Shear-induced suppression of rupture in two-layer thin liquid films
The effect of shear on the van-der-Waals-driven rupture of stratified thin liquid films confined between surfaces which may be chemically heterogeneous is examined. The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals fo...
Saved in:
Published in | Journal of colloid and interface science Vol. 348; no. 1; pp. 271 - 279 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.08.2010
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9797 1095-7103 1095-7103 |
DOI | 10.1016/j.jcis.2010.04.028 |
Cover
Abstract | The effect of shear on the van-der-Waals-driven rupture of stratified thin liquid films confined between surfaces which may be chemically heterogeneous is examined.
The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this work. Lubrication theory is applied to derive a one-dimensional nonlinear evolution equation for the height of the liquid–liquid interface. Linear stability analysis reveals that the real part of the growth rate and the wavelength of the fastest growing interfacial disturbance are unaffected by shear. However, the growth rate has an imaginary part which is non-zero in the presence of shear, indicating the existence of traveling waves. Nonlinear simulations of interface behavior on homogeneous surfaces show that shear delays interfacial rupture, and suppression of rupture occurs beyond a critical shear rate. Propagation of traveling waves along the interface, and subsequent weakening of van-der-Waals-driven dewetting, is found to be the cause of the rupture delay. Analysis of flow on chemically heterogeneous surfaces also suggests a delay in interfacial rupture in the presence of shear. The problem studied here can serve as an idealized model for the lithographic printing process, and the results suggest that in the regime of shear rates relevant to printing, mechanisms of emulsification of one liquid into the other can be understood without incorporating shear. However, shear could be relevant in other physical systems such as nanofluidic and microfluidic flows. |
---|---|
AbstractList | The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this work. Lubrication theory is applied to derive a one-dimensional nonlinear evolution equation for the height of the liquid-liquid interface. Linear stability analysis reveals that the real part of the growth rate and the wavelength of the fastest growing interfacial disturbance are unaffected by shear. However, the growth rate has an imaginary part which is non-zero in the presence of shear, indicating the existence of traveling waves. Nonlinear simulations of interface behavior on homogeneous surfaces show that shear delays interfacial rupture, and suppression of rupture occurs beyond a critical shear rate. Propagation of traveling waves along the interface, and subsequent weakening of van-der-Waals-driven dewetting, is found to be the cause of the rupture delay. Analysis of flow on chemically heterogeneous surfaces also suggests a delay in interfacial rupture in the presence of shear. The problem studied here can serve as an idealized model for the lithographic printing process, and the results suggest that in the regime of shear rates relevant to printing, mechanisms of emulsification of one liquid into the other can be understood without incorporating shear. However, shear could be relevant in other physical systems such as nanofluidic and microfluidic flows. The effect of shear on the van-der-Waals-driven rupture of stratified thin liquid films confined between surfaces which may be chemically heterogeneous is examined. The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this work. Lubrication theory is applied to derive a one-dimensional nonlinear evolution equation for the height of the liquid–liquid interface. Linear stability analysis reveals that the real part of the growth rate and the wavelength of the fastest growing interfacial disturbance are unaffected by shear. However, the growth rate has an imaginary part which is non-zero in the presence of shear, indicating the existence of traveling waves. Nonlinear simulations of interface behavior on homogeneous surfaces show that shear delays interfacial rupture, and suppression of rupture occurs beyond a critical shear rate. Propagation of traveling waves along the interface, and subsequent weakening of van-der-Waals-driven dewetting, is found to be the cause of the rupture delay. Analysis of flow on chemically heterogeneous surfaces also suggests a delay in interfacial rupture in the presence of shear. The problem studied here can serve as an idealized model for the lithographic printing process, and the results suggest that in the regime of shear rates relevant to printing, mechanisms of emulsification of one liquid into the other can be understood without incorporating shear. However, shear could be relevant in other physical systems such as nanofluidic and microfluidic flows. The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this work. Lubrication theory is applied to derive a one-dimensional nonlinear evolution equation for the height of the liquid-liquid interface. Linear stability analysis reveals that the real part of the growth rate and the wavelength of the fastest growing interfacial disturbance are unaffected by shear. However, the growth rate has an imaginary part which is non-zero in the presence of shear, indicating the existence of traveling waves. Nonlinear simulations of interface behavior on homogeneous surfaces show that shear delays interfacial rupture, and suppression of rupture occurs beyond a critical shear rate. Propagation of traveling waves along the interface, and subsequent weakening of van-der-Waals-driven dewetting, is found to be the cause of the rupture delay. Analysis of flow on chemically heterogeneous surfaces also suggests a delay in interfacial rupture in the presence of shear. The problem studied here can serve as an idealized model for the lithographic printing process, and the results suggest that in the regime of shear rates relevant to printing, mechanisms of emulsification of one liquid into the other can be understood without incorporating shear. However, shear could be relevant in other physical systems such as nanofluidic and microfluidic flows.The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this work. Lubrication theory is applied to derive a one-dimensional nonlinear evolution equation for the height of the liquid-liquid interface. Linear stability analysis reveals that the real part of the growth rate and the wavelength of the fastest growing interfacial disturbance are unaffected by shear. However, the growth rate has an imaginary part which is non-zero in the presence of shear, indicating the existence of traveling waves. Nonlinear simulations of interface behavior on homogeneous surfaces show that shear delays interfacial rupture, and suppression of rupture occurs beyond a critical shear rate. Propagation of traveling waves along the interface, and subsequent weakening of van-der-Waals-driven dewetting, is found to be the cause of the rupture delay. Analysis of flow on chemically heterogeneous surfaces also suggests a delay in interfacial rupture in the presence of shear. The problem studied here can serve as an idealized model for the lithographic printing process, and the results suggest that in the regime of shear rates relevant to printing, mechanisms of emulsification of one liquid into the other can be understood without incorporating shear. However, shear could be relevant in other physical systems such as nanofluidic and microfluidic flows. |
Author | Kalpathy, Sreeram K. Francis, Lorraine F. Kumar, Satish |
Author_xml | – sequence: 1 givenname: Sreeram K. surname: Kalpathy fullname: Kalpathy, Sreeram K. – sequence: 2 givenname: Lorraine F. surname: Francis fullname: Francis, Lorraine F. – sequence: 3 givenname: Satish surname: Kumar fullname: Kumar, Satish email: kumar@cems.umn.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22997109$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20471656$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaDbb_oEeii8lJ29mLFm2oJey5KMQyCHJWcjymNXitR1Jbsi_r5bdtNBDehIjnncG3uecnQzjQIx9QVghoLzcrrbWhVUB6QPECor6A1sgqDKvEPgJWwAUmKtKVWfsPIQtAGJZqo_srABRoSzlgq0fNmR87oZ2ttRmYZ4mTyG4ccjGLvPzFGdPmRuy-DLmvXkln8VNGnv3PLs261y_C5_YaWf6QJ-P75I9XV89rm_zu_ubn-sfd7kVWMW8KATYtoEGsaobRUoil6rBprachK2tJFODrTmvW1AgsaGuVNCRQILSCr5kF4e9kx-fZwpR71yw1PdmoHEOuiq5rLiU6v8k5wJKRJ7Ir0dybnbU6sm7nfGv-q2hBHw7AiZY03feDKn0v1yhVGp7f7I4cNaPIXjq_iAIeq9Lb_Vel97r0iB00pVC9T8h66KJqf3ojevfj34_RCk1_suR18E6GpJE58lG3Y7uvfhvlsSukg |
CODEN | JCISA5 |
CitedBy_id | crossref_primary_10_1016_j_jcis_2024_03_049 crossref_primary_10_1016_j_polymer_2016_03_005 crossref_primary_10_1021_la202759j crossref_primary_10_1021_acs_macromol_7b00176 crossref_primary_10_1103_PhysRevFluids_2_104002 crossref_primary_10_1016_j_polymer_2021_124283 crossref_primary_10_1017_jfm_2017_17 crossref_primary_10_1155_2013_748613 crossref_primary_10_1088_1873_7005_aaaeef crossref_primary_10_1017_jfm_2015_346 crossref_primary_10_1016_j_jcis_2013_06_035 crossref_primary_10_1007_s10404_011_0836_z crossref_primary_10_1021_acsmacrolett_2c00070 crossref_primary_10_1063_1_4984610 crossref_primary_10_1103_PhysRevFluids_2_063601 crossref_primary_10_1103_PhysRevFluids_9_024201 crossref_primary_10_1016_j_jcis_2012_05_017 crossref_primary_10_1063_5_0209750 crossref_primary_10_1017_S002211201000323X crossref_primary_10_1039_D4SM00562G crossref_primary_10_1146_annurev_fluid_010814_014620 crossref_primary_10_1063_1_5099661 |
Cites_doi | 10.1016/S0169-5983(99)00026-X 10.1103/RevModPhys.69.931 10.1063/1.1590978 10.1017/S0022112088002484 10.1098/rspa.1972.0163 10.1021/la010469n 10.1103/PhysRevLett.86.4536 10.1007/BF02699567 10.1016/S0927-7757(02)00082-1 10.1140/epje/i2003-10019-5 10.1017/S0022112089000960 10.1016/j.jcis.2003.11.044 10.1115/1.3005092 10.1103/RevModPhys.77.977 10.1063/1.1935487 10.1017/S0022112006003004 10.1016/0021-9797(80)90501-9 10.1007/s10404-004-0012-9 10.1016/0021-9797(82)90415-5 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. 2015 INIST-CNRS Copyright (c) 2010 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2010 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright (c) 2010 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION IQODW NPM 7X8 7U5 8FD L7M |
DOI | 10.1016/j.jcis.2010.04.028 |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 279 |
ExternalDocumentID | 20471656 22997109 10_1016_j_jcis_2010_04_028 S0021979710004121 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW NPM 7X8 7U5 8FD L7M |
ID | FETCH-LOGICAL-c417t-2240cdb0b1178b9e961369b1b8c3e4c8c6ea80c8338d09061bef590fe41e05c43 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Sep 05 03:57:09 EDT 2025 Fri Sep 05 05:04:14 EDT 2025 Mon Jul 21 05:55:22 EDT 2025 Mon Jul 21 09:11:40 EDT 2025 Thu Apr 24 23:02:32 EDT 2025 Tue Jul 01 01:17:55 EDT 2025 Fri Feb 23 02:22:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Lithographic printing Thin liquid films Shear Rupture Confinement Growth rate Emulsification Force Theory Evolution equation Mechanism Thin film Liquid liquid interface Lubrication Parallel plate Liquid film Printing Heterogeneous surface Stability Wavelength Homogeneous surface Dewetting Liquid Simulation Models |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright (c) 2010 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-2240cdb0b1178b9e961369b1b8c3e4c8c6ea80c8338d09061bef590fe41e05c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 20471656 |
PQID | 733405113 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_753673669 proquest_miscellaneous_733405113 pubmed_primary_20471656 pascalfrancis_primary_22997109 crossref_primary_10_1016_j_jcis_2010_04_028 crossref_citationtrail_10_1016_j_jcis_2010_04_028 elsevier_sciencedirect_doi_10_1016_j_jcis_2010_04_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-08-01 |
PublicationDateYYYYMMDD | 2010-08-01 |
PublicationDate_xml | – month: 08 year: 2010 text: 2010-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2010 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Thiele, Brusch, Bestehorn, Bar (bib14) 2003; 11 Speight (bib5) 2007 Preziosi, Chen, Joseph (bib4) 1989; 201 Kargupta, Sharma (bib12) 2001; 86 Merkt, Pototsky, Bestehorn, Thiele (bib15) 2005; 17 Kargupta, Sharma (bib13) 2002; 18 Maldarelli, Jain, Ivanov, Ruckenstein (bib18) 1980; 78 Bielarz, Kalliadasis (bib16) 2003; 15 Lenz, Kumar (bib7) 2007; 571 Israelachvili (bib19) 1992 Israelachvili (bib20) 1972; 331 M.J. Davis, M.B. Gratton, S.H. Davis, J. Fluid Mech., submitted for publication. Joo, Hsieh (bib11) 2000; 26 Thiele, Velarde, Neuffer, Bestehorn, Pomeau (bib23) 2001; 64 Powell, Savage, Guthrie (bib3) 2005; 88 Squires, Quake (bib9) 2005; 77 Kumar, Matar (bib17) 2004; 273 Thiele, Neuffer, Bestehorn, Pomeau, Velarde (bib24) 2002; 206 Williams, Davis (bib21) 1982; 90 Eijkel, van den Berg (bib10) 2005; 1 Oron, Davis, Bankoff (bib1) 1997; 69 Kistler, Schweizer (bib2) 1994 Burelbach, Bankoff, Davis (bib22) 1988; 195 MacPhee (bib6) 1998 Chen (bib8) 1995; 48 10.1016/j.jcis.2010.04.028_bib25 Chen (10.1016/j.jcis.2010.04.028_bib8) 1995; 48 Burelbach (10.1016/j.jcis.2010.04.028_bib22) 1988; 195 Powell (10.1016/j.jcis.2010.04.028_bib3) 2005; 88 Lenz (10.1016/j.jcis.2010.04.028_bib7) 2007; 571 Israelachvili (10.1016/j.jcis.2010.04.028_bib20) 1972; 331 Eijkel (10.1016/j.jcis.2010.04.028_bib10) 2005; 1 Speight (10.1016/j.jcis.2010.04.028_bib5) 2007 Kargupta (10.1016/j.jcis.2010.04.028_bib12) 2001; 86 Thiele (10.1016/j.jcis.2010.04.028_bib14) 2003; 11 Squires (10.1016/j.jcis.2010.04.028_bib9) 2005; 77 Thiele (10.1016/j.jcis.2010.04.028_bib24) 2002; 206 MacPhee (10.1016/j.jcis.2010.04.028_bib6) 1998 Kargupta (10.1016/j.jcis.2010.04.028_bib13) 2002; 18 Thiele (10.1016/j.jcis.2010.04.028_bib23) 2001; 64 Israelachvili (10.1016/j.jcis.2010.04.028_bib19) 1992 Merkt (10.1016/j.jcis.2010.04.028_bib15) 2005; 17 Maldarelli (10.1016/j.jcis.2010.04.028_bib18) 1980; 78 Preziosi (10.1016/j.jcis.2010.04.028_bib4) 1989; 201 Kumar (10.1016/j.jcis.2010.04.028_bib17) 2004; 273 Joo (10.1016/j.jcis.2010.04.028_bib11) 2000; 26 Oron (10.1016/j.jcis.2010.04.028_bib1) 1997; 69 Williams (10.1016/j.jcis.2010.04.028_bib21) 1982; 90 Bielarz (10.1016/j.jcis.2010.04.028_bib16) 2003; 15 Kistler (10.1016/j.jcis.2010.04.028_bib2) 1994 |
References_xml | – volume: 69 start-page: 931 year: 1997 ident: bib1 publication-title: Rev. Mod. Phys. – volume: 88 start-page: 157 year: 2005 ident: bib3 publication-title: Surf. Coat. Int. B – volume: 48 start-page: 763 year: 1995 ident: bib8 publication-title: Appl. Mech. Rev. – year: 1998 ident: bib6 article-title: Fundamentals of Lithographic Printing – volume: 206 start-page: 87 year: 2002 ident: bib24 publication-title: Colloids Surf. A – volume: 17 year: 2005 ident: bib15 publication-title: Phys. Fluids – volume: 90 start-page: 220 year: 1982 ident: bib21 publication-title: J. Colloid Interface Sci. – year: 2007 ident: bib5 article-title: The Chemistry and Technology of Petroleum – volume: 11 start-page: 255 year: 2003 ident: bib14 publication-title: Eur. Phys. J. E – volume: 18 start-page: 1893 year: 2002 ident: bib13 publication-title: Langmuir – volume: 86 start-page: 4536 year: 2001 ident: bib12 publication-title: Phys. Rev. Lett. – volume: 78 start-page: 118 year: 1980 ident: bib18 publication-title: J. Colloid Interface Sci. – volume: 26 start-page: 203 year: 2000 ident: bib11 publication-title: Fluid Dyn. Res. – volume: 1 start-page: 249 year: 2005 ident: bib10 publication-title: Microfluid. Nanofluid. – year: 1994 ident: bib2 article-title: Liquid Film Coating: Scientific Principles and their Technological Implications – volume: 195 start-page: 463 year: 1988 ident: bib22 publication-title: J. Fluid Mech. – reference: M.J. Davis, M.B. Gratton, S.H. Davis, J. Fluid Mech., submitted for publication. – volume: 331 start-page: 39 year: 1972 ident: bib20 publication-title: Proc. R. Soc. Lond. A – volume: 64 year: 2001 ident: bib23 publication-title: Phys. Rev. E – year: 1992 ident: bib19 article-title: Intermolecular and Surface Forces – volume: 15 start-page: 2512 year: 2003 ident: bib16 publication-title: Phys. Fluids – volume: 571 start-page: 33 year: 2007 ident: bib7 publication-title: J. Fluid Mech. – volume: 77 start-page: 977 year: 2005 ident: bib9 publication-title: Rev. Mod. Phys. – volume: 201 start-page: 323 year: 1989 ident: bib4 publication-title: J. Fluid Mech. – volume: 273 start-page: 581 year: 2004 ident: bib17 publication-title: J. Colloid Interface Sci. – volume: 26 start-page: 203 issue: 3 year: 2000 ident: 10.1016/j.jcis.2010.04.028_bib11 publication-title: Fluid Dyn. Res. doi: 10.1016/S0169-5983(99)00026-X – volume: 69 start-page: 931 year: 1997 ident: 10.1016/j.jcis.2010.04.028_bib1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.69.931 – volume: 15 start-page: 2512 issue: 9 year: 2003 ident: 10.1016/j.jcis.2010.04.028_bib16 publication-title: Phys. Fluids doi: 10.1063/1.1590978 – volume: 195 start-page: 463 year: 1988 ident: 10.1016/j.jcis.2010.04.028_bib22 publication-title: J. Fluid Mech. doi: 10.1017/S0022112088002484 – volume: 331 start-page: 39 year: 1972 ident: 10.1016/j.jcis.2010.04.028_bib20 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1972.0163 – volume: 18 start-page: 1893 issue: 5 year: 2002 ident: 10.1016/j.jcis.2010.04.028_bib13 publication-title: Langmuir doi: 10.1021/la010469n – ident: 10.1016/j.jcis.2010.04.028_bib25 – volume: 86 start-page: 4536 issue: 20 year: 2001 ident: 10.1016/j.jcis.2010.04.028_bib12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.4536 – volume: 88 start-page: 157 year: 2005 ident: 10.1016/j.jcis.2010.04.028_bib3 publication-title: Surf. Coat. Int. B doi: 10.1007/BF02699567 – volume: 64 year: 2001 ident: 10.1016/j.jcis.2010.04.028_bib23 publication-title: Phys. Rev. E – volume: 206 start-page: 87 year: 2002 ident: 10.1016/j.jcis.2010.04.028_bib24 publication-title: Colloids Surf. A doi: 10.1016/S0927-7757(02)00082-1 – year: 1998 ident: 10.1016/j.jcis.2010.04.028_bib6 – volume: 11 start-page: 255 year: 2003 ident: 10.1016/j.jcis.2010.04.028_bib14 publication-title: Eur. Phys. J. E doi: 10.1140/epje/i2003-10019-5 – volume: 201 start-page: 323 year: 1989 ident: 10.1016/j.jcis.2010.04.028_bib4 publication-title: J. Fluid Mech. doi: 10.1017/S0022112089000960 – year: 2007 ident: 10.1016/j.jcis.2010.04.028_bib5 – volume: 273 start-page: 581 issue: 2 year: 2004 ident: 10.1016/j.jcis.2010.04.028_bib17 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2003.11.044 – volume: 48 start-page: 763 issue: 11 year: 1995 ident: 10.1016/j.jcis.2010.04.028_bib8 publication-title: Appl. Mech. Rev. doi: 10.1115/1.3005092 – year: 1992 ident: 10.1016/j.jcis.2010.04.028_bib19 – year: 1994 ident: 10.1016/j.jcis.2010.04.028_bib2 – volume: 77 start-page: 977 issue: 3 year: 2005 ident: 10.1016/j.jcis.2010.04.028_bib9 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.977 – volume: 17 issue: 6 year: 2005 ident: 10.1016/j.jcis.2010.04.028_bib15 publication-title: Phys. Fluids doi: 10.1063/1.1935487 – volume: 571 start-page: 33 year: 2007 ident: 10.1016/j.jcis.2010.04.028_bib7 publication-title: J. Fluid Mech. doi: 10.1017/S0022112006003004 – volume: 78 start-page: 118 issue: 1 year: 1980 ident: 10.1016/j.jcis.2010.04.028_bib18 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(80)90501-9 – volume: 1 start-page: 249 issue: 3 year: 2005 ident: 10.1016/j.jcis.2010.04.028_bib10 publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-004-0012-9 – volume: 90 start-page: 220 issue: 1 year: 1982 ident: 10.1016/j.jcis.2010.04.028_bib21 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(82)90415-5 |
SSID | ssj0011559 |
Score | 2.115367 |
Snippet | The effect of shear on the van-der-Waals-driven rupture of stratified thin liquid films confined between surfaces which may be chemically heterogeneous is... The effect of shear on the rupture of two stratified thin liquid films confined between parallel plates and subject to van der Waals forces is examined in this... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 271 |
SubjectTerms | Chemistry Delay Exact sciences and technology General and physical chemistry Liquid films Lithographic printing Nanostructure Printing Rupture Shear Shear rate Thin liquid films Traveling waves |
Title | Shear-induced suppression of rupture in two-layer thin liquid films |
URI | https://dx.doi.org/10.1016/j.jcis.2010.04.028 https://www.ncbi.nlm.nih.gov/pubmed/20471656 https://www.proquest.com/docview/733405113 https://www.proquest.com/docview/753673669 |
Volume | 348 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHNoKIUpfy2PlQ2-VwV7nYR_RCrS0KqcicbNsx1aDttmUJOLW395x4ixFKnvgmMh2rJnJfGP5mxmEPnMtcl_IGdEu1QTif0EMACHxBcucz6hP-_4p36-zxU3y9Ta93ULzMRcm0Cqj7x98eu-t45uzKM2zuixDji_8bbkM5WlC0ag-gz3Jg62f_lnTPFi4dhtoHoyE0TFxZuB43dmyifSu5JSGjuz_B6fdWjcgMj_0ung-GO1B6XIf7cVoEp8PG36Ltlx1gF7NxyZuB-jNP_UG36F537-awDEcFFrgpqsjDbbCK4_vuzpcJ-Cywu3Diiw1ROO4_QmPy_J3VxbYl8tfzXt0c3nxY74gsYsCsQnLWxIw2xaGGsZyYaSTAOCZNMwIy11ihc2cFtQKOKsWVAK8G-dTSb1LmKOpTfgHtF2tKvcJYfBI3AmdMy8gjJLCcPCz1mmepUZmejZBbBSfsrHEeOh0sVQjl-xOBZGrIHJFEwUin6Av6zn1UGBj4-h01Ip6YiYKEGDjvOkTFa4_NQM4DnTUCcKjThWoKNya6MqtukblnENQyxjfMCTlgR6XwSofB3N4XJ8C-kPMfPjCjR-h1wNfIVAOj9F2e9-5EwiDWjPt7XyKds6vvi2u_wKZlwUK |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcigIIShfy0fxgRtya6_jxD6iFdUCbU-t1JtlO7ZItc2GJlFv_e2ME2ehEuyBYyLbsWacec_y8wxCH7mRRSjVnBgvDAH-L4kFICShZLkPOQ1iqJ9yepYvL7Jvl-JyBy2muzBRVpli_xjTh2id3hwlax41VRXv-MLfVqiYniYmjYIt0INM8CLq-g7vNjoPFs_dRp0HI7F5ujkziryuXNUmfVd2SGNJ9r-j0-PGtGCzMBa7-DcbHVDp-Cl6kugk_jzO-Bna8fU-2ltMVdz20aM_Eg4-R4uhgDWBfTh4tMRt3yQdbI3XAd_0TTxPwFWNu9s1WRmg47j7AY-r6mdflThUq-v2Bbo4_nK-WJJURoG4jBUdiaDtSkstY4W0yitA8FxZZqXjPnPS5d5I6iRsVkuqAN-tD0LR4DPmqXAZf4l263XtXyMMIYl7aQoWJPAoJS2HQOu84bmwKjfzGWKT-bRLOcZjqYuVnsRkVzqaXEeTa5ppMPkMfdr0acYMG1tbi8kr-t460QABW_sd3HPh5lNzwOOoR50hPPlUg4visYmp_bpvdcE5sFrG-JYmgkd9XA6jvBqXw-_xKcA_kOY3_znxD2hveX56ok--nn1_ix6O4oWoP3yHdrub3r8HTtTZg2HN_wKLTQad |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shear-induced+suppression+of+rupture+in+two-layer+thin+liquid+films&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Kalpathy%2C+Sreeram+K&rft.au=Francis%2C+Lorraine+F&rft.au=Kumar%2C+Satish&rft.date=2010-08-01&rft.issn=0021-9797&rft.volume=348&rft.issue=1&rft.spage=271&rft.epage=279&rft_id=info:doi/10.1016%2Fj.jcis.2010.04.028&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |