A Higher Frequency of NKG2A + than of NKG2A − NK Cells Responds to Autologous HIV-Infected CD4 Cells irrespective of Whether or Not They Coexpress KIR3DL1
Epidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4 + (iCD4) T cells. NK cells acquire antivi...
Saved in:
Published in | Journal of virology Vol. 89; no. 19; pp. 9909 - 9919 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4
+
(iCD4) T cells. NK cells acquire antiviral functions through education, which requires signals received from iNKRs, such as NKG2A and KIR3DL1 (here, 3DL1), engaging their ligands. NKG2A interacts with HLA-E, and 3DL1 interacts with HLA-A/B antigens expressing the Bw4 epitope. HIV-infected cells downregulate HLA-A/B, which should interrupt negative signaling through 3DL1, leading to NK cell activation, provided there is sufficient engagement of activating NKRs. We examined the functionality of NK cells expressing or not NKG2A and 3DL1 stimulated by HLA-null and autologous iCD4 cells. Flow cytometry was used to gate on each NKG2A
+
/NKG2A
−
3DL1
+
/3DL1
−
(NKG2A
+/−
3DL1
+/−
) population and to measure the frequency of all possible combinations of CD107a expression and gamma interferon (IFN-γ) and CCL4 secretion. The highest frequency of functional NK cells responding to HLA-null cell stimulation was the NKG2A
+
3DL1
+
NK cell population. The highest frequencies of functional NK cells responding to autologous iCD4 cells were those expressing NKG2A; coexpression of 3DL1 did not further modulate responsiveness. This was the case for the functional subsets characterized by the sum of all functions tested (total responsiveness), as well as by the trifunctional CD107a
+
IFN-γ
+
CCL4
+
, CD107a
+
IFN-γ
+
, total CD107a
+
, and total IFN-γ
+
functional subsets. These results indicate that the NKG2A receptor has a role in NK cell-mediated anti-HIV responses.
IMPORTANCE
HIV-infected CD4 (iCD4) cells activate NK cells, which then control HIV replication. However, little is known regarding which NK cell populations iCD4 cells stimulate to develop antiviral activity. Here, we examine the frequency of NK cell populations, defined by the presence/absence of the NK cell receptors (NKRs) NKG2A and 3DL1, that respond to iCD4 cells. NKG2A and 3DL1 are involved in priming NK cells for antiviral functions upon encountering virus-infected cells. A higher frequency of NKG2A
+
than NKG2A
−
NK cells responded to iCD4 cells by developing antiviral functions such as CD107a expression, which correlates with NK cell killing, and secretion of gamma interferon and CCL4. Coexpression of 3DL1 on the NKG2A
+
and NKG2A
−
NK cells did not modulate responses to iCD4 cells. Understanding the mechanisms underlying the interaction of NK cells with iCD4 cells that lead to HIV control may contribute to developing strategies that harness NK cells for preventing or controlling HIV infection. |
---|---|
AbstractList | UNLABELLEDEpidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4(+) (iCD4) T cells. NK cells acquire antiviral functions through education, which requires signals received from iNKRs, such as NKG2A and KIR3DL1 (here, 3DL1), engaging their ligands. NKG2A interacts with HLA-E, and 3DL1 interacts with HLA-A/B antigens expressing the Bw4 epitope. HIV-infected cells downregulate HLA-A/B, which should interrupt negative signaling through 3DL1, leading to NK cell activation, provided there is sufficient engagement of activating NKRs. We examined the functionality of NK cells expressing or not NKG2A and 3DL1 stimulated by HLA-null and autologous iCD4 cells. Flow cytometry was used to gate on each NKG2A(+)/NKG2A(-) 3DL1(+)/3DL1(-) (NKG2A(+/-) 3DL1(+/-)) population and to measure the frequency of all possible combinations of CD107a expression and gamma interferon (IFN-γ) and CCL4 secretion. The highest frequency of functional NK cells responding to HLA-null cell stimulation was the NKG2A(+) 3DL1(+) NK cell population. The highest frequencies of functional NK cells responding to autologous iCD4 cells were those expressing NKG2A; coexpression of 3DL1 did not further modulate responsiveness. This was the case for the functional subsets characterized by the sum of all functions tested (total responsiveness), as well as by the trifunctional CD107a(+) IFN-γ(+) CCL4(+), CD107a(+) IFN-γ(+), total CD107a(+), and total IFN-γ(+) functional subsets. These results indicate that the NKG2A receptor has a role in NK cell-mediated anti-HIV responses.IMPORTANCEHIV-infected CD4 (iCD4) cells activate NK cells, which then control HIV replication. However, little is known regarding which NK cell populations iCD4 cells stimulate to develop antiviral activity. Here, we examine the frequency of NK cell populations, defined by the presence/absence of the NK cell receptors (NKRs) NKG2A and 3DL1, that respond to iCD4 cells. NKG2A and 3DL1 are involved in priming NK cells for antiviral functions upon encountering virus-infected cells. A higher frequency of NKG2A(+) than NKG2A(-) NK cells responded to iCD4 cells by developing antiviral functions such as CD107a expression, which correlates with NK cell killing, and secretion of gamma interferon and CCL4. Coexpression of 3DL1 on the NKG2A(+) and NKG2A(-) NK cells did not modulate responses to iCD4 cells. Understanding the mechanisms underlying the interaction of NK cells with iCD4 cells that lead to HIV control may contribute to developing strategies that harness NK cells for preventing or controlling HIV infection. Epidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4 + (iCD4) T cells. NK cells acquire antiviral functions through education, which requires signals received from iNKRs, such as NKG2A and KIR3DL1 (here, 3DL1), engaging their ligands. NKG2A interacts with HLA-E, and 3DL1 interacts with HLA-A/B antigens expressing the Bw4 epitope. HIV-infected cells downregulate HLA-A/B, which should interrupt negative signaling through 3DL1, leading to NK cell activation, provided there is sufficient engagement of activating NKRs. We examined the functionality of NK cells expressing or not NKG2A and 3DL1 stimulated by HLA-null and autologous iCD4 cells. Flow cytometry was used to gate on each NKG2A + /NKG2A − 3DL1 + /3DL1 − (NKG2A +/− 3DL1 +/− ) population and to measure the frequency of all possible combinations of CD107a expression and gamma interferon (IFN-γ) and CCL4 secretion. The highest frequency of functional NK cells responding to HLA-null cell stimulation was the NKG2A + 3DL1 + NK cell population. The highest frequencies of functional NK cells responding to autologous iCD4 cells were those expressing NKG2A; coexpression of 3DL1 did not further modulate responsiveness. This was the case for the functional subsets characterized by the sum of all functions tested (total responsiveness), as well as by the trifunctional CD107a + IFN-γ + CCL4 + , CD107a + IFN-γ + , total CD107a + , and total IFN-γ + functional subsets. These results indicate that the NKG2A receptor has a role in NK cell-mediated anti-HIV responses. IMPORTANCE HIV-infected CD4 (iCD4) cells activate NK cells, which then control HIV replication. However, little is known regarding which NK cell populations iCD4 cells stimulate to develop antiviral activity. Here, we examine the frequency of NK cell populations, defined by the presence/absence of the NK cell receptors (NKRs) NKG2A and 3DL1, that respond to iCD4 cells. NKG2A and 3DL1 are involved in priming NK cells for antiviral functions upon encountering virus-infected cells. A higher frequency of NKG2A + than NKG2A − NK cells responded to iCD4 cells by developing antiviral functions such as CD107a expression, which correlates with NK cell killing, and secretion of gamma interferon and CCL4. Coexpression of 3DL1 on the NKG2A + and NKG2A − NK cells did not modulate responses to iCD4 cells. Understanding the mechanisms underlying the interaction of NK cells with iCD4 cells that lead to HIV control may contribute to developing strategies that harness NK cells for preventing or controlling HIV infection. Epidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4+ (iCD4) T cells. NK cells acquire antiviral functions through education, which requires signals received from iNKRs, such as NKG2A and KIR3DL1 (here, 3DL1), engaging their ligands. NKG2A interacts with HLA-E, and 3DL1 interacts with HLA-A/B antigens expressing the Bw4 epitope. HIV-infected cells downregulate HLA-A/B, which should interrupt negative signaling through 3DL1, leading to NK cell activation, provided there is sufficient engagement of activating NKRs. We examined the functionality of NK cells expressing or not NKG2A and 3DL1 stimulated by HLA-null and autologous iCD4 cells. Flow cytometry was used to gate on each NKG2A+/NKG2A- 3DL1+/3DL1- (NKG2A+/- 3DL1+/-) population and to measure the frequency of all possible combinations of CD107a expression and gamma interferon (IFN- gamma ) and CCL4 secretion. The highest frequency of functional NK cells responding to HLA-null cell stimulation was the NKG2A+ 3DL1+ NK cell population. The highest frequencies of functional NK cells responding to autologous iCD4 cells were those expressing NKG2A; coexpression of 3DL1 did not further modulate responsiveness. This was the case for the functional subsets characterized by the sum of all functions tested (total responsiveness), as well as by the trifunctional CD107a+ IFN- gamma + CCL4+, CD107a+ IFN- gamma +, total CD107a+, and total IFN- gamma + functional subsets. These results indicate that the NKG2A receptor has a role in NK cell-mediated anti-HIV responses. IMPORTANCE HIV-infected CD4 (iCD4) cells activate NK cells, which then control HIV replication. However, little is known regarding which NK cell populations iCD4 cells stimulate to develop antiviral activity. Here, we examine the frequency of NK cell populations, defined by the presence/absence of the NK cell receptors (NKRs) NKG2A and 3DL1, that respond to iCD4 cells. NKG2A and 3DL1 are involved in priming NK cells for antiviral functions upon encountering virus-infected cells. A higher frequency of NKG2A+ than NKG2A- NK cells responded to iCD4 cells by developing antiviral functions such as CD107a expression, which correlates with NK cell killing, and secretion of gamma interferon and CCL4. Coexpression of 3DL1 on the NKG2A+ and NKG2A- NK cells did not modulate responses to iCD4 cells. Understanding the mechanisms underlying the interaction of NK cells with iCD4 cells that lead to HIV control may contribute to developing strategies that harness NK cells for preventing or controlling HIV infection. Epidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as defined by the inhibitory NK cell receptors (iNKRs) they express, respond to autologous HIV-infected CD4(+) (iCD4) T cells. NK cells acquire antiviral functions through education, which requires signals received from iNKRs, such as NKG2A and KIR3DL1 (here, 3DL1), engaging their ligands. NKG2A interacts with HLA-E, and 3DL1 interacts with HLA-A/B antigens expressing the Bw4 epitope. HIV-infected cells downregulate HLA-A/B, which should interrupt negative signaling through 3DL1, leading to NK cell activation, provided there is sufficient engagement of activating NKRs. We examined the functionality of NK cells expressing or not NKG2A and 3DL1 stimulated by HLA-null and autologous iCD4 cells. Flow cytometry was used to gate on each NKG2A(+)/NKG2A(-) 3DL1(+)/3DL1(-) (NKG2A(+/-) 3DL1(+/-)) population and to measure the frequency of all possible combinations of CD107a expression and gamma interferon (IFN-γ) and CCL4 secretion. The highest frequency of functional NK cells responding to HLA-null cell stimulation was the NKG2A(+) 3DL1(+) NK cell population. The highest frequencies of functional NK cells responding to autologous iCD4 cells were those expressing NKG2A; coexpression of 3DL1 did not further modulate responsiveness. This was the case for the functional subsets characterized by the sum of all functions tested (total responsiveness), as well as by the trifunctional CD107a(+) IFN-γ(+) CCL4(+), CD107a(+) IFN-γ(+), total CD107a(+), and total IFN-γ(+) functional subsets. These results indicate that the NKG2A receptor has a role in NK cell-mediated anti-HIV responses. HIV-infected CD4 (iCD4) cells activate NK cells, which then control HIV replication. However, little is known regarding which NK cell populations iCD4 cells stimulate to develop antiviral activity. Here, we examine the frequency of NK cell populations, defined by the presence/absence of the NK cell receptors (NKRs) NKG2A and 3DL1, that respond to iCD4 cells. NKG2A and 3DL1 are involved in priming NK cells for antiviral functions upon encountering virus-infected cells. A higher frequency of NKG2A(+) than NKG2A(-) NK cells responded to iCD4 cells by developing antiviral functions such as CD107a expression, which correlates with NK cell killing, and secretion of gamma interferon and CCL4. Coexpression of 3DL1 on the NKG2A(+) and NKG2A(-) NK cells did not modulate responses to iCD4 cells. Understanding the mechanisms underlying the interaction of NK cells with iCD4 cells that lead to HIV control may contribute to developing strategies that harness NK cells for preventing or controlling HIV infection. |
Author | Song, Rujun Routy, Jean-Pierre Isitman, Gamze Tremblay-McLean, Alexandra Bernard, Nicole F. Lebouché, Bertrand Lisovsky, Irene DaFonseca, Sandrina Bruneau, Julie |
Author_xml | – sequence: 1 givenname: Irene surname: Lisovsky fullname: Lisovsky, Irene organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada – sequence: 2 givenname: Gamze surname: Isitman fullname: Isitman, Gamze organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada – sequence: 3 givenname: Rujun surname: Song fullname: Song, Rujun organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada – sequence: 4 givenname: Sandrina surname: DaFonseca fullname: DaFonseca, Sandrina organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada – sequence: 5 givenname: Alexandra surname: Tremblay-McLean fullname: Tremblay-McLean, Alexandra organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada – sequence: 6 givenname: Bertrand surname: Lebouché fullname: Lebouché, Bertrand organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada, Department of Family Medicine, McGill University, Montreal, Quebec, Canada – sequence: 7 givenname: Jean-Pierre surname: Routy fullname: Routy, Jean-Pierre organization: Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada, Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada – sequence: 8 givenname: Julie surname: Bruneau fullname: Bruneau, Julie organization: Department of Family Medicine, Université de Montréal, Montreal, Quebec, Canada, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada – sequence: 9 givenname: Nicole F. surname: Bernard fullname: Bernard, Nicole F. organization: Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada, Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada, Division of Clinical Immunology, McGill University Health Centre, Montreal, Quebec, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26202228$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFG2fkIxKkeOw4yV6QVinthq6KVJXCzcrHZGOUjRfbW3X_Qc-c-XX8Ehy6lA9x4OSPefzOO-M5IHuDGZCQp8COAHj26u1VccRAxkkE8gGZAJtmkZQQ75EJY5xHUmQf98mBc58YgzhO4kdknyc8hHg2IV9ndK6XHVp6YvHzBod6S01Lz89O-Yy-oL4rh1_nb7dfwo7m2PeOXqBbm6Fx1Bs623jTm6XZODovrqJiaLH22ND8ON7R2trAh1t9jaPghw79mNVYem48vexwS3ODN-uAOXpWXIjjBTwmD9uyd_hktx6S9ydvLvN5tHh3WuSzRVTHkPoISikznkDFkUOFKJuyaiQk0CDnbdzgtGEsS1NEIYWsYyGzuuKirepKlkmWiEPy-k53valW2NQ4eFv2am31qrRbZUqt_owMulNLc61imabZFILA852ANaGJzquVdnUovBwwNEVBytMkFRyy_0DZVEylYKOtZ7_buvfz8_cC8PIOqK1xzmJ7jwBT43CoMBzqx3AokAHnf-G19qXXZixK9_9-9B1mGLun |
CitedBy_id | crossref_primary_10_1002_JLB_6RI0917_390R crossref_primary_10_1093_jleuko_qiac007 crossref_primary_10_3389_fimmu_2022_886562 crossref_primary_10_3390_cancers12040952 crossref_primary_10_1111_cei_12849 crossref_primary_10_3389_fimmu_2019_00177 crossref_primary_10_3389_fimmu_2021_602492 crossref_primary_10_1002_cti2_1069 crossref_primary_10_3390_v16101584 crossref_primary_10_1016_j_jaci_2018_06_047 crossref_primary_10_1126_sciimmunol_aag1672 crossref_primary_10_1186_s12981_017_0172_9 crossref_primary_10_3389_fimmu_2020_00829 crossref_primary_10_3389_fimmu_2018_02290 crossref_primary_10_1038_cmi_2016_26 crossref_primary_10_1128_JVI_00719_19 crossref_primary_10_3389_fimmu_2017_01033 crossref_primary_10_3389_fimmu_2017_01496 crossref_primary_10_3390_ijms20184490 crossref_primary_10_1016_j_jim_2016_04_007 crossref_primary_10_4049_jimmunol_1701551 crossref_primary_10_1371_journal_ppat_1007784 crossref_primary_10_1371_journal_ppat_1010090 crossref_primary_10_1093_infdis_jiad578 crossref_primary_10_3389_fimmu_2019_02864 crossref_primary_10_1186_s12865_018_0272_x crossref_primary_10_1080_07357907_2018_1515315 crossref_primary_10_1002_jmv_70170 crossref_primary_10_1007_s13238_017_0415_5 crossref_primary_10_1002_jmv_29646 crossref_primary_10_1007_s11904_016_0310_3 crossref_primary_10_1002_JLB_5RU0821_412RR crossref_primary_10_3389_fimmu_2022_842831 |
Cites_doi | 10.1016/S0065-2776(08)60664-1 10.4049/jimmunol.0902621 10.1182/blood-2004-02-0696 10.1002/eji.201141826 10.1053/j.gastro.2009.08.066 10.1002/(SICI)1521-4141(199809)28:09<2854::AID-IMMU2854>3.0.CO;2-W 10.1016/j.immuni.2006.06.013 10.1146/annurev-immunol-031210-101332 10.4049/jimmunol.178.8.4947 10.1084/jem.20050810 10.4049/jimmunol.0803900 10.1038/nature10237 10.1016/S1074-7613(00)80065-5 10.1371/journal.ppat.1003867 10.1016/j.it.2009.01.006 10.1084/jem.181.3.1133 10.1182/blood-2009-04-215491 10.1073/pnas.0805205105 10.1182/blood-2010-04-282301 10.4049/jimmunol.154.11.5665 10.1126/science.1198687 10.1177/135965350501000107 10.1097/00002030-200409030-00005 10.4049/jimmunol.137.11.3671 10.1371/journal.pone.0110480 10.1182/blood-2009-08-238469 10.1097/QAD.0b013e3282f56b23 10.1084/jem.180.4.1235 10.1126/science.1097670 10.1084/jem.20050167 10.1084/jem.187.5.813 10.1172/JCI32400 10.1038/ng2035 10.1084/jem.20070695 10.1084/jem.20030630 10.1038/nri2935 10.1097/QAD.0b013e3282ffde7e 10.1371/journal.pone.0011966 10.4049/jimmunol.178.1.33 10.4049/jimmunol.179.9.5977 10.1182/blood-2008-05-156836 10.1038/nature03847 10.1053/j.gastro.2009.05.047 10.1002/eji.1830270517 10.4049/jimmunol.171.11.5663 10.1196/annals.1392.001 10.1073/pnas.0913745107 10.1128/JVI.02652-10 10.1182/blood-2010-04-281675 10.1038/35869 10.1038/ng934 |
ContentType | Journal Article |
Copyright | Copyright © 2015, American Society for Microbiology. All Rights Reserved. Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 5PM |
DOI | 10.1128/JVI.01546-15 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | MEDLINE - Academic CrossRef AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | NK Cell Populations Responding to HIV-Infected Cells |
EISSN | 1098-5514 |
EndPage | 9919 |
ExternalDocumentID | PMC4577891 26202228 10_1128_JVI_01546_15 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research grantid: MOP 123800 |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAFWJ AAGFI AAYJJ AAYXX ABPPZ ACGFO ACNCT ADBBV ADXHL AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 D0S DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 5PM |
ID | FETCH-LOGICAL-c417t-1a558261b2e21bee5dabd5161de22f4de9d00877ee3535c4358cb23fbcb5a6863 |
ISSN | 0022-538X |
IngestDate | Thu Aug 21 14:14:37 EDT 2025 Fri Jul 11 08:31:51 EDT 2025 Fri Jul 11 07:51:36 EDT 2025 Mon Jul 21 05:59:25 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Tue Jul 01 01:02:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | Copyright © 2015, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-1a558261b2e21bee5dabd5161de22f4de9d00877ee3535c4358cb23fbcb5a6863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Lisovsky I, Isitman G, Song R, DaFonseca S, Tremblay-McLean A, Lebouché B, Routy J-P, Bruneau J, Bernard NF. 2015. A higher frequency of NKG2A+ than of NKG2A− NK cells responds to autologous HIV-infected CD4 cells irrespective of whether or not they coexpress KIR3DL1. J Virol 89:9909–9919. doi:10.1128/JVI.01546-15. |
OpenAccessLink | https://jvi.asm.org/content/jvi/89/19/9909.full.pdf |
PMID | 26202228 |
PQID | 1709395306 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4577891 proquest_miscellaneous_1727673218 proquest_miscellaneous_1709395306 pubmed_primary_26202228 crossref_primary_10_1128_JVI_01546_15 crossref_citationtrail_10_1128_JVI_01546_15 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-01 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2015 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_16_2 Houlihan JM (e_1_3_3_36_2) 1995; 154 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 Nattermann J (e_1_3_3_45_2) 2005; 10 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 Wan AM (e_1_3_3_22_2) 1986; 137 e_1_3_3_13_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_41_2 19897577 - Blood. 2010 Jan 14;115(2):274-81 15809355 - J Exp Med. 2005 Apr 4;201(7):1145-55 25330014 - PLoS One. 2014;9(10):e110480 21350578 - Nat Rev Immunol. 2011 Mar;11(3):176-86 21471235 - J Virol. 2011 Jun;85(12):5949-60 20061407 - J Immunol. 2010 Feb 15;184(4):2057-64 17947671 - J Immunol. 2007 Nov 1;179(9):5977-89 16079848 - Nature. 2005 Aug 4;436(7051):709-13 18025129 - J Exp Med. 2007 Nov 26;204(12):3027-36 14530376 - J Exp Med. 2003 Oct 6;198(7):1069-76 15751767 - Antivir Ther. 2005;10(1):95-107 17303822 - Ann N Y Acad Sci. 2007 Jun;1106:240-52 19965656 - Blood. 2010 Mar 18;115(11):2167-76 20439706 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10160-5 15297676 - Science. 2004 Aug 6;305(5685):872-4 20696944 - Blood. 2010 Nov 11;116(19):3853-64 19282243 - Trends Immunol. 2009 Apr;30(4):143-9 7931060 - J Exp Med. 1994 Oct 1;180(4):1235-42 20700504 - PLoS One. 2010;5(8):e11966 20733159 - Blood. 2010 Nov 11;116(19):3865-74 24453969 - PLoS Pathog. 2014 Jan;10(1):e1003867 2683611 - Adv Immunol. 1989;47:187-376 16901727 - Immunity. 2006 Aug;25(2):331-42 21219175 - Annu Rev Immunol. 2011;29:295-317 18974374 - Blood. 2009 Mar 12;113(11):2434-41 9486650 - Nature. 1998 Feb 19;391(6669):795-9 12134147 - Nat Genet. 2002 Aug;31(4):429-34 21814282 - Nature. 2011 Aug 4;476(7358):96-100 19747917 - Gastroenterology. 2010 Jan;138(1):325-35.e1-2 17496894 - Nat Genet. 2007 Jun;39(6):733-40 14634071 - J Immunol. 2003 Dec 1;171(11):5663-7 16027234 - J Exp Med. 2005 Jul 18;202(2):203-7 9754572 - Eur J Immunol. 1998 Sep;28(9):2854-63 15316337 - AIDS. 2004 Sep 3;18(13):1769-79 18317000 - AIDS. 2008 Mar 12;22(5):595-9 7751618 - J Immunol. 1995 Jun 1;154(11):5665-74 9174606 - Eur J Immunol. 1997 May;27(5):1164-9 19470388 - Gastroenterology. 2009 Sep;137(3):1151-60, 1160.e1-7 21212348 - Science. 2011 Jan 7;331(6013):44-9 9480992 - J Exp Med. 1998 Mar 2;187(5):813-8 17182537 - J Immunol. 2007 Jan 1;178(1):33-7 7532677 - J Exp Med. 1995 Mar 1;181(3):1133-44 18246204 - J Clin Invest. 2008 Mar;118(3):1017-26 18664585 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10877-82 2431040 - J Immunol. 1986 Dec 1;137(11):3671-4 18614872 - AIDS. 2008 Jul 31;22(12):1487-91 10403641 - Immunity. 1999 Jun;10(6):661-71 22105371 - Eur J Immunol. 2012 Feb;42(2):447-57 15117765 - Blood. 2004 Oct 1;104(7):2087-94 17404276 - J Immunol. 2007 Apr 15;178(8):4947-55 19342631 - J Immunol. 2009 Apr 15;182(8):4572-80 |
References_xml | – ident: e_1_3_3_2_2 doi: 10.1016/S0065-2776(08)60664-1 – ident: e_1_3_3_31_2 doi: 10.4049/jimmunol.0902621 – ident: e_1_3_3_46_2 doi: 10.1182/blood-2004-02-0696 – ident: e_1_3_3_49_2 doi: 10.1002/eji.201141826 – ident: e_1_3_3_12_2 doi: 10.1053/j.gastro.2009.08.066 – ident: e_1_3_3_19_2 doi: 10.1002/(SICI)1521-4141(199809)28:09<2854::AID-IMMU2854>3.0.CO;2-W – ident: e_1_3_3_15_2 doi: 10.1016/j.immuni.2006.06.013 – ident: e_1_3_3_27_2 doi: 10.1146/annurev-immunol-031210-101332 – ident: e_1_3_3_41_2 doi: 10.4049/jimmunol.178.8.4947 – ident: e_1_3_3_3_2 doi: 10.1084/jem.20050810 – ident: e_1_3_3_17_2 doi: 10.4049/jimmunol.0803900 – ident: e_1_3_3_13_2 doi: 10.1038/nature10237 – ident: e_1_3_3_28_2 doi: 10.1016/S1074-7613(00)80065-5 – ident: e_1_3_3_25_2 doi: 10.1371/journal.ppat.1003867 – ident: e_1_3_3_16_2 doi: 10.1016/j.it.2009.01.006 – ident: e_1_3_3_21_2 doi: 10.1084/jem.181.3.1133 – ident: e_1_3_3_43_2 doi: 10.1182/blood-2009-04-215491 – ident: e_1_3_3_23_2 doi: 10.1073/pnas.0805205105 – ident: e_1_3_3_39_2 doi: 10.1182/blood-2010-04-282301 – volume: 154 start-page: 5665 year: 1995 ident: e_1_3_3_36_2 article-title: The human amnion is a site of MHC class Ib expression: evidence for the expression of HLA-E and HLA-G publication-title: J Immunol doi: 10.4049/jimmunol.154.11.5665 – ident: e_1_3_3_38_2 doi: 10.1126/science.1198687 – volume: 10 start-page: 95 year: 2005 ident: e_1_3_3_45_2 article-title: HIV-1 infection leads to increased HLA-E expression resulting in impaired function of natural killer cells publication-title: Antivir Ther doi: 10.1177/135965350501000107 – ident: e_1_3_3_47_2 doi: 10.1097/00002030-200409030-00005 – volume: 137 start-page: 3671 year: 1986 ident: e_1_3_3_22_2 article-title: The primary structure of HLA-A32 suggests a region involved in formation of the Bw4/Bw6 epitopes publication-title: J Immunol doi: 10.4049/jimmunol.137.11.3671 – ident: e_1_3_3_30_2 doi: 10.1371/journal.pone.0110480 – ident: e_1_3_3_44_2 doi: 10.1182/blood-2009-08-238469 – ident: e_1_3_3_7_2 doi: 10.1097/QAD.0b013e3282f56b23 – ident: e_1_3_3_20_2 doi: 10.1084/jem.180.4.1235 – ident: e_1_3_3_9_2 doi: 10.1126/science.1097670 – ident: e_1_3_3_34_2 doi: 10.1084/jem.20050167 – ident: e_1_3_3_37_2 doi: 10.1084/jem.187.5.813 – ident: e_1_3_3_10_2 doi: 10.1172/JCI32400 – ident: e_1_3_3_29_2 doi: 10.1038/ng2035 – ident: e_1_3_3_33_2 doi: 10.1084/jem.20070695 – ident: e_1_3_3_4_2 doi: 10.1084/jem.20030630 – ident: e_1_3_3_52_2 doi: 10.1038/nri2935 – ident: e_1_3_3_6_2 doi: 10.1097/QAD.0b013e3282ffde7e – ident: e_1_3_3_42_2 doi: 10.1371/journal.pone.0011966 – ident: e_1_3_3_50_2 doi: 10.4049/jimmunol.178.1.33 – ident: e_1_3_3_24_2 doi: 10.4049/jimmunol.179.9.5977 – ident: e_1_3_3_35_2 doi: 10.1182/blood-2008-05-156836 – ident: e_1_3_3_14_2 doi: 10.1038/nature03847 – ident: e_1_3_3_11_2 doi: 10.1053/j.gastro.2009.05.047 – ident: e_1_3_3_18_2 doi: 10.1002/eji.1830270517 – ident: e_1_3_3_5_2 doi: 10.4049/jimmunol.171.11.5663 – ident: e_1_3_3_40_2 doi: 10.1196/annals.1392.001 – ident: e_1_3_3_51_2 doi: 10.1073/pnas.0913745107 – ident: e_1_3_3_32_2 doi: 10.1128/JVI.02652-10 – ident: e_1_3_3_26_2 doi: 10.1182/blood-2010-04-281675 – ident: e_1_3_3_48_2 doi: 10.1038/35869 – ident: e_1_3_3_8_2 doi: 10.1038/ng934 – reference: 24453969 - PLoS Pathog. 2014 Jan;10(1):e1003867 – reference: 17303822 - Ann N Y Acad Sci. 2007 Jun;1106:240-52 – reference: 19342631 - J Immunol. 2009 Apr 15;182(8):4572-80 – reference: 25330014 - PLoS One. 2014;9(10):e110480 – reference: 20733159 - Blood. 2010 Nov 11;116(19):3865-74 – reference: 18317000 - AIDS. 2008 Mar 12;22(5):595-9 – reference: 15316337 - AIDS. 2004 Sep 3;18(13):1769-79 – reference: 9486650 - Nature. 1998 Feb 19;391(6669):795-9 – reference: 16079848 - Nature. 2005 Aug 4;436(7051):709-13 – reference: 21212348 - Science. 2011 Jan 7;331(6013):44-9 – reference: 21219175 - Annu Rev Immunol. 2011;29:295-317 – reference: 21350578 - Nat Rev Immunol. 2011 Mar;11(3):176-86 – reference: 7532677 - J Exp Med. 1995 Mar 1;181(3):1133-44 – reference: 7931060 - J Exp Med. 1994 Oct 1;180(4):1235-42 – reference: 17404276 - J Immunol. 2007 Apr 15;178(8):4947-55 – reference: 20700504 - PLoS One. 2010;5(8):e11966 – reference: 15751767 - Antivir Ther. 2005;10(1):95-107 – reference: 12134147 - Nat Genet. 2002 Aug;31(4):429-34 – reference: 9480992 - J Exp Med. 1998 Mar 2;187(5):813-8 – reference: 20439706 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10160-5 – reference: 7751618 - J Immunol. 1995 Jun 1;154(11):5665-74 – reference: 19897577 - Blood. 2010 Jan 14;115(2):274-81 – reference: 22105371 - Eur J Immunol. 2012 Feb;42(2):447-57 – reference: 20061407 - J Immunol. 2010 Feb 15;184(4):2057-64 – reference: 15809355 - J Exp Med. 2005 Apr 4;201(7):1145-55 – reference: 19470388 - Gastroenterology. 2009 Sep;137(3):1151-60, 1160.e1-7 – reference: 18246204 - J Clin Invest. 2008 Mar;118(3):1017-26 – reference: 15117765 - Blood. 2004 Oct 1;104(7):2087-94 – reference: 2683611 - Adv Immunol. 1989;47:187-376 – reference: 17496894 - Nat Genet. 2007 Jun;39(6):733-40 – reference: 18025129 - J Exp Med. 2007 Nov 26;204(12):3027-36 – reference: 19747917 - Gastroenterology. 2010 Jan;138(1):325-35.e1-2 – reference: 18974374 - Blood. 2009 Mar 12;113(11):2434-41 – reference: 20696944 - Blood. 2010 Nov 11;116(19):3853-64 – reference: 14530376 - J Exp Med. 2003 Oct 6;198(7):1069-76 – reference: 17182537 - J Immunol. 2007 Jan 1;178(1):33-7 – reference: 9174606 - Eur J Immunol. 1997 May;27(5):1164-9 – reference: 10403641 - Immunity. 1999 Jun;10(6):661-71 – reference: 14634071 - J Immunol. 2003 Dec 1;171(11):5663-7 – reference: 18614872 - AIDS. 2008 Jul 31;22(12):1487-91 – reference: 21814282 - Nature. 2011 Aug 4;476(7358):96-100 – reference: 15297676 - Science. 2004 Aug 6;305(5685):872-4 – reference: 18664585 - Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10877-82 – reference: 16901727 - Immunity. 2006 Aug;25(2):331-42 – reference: 21471235 - J Virol. 2011 Jun;85(12):5949-60 – reference: 2431040 - J Immunol. 1986 Dec 1;137(11):3671-4 – reference: 17947671 - J Immunol. 2007 Nov 1;179(9):5977-89 – reference: 9754572 - Eur J Immunol. 1998 Sep;28(9):2854-63 – reference: 19282243 - Trends Immunol. 2009 Apr;30(4):143-9 – reference: 16027234 - J Exp Med. 2005 Jul 18;202(2):203-7 – reference: 19965656 - Blood. 2010 Mar 18;115(11):2167-76 |
SSID | ssj0014464 |
Score | 2.3479187 |
Snippet | Epidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell populations, as... UNLABELLEDEpidemiological and functional studies implicate NK cells in HIV control. However, there is little information available on which NK cell... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9909 |
SubjectTerms | Autoantigens CD4-Positive T-Lymphocytes - immunology HIV Infections - genetics HIV Infections - immunology HIV-1 HLA Antigens - genetics Homozygote Host-Pathogen Interactions - immunology Human immunodeficiency virus Humans In Vitro Techniques K562 Cells Killer Cells, Natural - classification Killer Cells, Natural - immunology Ligands NK Cell Lectin-Like Receptor Subfamily C - deficiency NK Cell Lectin-Like Receptor Subfamily C - genetics NK Cell Lectin-Like Receptor Subfamily C - metabolism Pathogenesis and Immunity Receptors, KIR3DL1 - deficiency Receptors, KIR3DL1 - genetics Receptors, KIR3DL1 - metabolism |
Title | A Higher Frequency of NKG2A + than of NKG2A − NK Cells Responds to Autologous HIV-Infected CD4 Cells irrespective of Whether or Not They Coexpress KIR3DL1 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26202228 https://www.proquest.com/docview/1709395306 https://www.proquest.com/docview/1727673218 https://pubmed.ncbi.nlm.nih.gov/PMC4577891 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbKEBJfEO-UNxmJfaoyGifOy8eyrmu3qkijnfotih1HFJUElQTBfgk_gB_KneOkKWxo8KVpXcupck_Pd-fn7gh57QY8cWxbWInXDyw3FNKK-9K1ZIrHUmB_i1QTZGfeeOGeLPmy0_nZYi2VhTiQF5fmlfyPVGEM5IpZsv8g2WZRGID3IF94BQnD67VkPKhpGqNNxYjWx-Wz02M22GdvexgVbwYsuPQO1XqNiSHIi010bYdBqRvYIhF2PDm3JpqbhVHfoWtmr7B9h8nHxNVAfaPRiET2WV4gZQO1ivqmGbW908mZM5zaV9i8mFTXDuNPV1_yr3X4FotrbpG6Kkxs9jj-dNGMvzcM4rPyY9nAehiPkBMu4yrEnSUb0xO8DmfYvCHGtdMLQAsvqw2q0spY9BRNu7barjoP1fAMW0oYNtiwtaGDBRxevlkwTIA4OZ8coCHpWVVe6W5N7tm7aLSYTqP50XJ-g9xk4Iw4dUzInFWBQ-3WNenxh9fpFSx401571_D5w5v5nZTbsnLmd8kdIyo6qLB2j3RUdp_cqhqWfn9AfgxohTjaII7mKdUA61HEW_PRggvVCKI13miR0y3eaBtvFPBmZrfxhqsZvNF8QwFvFPFGG7xRg7eHZDE6mh-OLdPbw5Ku7ReWHXMOnq0tmGK2UIonsUg4uB-JYix1ExUmWC3RV8rhDpdg1AdSMCcVUvDYCzznEdnL8kw9IdQJhaNkKLGQkZukcQBGqvRCsG2lH_s87pJe_eAjaQrfY_-VdaQdYBZEIKZIiymyeZfsN7M_VwVfrpj3qpZhBBoZj9niTMHTi2y_HzohB1_8b3OY7_kO2Ndd8riSe3M3bBGBcdku8XcQ0UzAivC732SrD7oyvMt9Pwjtp9e47zNye_v3e072ik2pXoB9XYiXGt6_AOMbzzE |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Higher+Frequency+of+NKG2A%2B+than+of+NKG2A-+NK+Cells+Responds+to+Autologous+HIV-Infected+CD4+Cells+irrespective+of+Whether+or+Not+They+Coexpress+KIR3DL1&rft.jtitle=Journal+of+virology&rft.au=Lisovsky%2C+Irene&rft.au=Isitman%2C+Gamze&rft.au=Song%2C+Rujun&rft.au=DaFonseca%2C+Sandrina&rft.date=2015-10-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=89&rft.issue=19&rft.spage=9909&rft.epage=9919&rft_id=info:doi/10.1128%2FJVI.01546-15&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |