Aurora A and NF-κB Survival Pathway Drive Chemoresistance in Acute Myeloid Leukemia via the TRAF-Interacting Protein TIFA
Aurora A–dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activati...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 77; no. 2; pp. 494 - 508 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for Cancer Research, Inc
15.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0008-5472 1538-7445 1538-7445 |
DOI | 10.1158/0008-5472.CAN-16-1004 |
Cover
Loading…
Abstract | Aurora A–dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB–dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494–508. ©2016 AACR. |
---|---|
AbstractList | These findings show how a survival signaling pathway mediated by a key mitotic regulator can be targeted to enhance the chemosensitivity of deadly leukemias.Aurora A–dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB–dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494–508. ©2016 AACR. Aurora A–dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB–dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494–508. ©2016 AACR. These findings show how a survival signaling pathway mediated by a key mitotic regulator can be targeted to enhance the chemosensitivity of deadly leukemias. Aurora A-dependent NF- Kappa B signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF- Kappa B survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF- Kappa B signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF- Kappa B-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. [copy2016 AACR. Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. ©2016 AACR.Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. ©2016 AACR. Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-X that support NF-κB-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. ©2016 AACR. |
Author | Su, Hsiang-Chun Hsu, Shih-Lan Chen, Jo-Mei Maureen Wu, Ting-Jung Teng, Chieh-Lin Jerry Lin, Ting-Yang Huang, Chia-Chi Flora Chou, Wen-Chien Lin, Chih-Ru Tsai, Ming-Daw Hou, Hsin-An Yu, Chang-Tze Ricky Wu, Pei-Yu Wei, Tong-You Wade Tien, Hwei-Fang |
Author_xml | – sequence: 1 givenname: Tong-You Wade surname: Wei fullname: Wei, Tong-You Wade – sequence: 2 givenname: Pei-Yu surname: Wu fullname: Wu, Pei-Yu – sequence: 3 givenname: Ting-Jung surname: Wu fullname: Wu, Ting-Jung – sequence: 4 givenname: Hsin-An surname: Hou fullname: Hou, Hsin-An – sequence: 5 givenname: Wen-Chien surname: Chou fullname: Chou, Wen-Chien – sequence: 6 givenname: Chieh-Lin Jerry surname: Teng fullname: Teng, Chieh-Lin Jerry – sequence: 7 givenname: Chih-Ru surname: Lin fullname: Lin, Chih-Ru – sequence: 8 givenname: Jo-Mei Maureen surname: Chen fullname: Chen, Jo-Mei Maureen – sequence: 9 givenname: Ting-Yang surname: Lin fullname: Lin, Ting-Yang – sequence: 10 givenname: Hsiang-Chun surname: Su fullname: Su, Hsiang-Chun – sequence: 11 givenname: Chia-Chi Flora surname: Huang fullname: Huang, Chia-Chi Flora – sequence: 12 givenname: Chang-Tze Ricky surname: Yu fullname: Yu, Chang-Tze Ricky – sequence: 13 givenname: Shih-Lan surname: Hsu fullname: Hsu, Shih-Lan – sequence: 14 givenname: Hwei-Fang surname: Tien fullname: Tien, Hwei-Fang – sequence: 15 givenname: Ming-Daw surname: Tsai fullname: Tsai, Ming-Daw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28069801$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAQhi1URLeFRwBZ4sIlxY7jxBansHRhpaVUsJwtxzthXRK72M5Wy6PxEDwTXrXl0APiMBqN9P0zGn0n6Mh5Bwg9p-SMUi5eE0JEwaumPJu3FwWtC0pI9QjNKGeiaKqKH6HZX-YYncR4lUdOCX-CjktBaikInaGf7RR80LjF2m3wxaL4_est_jKFnd3pAV_qtL3Re_wu2B3g-RZGHyDamLQzgK3DrZkS4I97GLzd4BVM32G0Gu9ypS3g9ed2USxdgqBNsu4bvgw-Qc6tl4v2KXrc6yHCs7t-ir4uztfzD8Xq0_vlvF0VpqJNyq9xairJOmmoll1XMVk2pC67RhpWE81N1xMmNOcdrwTtN5qVda8J51JCBx07Ra9u914H_2OCmNRoo4Fh0A78FBUVTSnKsiTkP1DesFrWdZPRlw_QKz8Flx9RVArGhGQ1z9SLO2rqRtio62BHHfbqXkAG3twCJvgYA_TK2KST9S4FbQdFiTroVgeV6qBSZd2K1uqgO6f5g_T9gX_n_gDsHquf |
CitedBy_id | crossref_primary_10_1089_ars_2017_7387 crossref_primary_10_1186_s12906_021_03487_9 crossref_primary_10_1016_j_celrep_2023_112105 crossref_primary_10_1016_j_mrfmmm_2020_111716 crossref_primary_10_1074_jbc_RA117_001684 crossref_primary_10_3390_cancers14143557 crossref_primary_10_3390_molecules24112103 crossref_primary_10_1016_j_tranon_2022_101497 crossref_primary_10_1074_jbc_RA120_012730 crossref_primary_10_1016_j_bbrc_2019_02_082 crossref_primary_10_1002_cbic_202000319 crossref_primary_10_1016_j_canlet_2021_03_028 crossref_primary_10_1158_2767_9764_CRC_24_0274 crossref_primary_10_1007_s00018_020_03577_w crossref_primary_10_1158_1535_7163_MCT_20_0115 crossref_primary_10_1007_s10571_019_00745_w crossref_primary_10_2139_ssrn_4052011 crossref_primary_10_1161_CIRCRESAHA_124_324762 crossref_primary_10_1053_j_gastro_2018_01_009 crossref_primary_10_1016_j_lfs_2021_119942 crossref_primary_10_1080_19490976_2023_2295384 crossref_primary_10_1111_cas_15432 crossref_primary_10_46810_tdfd_1476374 crossref_primary_10_34133_research_0315 crossref_primary_10_1038_s41375_021_01487_9 crossref_primary_10_1016_j_canlet_2024_216939 crossref_primary_10_1038_s41419_019_1855_z crossref_primary_10_1016_j_pan_2018_07_011 crossref_primary_10_1038_s41598_021_93582_1 crossref_primary_10_1016_j_aquaculture_2023_739690 crossref_primary_10_1016_j_gene_2023_147918 crossref_primary_10_1016_j_mucimm_2025_01_003 crossref_primary_10_1007_s10528_025_11026_1 crossref_primary_10_1007_s00018_019_03310_2 crossref_primary_10_1007_s00210_023_02907_6 crossref_primary_10_1016_j_exphem_2020_08_010 crossref_primary_10_1186_s12964_023_01433_5 crossref_primary_10_3390_cancers15010167 crossref_primary_10_1186_s40364_024_00651_4 crossref_primary_10_1016_j_drup_2020_100703 crossref_primary_10_1002_cbic_201800436 crossref_primary_10_1016_j_cellsig_2024_111498 |
Cites_doi | 10.1182/blood-2007-07-099325 10.1093/carcin/bgr278 10.1200/JCO.2013.50.7988 10.1038/sj.leu.2405102 10.1038/sj.cdd.4401874 10.1053/j.gastro.2013.08.050 10.1038/srep18411 10.1136/jcp.48.5.456 10.1038/cdd.2014.89 10.1038/bcj.2014.60 10.1016/j.leukres.2010.07.034 10.1038/sj.onc.1210187 10.1586/17474086.2016.1107471 10.1182/blood-2011-07-369934 10.1016/S0140-6736(06)69780-8 10.1073/pnas.0404132101 10.1038/sj.leu.2403670 10.1080/15476286.2015.1017221 10.1158/0008-5472.CAN-08-3203 10.1073/pnas.1618773114 10.1038/nrclinonc.2015.105 10.18632/oncotarget.3545 10.1038/sj.onc.1206911 10.1128/MCB.00438-12 10.1189/jlb.72.1.9 10.1016/S1535-6108(02)00068-5 10.1146/annurev-med-051914-021329 10.1172/JCI68101 10.1182/blood-2006-05-025049 10.1038/leu.2012.186 10.1126/science.aaa4921 10.1038/leu.2013.236 10.1038/onc.2010.566 10.1016/j.leukres.2007.08.010 10.1096/fj.15-273987 10.1038/onc.2014.14 10.1038/sj.onc.1210758 10.1182/blood-2005-09-3724 10.1038/nrm1245 10.1182/blood-2010-01-262071 10.1007/s12308-008-0019-3 10.1186/1476-4598-12-86 10.1038/nm0696-689 10.4149/neo_2013_085 10.1007/s00277-010-0998-x 10.1101/gad.183434.111 10.1182/blood-2011-04-325225 10.1158/0008-5472.CAN-06-2272 10.1002/cytob.21134 10.1038/nrc2047 |
ContentType | Journal Article |
Copyright | 2016 American Association for Cancer Research. Copyright American Association for Cancer Research, Inc. Jan 15, 2017 |
Copyright_xml | – notice: 2016 American Association for Cancer Research. – notice: Copyright American Association for Cancer Research, Inc. Jan 15, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 |
DOI | 10.1158/0008-5472.CAN-16-1004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts CrossRef AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 508 |
ExternalDocumentID | 28069801 10_1158_0008_5472_CAN_16_1004 |
Genre | Journal Article |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ CGR CUY CVF ECM EIF NPM 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c417t-1651c493b9c1a9bb43927062b79c360a5cbf038a55b5481fda326fa05599ebeb3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Fri Jul 11 09:25:36 EDT 2025 Thu Jul 10 20:55:38 EDT 2025 Fri Jul 25 20:04:15 EDT 2025 Mon Jul 21 05:59:14 EDT 2025 Tue Jul 01 01:12:27 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2016 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-1651c493b9c1a9bb43927062b79c360a5cbf038a55b5481fda326fa05599ebeb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://cancerres.aacrjournals.org/content/canres/77/2/494.full.pdf |
PMID | 28069801 |
PQID | 1983389365 |
PQPubID | 105549 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1872822200 proquest_miscellaneous_1857369667 proquest_journals_1983389365 pubmed_primary_28069801 crossref_citationtrail_10_1158_0008_5472_CAN_16_1004 crossref_primary_10_1158_0008_5472_CAN_16_1004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-15 20170115 |
PublicationDateYYYYMMDD | 2017-01-15 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2017 |
Publisher | American Association for Cancer Research, Inc |
Publisher_xml | – name: American Association for Cancer Research, Inc |
References | Komanduri (2022061706051529400_bib3) 2016; 67 Kornblau (2022061706051529400_bib36) 2010; 116 Riether (2022061706051529400_bib38) 2015; 22 Vader (2022061706051529400_bib54) 2008; 1786 Lin (2022061706051529400_bib23) 2015; 29 Kagoya (2022061706051529400_bib39) 2014; 124 Briassouli (2022061706051529400_bib17) 2007; 67 Crusz (2022061706051529400_bib46) 2015; 12 Yang (2022061706051529400_bib16) 2013; 133 Huang (2022061706051529400_bib18) 2008; 111 McCormack (2022061706051529400_bib37) 2005; 19 Fabre (2022061706051529400_bib43) 2007; 26 Tu (2022061706051529400_bib45) 1998; 58 Hayden (2022061706051529400_bib5) 2012; 26 Ea (2022061706051529400_bib20) 2004; 101 Hou (2022061706051529400_bib25) 2012; 119 Hou (2022061706051529400_bib27) 2008; 32 Huang (2022061706051529400_bib21) 2012; 32 Zeijlemaker (2022061706051529400_bib32) 2014; 86 Van Etten (2022061706051529400_bib35) 2007; 26 Aggarwal (2022061706051529400_bib47) 2012; 119 Griessinger (2022061706051529400_bib11) 2008; 22 Vidriales (2022061706051529400_bib28) 1995; 48 Estey (2022061706051529400_bib1) 2006; 368 Zhou (2022061706051529400_bib41) 2003; 22 Corey (2022061706051529400_bib42) 2007; 7 O'Reilly (2022061706051529400_bib29) 1996; 2 Goldenson (2022061706051529400_bib33) 2015; 34 Hou (2022061706051529400_bib26) 2014; 28 Lai (2022061706051529400_bib4) 2016; 9 Tergaonkar (2022061706051529400_bib8) 2002; 1 Okabe (2022061706051529400_bib53) 2010; 89 Giles (2022061706051529400_bib52) 2013; 27 Zhou (2022061706051529400_bib10) 2015; 6 Carmena (2022061706051529400_bib13) 2003; 4 Dhawan (2022061706051529400_bib49) 2002; 72 Lucena-Araujo (2022061706051529400_bib50) 2011; 35 Seymour (2022061706051529400_bib51) 2014; 4 Appelbaum (2022061706051529400_bib2) 2006; 107 Kornblau (2022061706051529400_bib44) 1999; 5 Oke (2022061706051529400_bib24) 2009; 69 Gaudet (2022061706051529400_bib30) 2015; 348 Chaturvedi (2022061706051529400_bib7) 2011; 30 Giles (2022061706051529400_bib19) 2007; 109 Lin (2022061706051529400_bib40) 2016; 113 Hoesel (2022061706051529400_bib6) 2013; 12 Yuan (2022061706051529400_bib34) 2012; 33 Pan (2022061706051529400_bib22) 2015; 12 Kuett (2022061706051529400_bib48) 2015; 5 Hilton (2022061706051529400_bib14) 2014; 32 Katsha (2022061706051529400_bib31) 2013; 145 Mehta (2022061706051529400_bib9) 2013; 60 Ye (2022061706051529400_bib15) 2009; 2 Braun (2022061706051529400_bib12) 2006; 13 |
References_xml | – volume: 111 start-page: 2854 year: 2008 ident: 2022061706051529400_bib18 article-title: Aurora kinase inhibitory VX-680 increases Bax/Bcl-2 ratio and induces apoptosis in Aurora-A-high acute myeloid leukemia publication-title: Blood doi: 10.1182/blood-2007-07-099325 – volume: 33 start-page: 285 year: 2012 ident: 2022061706051529400_bib34 article-title: Overcoming CML acquired resistance by specific inhibition of Aurora A kinase in the KCL-22 cell model publication-title: Carcinogenesis doi: 10.1093/carcin/bgr278 – volume: 32 start-page: 57 year: 2014 ident: 2022061706051529400_bib14 article-title: Aurora kinase inhibition as an anticancer strategy publication-title: J Clin Oncol doi: 10.1200/JCO.2013.50.7988 – volume: 22 start-page: 1466 year: 2008 ident: 2022061706051529400_bib11 article-title: Preclinical targeting of NF-kappaB and FLT3 pathways in AML cells publication-title: Leukemia doi: 10.1038/sj.leu.2405102 – volume: 1786 start-page: 60 year: 2008 ident: 2022061706051529400_bib54 article-title: The Aurora kinase family in cell division and cancer publication-title: Biochim Biophys Acta – volume: 13 start-page: 748 year: 2006 ident: 2022061706051529400_bib12 article-title: Targeting NF-kappaB in hematologic malignancies publication-title: Cell Death Differ doi: 10.1038/sj.cdd.4401874 – volume: 145 start-page: 1312 year: 2013 ident: 2022061706051529400_bib31 article-title: Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.08.050 – volume: 5 start-page: 18411 year: 2015 ident: 2022061706051529400_bib48 article-title: IL-8 as mediator in the microenvironment-leukaemia network in acute myeloid leukaemia publication-title: Sci Rep doi: 10.1038/srep18411 – volume: 133 start-page: 2706 year: 2013 ident: 2022061706051529400_bib16 article-title: CD34(+)/CD38(-) acute myelogenous leukemia cells aberrantly express Aurora kinase A publication-title: Int J Cancer – volume: 48 start-page: 456 year: 1995 ident: 2022061706051529400_bib28 article-title: Light scatter characteristics of blast cells in acute myeloid leukaemia: association with morphology and immunophenotype publication-title: J Clin Pathol doi: 10.1136/jcp.48.5.456 – volume: 22 start-page: 187 year: 2015 ident: 2022061706051529400_bib38 article-title: Regulation of hematopoietic and leukemic stem cells by the immune system publication-title: Cell Death Differ doi: 10.1038/cdd.2014.89 – volume: 4 start-page: e238 year: 2014 ident: 2022061706051529400_bib51 article-title: A phase 2 study of MK-0457 in patients with BCR-ABL T315I mutant chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia publication-title: Blood Cancer J doi: 10.1038/bcj.2014.60 – volume: 35 start-page: 260 year: 2011 ident: 2022061706051529400_bib50 article-title: High expression of AURKA and AURKB is associated with unfavorable cytogenetic abnormalities and high white blood cell count in patients with acute myeloid leukemia publication-title: Leuk Res doi: 10.1016/j.leukres.2010.07.034 – volume: 26 start-page: 4071 year: 2007 ident: 2022061706051529400_bib43 article-title: NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia publication-title: Oncogene doi: 10.1038/sj.onc.1210187 – volume: 9 start-page: 1 year: 2016 ident: 2022061706051529400_bib4 article-title: Precision medicine for acute myeloid leukemia publication-title: Expert Rev Hematol doi: 10.1586/17474086.2016.1107471 – volume: 119 start-page: 559 year: 2012 ident: 2022061706051529400_bib25 article-title: DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications publication-title: Blood doi: 10.1182/blood-2011-07-369934 – volume: 368 start-page: 1894 year: 2006 ident: 2022061706051529400_bib1 article-title: Acute myeloid leukaemia publication-title: Lancet doi: 10.1016/S0140-6736(06)69780-8 – volume: 101 start-page: 15318 year: 2004 ident: 2022061706051529400_bib20 article-title: TIFA activates IkappaB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0404132101 – volume: 19 start-page: 687 year: 2005 ident: 2022061706051529400_bib37 article-title: Animal models of acute myelogenous leukaemia - development, application and future perspectives publication-title: Leukemia doi: 10.1038/sj.leu.2403670 – volume: 12 start-page: 255 year: 2015 ident: 2022061706051529400_bib22 article-title: The RNA recognition motif of NIFK is required for rRNA maturation during cell cycle progression publication-title: RNA Biol doi: 10.1080/15476286.2015.1017221 – volume: 69 start-page: 4150 year: 2009 ident: 2022061706051529400_bib24 article-title: AZD1152 rapidly and negatively affects the growth and survival of human acute myeloid leukemia cells invitro and invivo publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-3203 – volume: 113 start-page: 15078 year: 2016 ident: 2022061706051529400_bib40 article-title: TIFA as a crucial mediator for NLRP3 inflammasome publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1618773114 – volume: 12 start-page: 584 year: 2015 ident: 2022061706051529400_bib46 article-title: Inflammation and cancer: advances and new agents publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2015.105 – volume: 6 start-page: 5490 year: 2015 ident: 2022061706051529400_bib10 article-title: Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target publication-title: Oncotarget doi: 10.18632/oncotarget.3545 – volume: 22 start-page: 8137 year: 2003 ident: 2022061706051529400_bib41 article-title: Transfection of a dominant-negative mutant NF-kB inhibitor (IkBm) represses p53-dependent apoptosis in acute lymphoblastic leukemia cells: interaction of IkBm and p53 publication-title: Oncogene doi: 10.1038/sj.onc.1206911 – volume: 32 start-page: 2664 year: 2012 ident: 2022061706051529400_bib21 article-title: Intermolecular binding between TIFA-FHA and TIFA-pT mediates tumor necrosis factor alpha stimulation and NF-kappaB activation publication-title: Mol Cell Biol doi: 10.1128/MCB.00438-12 – volume: 72 start-page: 9 year: 2002 ident: 2022061706051529400_bib49 article-title: Role of CXCL1 in tumorigenesis of melanoma publication-title: J Leukoc Biol doi: 10.1189/jlb.72.1.9 – volume: 1 start-page: 493 year: 2002 ident: 2022061706051529400_bib8 article-title: p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00068-5 – volume: 67 start-page: 59 year: 2016 ident: 2022061706051529400_bib3 article-title: Diagnosis and therapy of acute myeloid leukemia in the era of molecular risk s publication-title: Ann Rev Med doi: 10.1146/annurev-med-051914-021329 – volume: 124 start-page: 528 year: 2014 ident: 2022061706051529400_bib39 article-title: Positive feedback between NF-kappaB and TNF-alpha promotes leukemia-initiating cell capacity publication-title: J Clin Invest doi: 10.1172/JCI68101 – volume: 109 start-page: 500 year: 2007 ident: 2022061706051529400_bib19 article-title: MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation publication-title: Blood doi: 10.1182/blood-2006-05-025049 – volume: 27 start-page: 113 year: 2013 ident: 2022061706051529400_bib52 article-title: MK-0457, an Aurora kinase and BCR-ABL inhibitor, is active in patients with BCR-ABL T315I leukemia publication-title: Leukemia doi: 10.1038/leu.2012.186 – volume: 348 start-page: 1251 year: 2015 ident: 2022061706051529400_bib30 article-title: INNATE IMMUNITY. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity publication-title: Science doi: 10.1126/science.aaa4921 – volume: 28 start-page: 50 year: 2014 ident: 2022061706051529400_bib26 article-title: Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid leukemia publication-title: Leukemia doi: 10.1038/leu.2013.236 – volume: 30 start-page: 1615 year: 2011 ident: 2022061706051529400_bib7 article-title: NF-kappaB addiction and its role in cancer: ‘one size does not fit all' publication-title: Oncogene doi: 10.1038/onc.2010.566 – volume: 32 start-page: 904 year: 2008 ident: 2022061706051529400_bib27 article-title: Expression of angiopoietins and vascular endothelial growth factors and their clinical significance in acute myeloid leukemia publication-title: Leuk Res doi: 10.1016/j.leukres.2007.08.010 – volume: 58 start-page: 256 year: 1998 ident: 2022061706051529400_bib45 article-title: BCL-X expression in multiple myeloma: possible indicator of chemoresistance publication-title: Cancer Res – volume: 29 start-page: 5006 year: 2015 ident: 2022061706051529400_bib23 article-title: Glycosylation-dependent interaction between CD69 and S100A8/S100A9 complex is required for regulatory T-cell differentiation publication-title: FASEB J doi: 10.1096/fj.15-273987 – volume: 34 start-page: 537 year: 2015 ident: 2022061706051529400_bib33 article-title: The aurora kinases in cell cycle and leukemia publication-title: Oncogene doi: 10.1038/onc.2014.14 – volume: 26 start-page: 6738 year: 2007 ident: 2022061706051529400_bib35 article-title: Aberrant cytokine signaling in leukemia publication-title: Oncogene doi: 10.1038/sj.onc.1210758 – volume: 107 start-page: 3481 year: 2006 ident: 2022061706051529400_bib2 article-title: Age and acute myeloid leukemia publication-title: Blood doi: 10.1182/blood-2005-09-3724 – volume: 4 start-page: 842 year: 2003 ident: 2022061706051529400_bib13 article-title: The cellular geography of aurora kinases publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1245 – volume: 116 start-page: 4251 year: 2010 ident: 2022061706051529400_bib36 article-title: Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia publication-title: Blood doi: 10.1182/blood-2010-01-262071 – volume: 2 start-page: 2 year: 2009 ident: 2022061706051529400_bib15 article-title: Analysis of Aurora kinase A expression in CD34(+) blast cells isolated from patients with myelodysplastic syndromes and acute myeloid leukemia publication-title: J Hematop doi: 10.1007/s12308-008-0019-3 – volume: 12 start-page: 86 year: 2013 ident: 2022061706051529400_bib6 article-title: The complexity of NF-kappaB signaling in inflammation and cancer publication-title: Mol Cancer doi: 10.1186/1476-4598-12-86 – volume: 2 start-page: 689 year: 1996 ident: 2022061706051529400_bib29 article-title: Angiostatin induces and sustains dormancy of human primary tumors in mice publication-title: Nat Med doi: 10.1038/nm0696-689 – volume: 60 start-page: 666 year: 2013 ident: 2022061706051529400_bib9 article-title: Overexpression of Bcl2 protein predicts chemoresistance in acute myeloid leukemia: its correlation with FLT3 publication-title: Neoplasma doi: 10.4149/neo_2013_085 – volume: 89 start-page: 1081 year: 2010 ident: 2022061706051529400_bib53 article-title: Efficacy of MK-0457 and in combination with vorinostat against Philadelphia chromosome positive acute lymphoblastic leukemia cells publication-title: Ann Hematol doi: 10.1007/s00277-010-0998-x – volume: 26 start-page: 203 year: 2012 ident: 2022061706051529400_bib5 article-title: NF-kappaB, the first quarter-century: remarkable progress and outstanding questions publication-title: Genes Dev doi: 10.1101/gad.183434.111 – volume: 5 start-page: 1758 year: 1999 ident: 2022061706051529400_bib44 article-title: The prognostic impact of BCL2 protein expression in acute myelogenous leukemia varies with cytogenetics publication-title: Clin Cancer Res – volume: 119 start-page: 651 year: 2012 ident: 2022061706051529400_bib47 article-title: Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey publication-title: Blood doi: 10.1182/blood-2011-04-325225 – volume: 67 start-page: 1689 year: 2007 ident: 2022061706051529400_bib17 article-title: Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-2272 – volume: 86 start-page: 3 year: 2014 ident: 2022061706051529400_bib32 article-title: Tumor heterogeneity makes AML a "moving target" for detection of residual disease publication-title: Cytometry B Clin Cytom doi: 10.1002/cytob.21134 – volume: 7 start-page: 118 year: 2007 ident: 2022061706051529400_bib42 article-title: Myelodysplastic syndromes: the complexity of stem-cell diseases publication-title: Nat Rev Cancer doi: 10.1038/nrc2047 |
SSID | ssj0005105 |
Score | 2.4340036 |
Snippet | Aurora A–dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this... Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this... These findings show how a survival signaling pathway mediated by a key mitotic regulator can be targeted to enhance the chemosensitivity of deadly... These findings show how a survival signaling pathway mediated by a key mitotic regulator can be targeted to enhance the chemosensitivity of deadly leukemias.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 494 |
SubjectTerms | Acute myeloid leukemia Adaptor Proteins, Signal Transducing - metabolism Animals Apoptosis Aurora Kinase A - metabolism Bcl-2 protein Bcl-x protein Blotting, Western Bone marrow Cancer Cell Line, Tumor Chemoresistance Disease Progression Disease-Free Survival Drug Resistance, Neoplasm - physiology Enzyme-Linked Immunosorbent Assay Flow Cytometry Fluorescent Antibody Technique Gene Knockdown Techniques Heterografts Humans Immunoprecipitation Kaplan-Meier Estimate Leukemia Leukemia, Myeloid, Acute - mortality Leukemia, Myeloid, Acute - pathology Medical prognosis Mice Myeloid leukemia NF-kappa B - metabolism NF-κB protein Phosphorylation Prognosis Proportional Hazards Models Proteins Rodents Signal transduction Signal Transduction - physiology Xenografts |
Title | Aurora A and NF-κB Survival Pathway Drive Chemoresistance in Acute Myeloid Leukemia via the TRAF-Interacting Protein TIFA |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28069801 https://www.proquest.com/docview/1983389365 https://www.proquest.com/docview/1857369667 https://www.proquest.com/docview/1872822200 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiHcDBS0SPVkb_Fi_jk7aKC00B-Sq5WR5_WgtgoPSGNT-NK7c-U3M7K6TNAqFcogVbexdx_N5HrvfzhDy1vZz0ymdklmZmTKe-4KFmcdZiLnN7Rxtjsz2OfZGx_zw1D3tdH6usJaauehlVxv3lfyPVKEN5Iq7ZG8h2UWn0ADfQb5wBAnD8Z9kHDUzkCC82zj7PR6y3cH-bj_qgzYABQADYQL-8-_ppbE3Q4IQJgeYQniNLiO-z7JYBPIEji6LybTKjQ9F87n4UqXGN_igRxp_jIZMThri_of6DPcVYHlMIz4YRqt-7QA7nBk6ddC5XBtWJA-phCaT3sqUw0khKQTxtD5joG2MkzRfrhA1ijVcsU_N9bYYxmeHjba0kvEr20cXVc2ienX6wkKeK1MbOBcqOWAuV_V7esVSC_tc5Zls1bSu9lKtRMtK53JVJVmbb1emidhgGdxAUSnVaL1BNGaWxzBh3tIUtsv_axZywVuUEZMb4Ip9kGA3CXSTWB5mfuZ3yF0bYhW0DnsH75c8I82jbUfW28igm3cb7-a6g_SHqEd6P_FD8kCHLTRSGHxEOkX9mNw70sSMJ-RKQZFGFKBIAYq_fvRpC0OqYUglDOkaDGlVUwlDqmFIWxhSgCEFGNJ1GFINQ4owfEqOh_vxYMR0WQ-Wccufw_90rYyHjggzKw2FAJfY9k3PFn6YOZ6ZupkoTSdIXVdAOG2VeQohRpmamBsPVI5wnpGteloX24Tmpp0GoRfkdmZz3xQBPMBUBL4ovdDjwukS3j7LJNM577H0yiS5UZJd0ltc9lUlffnbBTutoBKtHy4SKwwcDAc8t0veLH4G7Y1LcmldTBs4J3B9rKjp-Ted4yPXGxRflzxXIFjcFfIiQK1aL257xy_J_eXbuEO25rOmeAXu9Vy8lvD9DalLwic |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aurora+A+and+NF-%CE%BAB+Survival+Pathway+Drive+Chemoresistance+in+Acute+Myeloid+Leukemia+via+the+TRAF-Interacting+Protein+TIFA&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Wei%2C+Tong-You+Wade&rft.au=Wu%2C+Pei-Yu&rft.au=Wu%2C+Ting-Jung&rft.au=Hou%2C+Hsin-An&rft.date=2017-01-15&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=77&rft.issue=2&rft.spage=494&rft.epage=508&rft_id=info:doi/10.1158%2F0008-5472.CAN-16-1004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_0008_5472_CAN_16_1004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |