A Higher Frequency of NKG2A + than of NKG2A − NK Cells Responds to Autologous HIV-Infected CD4 Cells irrespective of Whether or Not They Coexpress KIR3DL1

Epidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4 + (iCD4) T cells. NK cells acquire antivi...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 89; no. 19; pp. 9909 - 9919
Main Authors Lisovsky, Irene, Isitman, Gamze, Song, Rujun, DaFonseca, Sandrina, Tremblay-McLean, Alexandra, Lebouché, Bertrand, Routy, Jean-Pierre, Bruneau, Julie, Bernard, Nicole F.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4 + (iCD4) T cells. NK cells acquire antiviral functions through education, which requires signals received from iNKRs, such as NKG2A and KIR3DL1 (here, 3DL1), engaging their ligands. NKG2A interacts with HLA-E, and 3DL1 interacts with HLA-A/B antigens expressing the Bw4 epitope. HIV-infected cells downregulate HLA-A/B, which should interrupt negative signaling through 3DL1, leading to NK cell activation, provided there is sufficient engagement of activating NKRs. We examined the functionality of NK cells expressing or not NKG2A and 3DL1 stimulated by HLA-null and autologous iCD4 cells. Flow cytometry was used to gate on each NKG2A + /NKG2A − 3DL1 + /3DL1 − (NKG2A +/− 3DL1 +/− ) population and to measure the frequency of all possible combinations of CD107a expression and gamma interferon (IFN-γ) and CCL4 secretion. The highest frequency of functional NK cells responding to HLA-null cell stimulation was the NKG2A + 3DL1 + NK cell population. The highest frequencies of functional NK cells responding to autologous iCD4 cells were those expressing NKG2A; coexpression of 3DL1 did not further modulate responsiveness. This was the case for the functional subsets characterized by the sum of all functions tested (total responsiveness), as well as by the trifunctional CD107a + IFN-γ + CCL4 + , CD107a + IFN-γ + , total CD107a + , and total IFN-γ + functional subsets. These results indicate that the NKG2A receptor has a role in NK cell-mediated anti-HIV responses. IMPORTANCE HIV-infected CD4 (iCD4) cells activate NK cells, which then control HIV replication. However, little is known regarding which NK cell populations iCD4 cells stimulate to develop antiviral activity. Here, we examine the frequency of NK cell populations, defined by the presence/absence of the NK cell receptors (NKRs) NKG2A and 3DL1, that respond to iCD4 cells. NKG2A and 3DL1 are involved in priming NK cells for antiviral functions upon encountering virus-infected cells. A higher frequency of NKG2A + than NKG2A − NK cells responded to iCD4 cells by developing antiviral functions such as CD107a expression, which correlates with NK cell killing, and secretion of gamma interferon and CCL4. Coexpression of 3DL1 on the NKG2A + and NKG2A − NK cells did not modulate responses to iCD4 cells. Understanding the mechanisms underlying the interaction of NK cells with iCD4 cells that lead to HIV control may contribute to developing strategies that harness NK cells for preventing or controlling HIV infection.
AbstractList UNLABELLEDEpidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4(+) (iCD4) T cells. NK cells acquire antiviral functions through education, which requires signals received from iNKRs, such as NKG2A and KIR3DL1 (here, 3DL1), engaging their ligands. NKG2A interacts with HLA-E, and 3DL1 interacts with HLA-A/B antigens expressing the Bw4 epitope. HIV-infected cells downregulate HLA-A/B, which should interrupt negative signaling through 3DL1, leading to NK cell activation, provided there is sufficient engagement of activating NKRs. We examined the functionality of NK cells expressing or not NKG2A and 3DL1 stimulated by HLA-null and autologous iCD4 cells. Flow cytometry was used to gate on each NKG2A(+)/NKG2A(-) 3DL1(+)/3DL1(-) (NKG2A(+/-) 3DL1(+/-)) population and to measure the frequency of all possible combinations of CD107a expression and gamma interferon (IFN-γ) and CCL4 secretion. The highest frequency of functional NK cells responding to HLA-null cell stimulation was the NKG2A(+) 3DL1(+) NK cell population. The highest frequencies of functional NK cells responding to autologous iCD4 cells were those expressing NKG2A; coexpression of 3DL1 did not further modulate responsiveness. This was the case for the functional subsets characterized by the sum of all functions tested (total responsiveness), as well as by the trifunctional CD107a(+) IFN-γ(+) CCL4(+), CD107a(+) IFN-γ(+), total CD107a(+), and total IFN-γ(+) functional subsets. These results indicate that the NKG2A receptor has a role in NK cell-mediated anti-HIV responses.IMPORTANCEHIV-infected CD4 (iCD4) cells activate NK cells, which then control HIV replication. However, little is known regarding which NK cell populations iCD4 cells stimulate to develop antiviral activity. Here, we examine the frequency of NK cell populations, defined by the presence/absence of the NK cell receptors (NKRs) NKG2A and 3DL1, that respond to iCD4 cells. NKG2A and 3DL1 are involved in priming NK cells for antiviral functions upon encountering virus-infected cells. A higher frequency of NKG2A(+) than NKG2A(-) NK cells responded to iCD4 cells by developing antiviral functions such as CD107a expression, which correlates with NK cell killing, and secretion of gamma interferon and CCL4. Coexpression of 3DL1 on the NKG2A(+) and NKG2A(-) NK cells did not modulate responses to iCD4 cells. Understanding the mechanisms underlying the interaction of NK cells with iCD4 cells that lead to HIV control may contribute to developing strategies that harness NK cells for preventing or controlling HIV infection.
Epidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4 + (iCD4) T cells. NK cells acquire antiviral functions through education, which requires signals received from iNKRs, such as NKG2A and KIR3DL1 (here, 3DL1), engaging their ligands. NKG2A interacts with HLA-E, and 3DL1 interacts with HLA-A/B antigens expressing the Bw4 epitope. HIV-infected cells downregulate HLA-A/B, which should interrupt negative signaling through 3DL1, leading to NK cell activation, provided there is sufficient engagement of activating NKRs. We examined the functionality of NK cells expressing or not NKG2A and 3DL1 stimulated by HLA-null and autologous iCD4 cells. Flow cytometry was used to gate on each NKG2A + /NKG2A − 3DL1 + /3DL1 − (NKG2A +/− 3DL1 +/− ) population and to measure the frequency of all possible combinations of CD107a expression and gamma interferon (IFN-γ) and CCL4 secretion. The highest frequency of functional NK cells responding to HLA-null cell stimulation was the NKG2A + 3DL1 + NK cell population. The highest frequencies of functional NK cells responding to autologous iCD4 cells were those expressing NKG2A; coexpression of 3DL1 did not further modulate responsiveness. This was the case for the functional subsets characterized by the sum of all functions tested (total responsiveness), as well as by the trifunctional CD107a + IFN-γ + CCL4 + , CD107a + IFN-γ + , total CD107a + , and total IFN-γ + functional subsets. These results indicate that the NKG2A receptor has a role in NK cell-mediated anti-HIV responses. IMPORTANCE HIV-infected CD4 (iCD4) cells activate NK cells, which then control HIV replication. However, little is known regarding which NK cell populations iCD4 cells stimulate to develop antiviral activity. Here, we examine the frequency of NK cell populations, defined by the presence/absence of the NK cell receptors (NKRs) NKG2A and 3DL1, that respond to iCD4 cells. NKG2A and 3DL1 are involved in priming NK cells for antiviral functions upon encountering virus-infected cells. A higher frequency of NKG2A + than NKG2A − NK cells responded to iCD4 cells by developing antiviral functions such as CD107a expression, which correlates with NK cell killing, and secretion of gamma interferon and CCL4. Coexpression of 3DL1 on the NKG2A + and NKG2A − NK cells did not modulate responses to iCD4 cells. Understanding the mechanisms underlying the interaction of NK cells with iCD4 cells that lead to HIV control may contribute to developing strategies that harness NK cells for preventing or controlling HIV infection.
Epidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4+ (iCD4) T cells. NK cells acquire antiviral functions through education, which requires signals received from iNKRs, such as NKG2A and KIR3DL1 (here, 3DL1), engaging their ligands. NKG2A interacts with HLA-E, and 3DL1 interacts with HLA-A/B antigens expressing the Bw4 epitope. HIV-infected cells downregulate HLA-A/B, which should interrupt negative signaling through 3DL1, leading to NK cell activation, provided there is sufficient engagement of activating NKRs. We examined the functionality of NK cells expressing or not NKG2A and 3DL1 stimulated by HLA-null and autologous iCD4 cells. Flow cytometry was used to gate on each NKG2A+/NKG2A- 3DL1+/3DL1- (NKG2A+/- 3DL1+/-) population and to measure the frequency of all possible combinations of CD107a expression and gamma interferon (IFN- gamma ) and CCL4 secretion. The highest frequency of functional NK cells responding to HLA-null cell stimulation was the NKG2A+ 3DL1+ NK cell population. The highest frequencies of functional NK cells responding to autologous iCD4 cells were those expressing NKG2A; coexpression of 3DL1 did not further modulate responsiveness. This was the case for the functional subsets characterized by the sum of all functions tested (total responsiveness), as well as by the trifunctional CD107a+ IFN- gamma + CCL4+, CD107a+ IFN- gamma +, total CD107a+, and total IFN- gamma + functional subsets. These results indicate that the NKG2A receptor has a role in NK cell-mediated anti-HIV responses. IMPORTANCE HIV-infected CD4 (iCD4) cells activate NK cells, which then control HIV replication. However, little is known regarding which NK cell populations iCD4 cells stimulate to develop antiviral activity. Here, we examine the frequency of NK cell populations, defined by the presence/absence of the NK cell receptors (NKRs) NKG2A and 3DL1, that respond to iCD4 cells. NKG2A and 3DL1 are involved in priming NK cells for antiviral functions upon encountering virus-infected cells. A higher frequency of NKG2A+ than NKG2A- NK cells responded to iCD4 cells by developing antiviral functions such as CD107a expression, which correlates with NK cell killing, and secretion of gamma interferon and CCL4. Coexpression of 3DL1 on the NKG2A+ and NKG2A- NK cells did not modulate responses to iCD4 cells. Understanding the mechanisms underlying the interaction of NK cells with iCD4 cells that lead to HIV control may contribute to developing strategies that harness NK cells for preventing or controlling HIV infection.
Epidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4(+) (iCD4) T cells. NK cells acquire antiviral functions through education, which requires signals received from iNKRs, such as NKG2A and KIR3DL1 (here, 3DL1), engaging their ligands. NKG2A interacts with HLA-E, and 3DL1 interacts with HLA-A/B antigens expressing the Bw4 epitope. HIV-infected cells downregulate HLA-A/B, which should interrupt negative signaling through 3DL1, leading to NK cell activation, provided there is sufficient engagement of activating NKRs. We examined the functionality of NK cells expressing or not NKG2A and 3DL1 stimulated by HLA-null and autologous iCD4 cells. Flow cytometry was used to gate on each NKG2A(+)/NKG2A(-) 3DL1(+)/3DL1(-) (NKG2A(+/-) 3DL1(+/-)) population and to measure the frequency of all possible combinations of CD107a expression and gamma interferon (IFN-γ) and CCL4 secretion. The highest frequency of functional NK cells responding to HLA-null cell stimulation was the NKG2A(+) 3DL1(+) NK cell population. The highest frequencies of functional NK cells responding to autologous iCD4 cells were those expressing NKG2A; coexpression of 3DL1 did not further modulate responsiveness. This was the case for the functional subsets characterized by the sum of all functions tested (total responsiveness), as well as by the trifunctional CD107a(+) IFN-γ(+) CCL4(+), CD107a(+) IFN-γ(+), total CD107a(+), and total IFN-γ(+) functional subsets. These results indicate that the NKG2A receptor has a role in NK cell-mediated anti-HIV responses. HIV-infected CD4 (iCD4) cells activate NK cells, which then control HIV replication. However, little is known regarding which NK cell populations iCD4 cells stimulate to develop antiviral activity. Here, we examine the frequency of NK cell populations, defined by the presence/absence of the NK cell receptors (NKRs) NKG2A and 3DL1, that respond to iCD4 cells. NKG2A and 3DL1 are involved in priming NK cells for antiviral functions upon encountering virus-infected cells. A higher frequency of NKG2A(+) than NKG2A(-) NK cells responded to iCD4 cells by developing antiviral functions such as CD107a expression, which correlates with NK cell killing, and secretion of gamma interferon and CCL4. Coexpression of 3DL1 on the NKG2A(+) and NKG2A(-) NK cells did not modulate responses to iCD4 cells. Understanding the mechanisms underlying the interaction of NK cells with iCD4 cells that lead to HIV control may contribute to developing strategies that harness NK cells for preventing or controlling HIV infection.
Author Song, Rujun
Routy, Jean-Pierre
Isitman, Gamze
Tremblay-McLean, Alexandra
Bernard, Nicole F.
Lebouché, Bertrand
Lisovsky, Irene
DaFonseca, Sandrina
Bruneau, Julie
Author_xml – sequence: 1
  givenname: Irene
  surname: Lisovsky
  fullname: Lisovsky, Irene
  organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
– sequence: 2
  givenname: Gamze
  surname: Isitman
  fullname: Isitman, Gamze
  organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
– sequence: 3
  givenname: Rujun
  surname: Song
  fullname: Song, Rujun
  organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
– sequence: 4
  givenname: Sandrina
  surname: DaFonseca
  fullname: DaFonseca, Sandrina
  organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
– sequence: 5
  givenname: Alexandra
  surname: Tremblay-McLean
  fullname: Tremblay-McLean, Alexandra
  organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
– sequence: 6
  givenname: Bertrand
  surname: Lebouché
  fullname: Lebouché, Bertrand
  organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada, Department of Family Medicine, McGill University, Montreal, Quebec, Canada
– sequence: 7
  givenname: Jean-Pierre
  surname: Routy
  fullname: Routy, Jean-Pierre
  organization: Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada, Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
– sequence: 8
  givenname: Julie
  surname: Bruneau
  fullname: Bruneau, Julie
  organization: Department of Family Medicine, Université de Montréal, Montreal, Quebec, Canada, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
– sequence: 9
  givenname: Nicole F.
  surname: Bernard
  fullname: Bernard, Nicole F.
  organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada, Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada, Division of Clinical Immunology, McGill University Health Centre, Montreal, Quebec, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26202228$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFG2fkIxKkeOw4yV6QVinthq6KVJXCzcrHZGOUjRfbW3X_Qc-c-XX8Ehy6lA9x4OSPefzOO-M5IHuDGZCQp8COAHj26u1VccRAxkkE8gGZAJtmkZQQ75EJY5xHUmQf98mBc58YgzhO4kdknyc8hHg2IV9ndK6XHVp6YvHzBod6S01Lz89O-Yy-oL4rh1_nb7dfwo7m2PeOXqBbm6Fx1Bs623jTm6XZODovrqJiaLH22ND8ON7R2trAh1t9jaPghw79mNVYem48vexwS3ODN-uAOXpWXIjjBTwmD9uyd_hktx6S9ydvLvN5tHh3WuSzRVTHkPoISikznkDFkUOFKJuyaiQk0CDnbdzgtGEsS1NEIYWsYyGzuuKirepKlkmWiEPy-k53valW2NQ4eFv2am31qrRbZUqt_owMulNLc61imabZFILA852ANaGJzquVdnUovBwwNEVBytMkFRyy_0DZVEylYKOtZ7_buvfz8_cC8PIOqK1xzmJ7jwBT43CoMBzqx3AokAHnf-G19qXXZixK9_9-9B1mGLun
CitedBy_id crossref_primary_10_1002_JLB_6RI0917_390R
crossref_primary_10_1093_jleuko_qiac007
crossref_primary_10_3389_fimmu_2022_886562
crossref_primary_10_3390_cancers12040952
crossref_primary_10_1111_cei_12849
crossref_primary_10_3389_fimmu_2019_00177
crossref_primary_10_3389_fimmu_2021_602492
crossref_primary_10_1002_cti2_1069
crossref_primary_10_3390_v16101584
crossref_primary_10_1016_j_jaci_2018_06_047
crossref_primary_10_1126_sciimmunol_aag1672
crossref_primary_10_1186_s12981_017_0172_9
crossref_primary_10_3389_fimmu_2020_00829
crossref_primary_10_3389_fimmu_2018_02290
crossref_primary_10_1038_cmi_2016_26
crossref_primary_10_1128_JVI_00719_19
crossref_primary_10_3389_fimmu_2017_01033
crossref_primary_10_3389_fimmu_2017_01496
crossref_primary_10_3390_ijms20184490
crossref_primary_10_1016_j_jim_2016_04_007
crossref_primary_10_4049_jimmunol_1701551
crossref_primary_10_1371_journal_ppat_1007784
crossref_primary_10_1371_journal_ppat_1010090
crossref_primary_10_1093_infdis_jiad578
crossref_primary_10_3389_fimmu_2019_02864
crossref_primary_10_1186_s12865_018_0272_x
crossref_primary_10_1080_07357907_2018_1515315
crossref_primary_10_1002_jmv_70170
crossref_primary_10_1007_s13238_017_0415_5
crossref_primary_10_1002_jmv_29646
crossref_primary_10_1007_s11904_016_0310_3
crossref_primary_10_1002_JLB_5RU0821_412RR
crossref_primary_10_3389_fimmu_2022_842831
Cites_doi 10.1016/S0065-2776(08)60664-1
10.4049/jimmunol.0902621
10.1182/blood-2004-02-0696
10.1002/eji.201141826
10.1053/j.gastro.2009.08.066
10.1002/(SICI)1521-4141(199809)28:09<2854::AID-IMMU2854>3.0.CO;2-W
10.1016/j.immuni.2006.06.013
10.1146/annurev-immunol-031210-101332
10.4049/jimmunol.178.8.4947
10.1084/jem.20050810
10.4049/jimmunol.0803900
10.1038/nature10237
10.1016/S1074-7613(00)80065-5
10.1371/journal.ppat.1003867
10.1016/j.it.2009.01.006
10.1084/jem.181.3.1133
10.1182/blood-2009-04-215491
10.1073/pnas.0805205105
10.1182/blood-2010-04-282301
10.4049/jimmunol.154.11.5665
10.1126/science.1198687
10.1177/135965350501000107
10.1097/00002030-200409030-00005
10.4049/jimmunol.137.11.3671
10.1371/journal.pone.0110480
10.1182/blood-2009-08-238469
10.1097/QAD.0b013e3282f56b23
10.1084/jem.180.4.1235
10.1126/science.1097670
10.1084/jem.20050167
10.1084/jem.187.5.813
10.1172/JCI32400
10.1038/ng2035
10.1084/jem.20070695
10.1084/jem.20030630
10.1038/nri2935
10.1097/QAD.0b013e3282ffde7e
10.1371/journal.pone.0011966
10.4049/jimmunol.178.1.33
10.4049/jimmunol.179.9.5977
10.1182/blood-2008-05-156836
10.1038/nature03847
10.1053/j.gastro.2009.05.047
10.1002/eji.1830270517
10.4049/jimmunol.171.11.5663
10.1196/annals.1392.001
10.1073/pnas.0913745107
10.1128/JVI.02652-10
10.1182/blood-2010-04-281675
10.1038/35869
10.1038/ng934
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7U9
H94
5PM
DOI 10.1128/JVI.01546-15
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
DatabaseTitleList MEDLINE - Academic

CrossRef
AIDS and Cancer Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate NK Cell Populations Responding to HIV-Infected Cells
EISSN 1098-5514
EndPage 9919
ExternalDocumentID PMC4577891
26202228
10_1128_JVI_01546_15
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: MOP 123800
GroupedDBID ---
-~X
.55
.GJ
0R~
18M
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
6TJ
85S
AAFWJ
AAGFI
AAYJJ
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
ADXHL
AENEX
AFFNX
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
VH1
W2D
W8F
WH7
WOQ
X7M
Y6R
YQT
ZGI
ZXP
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7U9
H94
5PM
ID FETCH-LOGICAL-c417t-1a558261b2e21bee5dabd5161de22f4de9d00877ee3535c4358cb23fbcb5a6863
ISSN 0022-538X
IngestDate Thu Aug 21 14:14:37 EDT 2025
Fri Jul 11 08:31:51 EDT 2025
Fri Jul 11 07:51:36 EDT 2025
Mon Jul 21 05:59:25 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Tue Jul 01 01:02:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-1a558261b2e21bee5dabd5161de22f4de9d00877ee3535c4358cb23fbcb5a6863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Lisovsky I, Isitman G, Song R, DaFonseca S, Tremblay-McLean A, Lebouché B, Routy J-P, Bruneau J, Bernard NF. 2015. A higher frequency of NKG2A+ than of NKG2A− NK cells responds to autologous HIV-infected CD4 cells irrespective of whether or not they coexpress KIR3DL1. J Virol 89:9909–9919. doi:10.1128/JVI.01546-15.
OpenAccessLink https://jvi.asm.org/content/jvi/89/19/9909.full.pdf
PMID 26202228
PQID 1709395306
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4577891
proquest_miscellaneous_1727673218
proquest_miscellaneous_1709395306
pubmed_primary_26202228
crossref_primary_10_1128_JVI_01546_15
crossref_citationtrail_10_1128_JVI_01546_15
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
Houlihan JM (e_1_3_3_36_2) 1995; 154
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
Nattermann J (e_1_3_3_45_2) 2005; 10
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
Wan AM (e_1_3_3_22_2) 1986; 137
e_1_3_3_13_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_41_2
19897577 - Blood. 2010 Jan 14;115(2):274-81
15809355 - J Exp Med. 2005 Apr 4;201(7):1145-55
25330014 - PLoS One. 2014;9(10):e110480
21350578 - Nat Rev Immunol. 2011 Mar;11(3):176-86
21471235 - J Virol. 2011 Jun;85(12):5949-60
20061407 - J Immunol. 2010 Feb 15;184(4):2057-64
17947671 - J Immunol. 2007 Nov 1;179(9):5977-89
16079848 - Nature. 2005 Aug 4;436(7051):709-13
18025129 - J Exp Med. 2007 Nov 26;204(12):3027-36
14530376 - J Exp Med. 2003 Oct 6;198(7):1069-76
15751767 - Antivir Ther. 2005;10(1):95-107
17303822 - Ann N Y Acad Sci. 2007 Jun;1106:240-52
19965656 - Blood. 2010 Mar 18;115(11):2167-76
20439706 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10160-5
15297676 - Science. 2004 Aug 6;305(5685):872-4
20696944 - Blood. 2010 Nov 11;116(19):3853-64
19282243 - Trends Immunol. 2009 Apr;30(4):143-9
7931060 - J Exp Med. 1994 Oct 1;180(4):1235-42
20700504 - PLoS One. 2010;5(8):e11966
20733159 - Blood. 2010 Nov 11;116(19):3865-74
24453969 - PLoS Pathog. 2014 Jan;10(1):e1003867
2683611 - Adv Immunol. 1989;47:187-376
16901727 - Immunity. 2006 Aug;25(2):331-42
21219175 - Annu Rev Immunol. 2011;29:295-317
18974374 - Blood. 2009 Mar 12;113(11):2434-41
9486650 - Nature. 1998 Feb 19;391(6669):795-9
12134147 - Nat Genet. 2002 Aug;31(4):429-34
21814282 - Nature. 2011 Aug 4;476(7358):96-100
19747917 - Gastroenterology. 2010 Jan;138(1):325-35.e1-2
17496894 - Nat Genet. 2007 Jun;39(6):733-40
14634071 - J Immunol. 2003 Dec 1;171(11):5663-7
16027234 - J Exp Med. 2005 Jul 18;202(2):203-7
9754572 - Eur J Immunol. 1998 Sep;28(9):2854-63
15316337 - AIDS. 2004 Sep 3;18(13):1769-79
18317000 - AIDS. 2008 Mar 12;22(5):595-9
7751618 - J Immunol. 1995 Jun 1;154(11):5665-74
9174606 - Eur J Immunol. 1997 May;27(5):1164-9
19470388 - Gastroenterology. 2009 Sep;137(3):1151-60, 1160.e1-7
21212348 - Science. 2011 Jan 7;331(6013):44-9
9480992 - J Exp Med. 1998 Mar 2;187(5):813-8
17182537 - J Immunol. 2007 Jan 1;178(1):33-7
7532677 - J Exp Med. 1995 Mar 1;181(3):1133-44
18246204 - J Clin Invest. 2008 Mar;118(3):1017-26
18664585 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10877-82
2431040 - J Immunol. 1986 Dec 1;137(11):3671-4
18614872 - AIDS. 2008 Jul 31;22(12):1487-91
10403641 - Immunity. 1999 Jun;10(6):661-71
22105371 - Eur J Immunol. 2012 Feb;42(2):447-57
15117765 - Blood. 2004 Oct 1;104(7):2087-94
17404276 - J Immunol. 2007 Apr 15;178(8):4947-55
19342631 - J Immunol. 2009 Apr 15;182(8):4572-80
References_xml – ident: e_1_3_3_2_2
  doi: 10.1016/S0065-2776(08)60664-1
– ident: e_1_3_3_31_2
  doi: 10.4049/jimmunol.0902621
– ident: e_1_3_3_46_2
  doi: 10.1182/blood-2004-02-0696
– ident: e_1_3_3_49_2
  doi: 10.1002/eji.201141826
– ident: e_1_3_3_12_2
  doi: 10.1053/j.gastro.2009.08.066
– ident: e_1_3_3_19_2
  doi: 10.1002/(SICI)1521-4141(199809)28:09<2854::AID-IMMU2854>3.0.CO;2-W
– ident: e_1_3_3_15_2
  doi: 10.1016/j.immuni.2006.06.013
– ident: e_1_3_3_27_2
  doi: 10.1146/annurev-immunol-031210-101332
– ident: e_1_3_3_41_2
  doi: 10.4049/jimmunol.178.8.4947
– ident: e_1_3_3_3_2
  doi: 10.1084/jem.20050810
– ident: e_1_3_3_17_2
  doi: 10.4049/jimmunol.0803900
– ident: e_1_3_3_13_2
  doi: 10.1038/nature10237
– ident: e_1_3_3_28_2
  doi: 10.1016/S1074-7613(00)80065-5
– ident: e_1_3_3_25_2
  doi: 10.1371/journal.ppat.1003867
– ident: e_1_3_3_16_2
  doi: 10.1016/j.it.2009.01.006
– ident: e_1_3_3_21_2
  doi: 10.1084/jem.181.3.1133
– ident: e_1_3_3_43_2
  doi: 10.1182/blood-2009-04-215491
– ident: e_1_3_3_23_2
  doi: 10.1073/pnas.0805205105
– ident: e_1_3_3_39_2
  doi: 10.1182/blood-2010-04-282301
– volume: 154
  start-page: 5665
  year: 1995
  ident: e_1_3_3_36_2
  article-title: The human amnion is a site of MHC class Ib expression: evidence for the expression of HLA-E and HLA-G
  publication-title: J Immunol
  doi: 10.4049/jimmunol.154.11.5665
– ident: e_1_3_3_38_2
  doi: 10.1126/science.1198687
– volume: 10
  start-page: 95
  year: 2005
  ident: e_1_3_3_45_2
  article-title: HIV-1 infection leads to increased HLA-E expression resulting in impaired function of natural killer cells
  publication-title: Antivir Ther
  doi: 10.1177/135965350501000107
– ident: e_1_3_3_47_2
  doi: 10.1097/00002030-200409030-00005
– volume: 137
  start-page: 3671
  year: 1986
  ident: e_1_3_3_22_2
  article-title: The primary structure of HLA-A32 suggests a region involved in formation of the Bw4/Bw6 epitopes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.137.11.3671
– ident: e_1_3_3_30_2
  doi: 10.1371/journal.pone.0110480
– ident: e_1_3_3_44_2
  doi: 10.1182/blood-2009-08-238469
– ident: e_1_3_3_7_2
  doi: 10.1097/QAD.0b013e3282f56b23
– ident: e_1_3_3_20_2
  doi: 10.1084/jem.180.4.1235
– ident: e_1_3_3_9_2
  doi: 10.1126/science.1097670
– ident: e_1_3_3_34_2
  doi: 10.1084/jem.20050167
– ident: e_1_3_3_37_2
  doi: 10.1084/jem.187.5.813
– ident: e_1_3_3_10_2
  doi: 10.1172/JCI32400
– ident: e_1_3_3_29_2
  doi: 10.1038/ng2035
– ident: e_1_3_3_33_2
  doi: 10.1084/jem.20070695
– ident: e_1_3_3_4_2
  doi: 10.1084/jem.20030630
– ident: e_1_3_3_52_2
  doi: 10.1038/nri2935
– ident: e_1_3_3_6_2
  doi: 10.1097/QAD.0b013e3282ffde7e
– ident: e_1_3_3_42_2
  doi: 10.1371/journal.pone.0011966
– ident: e_1_3_3_50_2
  doi: 10.4049/jimmunol.178.1.33
– ident: e_1_3_3_24_2
  doi: 10.4049/jimmunol.179.9.5977
– ident: e_1_3_3_35_2
  doi: 10.1182/blood-2008-05-156836
– ident: e_1_3_3_14_2
  doi: 10.1038/nature03847
– ident: e_1_3_3_11_2
  doi: 10.1053/j.gastro.2009.05.047
– ident: e_1_3_3_18_2
  doi: 10.1002/eji.1830270517
– ident: e_1_3_3_5_2
  doi: 10.4049/jimmunol.171.11.5663
– ident: e_1_3_3_40_2
  doi: 10.1196/annals.1392.001
– ident: e_1_3_3_51_2
  doi: 10.1073/pnas.0913745107
– ident: e_1_3_3_32_2
  doi: 10.1128/JVI.02652-10
– ident: e_1_3_3_26_2
  doi: 10.1182/blood-2010-04-281675
– ident: e_1_3_3_48_2
  doi: 10.1038/35869
– ident: e_1_3_3_8_2
  doi: 10.1038/ng934
– reference: 24453969 - PLoS Pathog. 2014 Jan;10(1):e1003867
– reference: 17303822 - Ann N Y Acad Sci. 2007 Jun;1106:240-52
– reference: 19342631 - J Immunol. 2009 Apr 15;182(8):4572-80
– reference: 25330014 - PLoS One. 2014;9(10):e110480
– reference: 20733159 - Blood. 2010 Nov 11;116(19):3865-74
– reference: 18317000 - AIDS. 2008 Mar 12;22(5):595-9
– reference: 15316337 - AIDS. 2004 Sep 3;18(13):1769-79
– reference: 9486650 - Nature. 1998 Feb 19;391(6669):795-9
– reference: 16079848 - Nature. 2005 Aug 4;436(7051):709-13
– reference: 21212348 - Science. 2011 Jan 7;331(6013):44-9
– reference: 21219175 - Annu Rev Immunol. 2011;29:295-317
– reference: 21350578 - Nat Rev Immunol. 2011 Mar;11(3):176-86
– reference: 7532677 - J Exp Med. 1995 Mar 1;181(3):1133-44
– reference: 7931060 - J Exp Med. 1994 Oct 1;180(4):1235-42
– reference: 17404276 - J Immunol. 2007 Apr 15;178(8):4947-55
– reference: 20700504 - PLoS One. 2010;5(8):e11966
– reference: 15751767 - Antivir Ther. 2005;10(1):95-107
– reference: 12134147 - Nat Genet. 2002 Aug;31(4):429-34
– reference: 9480992 - J Exp Med. 1998 Mar 2;187(5):813-8
– reference: 20439706 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10160-5
– reference: 7751618 - J Immunol. 1995 Jun 1;154(11):5665-74
– reference: 19897577 - Blood. 2010 Jan 14;115(2):274-81
– reference: 22105371 - Eur J Immunol. 2012 Feb;42(2):447-57
– reference: 20061407 - J Immunol. 2010 Feb 15;184(4):2057-64
– reference: 15809355 - J Exp Med. 2005 Apr 4;201(7):1145-55
– reference: 19470388 - Gastroenterology. 2009 Sep;137(3):1151-60, 1160.e1-7
– reference: 18246204 - J Clin Invest. 2008 Mar;118(3):1017-26
– reference: 15117765 - Blood. 2004 Oct 1;104(7):2087-94
– reference: 2683611 - Adv Immunol. 1989;47:187-376
– reference: 17496894 - Nat Genet. 2007 Jun;39(6):733-40
– reference: 18025129 - J Exp Med. 2007 Nov 26;204(12):3027-36
– reference: 19747917 - Gastroenterology. 2010 Jan;138(1):325-35.e1-2
– reference: 18974374 - Blood. 2009 Mar 12;113(11):2434-41
– reference: 20696944 - Blood. 2010 Nov 11;116(19):3853-64
– reference: 14530376 - J Exp Med. 2003 Oct 6;198(7):1069-76
– reference: 17182537 - J Immunol. 2007 Jan 1;178(1):33-7
– reference: 9174606 - Eur J Immunol. 1997 May;27(5):1164-9
– reference: 10403641 - Immunity. 1999 Jun;10(6):661-71
– reference: 14634071 - J Immunol. 2003 Dec 1;171(11):5663-7
– reference: 18614872 - AIDS. 2008 Jul 31;22(12):1487-91
– reference: 21814282 - Nature. 2011 Aug 4;476(7358):96-100
– reference: 15297676 - Science. 2004 Aug 6;305(5685):872-4
– reference: 18664585 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10877-82
– reference: 16901727 - Immunity. 2006 Aug;25(2):331-42
– reference: 21471235 - J Virol. 2011 Jun;85(12):5949-60
– reference: 2431040 - J Immunol. 1986 Dec 1;137(11):3671-4
– reference: 17947671 - J Immunol. 2007 Nov 1;179(9):5977-89
– reference: 9754572 - Eur J Immunol. 1998 Sep;28(9):2854-63
– reference: 19282243 - Trends Immunol. 2009 Apr;30(4):143-9
– reference: 16027234 - J Exp Med. 2005 Jul 18;202(2):203-7
– reference: 19965656 - Blood. 2010 Mar 18;115(11):2167-76
SSID ssj0014464
Score 2.3479187
Snippet Epidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as...
UNLABELLEDEpidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9909
SubjectTerms Autoantigens
CD4-Positive T-Lymphocytes - immunology
HIV Infections - genetics
HIV Infections - immunology
HIV-1
HLA Antigens - genetics
Homozygote
Host-Pathogen Interactions - immunology
Human immunodeficiency virus
Humans
In Vitro Techniques
K562 Cells
Killer Cells, Natural - classification
Killer Cells, Natural - immunology
Ligands
NK Cell Lectin-Like Receptor Subfamily C - deficiency
NK Cell Lectin-Like Receptor Subfamily C - genetics
NK Cell Lectin-Like Receptor Subfamily C - metabolism
Pathogenesis and Immunity
Receptors, KIR3DL1 - deficiency
Receptors, KIR3DL1 - genetics
Receptors, KIR3DL1 - metabolism
Title A Higher Frequency of NKG2A + than of NKG2A − NK Cells Responds to Autologous HIV-Infected CD4 Cells irrespective of Whether or Not They Coexpress KIR3DL1
URI https://www.ncbi.nlm.nih.gov/pubmed/26202228
https://www.proquest.com/docview/1709395306
https://www.proquest.com/docview/1727673218
https://pubmed.ncbi.nlm.nih.gov/PMC4577891
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbKEBJfEO-UNxmJfaoyGifOy8eyrmu3qkijnfotih1HFJUElQTBfgk_gB_KneOkKWxo8KVpXcupck_Pd-fn7gh57QY8cWxbWInXDyw3FNKK-9K1ZIrHUmB_i1QTZGfeeOGeLPmy0_nZYi2VhTiQF5fmlfyPVGEM5IpZsv8g2WZRGID3IF94BQnD67VkPKhpGqNNxYjWx-Wz02M22GdvexgVbwYsuPQO1XqNiSHIi010bYdBqRvYIhF2PDm3JpqbhVHfoWtmr7B9h8nHxNVAfaPRiET2WV4gZQO1ivqmGbW908mZM5zaV9i8mFTXDuNPV1_yr3X4FotrbpG6Kkxs9jj-dNGMvzcM4rPyY9nAehiPkBMu4yrEnSUb0xO8DmfYvCHGtdMLQAsvqw2q0spY9BRNu7barjoP1fAMW0oYNtiwtaGDBRxevlkwTIA4OZ8coCHpWVVe6W5N7tm7aLSYTqP50XJ-g9xk4Iw4dUzInFWBQ-3WNenxh9fpFSx401571_D5w5v5nZTbsnLmd8kdIyo6qLB2j3RUdp_cqhqWfn9AfgxohTjaII7mKdUA61HEW_PRggvVCKI13miR0y3eaBtvFPBmZrfxhqsZvNF8QwFvFPFGG7xRg7eHZDE6mh-OLdPbw5Ku7ReWHXMOnq0tmGK2UIonsUg4uB-JYix1ExUmWC3RV8rhDpdg1AdSMCcVUvDYCzznEdnL8kw9IdQJhaNkKLGQkZukcQBGqvRCsG2lH_s87pJe_eAjaQrfY_-VdaQdYBZEIKZIiymyeZfsN7M_VwVfrpj3qpZhBBoZj9niTMHTi2y_HzohB1_8b3OY7_kO2Ndd8riSe3M3bBGBcdku8XcQ0UzAivC732SrD7oyvMt9Pwjtp9e47zNye_v3e072ik2pXoB9XYiXGt6_AOMbzzE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Higher+Frequency+of+NKG2A%2B+than+of+NKG2A-+NK+Cells+Responds+to+Autologous+HIV-Infected+CD4+Cells+irrespective+of+Whether+or+Not+They+Coexpress+KIR3DL1&rft.jtitle=Journal+of+virology&rft.au=Lisovsky%2C+Irene&rft.au=Isitman%2C+Gamze&rft.au=Song%2C+Rujun&rft.au=DaFonseca%2C+Sandrina&rft.date=2015-10-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=89&rft.issue=19&rft.spage=9909&rft.epage=9919&rft_id=info:doi/10.1128%2FJVI.01546-15&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon