Aurora A and NF-κB Survival Pathway Drive Chemoresistance in Acute Myeloid Leukemia via the TRAF-Interacting Protein TIFA

Aurora A–dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activati...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 77; no. 2; pp. 494 - 508
Main Authors Wei, Tong-You Wade, Wu, Pei-Yu, Wu, Ting-Jung, Hou, Hsin-An, Chou, Wen-Chien, Teng, Chieh-Lin Jerry, Lin, Chih-Ru, Chen, Jo-Mei Maureen, Lin, Ting-Yang, Su, Hsiang-Chun, Huang, Chia-Chi Flora, Yu, Chang-Tze Ricky, Hsu, Shih-Lan, Tien, Hwei-Fang, Tsai, Ming-Daw
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research, Inc 15.01.2017
Subjects
Online AccessGet full text
ISSN0008-5472
1538-7445
1538-7445
DOI10.1158/0008-5472.CAN-16-1004

Cover

Loading…
Abstract Aurora A–dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB–dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494–508. ©2016 AACR.
AbstractList These findings show how a survival signaling pathway mediated by a key mitotic regulator can be targeted to enhance the chemosensitivity of deadly leukemias.Aurora A–dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB–dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494–508. ©2016 AACR.
Aurora A–dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB–dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494–508. ©2016 AACR.
These findings show how a survival signaling pathway mediated by a key mitotic regulator can be targeted to enhance the chemosensitivity of deadly leukemias. Aurora A-dependent NF- Kappa B signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF- Kappa B survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF- Kappa B signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF- Kappa B-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. [copy2016 AACR.
Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. ©2016 AACR.Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. ©2016 AACR.
Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-X that support NF-κB-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. ©2016 AACR.
Author Su, Hsiang-Chun
Hsu, Shih-Lan
Chen, Jo-Mei Maureen
Wu, Ting-Jung
Teng, Chieh-Lin Jerry
Lin, Ting-Yang
Huang, Chia-Chi Flora
Chou, Wen-Chien
Lin, Chih-Ru
Tsai, Ming-Daw
Hou, Hsin-An
Yu, Chang-Tze Ricky
Wu, Pei-Yu
Wei, Tong-You Wade
Tien, Hwei-Fang
Author_xml – sequence: 1
  givenname: Tong-You Wade
  surname: Wei
  fullname: Wei, Tong-You Wade
– sequence: 2
  givenname: Pei-Yu
  surname: Wu
  fullname: Wu, Pei-Yu
– sequence: 3
  givenname: Ting-Jung
  surname: Wu
  fullname: Wu, Ting-Jung
– sequence: 4
  givenname: Hsin-An
  surname: Hou
  fullname: Hou, Hsin-An
– sequence: 5
  givenname: Wen-Chien
  surname: Chou
  fullname: Chou, Wen-Chien
– sequence: 6
  givenname: Chieh-Lin Jerry
  surname: Teng
  fullname: Teng, Chieh-Lin Jerry
– sequence: 7
  givenname: Chih-Ru
  surname: Lin
  fullname: Lin, Chih-Ru
– sequence: 8
  givenname: Jo-Mei Maureen
  surname: Chen
  fullname: Chen, Jo-Mei Maureen
– sequence: 9
  givenname: Ting-Yang
  surname: Lin
  fullname: Lin, Ting-Yang
– sequence: 10
  givenname: Hsiang-Chun
  surname: Su
  fullname: Su, Hsiang-Chun
– sequence: 11
  givenname: Chia-Chi Flora
  surname: Huang
  fullname: Huang, Chia-Chi Flora
– sequence: 12
  givenname: Chang-Tze Ricky
  surname: Yu
  fullname: Yu, Chang-Tze Ricky
– sequence: 13
  givenname: Shih-Lan
  surname: Hsu
  fullname: Hsu, Shih-Lan
– sequence: 14
  givenname: Hwei-Fang
  surname: Tien
  fullname: Tien, Hwei-Fang
– sequence: 15
  givenname: Ming-Daw
  surname: Tsai
  fullname: Tsai, Ming-Daw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28069801$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAQhi1URLeFRwBZ4sIlxY7jxBansHRhpaVUsJwtxzthXRK72M5Wy6PxEDwTXrXl0APiMBqN9P0zGn0n6Mh5Bwg9p-SMUi5eE0JEwaumPJu3FwWtC0pI9QjNKGeiaKqKH6HZX-YYncR4lUdOCX-CjktBaikInaGf7RR80LjF2m3wxaL4_est_jKFnd3pAV_qtL3Re_wu2B3g-RZGHyDamLQzgK3DrZkS4I97GLzd4BVM32G0Gu9ypS3g9ed2USxdgqBNsu4bvgw-Qc6tl4v2KXrc6yHCs7t-ir4uztfzD8Xq0_vlvF0VpqJNyq9xairJOmmoll1XMVk2pC67RhpWE81N1xMmNOcdrwTtN5qVda8J51JCBx07Ra9u914H_2OCmNRoo4Fh0A78FBUVTSnKsiTkP1DesFrWdZPRlw_QKz8Flx9RVArGhGQ1z9SLO2rqRtio62BHHfbqXkAG3twCJvgYA_TK2KST9S4FbQdFiTroVgeV6qBSZd2K1uqgO6f5g_T9gX_n_gDsHquf
CitedBy_id crossref_primary_10_1089_ars_2017_7387
crossref_primary_10_1186_s12906_021_03487_9
crossref_primary_10_1016_j_celrep_2023_112105
crossref_primary_10_1016_j_mrfmmm_2020_111716
crossref_primary_10_1074_jbc_RA117_001684
crossref_primary_10_3390_cancers14143557
crossref_primary_10_3390_molecules24112103
crossref_primary_10_1016_j_tranon_2022_101497
crossref_primary_10_1074_jbc_RA120_012730
crossref_primary_10_1016_j_bbrc_2019_02_082
crossref_primary_10_1002_cbic_202000319
crossref_primary_10_1016_j_canlet_2021_03_028
crossref_primary_10_1158_2767_9764_CRC_24_0274
crossref_primary_10_1007_s00018_020_03577_w
crossref_primary_10_1158_1535_7163_MCT_20_0115
crossref_primary_10_1007_s10571_019_00745_w
crossref_primary_10_2139_ssrn_4052011
crossref_primary_10_1161_CIRCRESAHA_124_324762
crossref_primary_10_1053_j_gastro_2018_01_009
crossref_primary_10_1016_j_lfs_2021_119942
crossref_primary_10_1080_19490976_2023_2295384
crossref_primary_10_1111_cas_15432
crossref_primary_10_46810_tdfd_1476374
crossref_primary_10_34133_research_0315
crossref_primary_10_1038_s41375_021_01487_9
crossref_primary_10_1016_j_canlet_2024_216939
crossref_primary_10_1038_s41419_019_1855_z
crossref_primary_10_1016_j_pan_2018_07_011
crossref_primary_10_1038_s41598_021_93582_1
crossref_primary_10_1016_j_aquaculture_2023_739690
crossref_primary_10_1016_j_gene_2023_147918
crossref_primary_10_1016_j_mucimm_2025_01_003
crossref_primary_10_1007_s10528_025_11026_1
crossref_primary_10_1007_s00018_019_03310_2
crossref_primary_10_1007_s00210_023_02907_6
crossref_primary_10_1016_j_exphem_2020_08_010
crossref_primary_10_1186_s12964_023_01433_5
crossref_primary_10_3390_cancers15010167
crossref_primary_10_1186_s40364_024_00651_4
crossref_primary_10_1016_j_drup_2020_100703
crossref_primary_10_1002_cbic_201800436
crossref_primary_10_1016_j_cellsig_2024_111498
Cites_doi 10.1182/blood-2007-07-099325
10.1093/carcin/bgr278
10.1200/JCO.2013.50.7988
10.1038/sj.leu.2405102
10.1038/sj.cdd.4401874
10.1053/j.gastro.2013.08.050
10.1038/srep18411
10.1136/jcp.48.5.456
10.1038/cdd.2014.89
10.1038/bcj.2014.60
10.1016/j.leukres.2010.07.034
10.1038/sj.onc.1210187
10.1586/17474086.2016.1107471
10.1182/blood-2011-07-369934
10.1016/S0140-6736(06)69780-8
10.1073/pnas.0404132101
10.1038/sj.leu.2403670
10.1080/15476286.2015.1017221
10.1158/0008-5472.CAN-08-3203
10.1073/pnas.1618773114
10.1038/nrclinonc.2015.105
10.18632/oncotarget.3545
10.1038/sj.onc.1206911
10.1128/MCB.00438-12
10.1189/jlb.72.1.9
10.1016/S1535-6108(02)00068-5
10.1146/annurev-med-051914-021329
10.1172/JCI68101
10.1182/blood-2006-05-025049
10.1038/leu.2012.186
10.1126/science.aaa4921
10.1038/leu.2013.236
10.1038/onc.2010.566
10.1016/j.leukres.2007.08.010
10.1096/fj.15-273987
10.1038/onc.2014.14
10.1038/sj.onc.1210758
10.1182/blood-2005-09-3724
10.1038/nrm1245
10.1182/blood-2010-01-262071
10.1007/s12308-008-0019-3
10.1186/1476-4598-12-86
10.1038/nm0696-689
10.4149/neo_2013_085
10.1007/s00277-010-0998-x
10.1101/gad.183434.111
10.1182/blood-2011-04-325225
10.1158/0008-5472.CAN-06-2272
10.1002/cytob.21134
10.1038/nrc2047
ContentType Journal Article
Copyright 2016 American Association for Cancer Research.
Copyright American Association for Cancer Research, Inc. Jan 15, 2017
Copyright_xml – notice: 2016 American Association for Cancer Research.
– notice: Copyright American Association for Cancer Research, Inc. Jan 15, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
DOI 10.1158/0008-5472.CAN-16-1004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
CrossRef
AIDS and Cancer Research Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 508
ExternalDocumentID 28069801
10_1158_0008_5472_CAN_16_1004
Genre Journal Article
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
ID FETCH-LOGICAL-c417t-1651c493b9c1a9bb43927062b79c360a5cbf038a55b5481fda326fa05599ebeb3
ISSN 0008-5472
1538-7445
IngestDate Fri Jul 11 09:25:36 EDT 2025
Thu Jul 10 20:55:38 EDT 2025
Fri Jul 25 20:04:15 EDT 2025
Mon Jul 21 05:59:14 EDT 2025
Tue Jul 01 01:12:27 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2016 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-1651c493b9c1a9bb43927062b79c360a5cbf038a55b5481fda326fa05599ebeb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://cancerres.aacrjournals.org/content/canres/77/2/494.full.pdf
PMID 28069801
PQID 1983389365
PQPubID 105549
PageCount 15
ParticipantIDs proquest_miscellaneous_1872822200
proquest_miscellaneous_1857369667
proquest_journals_1983389365
pubmed_primary_28069801
crossref_citationtrail_10_1158_0008_5472_CAN_16_1004
crossref_primary_10_1158_0008_5472_CAN_16_1004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-15
20170115
PublicationDateYYYYMMDD 2017-01-15
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2017
Publisher American Association for Cancer Research, Inc
Publisher_xml – name: American Association for Cancer Research, Inc
References Komanduri (2022061706051529400_bib3) 2016; 67
Kornblau (2022061706051529400_bib36) 2010; 116
Riether (2022061706051529400_bib38) 2015; 22
Vader (2022061706051529400_bib54) 2008; 1786
Lin (2022061706051529400_bib23) 2015; 29
Kagoya (2022061706051529400_bib39) 2014; 124
Briassouli (2022061706051529400_bib17) 2007; 67
Crusz (2022061706051529400_bib46) 2015; 12
Yang (2022061706051529400_bib16) 2013; 133
Huang (2022061706051529400_bib18) 2008; 111
McCormack (2022061706051529400_bib37) 2005; 19
Fabre (2022061706051529400_bib43) 2007; 26
Tu (2022061706051529400_bib45) 1998; 58
Hayden (2022061706051529400_bib5) 2012; 26
Ea (2022061706051529400_bib20) 2004; 101
Hou (2022061706051529400_bib25) 2012; 119
Hou (2022061706051529400_bib27) 2008; 32
Huang (2022061706051529400_bib21) 2012; 32
Zeijlemaker (2022061706051529400_bib32) 2014; 86
Van Etten (2022061706051529400_bib35) 2007; 26
Aggarwal (2022061706051529400_bib47) 2012; 119
Griessinger (2022061706051529400_bib11) 2008; 22
Vidriales (2022061706051529400_bib28) 1995; 48
Estey (2022061706051529400_bib1) 2006; 368
Zhou (2022061706051529400_bib41) 2003; 22
Corey (2022061706051529400_bib42) 2007; 7
O'Reilly (2022061706051529400_bib29) 1996; 2
Goldenson (2022061706051529400_bib33) 2015; 34
Hou (2022061706051529400_bib26) 2014; 28
Lai (2022061706051529400_bib4) 2016; 9
Tergaonkar (2022061706051529400_bib8) 2002; 1
Okabe (2022061706051529400_bib53) 2010; 89
Giles (2022061706051529400_bib52) 2013; 27
Zhou (2022061706051529400_bib10) 2015; 6
Carmena (2022061706051529400_bib13) 2003; 4
Dhawan (2022061706051529400_bib49) 2002; 72
Lucena-Araujo (2022061706051529400_bib50) 2011; 35
Seymour (2022061706051529400_bib51) 2014; 4
Appelbaum (2022061706051529400_bib2) 2006; 107
Kornblau (2022061706051529400_bib44) 1999; 5
Oke (2022061706051529400_bib24) 2009; 69
Gaudet (2022061706051529400_bib30) 2015; 348
Chaturvedi (2022061706051529400_bib7) 2011; 30
Giles (2022061706051529400_bib19) 2007; 109
Lin (2022061706051529400_bib40) 2016; 113
Hoesel (2022061706051529400_bib6) 2013; 12
Yuan (2022061706051529400_bib34) 2012; 33
Pan (2022061706051529400_bib22) 2015; 12
Kuett (2022061706051529400_bib48) 2015; 5
Hilton (2022061706051529400_bib14) 2014; 32
Katsha (2022061706051529400_bib31) 2013; 145
Mehta (2022061706051529400_bib9) 2013; 60
Ye (2022061706051529400_bib15) 2009; 2
Braun (2022061706051529400_bib12) 2006; 13
References_xml – volume: 111
  start-page: 2854
  year: 2008
  ident: 2022061706051529400_bib18
  article-title: Aurora kinase inhibitory VX-680 increases Bax/Bcl-2 ratio and induces apoptosis in Aurora-A-high acute myeloid leukemia
  publication-title: Blood
  doi: 10.1182/blood-2007-07-099325
– volume: 33
  start-page: 285
  year: 2012
  ident: 2022061706051529400_bib34
  article-title: Overcoming CML acquired resistance by specific inhibition of Aurora A kinase in the KCL-22 cell model
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgr278
– volume: 32
  start-page: 57
  year: 2014
  ident: 2022061706051529400_bib14
  article-title: Aurora kinase inhibition as an anticancer strategy
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2013.50.7988
– volume: 22
  start-page: 1466
  year: 2008
  ident: 2022061706051529400_bib11
  article-title: Preclinical targeting of NF-kappaB and FLT3 pathways in AML cells
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2405102
– volume: 1786
  start-page: 60
  year: 2008
  ident: 2022061706051529400_bib54
  article-title: The Aurora kinase family in cell division and cancer
  publication-title: Biochim Biophys Acta
– volume: 13
  start-page: 748
  year: 2006
  ident: 2022061706051529400_bib12
  article-title: Targeting NF-kappaB in hematologic malignancies
  publication-title: Cell Death Differ
  doi: 10.1038/sj.cdd.4401874
– volume: 145
  start-page: 1312
  year: 2013
  ident: 2022061706051529400_bib31
  article-title: Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.08.050
– volume: 5
  start-page: 18411
  year: 2015
  ident: 2022061706051529400_bib48
  article-title: IL-8 as mediator in the microenvironment-leukaemia network in acute myeloid leukaemia
  publication-title: Sci Rep
  doi: 10.1038/srep18411
– volume: 133
  start-page: 2706
  year: 2013
  ident: 2022061706051529400_bib16
  article-title: CD34(+)/CD38(-) acute myelogenous leukemia cells aberrantly express Aurora kinase A
  publication-title: Int J Cancer
– volume: 48
  start-page: 456
  year: 1995
  ident: 2022061706051529400_bib28
  article-title: Light scatter characteristics of blast cells in acute myeloid leukaemia: association with morphology and immunophenotype
  publication-title: J Clin Pathol
  doi: 10.1136/jcp.48.5.456
– volume: 22
  start-page: 187
  year: 2015
  ident: 2022061706051529400_bib38
  article-title: Regulation of hematopoietic and leukemic stem cells by the immune system
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2014.89
– volume: 4
  start-page: e238
  year: 2014
  ident: 2022061706051529400_bib51
  article-title: A phase 2 study of MK-0457 in patients with BCR-ABL T315I mutant chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia
  publication-title: Blood Cancer J
  doi: 10.1038/bcj.2014.60
– volume: 35
  start-page: 260
  year: 2011
  ident: 2022061706051529400_bib50
  article-title: High expression of AURKA and AURKB is associated with unfavorable cytogenetic abnormalities and high white blood cell count in patients with acute myeloid leukemia
  publication-title: Leuk Res
  doi: 10.1016/j.leukres.2010.07.034
– volume: 26
  start-page: 4071
  year: 2007
  ident: 2022061706051529400_bib43
  article-title: NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210187
– volume: 9
  start-page: 1
  year: 2016
  ident: 2022061706051529400_bib4
  article-title: Precision medicine for acute myeloid leukemia
  publication-title: Expert Rev Hematol
  doi: 10.1586/17474086.2016.1107471
– volume: 119
  start-page: 559
  year: 2012
  ident: 2022061706051529400_bib25
  article-title: DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications
  publication-title: Blood
  doi: 10.1182/blood-2011-07-369934
– volume: 368
  start-page: 1894
  year: 2006
  ident: 2022061706051529400_bib1
  article-title: Acute myeloid leukaemia
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69780-8
– volume: 101
  start-page: 15318
  year: 2004
  ident: 2022061706051529400_bib20
  article-title: TIFA activates IkappaB kinase (IKK) by promoting oligomerization and ubiquitination of TRAF6
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0404132101
– volume: 19
  start-page: 687
  year: 2005
  ident: 2022061706051529400_bib37
  article-title: Animal models of acute myelogenous leukaemia - development, application and future perspectives
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2403670
– volume: 12
  start-page: 255
  year: 2015
  ident: 2022061706051529400_bib22
  article-title: The RNA recognition motif of NIFK is required for rRNA maturation during cell cycle progression
  publication-title: RNA Biol
  doi: 10.1080/15476286.2015.1017221
– volume: 69
  start-page: 4150
  year: 2009
  ident: 2022061706051529400_bib24
  article-title: AZD1152 rapidly and negatively affects the growth and survival of human acute myeloid leukemia cells invitro and invivo
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-3203
– volume: 113
  start-page: 15078
  year: 2016
  ident: 2022061706051529400_bib40
  article-title: TIFA as a crucial mediator for NLRP3 inflammasome
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1618773114
– volume: 12
  start-page: 584
  year: 2015
  ident: 2022061706051529400_bib46
  article-title: Inflammation and cancer: advances and new agents
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2015.105
– volume: 6
  start-page: 5490
  year: 2015
  ident: 2022061706051529400_bib10
  article-title: Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3545
– volume: 22
  start-page: 8137
  year: 2003
  ident: 2022061706051529400_bib41
  article-title: Transfection of a dominant-negative mutant NF-kB inhibitor (IkBm) represses p53-dependent apoptosis in acute lymphoblastic leukemia cells: interaction of IkBm and p53
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206911
– volume: 32
  start-page: 2664
  year: 2012
  ident: 2022061706051529400_bib21
  article-title: Intermolecular binding between TIFA-FHA and TIFA-pT mediates tumor necrosis factor alpha stimulation and NF-kappaB activation
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00438-12
– volume: 72
  start-page: 9
  year: 2002
  ident: 2022061706051529400_bib49
  article-title: Role of CXCL1 in tumorigenesis of melanoma
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.72.1.9
– volume: 1
  start-page: 493
  year: 2002
  ident: 2022061706051529400_bib8
  article-title: p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00068-5
– volume: 67
  start-page: 59
  year: 2016
  ident: 2022061706051529400_bib3
  article-title: Diagnosis and therapy of acute myeloid leukemia in the era of molecular risk s
  publication-title: Ann Rev Med
  doi: 10.1146/annurev-med-051914-021329
– volume: 124
  start-page: 528
  year: 2014
  ident: 2022061706051529400_bib39
  article-title: Positive feedback between NF-kappaB and TNF-alpha promotes leukemia-initiating cell capacity
  publication-title: J Clin Invest
  doi: 10.1172/JCI68101
– volume: 109
  start-page: 500
  year: 2007
  ident: 2022061706051529400_bib19
  article-title: MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation
  publication-title: Blood
  doi: 10.1182/blood-2006-05-025049
– volume: 27
  start-page: 113
  year: 2013
  ident: 2022061706051529400_bib52
  article-title: MK-0457, an Aurora kinase and BCR-ABL inhibitor, is active in patients with BCR-ABL T315I leukemia
  publication-title: Leukemia
  doi: 10.1038/leu.2012.186
– volume: 348
  start-page: 1251
  year: 2015
  ident: 2022061706051529400_bib30
  article-title: INNATE IMMUNITY. Cytosolic detection of the bacterial metabolite HBP activates TIFA-dependent innate immunity
  publication-title: Science
  doi: 10.1126/science.aaa4921
– volume: 28
  start-page: 50
  year: 2014
  ident: 2022061706051529400_bib26
  article-title: Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid leukemia
  publication-title: Leukemia
  doi: 10.1038/leu.2013.236
– volume: 30
  start-page: 1615
  year: 2011
  ident: 2022061706051529400_bib7
  article-title: NF-kappaB addiction and its role in cancer: ‘one size does not fit all'
  publication-title: Oncogene
  doi: 10.1038/onc.2010.566
– volume: 32
  start-page: 904
  year: 2008
  ident: 2022061706051529400_bib27
  article-title: Expression of angiopoietins and vascular endothelial growth factors and their clinical significance in acute myeloid leukemia
  publication-title: Leuk Res
  doi: 10.1016/j.leukres.2007.08.010
– volume: 58
  start-page: 256
  year: 1998
  ident: 2022061706051529400_bib45
  article-title: BCL-X expression in multiple myeloma: possible indicator of chemoresistance
  publication-title: Cancer Res
– volume: 29
  start-page: 5006
  year: 2015
  ident: 2022061706051529400_bib23
  article-title: Glycosylation-dependent interaction between CD69 and S100A8/S100A9 complex is required for regulatory T-cell differentiation
  publication-title: FASEB J
  doi: 10.1096/fj.15-273987
– volume: 34
  start-page: 537
  year: 2015
  ident: 2022061706051529400_bib33
  article-title: The aurora kinases in cell cycle and leukemia
  publication-title: Oncogene
  doi: 10.1038/onc.2014.14
– volume: 26
  start-page: 6738
  year: 2007
  ident: 2022061706051529400_bib35
  article-title: Aberrant cytokine signaling in leukemia
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210758
– volume: 107
  start-page: 3481
  year: 2006
  ident: 2022061706051529400_bib2
  article-title: Age and acute myeloid leukemia
  publication-title: Blood
  doi: 10.1182/blood-2005-09-3724
– volume: 4
  start-page: 842
  year: 2003
  ident: 2022061706051529400_bib13
  article-title: The cellular geography of aurora kinases
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1245
– volume: 116
  start-page: 4251
  year: 2010
  ident: 2022061706051529400_bib36
  article-title: Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia
  publication-title: Blood
  doi: 10.1182/blood-2010-01-262071
– volume: 2
  start-page: 2
  year: 2009
  ident: 2022061706051529400_bib15
  article-title: Analysis of Aurora kinase A expression in CD34(+) blast cells isolated from patients with myelodysplastic syndromes and acute myeloid leukemia
  publication-title: J Hematop
  doi: 10.1007/s12308-008-0019-3
– volume: 12
  start-page: 86
  year: 2013
  ident: 2022061706051529400_bib6
  article-title: The complexity of NF-kappaB signaling in inflammation and cancer
  publication-title: Mol Cancer
  doi: 10.1186/1476-4598-12-86
– volume: 2
  start-page: 689
  year: 1996
  ident: 2022061706051529400_bib29
  article-title: Angiostatin induces and sustains dormancy of human primary tumors in mice
  publication-title: Nat Med
  doi: 10.1038/nm0696-689
– volume: 60
  start-page: 666
  year: 2013
  ident: 2022061706051529400_bib9
  article-title: Overexpression of Bcl2 protein predicts chemoresistance in acute myeloid leukemia: its correlation with FLT3
  publication-title: Neoplasma
  doi: 10.4149/neo_2013_085
– volume: 89
  start-page: 1081
  year: 2010
  ident: 2022061706051529400_bib53
  article-title: Efficacy of MK-0457 and in combination with vorinostat against Philadelphia chromosome positive acute lymphoblastic leukemia cells
  publication-title: Ann Hematol
  doi: 10.1007/s00277-010-0998-x
– volume: 26
  start-page: 203
  year: 2012
  ident: 2022061706051529400_bib5
  article-title: NF-kappaB, the first quarter-century: remarkable progress and outstanding questions
  publication-title: Genes Dev
  doi: 10.1101/gad.183434.111
– volume: 5
  start-page: 1758
  year: 1999
  ident: 2022061706051529400_bib44
  article-title: The prognostic impact of BCL2 protein expression in acute myelogenous leukemia varies with cytogenetics
  publication-title: Clin Cancer Res
– volume: 119
  start-page: 651
  year: 2012
  ident: 2022061706051529400_bib47
  article-title: Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey
  publication-title: Blood
  doi: 10.1182/blood-2011-04-325225
– volume: 67
  start-page: 1689
  year: 2007
  ident: 2022061706051529400_bib17
  article-title: Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-2272
– volume: 86
  start-page: 3
  year: 2014
  ident: 2022061706051529400_bib32
  article-title: Tumor heterogeneity makes AML a "moving target" for detection of residual disease
  publication-title: Cytometry B Clin Cytom
  doi: 10.1002/cytob.21134
– volume: 7
  start-page: 118
  year: 2007
  ident: 2022061706051529400_bib42
  article-title: Myelodysplastic syndromes: the complexity of stem-cell diseases
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2047
SSID ssj0005105
Score 2.4340036
Snippet Aurora A–dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this...
Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this...
These findings show how a survival signaling pathway mediated by a key mitotic regulator can be targeted to enhance the chemosensitivity of deadly...
These findings show how a survival signaling pathway mediated by a key mitotic regulator can be targeted to enhance the chemosensitivity of deadly leukemias....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 494
SubjectTerms Acute myeloid leukemia
Adaptor Proteins, Signal Transducing - metabolism
Animals
Apoptosis
Aurora Kinase A - metabolism
Bcl-2 protein
Bcl-x protein
Blotting, Western
Bone marrow
Cancer
Cell Line, Tumor
Chemoresistance
Disease Progression
Disease-Free Survival
Drug Resistance, Neoplasm - physiology
Enzyme-Linked Immunosorbent Assay
Flow Cytometry
Fluorescent Antibody Technique
Gene Knockdown Techniques
Heterografts
Humans
Immunoprecipitation
Kaplan-Meier Estimate
Leukemia
Leukemia, Myeloid, Acute - mortality
Leukemia, Myeloid, Acute - pathology
Medical prognosis
Mice
Myeloid leukemia
NF-kappa B - metabolism
NF-κB protein
Phosphorylation
Prognosis
Proportional Hazards Models
Proteins
Rodents
Signal transduction
Signal Transduction - physiology
Xenografts
Title Aurora A and NF-κB Survival Pathway Drive Chemoresistance in Acute Myeloid Leukemia via the TRAF-Interacting Protein TIFA
URI https://www.ncbi.nlm.nih.gov/pubmed/28069801
https://www.proquest.com/docview/1983389365
https://www.proquest.com/docview/1857369667
https://www.proquest.com/docview/1872822200
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIiEuiHcDBS0SPVkb_Fi_jk7aKC00B-Sq5WR5_WgtgoPSGNT-NK7c-U3M7K6TNAqFcogVbexdx_N5HrvfzhDy1vZz0ymdklmZmTKe-4KFmcdZiLnN7Rxtjsz2OfZGx_zw1D3tdH6usJaauehlVxv3lfyPVKEN5Iq7ZG8h2UWn0ADfQb5wBAnD8Z9kHDUzkCC82zj7PR6y3cH-bj_qgzYABQADYQL-8-_ppbE3Q4IQJgeYQniNLiO-z7JYBPIEji6LybTKjQ9F87n4UqXGN_igRxp_jIZMThri_of6DPcVYHlMIz4YRqt-7QA7nBk6ddC5XBtWJA-phCaT3sqUw0khKQTxtD5joG2MkzRfrhA1ijVcsU_N9bYYxmeHjba0kvEr20cXVc2ienX6wkKeK1MbOBcqOWAuV_V7esVSC_tc5Zls1bSu9lKtRMtK53JVJVmbb1emidhgGdxAUSnVaL1BNGaWxzBh3tIUtsv_axZywVuUEZMb4Ip9kGA3CXSTWB5mfuZ3yF0bYhW0DnsH75c8I82jbUfW28igm3cb7-a6g_SHqEd6P_FD8kCHLTRSGHxEOkX9mNw70sSMJ-RKQZFGFKBIAYq_fvRpC0OqYUglDOkaDGlVUwlDqmFIWxhSgCEFGNJ1GFINQ4owfEqOh_vxYMR0WQ-Wccufw_90rYyHjggzKw2FAJfY9k3PFn6YOZ6ZupkoTSdIXVdAOG2VeQohRpmamBsPVI5wnpGteloX24Tmpp0GoRfkdmZz3xQBPMBUBL4ovdDjwukS3j7LJNM577H0yiS5UZJd0ltc9lUlffnbBTutoBKtHy4SKwwcDAc8t0veLH4G7Y1LcmldTBs4J3B9rKjp-Ted4yPXGxRflzxXIFjcFfIiQK1aL257xy_J_eXbuEO25rOmeAXu9Vy8lvD9DalLwic
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aurora+A+and+NF-%CE%BAB+Survival+Pathway+Drive+Chemoresistance+in+Acute+Myeloid+Leukemia+via+the+TRAF-Interacting+Protein+TIFA&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Wei%2C+Tong-You+Wade&rft.au=Wu%2C+Pei-Yu&rft.au=Wu%2C+Ting-Jung&rft.au=Hou%2C+Hsin-An&rft.date=2017-01-15&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=77&rft.issue=2&rft.spage=494&rft.epage=508&rft_id=info:doi/10.1158%2F0008-5472.CAN-16-1004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_0008_5472_CAN_16_1004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon