCTlgR6XwSofB3N4XJ8C-kPMfPjCjR-h1wNfIVAOj9F2e9-5EwiDWjPt7XyKds6vvi2u_wKZlwUK
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcigIIShfy0fxgRtya6_jxD6iFdUCbU-t1JtlO7ZItc2GJlFv_e2ME2ehEuyBYyLbsWacec_y8wxCH7mRRSjVnBgvDAH-L4kFICShZLkPOQ1iqJ9yepYvL7Jvl-JyBy2muzBRVpli_xjTh2id3hwlax41VRXv-MLfVqiYniYmjYIt0INM8CLq-g7vNjoPFs_dRp0HI7F5ujkziryuXNUmfVd2SGNJ9r-j0-PGtGCzMBa7-DcbHVDp-Cl6kugk_jzO-Bna8fU-2ltMVdz20aM_Eg4-R4uhgDWBfTh4tMRt3yQdbI3XAd_0TTxPwFWNu9s1WRmg47j7AY-r6mdflThUq-v2Bbo4_nK-WJJURoG4jBUdiaDtSkstY4W0yitA8FxZZqXjPnPS5d5I6iRsVkuqAN-tD0LR4DPmqXAZf4l263XtXyMMIYl7aQoWJPAoJS2HQOu84bmwKjfzGWKT-bRLOcZjqYuVnsRkVzqaXEeTa5ppMPkMfdr0acYMG1tbi8kr-t460QABW_sd3HPh5lNzwOOoR50hPPlUg4visYmp_bpvdcE5sFrG-JYmgkd9XA6jvBqXw-_xKcA_kOY3_znxD2hveX56ok--nn1_ix6O4oWoP3yHdrub3r8HTtTZg2HN_wKLTQad
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shear-induced+suppression+of+rupture+in+two-layer+thin+liquid+films&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Kalpathy%2C+Sreeram+K&rft.au=Francis%2C+Lorraine+F&rft.au=Kumar%2C+Satish&rft.date=2010-08-01&rft.issn=0021-9797&rft.volume=348&rft.issue=1&rft.spage=271&rft.epage=279&rft_id=info:doi/10.1016%2Fj.jcis.2010.04.028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon