On Drell-Yan production of scalar leptoquarks coupling to heavy-quark flavours
A bstract Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant...
Saved in:
Published in | The journal of high energy physics Vol. 2022; no. 11; pp. 106 - 21 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
18.11.2022
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
Given the hints of lepton-flavour non-universality in semi-leptonic
B
decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant dilepton searches at the Large Hadron Collider (LHC) turn out to be phenomenologically relevant. Based on the latest LHC dilepton analyses corresponding to an integrated luminosity of around 140 fb
−
1
of proton-proton collisions at
s
= 13 TeV, we present improved limits on the scalar LQ couplings that involve heavy-quark flavours and light or heavy dileptons. In particular, we show that effects beyond the leading order that are related to real QCD emissions are relevant in this context, since the inclusion of additional heavy-flavoured jets notably improves the exclusion limits that derive from the high-mass dilepton tails. The impact of electroweak corrections and interference effects between signal and background is also analysed. Within the POWHEG-BOX framework we provide a dedicated Monte Carlo code that allows for an on-the-fly signal event generation including all the LQ corrections considered in this article. |
---|---|
AbstractList | Abstract Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant dilepton searches at the Large Hadron Collider (LHC) turn out to be phenomenologically relevant. Based on the latest LHC dilepton analyses corresponding to an integrated luminosity of around 140 fb −1 of proton-proton collisions at s $$ \sqrt{s} $$ = 13 TeV, we present improved limits on the scalar LQ couplings that involve heavy-quark flavours and light or heavy dileptons. In particular, we show that effects beyond the leading order that are related to real QCD emissions are relevant in this context, since the inclusion of additional heavy-flavoured jets notably improves the exclusion limits that derive from the high-mass dilepton tails. The impact of electroweak corrections and interference effects between signal and background is also analysed. Within the POWHEG-BOX framework we provide a dedicated Monte Carlo code that allows for an on-the-fly signal event generation including all the LQ corrections considered in this article. A bstract Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant dilepton searches at the Large Hadron Collider (LHC) turn out to be phenomenologically relevant. Based on the latest LHC dilepton analyses corresponding to an integrated luminosity of around 140 fb − 1 of proton-proton collisions at s = 13 TeV, we present improved limits on the scalar LQ couplings that involve heavy-quark flavours and light or heavy dileptons. In particular, we show that effects beyond the leading order that are related to real QCD emissions are relevant in this context, since the inclusion of additional heavy-flavoured jets notably improves the exclusion limits that derive from the high-mass dilepton tails. The impact of electroweak corrections and interference effects between signal and background is also analysed. Within the POWHEG-BOX framework we provide a dedicated Monte Carlo code that allows for an on-the-fly signal event generation including all the LQ corrections considered in this article. Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant dilepton searches at the Large Hadron Collider (LHC) turn out to be phenomenologically relevant. Based on the latest LHC dilepton analyses corresponding to an integrated luminosity of around 140 fb−1 of proton-proton collisions at s = 13 TeV, we present improved limits on the scalar LQ couplings that involve heavy-quark flavours and light or heavy dileptons. In particular, we show that effects beyond the leading order that are related to real QCD emissions are relevant in this context, since the inclusion of additional heavy-flavoured jets notably improves the exclusion limits that derive from the high-mass dilepton tails. The impact of electroweak corrections and interference effects between signal and background is also analysed. Within the POWHEG-BOX framework we provide a dedicated Monte Carlo code that allows for an on-the-fly signal event generation including all the LQ corrections considered in this article. Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant dilepton searches at the Large Hadron Collider (LHC) turn out to be phenomenologically relevant. Based on the latest LHC dilepton analyses corresponding to an integrated luminosity of around 140 fb − 1 of proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV, we present improved limits on the scalar LQ couplings that involve heavy-quark flavours and light or heavy dileptons. In particular, we show that effects beyond the leading order that are related to real QCD emissions are relevant in this context, since the inclusion of additional heavy-flavoured jets notably improves the exclusion limits that derive from the high-mass dilepton tails. The impact of electroweak corrections and interference effects between signal and background is also analysed. Within the POWHEG-BOX framework we provide a dedicated Monte Carlo code that allows for an on-the-fly signal event generation including all the LQ corrections considered in this article. |
ArticleNumber | 106 |
Author | Schnell, Luc Schulte, Stefan Haisch, Ulrich |
Author_xml | – sequence: 1 givenname: Ulrich surname: Haisch fullname: Haisch, Ulrich organization: Max Planck Institute for Physics – sequence: 2 givenname: Luc orcidid: 0000-0003-2073-9817 surname: Schnell fullname: Schnell, Luc email: schnell@mpp.mpg.de organization: Max Planck Institute for Physics, Technische Universität München, Physik-Department – sequence: 3 givenname: Stefan surname: Schulte fullname: Schulte, Stefan organization: Max Planck Institute for Physics, Technische Universität München, Physik-Department |
BookMark | eNp1UU1PGzEUtCoqFVLOvVri0h6W-GO9ax8rGpogRHooh56st1473WDWwd5F4t_XyRaBkDjZmjczmvfmBB31obcIfaHknBJSz6-Wi1-UfmWEsW-UVB_QMSVMFbKs1dGr_yd0ktKWECqoIsfoZt3jH9F6X_yBHu9iaEczdKHHweFkwEPE3u6G8DBCvEvYhHHnu36Dh4D_Wnh8Kg4D7Dw8hjGmz-ijA5_s6f93hm4vF78vlsX1-ufq4vt1YUpaDwUthQRWto3grTCiJq4upVOuEU5UZeUk5yTjivKSN4xJ13ArQYrWOlaxVvEZWk2-bYCt3sXuHuKTDtDpAxDiRkMcOuOtdq5tQFLZKpbdKqaytVLKEClBWb73Opu88vYPo02D3uZV-hxfs5rXkuZr1pklJpaJIaVonTbdAPtTDRE6rynR-xr0VIPe15CBKuvmb3TPad9XkEmRMrPf2PiS5z3JPypWmUk |
CitedBy_id | crossref_primary_10_1007_JHEP11_2023_147 crossref_primary_10_1007_JHEP02_2023_070 crossref_primary_10_1103_PhysRevD_109_055018 crossref_primary_10_1007_JHEP05_2023_087 crossref_primary_10_1007_JHEP03_2023_064 crossref_primary_10_1140_epjc_s10052_024_12618_8 crossref_primary_10_1007_JHEP08_2024_176 crossref_primary_10_1140_epjc_s10052_023_11304_5 crossref_primary_10_1103_PhysRevD_109_055033 |
Cites_doi | 10.1007/JHEP03(2018)021 10.22323/1.260.0068 10.1016/0370-2693(87)90637-X 10.1103/PhysRevD.71.057503 10.1007/JHEP01(2019)132 10.1140/epjc/s10052-019-6853-x 10.1103/PhysRevD.101.115017 10.1016/j.cpc.2015.01.024 10.1016/j.nuclphysb.2017.10.014 10.1088/1126-6708/2008/04/063 10.1007/JHEP02(2022)157 10.1007/JHEP10(2022)149 10.1103/PhysRevD.100.075001 10.1007/JHEP07(2015)148 10.1103/PhysRevD.16.2219 10.1103/PhysRevD.95.015011 10.1088/1126-6708/2007/11/070 10.1007/JHEP08(2018)056 10.1016/S0370-2693(98)01541-X 10.1007/JHEP10(2021)221 10.1103/PhysRevD.99.095005 10.1007/JHEP02(2014)057 10.1016/j.cpc.2014.04.012 10.1103/PhysRevD.104.035016 10.1103/PhysRevD.105.115017 10.1016/j.cpc.2015.08.017 10.1088/1126-6708/2004/11/040 10.1016/j.cpc.2009.02.020 10.1103/PhysRevLett.125.231804 10.1140/epjc/s10052-022-10328-7 10.1007/JHEP05(2021)057 10.1007/JHEP08(2021)050 10.1007/JHEP05(2018)126 10.1007/JHEP02(2022)106 10.1016/0550-3213(96)00110-1 10.1103/PhysRevD.96.095010 10.1007/JHEP06(2010)043 10.1103/PhysRevD.103.115023 10.1007/JHEP08(2020)019 10.1140/epjc/s10052-012-1896-2 10.1103/PhysRevD.93.035018 10.1016/S0550-3213(97)00574-9 10.1103/PhysRevD.101.056019 10.1007/JHEP02(2021)182 10.1140/epjc/s10052-020-8210-5 10.1007/JHEP12(2020)035 10.1016/S0010-4655(98)00173-8 10.1016/j.physrep.2016.06.001 10.1103/PhysRevLett.79.341 10.1103/PhysRevD.10.275 10.1088/1748-0221/15/12/P12012 10.1007/JHEP03(2021)279 10.1103/PhysRevD.98.015037 10.1007/JHEP03(2019)137 10.1103/PhysRevD.99.055028 10.1016/S0010-4655(01)00290-9 10.1140/epjc/s10052-017-5119-8 10.1007/JHEP06(2022)169 10.1103/PhysRevD.104.115016 10.1140/epjc/s10052-011-1554-0 10.1016/j.physletb.2016.11.011 10.1103/PhysRevD.8.1240 10.1016/j.cpc.2012.09.009 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1007/JHEP11(2022)106 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_ffdba818d92343629305999c088a9e39 10_1007_JHEP11_2022_106 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c417t-1458a24db53d5c570f748f9fb5f5646f83305c591343b228fb3e8a85def262d93 |
IEDL.DBID | DOA |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:15:17 EDT 2025 Thu Jul 17 07:10:51 EDT 2025 Thu Apr 24 23:07:24 EDT 2025 Tue Jul 01 01:00:37 EDT 2025 Fri Feb 21 02:45:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Specific QCD Phenomenology Specific BSM Phenomenology Bottom Quarks Higher-Order Perturbative Calculations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c417t-1458a24db53d5c570f748f9fb5f5646f83305c591343b228fb3e8a85def262d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2073-9817 |
OpenAccessLink | https://doaj.org/article/ffdba818d92343629305999c088a9e39 |
PQID | 2737811067 |
PQPubID | 2034718 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ffdba818d92343629305999c088a9e39 proquest_journals_2737811067 crossref_citationtrail_10_1007_JHEP11_2022_106 crossref_primary_10_1007_JHEP11_2022_106 springer_journals_10_1007_JHEP11_2022_106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-18 |
PublicationDateYYYYMMDD | 2022-11-18 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | IguroSTobeKR(D(*)) in a general two Higgs doublet modelNucl. Phys. B20179255602017NuPhB.925..560I373049210.1016/j.nuclphysb.2017.10.0141375.81248[arXiv:1708.06176] [INSPIRE] CMS collaboration, Identification of hadronic tau lepton decays using a deep neural network, 2022 JINST17 P07023 [arXiv:2201.08458] [INSPIRE]. J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D10 (1974) 275 [Erratum ibid.11 (1975) 703] [INSPIRE]. NNPDF collaboration, The path to proton structure at 1% accuracy, Eur. Phys. J. C82 (2022) 428 [arXiv:2109.02653] [INSPIRE]. CornellaCFaroughyDAFuentes-MartinJIsidoriGNeubertMReading the footprints of the B-meson flavor anomaliesJHEP2021080502021JHEP...08..050C10.1007/JHEP08(2021)050[arXiv:2103.16558] [INSPIRE] BELLE collaboration, Test of lepton flavor universality and search for lepton flavor violation in B → Kℓℓ decays, JHEP03 (2021) 105 [arXiv:1908.01848] [INSPIRE]. CrivellinAFuksBSchnellLExplaining the hints for lepton flavour universality violation with three S2leptoquark generationsJHEP2022061692022JHEP...06..169C10.1007/JHEP06(2022)169[arXiv:2203.10111] [INSPIRE] CMS collaboration, Search for resonant and nonresonant new phenomena in high-mass dilepton final states ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP07 (2021) 208 [arXiv:2103.02708] [INSPIRE]. AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A10.1007/JHEP06(2010)0431290.81155[arXiv:1002.2581] [INSPIRE] FaroughyDAGreljoAKamenikJFConfronting lepton flavor universality violation in B decays with high-pTtau lepton searches at LHCPhys. Lett. B20177641262017PhLB..764..126F10.1016/j.physletb.2016.11.011[arXiv:1609.07138] [INSPIRE] H. Qu and L. Gouskos, ParticleNet: Jet Tagging via Particle Clouds, Phys. Rev. D101 (2020) 056019 [arXiv:1902.08570] [INSPIRE]. S. Bansal, R.M. Capdevilla, A. Delgado, C. Kolda, A. Martin and N. Raj, Hunting leptoquarks in monolepton searches, Phys. Rev. D98 (2018) 015037 [arXiv:1806.02370] [INSPIRE]. P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B446 (1999) 278 [hep-ph/9809321] [INSPIRE]. ATLAS collaboration, Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. Lett.125 (2020) 051801 [arXiv:2002.12223] [INSPIRE]. Belle collaboration, Test of Lepton-Flavor Universality in B → K*ℓ+ℓ−Decays at Belle, Phys. Rev. Lett.126 (2021) 161801 [arXiv:1904.02440] [INSPIRE]. D. Choudhury, N. Kumar and A. Kundu, Search for an opposite sign muon-tau pair and a b-jet at the LHC in the context of flavor anomalies, Phys. Rev. D100 (2019) 075001 [arXiv:1905.07982] [INSPIRE]. S. Alioli et al., The POWHEG BOX, (2022) http://powhegbox.mib.infn.it. CMS collaboration, Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP08 (2022) 063 [arXiv:2202.12327] [INSPIRE]. ConteEFuksBSerretGMadAnalysis 5, A User-Friendly Framework for Collider PhenomenologyComput. Phys. Commun.20131842222013CoPhC.184..222C299170410.1016/j.cpc.2012.09.009[arXiv:1206.1599] [INSPIRE] LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the B0 → D*−τ+ντbranching fraction using three-prong τ decays, Phys. Rev. D97 (2018) 072013 [arXiv:1711.02505] [INSPIRE]. MarzoccaDMinUSonMBottom-Flavored Mono-Tau Tails at the LHCJHEP2020120352020JHEP...12..035M10.1007/JHEP12(2020)035[arXiv:2008.07541] [INSPIRE] FrixioneSNasonPOleariCMatching NLO QCD computations with Parton Shower simulations: the POWHEG methodJHEP2007110702007JHEP...11..070F10.1088/1126-6708/2007/11/070[arXiv:0709.2092] [INSPIRE] DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE]. AfikYCohenJGozaniEKajomovitzERozenYEstablishing a Search for b → sℓ+ℓ−Anomalies at the LHCJHEP2018080562018JHEP...08..056A10.1007/JHEP08(2018)056[arXiv:1805.11402] [INSPIRE] ATLAS collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Eur. Phys. J. C76 (2016) 292 [arXiv:1603.05598] [INSPIRE]. CMS collaboration, Searches for additional Higgs bosons and vector leptoquarks in ττ final states in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, CERN, Geneva, Switzerland (2022) [CMS-PAS-HIG-21-001]. B.C. Allanach, T. Corbett, M.J. Dolan and T. You, Hadron collider sensitivity to fat flavourful Z′s forRK∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {R}_{K^{\left(\ast \right)}} $$\end{document}, JHEP03 (2019) 137 [arXiv:1810.02166] [INSPIRE]. CacciariMSalamGPSoyezGFastJet User ManualEur. Phys. J. C20127218962012EPJC...72.1896C10.1140/epjc/s10052-012-1896-21393.81007[arXiv:1111.6097] [INSPIRE] LHCb collaboration, Test of lepton universality in beauty-quark decays, Nature Phys.18 (2022) 277 [arXiv:2103.11769] [INSPIRE]. LHCb collaboration, Measurement of the ratio of the B0 → D*−τ+ντand B0 → D*−μ+νμbranching fractions using three-prong τ-lepton decays, Phys. Rev. Lett.120 (2018) 171802 [arXiv:1708.08856] [INSPIRE]. BakerMJFuentes-MartínJIsidoriGKönigMHigh-pTsignatures in vector-leptoquark modelsEur. Phys. J. C2019793342019EPJC...79..334B10.1140/epjc/s10052-019-6853-x[arXiv:1901.10480] [INSPIRE] BuonocoreLNasonPTramontanoFZanderighiGLeptons in the protonJHEP2020080192020JHEP...08..019B10.1007/JHEP08(2020)019[arXiv:2005.06477] [INSPIRE] ATLAS collaboration, Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector, JHEP11 (2020) 005 [Erratum JHEP04 (2021) 142] [arXiv:2006.12946] [INSPIRE]. GreljoASelimovicNLepton-Quark Fusion at Hadron Colliders, preciselyJHEP20210327910.1007/JHEP03(2021)279[arXiv:2012.02092] [INSPIRE] M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Pair production of scalar leptoquarks at the CERN LHC, Phys. Rev. D71 (2005) 057503 [hep-ph/0411038] [INSPIRE]. E. Bols, J. Kieseler, M. Verzetti, M. Stoye and A. Stakia, Jet Flavour Classification Using DeepJet, 2020 JINST15 P12012 [arXiv:2008.10519] [INSPIRE]. CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, 2018 JINST13 P05011 [arXiv:1712.07158] [INSPIRE]. CollinsJCSoperDEAngular Distribution of Dileptons in High-Energy Hadron CollisionsPhys. Rev. D19771622191977PhRvD..16.2219C10.1103/PhysRevD.16.2219[INSPIRE] G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C71 (2011) 1554 [Erratum ibid.73 (2013) 2501] [arXiv:1007.1727] [INSPIRE]. AlloulAChristensenNDDegrandeCDuhrCFuksBFeynRules 2.0 — A complete toolbox for tree-level phenomenologyComput. Phys. Commun.201418522502014CoPhC.185.2250A10.1016/j.cpc.2014.04.012[arXiv:1310.1921] [INSPIRE] A. Crivellin, D. Müller and L. Schnell, Combined constraints on first generation leptoquarks, Phys. Rev. D103 (2021) 115023 [Addendum ibid.104 (2021) 055020] [arXiv:2104.06417] [INSPIRE]. CrivellinAGreubCMüllerDSaturninoFScalar Leptoquarks in Leptonic ProcessesJHEP2021021822021JHEP...02..182C10.1007/JHEP02(2021)182[arXiv:2010.06593] [INSPIRE] GreljoAMarzoccaDHigh-pTdilepton tails and flavor physicsEur. Phys. J. C2017775482017EPJC...77..548G10.1140/epjc/s10052-017-5119-8[arXiv:1704.09015] [INSPIRE] DoršnerIGreljoALeptoquark toolbox for precision collider studiesJHEP2018051262018JHEP...05..126D10.1007/JHEP05(2018)126[arXiv:1801.07641] [INSPIRE] A. Crivellin, C.A. Manzari and M. Montull, Correlating nonresonant di-electron searches at the LHC to the Cabibbo-angle anomaly and lepton flavor universality violation, Phys. Rev. D104 (2021) 115016 [arXiv:2103.12003] [INSPIRE]. J.C. Pati and A. Salam, Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions, Phys. Rev. D8 (1973) 1240 [INSPIRE]. M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Pair production of scalar leptoquarks at the Tevatron, Phys. Rev. Lett.79 (1997) 341 [hep-ph/9704322] [INSPIRE]. P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE]. ATLAS collaboration, ATLAS b-jet identification performance and efficiency measurement withtt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}events in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepa 19670_CR41 19670_CR85 19670_CR86 M Cacciari (19670_CR74) 2012; 72 19670_CR87 19670_CR44 19670_CR81 A Crivellin (19670_CR26) 2022; 06 19670_CR82 19670_CR83 19670_CR84 19670_CR49 T Sjöstrand (19670_CR71) 2015; 191 19670_CR45 19670_CR89 19670_CR47 19670_CR48 C Borschensky (19670_CR53) 2022; 02 D Marzocca (19670_CR42) 2020; 12 JC Collins (19670_CR88) 1977; 16 L Buonocore (19670_CR50) 2020; 08 A Greljo (19670_CR51) 2021; 03 19670_CR90 19670_CR91 A Azatov (19670_CR27) 2022; 10 M Endo (19670_CR43) 2022; 02 19670_CR54 19670_CR55 S Frixione (19670_CR56) 2007; 11 19670_CR92 19670_CR8 19670_CR16 19670_CR18 M Cacciari (19670_CR73) 2008; 04 HH Patel (19670_CR66) 2015; 197 19670_CR13 S Alioli (19670_CR57) 2010; 06 A Greljo (19670_CR9) 2017; 77 19670_CR14 19670_CR58 19670_CR59 M Schmaltz (19670_CR15) 2019; 01 19670_CR6 19670_CR5 19670_CR4 19670_CR3 19670_CR2 19670_CR1 DA Faroughy (19670_CR7) 2017; 764 BC Allanach (19670_CR10) 2018; 03 19670_CR63 19670_CR20 19670_CR64 19670_CR21 19670_CR65 A Angelescu (19670_CR19) 2020; 80 C Cornella (19670_CR22) 2021; 08 19670_CR60 19670_CR28 A Alloul (19670_CR62) 2014; 185 19670_CR29 19670_CR23 19670_CR67 19670_CR68 19670_CR25 A Crivellin (19670_CR69) 2021; 02 U Haisch (19670_CR52) 2021; 05 Y Afik (19670_CR12) 2018; 08 19670_CR30 19670_CR31 19670_CR75 19670_CR32 19670_CR76 19670_CR33 19670_CR77 19670_CR70 19670_CR72 19670_CR38 19670_CR39 S Iguro (19670_CR40) 2017; 925 19670_CR34 19670_CR35 I Doršner (19670_CR61) 2016; 641 19670_CR79 19670_CR36 19670_CR37 I Doršner (19670_CR11) 2018; 05 A Crivellin (19670_CR24) 2021; 10 MJ Baker (19670_CR17) 2019; 79 19670_CR80 E Conte (19670_CR78) 2013; 184 JB Hammett (19670_CR46) 2015; 07 |
References_xml | – reference: IguroSTobeKR(D(*)) in a general two Higgs doublet modelNucl. Phys. B20179255602017NuPhB.925..560I373049210.1016/j.nuclphysb.2017.10.0141375.81248[arXiv:1708.06176] [INSPIRE] – reference: T. Mandal, S. Mitra and S. Seth, Pair Production of Scalar Leptoquarks at the LHC to NLO Parton Shower Accuracy, Phys. Rev. D93 (2016) 035018 [arXiv:1506.07369] [INSPIRE]. – reference: NNPDF collaboration, The path to proton structure at 1% accuracy, Eur. Phys. J. C82 (2022) 428 [arXiv:2109.02653] [INSPIRE]. – reference: EndoMIguroSKitaharaTTakeuchiMWatanabeRNon-resonant new physics search at the LHC for the b → cτν anomaliesJHEP2022021062022JHEP...02..106E10.1007/JHEP02(2022)106[arXiv:2111.04748] [INSPIRE] – reference: BuonocoreLNasonPTramontanoFZanderighiGLeptons in the protonJHEP2020080192020JHEP...08..019B10.1007/JHEP08(2020)019[arXiv:2005.06477] [INSPIRE] – reference: DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE]. – reference: CrivellinAHoferichterMKirkMManzariCASchnellLFirst-generation new physics in simplified models: from low-energy parity violation to the LHCJHEP2021102212021JHEP...10..221C10.1007/JHEP10(2021)221[arXiv:2107.13569] [INSPIRE] – reference: N. Raj, Anticipating nonresonant new physics in dilepton angular spectra at the LHC, Phys. Rev. D95 (2017) 015011 [arXiv:1610.03795] [INSPIRE]. – reference: A. Crivellin, D. Müller and L. Schnell, Combined constraints on first generation leptoquarks, Phys. Rev. D103 (2021) 115023 [Addendum ibid.104 (2021) 055020] [arXiv:2104.06417] [INSPIRE]. – reference: BaBar collaboration, Measurement of an Excess ofB¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B} $$\end{document}→ D(*)τ−ν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\nu} $$\end{document}τDecays and Implications for Charged Higgs Bosons, Phys. Rev. D88 (2013) 072012 [arXiv:1303.0571] [INSPIRE]. – reference: SjöstrandTAn introduction to PYTHIA 8.2Comput. Phys. Commun.20151911592015CoPhC.191..159S10.1016/j.cpc.2015.01.0241344.81029[arXiv:1410.3012] [INSPIRE] – reference: AllanachBCGripaiosBYouTThe case for future hadron colliders from B → K(*)μ+μ−decaysJHEP2018030212018JHEP...03..021A10.1007/JHEP03(2018)021[arXiv:1710.06363] [INSPIRE] – reference: BaBar collaboration, Evidence for an excess ofB¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B} $$\end{document}→ D(*)τ−ν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\nu} $$\end{document}τdecays, Phys. Rev. Lett.109 (2012) 101802 [arXiv:1205.5442] [INSPIRE]. – reference: BorschenskyCFuksBKuleszaASchwartländerDScalar leptoquark pair production at the LHC: precision predictions in the era of flavour anomaliesJHEP2022021572022JHEP...02..157B10.1007/JHEP02(2022)157[arXiv:2108.11404] [INSPIRE] – reference: M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Pair production of scalar leptoquarks at the Tevatron, Phys. Rev. Lett.79 (1997) 341 [hep-ph/9704322] [INSPIRE]. – reference: E. Bols, J. Kieseler, M. Verzetti, M. Stoye and A. Stakia, Jet Flavour Classification Using DeepJet, 2020 JINST15 P12012 [arXiv:2008.10519] [INSPIRE]. – reference: AlloulAChristensenNDDegrandeCDuhrCFuksBFeynRules 2.0 — A complete toolbox for tree-level phenomenologyComput. Phys. Commun.201418522502014CoPhC.185.2250A10.1016/j.cpc.2014.04.012[arXiv:1310.1921] [INSPIRE] – reference: FrixioneSNasonPOleariCMatching NLO QCD computations with Parton Shower simulations: the POWHEG methodJHEP2007110702007JHEP...11..070F10.1088/1126-6708/2007/11/070[arXiv:0709.2092] [INSPIRE] – reference: S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B467 (1996) 399 [hep-ph/9512328] [INSPIRE]. – reference: P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B446 (1999) 278 [hep-ph/9809321] [INSPIRE]. – reference: HammettJBRossDANLO Leptoquark Production and Decay: The Narrow-Width Approximation and BeyondJHEP2015071482015JHEP...07..148H10.1007/JHEP07(2015)148[arXiv:1501.06719] [INSPIRE] – reference: T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE]. – reference: CrivellinAGreubCMüllerDSaturninoFScalar Leptoquarks in Leptonic ProcessesJHEP2021021822021JHEP...02..182C10.1007/JHEP02(2021)182[arXiv:2010.06593] [INSPIRE] – reference: M. Abdullah, J. Calle, B. Dutta, A. Flórez and D. Restrepo, Probing a simplified, W′ model of R(D(*)) anomalies using b-tags, τ leptons and missing energy, Phys. Rev. D98 (2018) 055016 [arXiv:1805.01869] [INSPIRE]. – reference: D. Choudhury, N. Kumar and A. Kundu, Search for an opposite sign muon-tau pair and a b-jet at the LHC in the context of flavor anomalies, Phys. Rev. D100 (2019) 075001 [arXiv:1905.07982] [INSPIRE]. – reference: LHCb collaboration, Measurement of the ratio of the B0 → D*−τ+ντand B0 → D*−μ+νμbranching fractions using three-prong τ-lepton decays, Phys. Rev. Lett.120 (2018) 171802 [arXiv:1708.08856] [INSPIRE]. – reference: FaroughyDAGreljoAKamenikJFConfronting lepton flavor universality violation in B decays with high-pTtau lepton searches at LHCPhys. Lett. B20177641262017PhLB..764..126F10.1016/j.physletb.2016.11.011[arXiv:1609.07138] [INSPIRE] – reference: A. Bhaskar, D. Das, T. Mandal, S. Mitra and C. Neeraj, Precise limits on the charge-2/3 U1vector leptoquark, Phys. Rev. D104 (2021) 035016 [arXiv:2101.12069] [INSPIRE]. – reference: AfikYCohenJGozaniEKajomovitzERozenYEstablishing a Search for b → sℓ+ℓ−Anomalies at the LHCJHEP2018080562018JHEP...08..056A10.1007/JHEP08(2018)056[arXiv:1805.11402] [INSPIRE] – reference: CornellaCFaroughyDAFuentes-MartinJIsidoriGNeubertMReading the footprints of the B-meson flavor anomaliesJHEP2021080502021JHEP...08..050C10.1007/JHEP08(2021)050[arXiv:2103.16558] [INSPIRE] – reference: LHCb collaboration, Test of lepton universality in beauty-quark decays, Nature Phys.18 (2022) 277 [arXiv:2103.11769] [INSPIRE]. – reference: PatelHHPackage-X: A Mathematica package for the analytic calculation of one-loop integralsComput. Phys. Commun.20151972762015CoPhC.197..276P340174610.1016/j.cpc.2015.08.0171351.81011[arXiv:1503.01469] [INSPIRE] – reference: ATLAS collaboration, Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector, Eur. Phys. J. C82 (2022) 717 [arXiv:2201.11428] [INSPIRE]. – reference: ATLAS collaboration, Search for new phenomena in pp collisions in final states with tau leptons, b-jets, and missing transverse momentum with the ATLAS detector, Phys. Rev. D104 (2021) 112005 [arXiv:2108.07665] [INSPIRE]. – reference: A. Crivellin, C.A. Manzari and M. Montull, Correlating nonresonant di-electron searches at the LHC to the Cabibbo-angle anomaly and lepton flavor universality violation, Phys. Rev. D104 (2021) 115016 [arXiv:2103.12003] [INSPIRE]. – reference: ATLAS collaboration, Performance of the ATLAS muon triggers in Run 2, 2020 JINST15 P09015 [arXiv:2004.13447] [INSPIRE]. – reference: A. Alves, O.J.P. Éboli, G. Grilli Di Cortona and R.R. Moreira, Indirect and monojet constraints on scalar leptoquarks, Phys. Rev. D99 (2019) 095005 [arXiv:1812.08632] [INSPIRE]. – reference: CMS collaboration, Searches for additional Higgs bosons and vector leptoquarks in ττ final states in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, CERN, Geneva, Switzerland (2022) [CMS-PAS-HIG-21-001]. – reference: T. Mandal, S. Mitra and S. Raz, RD∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {R}_{D^{\left(\ast \right)}} $$\end{document}motivatedS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document}1leptoquark scenarios: Impact of interference on the exclusion limits from LHC data, Phys. Rev. D99 (2019) 055028 [arXiv:1811.03561] [INSPIRE]. – reference: AngelescuAFaroughyDASumensariOLepton Flavor Violation and Dilepton Tails at the LHCEur. Phys. J. C2020806412020EPJC...80..641A10.1140/epjc/s10052-020-8210-5[arXiv:2002.05684] [INSPIRE] – reference: P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE]. – reference: S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys. B507 (1997) 295 [hep-ph/9706545] [INSPIRE]. – reference: ConteEFuksBSerretGMadAnalysis 5, A User-Friendly Framework for Collider PhenomenologyComput. Phys. Commun.20131842222013CoPhC.184..222C299170410.1016/j.cpc.2012.09.009[arXiv:1206.1599] [INSPIRE] – reference: LHCb collaboration, Measurement of the ratio of branching fractionsB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B} $$\end{document}(B¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B} $$\end{document}0 → D*+τ−ν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\nu} $$\end{document}τ)/B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B} $$\end{document}(B¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B} $$\end{document}0 → D*+μ−ν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\nu} $$\end{document}μ), Phys. Rev. Lett.115 (2015) 111803 [Erratum ibid.115 (2015) 159901] [arXiv:1506.08614] [INSPIRE]. – reference: B. Garland, S. Jäger, C.K. Khosa and S. Kvedaraite˙, Probing B anomalies via dimuon tails at a future collider, Phys. Rev. D105 (2022) 115017 [arXiv:2112.05127] [INSPIRE]. – reference: Belle collaboration, Test of Lepton-Flavor Universality in B → K*ℓ+ℓ−Decays at Belle, Phys. Rev. Lett.126 (2021) 161801 [arXiv:1904.02440] [INSPIRE]. – reference: HaischUPoleselloGResonant third-generation leptoquark signatures at the Large Hadron ColliderJHEP2021050572021JHEP...05..057H10.1007/JHEP05(2021)057[arXiv:2012.11474] [INSPIRE] – reference: GreljoASelimovicNLepton-Quark Fusion at Hadron Colliders, preciselyJHEP20210327910.1007/JHEP03(2021)279[arXiv:2012.02092] [INSPIRE] – reference: M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Pair production of scalar leptoquarks at the CERN LHC, Phys. Rev. D71 (2005) 057503 [hep-ph/0411038] [INSPIRE]. – reference: ATLAS collaboration, Search for New Phenomena in Final States with Two Leptons and One or No b-Tagged Jets ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV Using the ATLAS Detector, Phys. Rev. Lett.127 (2021) 141801 [arXiv:2105.13847] [INSPIRE]. – reference: T. Hahn, S. Paßehr and C. Schappacher, FormCalc 9 and Extensions, PoSLL2016 (2016) 068 [J. Phys. Conf. Ser.762 (2016) 012065] [arXiv:1604.04611] [INSPIRE]. – reference: CollinsJCSoperDEAngular Distribution of Dileptons in High-Energy Hadron CollisionsPhys. Rev. D19771622191977PhRvD..16.2219C10.1103/PhysRevD.16.2219[INSPIRE] – reference: D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun.180 (2009) 1709 [arXiv:0811.4113] [INSPIRE]. – reference: CMS collaboration, Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, arXiv:2205.05550 [INSPIRE]. – reference: T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [INSPIRE]. – reference: LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the B0 → D*−τ+ντbranching fraction using three-prong τ decays, Phys. Rev. D97 (2018) 072013 [arXiv:1711.02505] [INSPIRE]. – reference: ATLAS collaboration, Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons ins\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV pp collisions with the ATLAS detector, JHEP10 (2020) 112 [arXiv:2006.05872] [INSPIRE]. – reference: SchmaltzMZhongY-MThe leptoquark Hunter’s guide: large couplingJHEP2019011322019JHEP...01..132S10.1007/JHEP01(2019)132[arXiv:1810.10017] [INSPIRE] – reference: DoršnerIFajferSGreljoAKamenikJFKošnikNPhysics of leptoquarks in precision experiments and at particle collidersPhys. Rept.201664112016PhR...641....1D352230610.1016/j.physrep.2016.06.001[arXiv:1603.04993] [INSPIRE] – reference: CrivellinAFuksBSchnellLExplaining the hints for lepton flavour universality violation with three S2leptoquark generationsJHEP2022061692022JHEP...06..169C10.1007/JHEP06(2022)169[arXiv:2203.10111] [INSPIRE] – reference: CacciariMSalamGPSoyezGThe anti-ktjet clustering algorithmJHEP2008040632008JHEP...04..063C10.1088/1126-6708/2008/04/0631369.81100[arXiv:0802.1189] [INSPIRE] – reference: ATLAS collaboration, ATLAS b-jet identification performance and efficiency measurement withtt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}events in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Eur. Phys. J. C79 (2019) 970 [arXiv:1907.05120] [INSPIRE]. – reference: CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, 2018 JINST13 P05011 [arXiv:1712.07158] [INSPIRE]. – reference: G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C71 (2011) 1554 [Erratum ibid.73 (2013) 2501] [arXiv:1007.1727] [INSPIRE]. – reference: S. Alioli et al., The POWHEG BOX, (2022) http://powhegbox.mib.infn.it. – reference: MarzoccaDMinUSonMBottom-Flavored Mono-Tau Tails at the LHCJHEP2020120352020JHEP...12..035M10.1007/JHEP12(2020)035[arXiv:2008.07541] [INSPIRE] – reference: H. Qu and L. Gouskos, ParticleNet: Jet Tagging via Particle Clouds, Phys. Rev. D101 (2020) 056019 [arXiv:1902.08570] [INSPIRE]. – reference: ATLAS collaboration, Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector, JHEP11 (2020) 005 [Erratum JHEP04 (2021) 142] [arXiv:2006.12946] [INSPIRE]. – reference: W. Altmannshofer, P.S. Bhupal Dev and A. Soni, RD∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {R}_{D^{\left(\ast \right)}} $$\end{document}anomaly: A possible hint for natural supersymmetry with R-parity violation, Phys. Rev. D96 (2017) 095010 [arXiv:1704.06659] [INSPIRE]. – reference: GreljoAMarzoccaDHigh-pTdilepton tails and flavor physicsEur. Phys. J. C2017775482017EPJC...77..548G10.1140/epjc/s10052-017-5119-8[arXiv:1704.09015] [INSPIRE] – reference: BakerMJFuentes-MartínJIsidoriGKönigMHigh-pTsignatures in vector-leptoquark modelsEur. Phys. J. C2019793342019EPJC...79..334B10.1140/epjc/s10052-019-6853-x[arXiv:1901.10480] [INSPIRE] – reference: W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in Lepton-Quark Collisions, Phys. Lett. B191 (1987) 442 [Erratum ibid.448 (1999) 320] [INSPIRE]. – reference: ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 8 TeV with the ATLAS detector, JHEP11 (2014) 056 [arXiv:1409.6064] [INSPIRE]. – reference: BELLE collaboration, Test of lepton flavor universality and search for lepton flavor violation in B → Kℓℓ decays, JHEP03 (2021) 105 [arXiv:1908.01848] [INSPIRE]. – reference: Belle collaboration, Measurement ofR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{R} $$\end{document}(D) andR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{R} $$\end{document}(D*) with a semileptonic tagging method, arXiv:1904.08794 [INSPIRE]. – reference: C. Borschensky, B. Fuks, A. Kulesza and D. Schwartländer, Scalar leptoquark pair production at hadron colliders, Phys. Rev. D101 (2020) 115017 [arXiv:2002.08971] [INSPIRE]. – reference: ATLAS collaboration, Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. Lett.125 (2020) 051801 [arXiv:2002.12223] [INSPIRE]. – reference: CMS collaboration, Search for resonant and nonresonant new phenomena in high-mass dilepton final states ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP07 (2021) 208 [arXiv:2103.02708] [INSPIRE]. – reference: S. Bansal, R.M. Capdevilla, A. Delgado, C. Kolda, A. Martin and N. Raj, Hunting leptoquarks in monolepton searches, Phys. Rev. D98 (2018) 015037 [arXiv:1806.02370] [INSPIRE]. – reference: CMS collaboration, Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP08 (2022) 063 [arXiv:2202.12327] [INSPIRE]. – reference: DoršnerIGreljoALeptoquark toolbox for precision collider studiesJHEP2018051262018JHEP...05..126D10.1007/JHEP05(2018)126[arXiv:1801.07641] [INSPIRE] – reference: ATLAS collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Eur. Phys. J. C76 (2016) 292 [arXiv:1603.05598] [INSPIRE]. – reference: J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D10 (1974) 275 [Erratum ibid.11 (1975) 703] [INSPIRE]. – reference: LHCb collaboration, Test of lepton universality with B0 → K*0ℓ+ℓ−decays, JHEP08 (2017) 055 [arXiv:1705.05802] [INSPIRE]. – reference: L. Buonocore, U. Haisch, P. Nason, F. Tramontano and G. Zanderighi, Lepton-Quark Collisions at the Large Hadron Collider, Phys. Rev. Lett.125 (2020) 231804 [arXiv:2005.06475] [INSPIRE]. – reference: B.C. Allanach, T. Corbett, M.J. Dolan and T. You, Hadron collider sensitivity to fat flavourful Z′s forRK∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {R}_{K^{\left(\ast \right)}} $$\end{document}, JHEP03 (2019) 137 [arXiv:1810.02166] [INSPIRE]. – reference: AzatovAGarosiFGreljoAMarzoccaDSalkoJTrifinopoulosSNew physics in b → sμμ: FCC-hh or a muon collider?JHEP2022101492022JHEP...10..149A10.1007/JHEP10(2022)149[arXiv:2205.13552] [INSPIRE] – reference: AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A10.1007/JHEP06(2010)0431290.81155[arXiv:1002.2581] [INSPIRE] – reference: J.C. Pati and A. Salam, Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions, Phys. Rev. D8 (1973) 1240 [INSPIRE]. – reference: CMS collaboration, Identification of hadronic tau lepton decays using a deep neural network, 2022 JINST17 P07023 [arXiv:2201.08458] [INSPIRE]. – reference: LHCb collaboration, Search for lepton-universality violation in B+ → K+ℓ+ℓ−decays, Phys. Rev. Lett.122 (2019) 191801 [arXiv:1903.09252] [INSPIRE]. – reference: CacciariMSalamGPSoyezGFastJet User ManualEur. Phys. J. C20127218962012EPJC...72.1896C10.1140/epjc/s10052-012-1896-21393.81007[arXiv:1111.6097] [INSPIRE] – volume: 03 start-page: 021 year: 2018 ident: 19670_CR10 publication-title: JHEP doi: 10.1007/JHEP03(2018)021 – ident: 19670_CR64 doi: 10.22323/1.260.0068 – ident: 19670_CR38 – ident: 19670_CR60 doi: 10.1016/0370-2693(87)90637-X – ident: 19670_CR45 doi: 10.1103/PhysRevD.71.057503 – volume: 01 start-page: 132 year: 2019 ident: 19670_CR15 publication-title: JHEP doi: 10.1007/JHEP01(2019)132 – volume: 79 start-page: 334 year: 2019 ident: 19670_CR17 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-6853-x – ident: 19670_CR48 doi: 10.1103/PhysRevD.101.115017 – volume: 191 start-page: 159 year: 2015 ident: 19670_CR71 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.01.024 – volume: 925 start-page: 560 year: 2017 ident: 19670_CR40 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2017.10.014 – volume: 04 start-page: 063 year: 2008 ident: 19670_CR73 publication-title: JHEP doi: 10.1088/1126-6708/2008/04/063 – volume: 02 start-page: 157 year: 2022 ident: 19670_CR53 publication-title: JHEP doi: 10.1007/JHEP02(2022)157 – ident: 19670_CR3 – volume: 10 start-page: 149 year: 2022 ident: 19670_CR27 publication-title: JHEP doi: 10.1007/JHEP10(2022)149 – ident: 19670_CR31 – ident: 19670_CR18 doi: 10.1103/PhysRevD.100.075001 – volume: 07 start-page: 148 year: 2015 ident: 19670_CR46 publication-title: JHEP doi: 10.1007/JHEP07(2015)148 – volume: 16 start-page: 2219 year: 1977 ident: 19670_CR88 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.16.2219 – ident: 19670_CR8 doi: 10.1103/PhysRevD.95.015011 – volume: 11 start-page: 070 year: 2007 ident: 19670_CR56 publication-title: JHEP doi: 10.1088/1126-6708/2007/11/070 – ident: 19670_CR35 – volume: 08 start-page: 056 year: 2018 ident: 19670_CR12 publication-title: JHEP doi: 10.1007/JHEP08(2018)056 – ident: 19670_CR72 doi: 10.1016/S0370-2693(98)01541-X – volume: 10 start-page: 221 year: 2021 ident: 19670_CR24 publication-title: JHEP doi: 10.1007/JHEP10(2021)221 – ident: 19670_CR77 – ident: 19670_CR54 doi: 10.1103/PhysRevD.99.095005 – ident: 19670_CR79 doi: 10.1007/JHEP02(2014)057 – ident: 19670_CR92 – ident: 19670_CR37 – volume: 185 start-page: 2250 year: 2014 ident: 19670_CR62 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.04.012 – ident: 19670_CR20 doi: 10.1103/PhysRevD.104.035016 – ident: 19670_CR81 – ident: 19670_CR29 – ident: 19670_CR85 – ident: 19670_CR25 doi: 10.1103/PhysRevD.105.115017 – volume: 197 start-page: 276 year: 2015 ident: 19670_CR66 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.08.017 – ident: 19670_CR55 doi: 10.1088/1126-6708/2004/11/040 – ident: 19670_CR4 – ident: 19670_CR89 doi: 10.1016/j.cpc.2009.02.020 – ident: 19670_CR49 doi: 10.1103/PhysRevLett.125.231804 – ident: 19670_CR32 – ident: 19670_CR70 doi: 10.1140/epjc/s10052-022-10328-7 – volume: 05 start-page: 057 year: 2021 ident: 19670_CR52 publication-title: JHEP doi: 10.1007/JHEP05(2021)057 – ident: 19670_CR36 – ident: 19670_CR91 – volume: 08 start-page: 050 year: 2021 ident: 19670_CR22 publication-title: JHEP doi: 10.1007/JHEP08(2021)050 – volume: 05 start-page: 126 year: 2018 ident: 19670_CR11 publication-title: JHEP doi: 10.1007/JHEP05(2018)126 – volume: 02 start-page: 106 year: 2022 ident: 19670_CR43 publication-title: JHEP doi: 10.1007/JHEP02(2022)106 – ident: 19670_CR67 doi: 10.1016/0550-3213(96)00110-1 – ident: 19670_CR39 doi: 10.1103/PhysRevD.96.095010 – volume: 06 start-page: 043 year: 2010 ident: 19670_CR57 publication-title: JHEP doi: 10.1007/JHEP06(2010)043 – ident: 19670_CR23 doi: 10.1103/PhysRevD.103.115023 – volume: 08 start-page: 019 year: 2020 ident: 19670_CR50 publication-title: JHEP doi: 10.1007/JHEP08(2020)019 – volume: 72 start-page: 1896 year: 2012 ident: 19670_CR74 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-012-1896-2 – ident: 19670_CR47 doi: 10.1103/PhysRevD.93.035018 – ident: 19670_CR68 doi: 10.1016/S0550-3213(97)00574-9 – ident: 19670_CR80 – ident: 19670_CR90 doi: 10.1103/PhysRevD.101.056019 – ident: 19670_CR84 – volume: 02 start-page: 182 year: 2021 ident: 19670_CR69 publication-title: JHEP doi: 10.1007/JHEP02(2021)182 – ident: 19670_CR1 – volume: 80 start-page: 641 year: 2020 ident: 19670_CR19 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8210-5 – volume: 12 start-page: 035 year: 2020 ident: 19670_CR42 publication-title: JHEP doi: 10.1007/JHEP12(2020)035 – ident: 19670_CR65 doi: 10.1016/S0010-4655(98)00173-8 – ident: 19670_CR33 – ident: 19670_CR5 – volume: 641 start-page: 1 year: 2016 ident: 19670_CR61 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2016.06.001 – ident: 19670_CR75 – ident: 19670_CR44 doi: 10.1103/PhysRevLett.79.341 – ident: 19670_CR58 doi: 10.1103/PhysRevD.10.275 – ident: 19670_CR82 doi: 10.1088/1748-0221/15/12/P12012 – ident: 19670_CR87 – ident: 19670_CR41 – volume: 03 start-page: 279 year: 2021 ident: 19670_CR51 publication-title: JHEP doi: 10.1007/JHEP03(2021)279 – ident: 19670_CR13 doi: 10.1103/PhysRevD.98.015037 – ident: 19670_CR14 doi: 10.1007/JHEP03(2019)137 – ident: 19670_CR16 doi: 10.1103/PhysRevD.99.055028 – ident: 19670_CR63 doi: 10.1016/S0010-4655(01)00290-9 – volume: 77 start-page: 548 year: 2017 ident: 19670_CR9 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5119-8 – volume: 06 start-page: 169 year: 2022 ident: 19670_CR26 publication-title: JHEP doi: 10.1007/JHEP06(2022)169 – ident: 19670_CR83 – ident: 19670_CR2 – ident: 19670_CR28 – ident: 19670_CR30 – ident: 19670_CR6 – ident: 19670_CR21 doi: 10.1103/PhysRevD.104.115016 – ident: 19670_CR34 – ident: 19670_CR86 doi: 10.1140/epjc/s10052-011-1554-0 – volume: 764 start-page: 126 year: 2017 ident: 19670_CR7 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2016.11.011 – ident: 19670_CR59 doi: 10.1103/PhysRevD.8.1240 – volume: 184 start-page: 222 year: 2013 ident: 19670_CR78 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.09.009 – ident: 19670_CR76 |
SSID | ssj0015190 |
Score | 2.4732676 |
Snippet | A
bstract
Given the hints of lepton-flavour non-universality in semi-leptonic
B
decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours... Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are... Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are... Abstract Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106 |
SubjectTerms | Bottom Quarks Classical and Quantum Gravitation Constraint modelling Couplings Elementary Particles Flavor (particle physics) High energy physics Higher-Order Perturbative Calculations Large Hadron Collider Leptons Luminosity Particle collisions Physics Physics and Astronomy Protons Quantum Field Theories Quantum Field Theory Quantum Physics Quarks Regular Article - Theoretical Physics Relativity Theory Signal generation Specific BSM Phenomenology Specific QCD Phenomenology String Theory |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbaRZV6QX2qC7TyoQc4GNaxndgnVNpFKw5bVIEEp8hPDo2SbRKQ-PeMs85CK9Gr7cTRN_bMxOP5BqGvYOOVM1oTUTBHwEIFYoLShItiZiwPOnPDBdllvrjkZ1fiKh24dela5agTB0XtGhvPyI_AzMakSFCux6s_JFaNitHVVELjJdoCFSzlBG2dzJfnvzZxBPBPZiOhz6w4OlvMzyndhx_-7IDGIkdPbNFA2f-Xn_lPaHSwOKdv0HZyFfG3tWzfohe-fodeDVc2bfceLX_W-Efrq4pc6xqv1sytgDJuAu4Aed3iyq96mEa3vztsm9uYfHuD-waDAr67J0MHDpW-g5m6D-jydH7xfUFSdQRiOS16QrmQOuPOCOaEBWhDwWVQwYggcp4HyWArWxEj68xkmQyGeamlcD5kOUiAfUSTuqn9J4SpKDINtlzNpOXeFVJRFXLFaBZYYZiYosMRp9Im6vBYwaIqR9LjNbBlBBYa8ina3zywWrNmPD_0JAK_GRbproeGpr0p0-4pQ4D1BK6FA3eUg8lVLNLKKAsqUivP1BTtjWIr0x7syscVM0UHoygfu5_5np3_v2oXvY4jYzYilXto0re3_jO4Jb35ktbeA-Q73kY priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQCIkF8RTlJQ8MdDDUsZ3YIxSqqgMwgARTZDs2A1FaNQGJf885TYpa1IEt8kOOvrN9n3W-zwhdgI9XmdGaiIRlBDyUJ8YrTbhIesZyr6OsviD7EA9f-OhVvDYiSSEXZil-fz0a3j9ReglH9KhLg7T2hqAsCW809OP-PFwANKTX6vb87bTgcmpl_gU6uRQBrR3LYAdtN4wQ38xMuIvWXLGHNuubmbbcRw-PBb6bujwnb7rAk5lAK4CJxx6XALCe4txNKhhGTz9KbMefIcf2HVdjDPvs1zepK7DP9ReMVB6gl8H9c39ImkcQiOU0qQjlQuqIZ0awTFhA0CdceuWN8CLmsZcMVqwVIYDOTBRJb5iTWorM-SgGoNkhWi_GhTtCmIok0uCyVU9a7rJEKqp8rBiNPEsMEx101eKU2kYhPDxUkaettvEM2DQACwVxB13OO0xm4hirm94G4OfNgqp1XQDGTptFknoP0wYYRAask4NnVSyoxygLO6FWjqkOOm3NljZLrUyBf4VsWfC6HdRtTflbveJ_jv_R9gRthc-QgUjlKVqvpp_uDKhIZc7rafgDtE7UWA priority: 102 providerName: Springer Nature |
Title | On Drell-Yan production of scalar leptoquarks coupling to heavy-quark flavours |
URI | https://link.springer.com/article/10.1007/JHEP11(2022)106 https://www.proquest.com/docview/2737811067 https://doaj.org/article/ffdba818d92343629305999c088a9e39 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERIXxFMslJUPHNqD6fqV2Md22WXVw1IhViqnyHZsDo2yq01aiX_POI9SkCouXCzFdmLrm9jfWPZ8BviAHG9KZy1VuSgpMlSkLhpLpcpnzstoedkdkF1nq408v1SXd676SmfCenngHriTGPFTyColeiISZ1sjkqKI8Tg6rAmiC91DzhsXU8P-Afols1HIZ5afnK8WF4wd4UKfH7N0udEdDuqk-v_wL__aEu2YZvkMng4uIjntu_YcHoT6BTzujmr65iWsv9Tk0z5UFf1ua7LrFVsRXbKNpEHE7Z5UYddiM3Z_1RC_vU5Btz9IuyU48d78pF0BiZW9wZaaV7BZLr7NV3S4FYF6yfKWMqm05bJ0SpTKI6Qxlzqa6FRUmcyiFoiQV2lHXTjOdXQiaKtVGSLPEHnxGg7qbR3eAGEq5xY53My0l6HMtWEmZkYwHkXuhJrAxxGnwg-S4enmiqoYxY57YIsELGZkEzi6fWHXq2XcX_UsAX9bLclcdxlo_GIwfvEv40_gcDRbMYy9pkCHLIXPIg1P4Hg05e_ie_rz9n_05x08Sd9LsYpMH8JBu78O79Fpad0UHurl5yk8OlusL77i05zLlGbzaffnYrrhp78Aaf7pog |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgSXiqfYtoAPILUH0_UriQ8IAe2yfbBwaKVySp3E7qFRsk3SVv1T_EbGeWwBqdx6teOHZsbzjTOeGYC3iPE6S4yhKhQZRYRyNHHaUKnCcZJKZ3jWPpCdBdMjuXesjpfg1xAL459VDjqxVdRZmfp_5FsIsz4oEpXrx_k59VWjvHd1KKHRicW-vb7CK1v9YXcb-fuO88nO4Zcp7asK0FSysKFMqshwmSVKZCrFLblQRk67RDkVyMBFeMPHdu-RFgnnkUuEjUykMut4gDsXOO89uC8FIrmPTJ98XXgt0BoaD-mDxuHW3nTnB2MbHGFyk_mSSn8gX1sg4C-r9h9HbItvk8ew0hum5FMnSU9gyRZP4UH7QDStn8Hse0G2K5vn9KcpyLzLE4s8JaUjNfLZVCS38waXMdVZTdLywof6npKmJKjuL69p20Fcbi5xpfo5HN0J1V7AclEW9iUQpkJu0HLQ4yiVNgsjzbQLtGDciTARagTvBzrFaZ-o3NfLyOMhxXJH2NgTFhuCEWwsBsy7HB23f_rZE37xmU-u3TaU1Wncn9XYOZReNGQyNH4lArwWPomNTlEhG22FHsH6wLa4P_F1fCOfI9gcWHnTfct-Vv8_1Rt4OD38dhAf7M721-CRH-XjIFm0DstNdWFfoUHUJK9bKSRwctdi_xtY_Rit |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSgbig8hKBFvYAUntYEu_D9h4qREmitEUhQlQqJ3dt7_aAZQfbLeqv9euY9SMFpHLrdd-emZ2Z9bwA3qKMV2msNZUBTylKKEtjqzQVMhjHibCapY2D7MKfn4ijU3m6Add9LIxzq-x5YsOo0yJx_8hHKGZdUCQy15Ht3CKWk9mH1U_qKkg5S2tfTqMlkWNz9Qufb9X-4QRx_Y6x2fTbpzntKgzQRHhBTT0hQ81EGkueygSPZwMRWmVjaaUvfBviax_bnXWax4yFNuYm1KFMjWU-fgXHde_BZuBeRQPYPJgull_XNgzUjcZ9MqFxMDqaT5eet8tQaO55rsDSH3KwKRfwl477j1m2kXazLXjUqankY0tXj2HD5E_gfuMumlRPYfElJ5PSZBn9rnOyarPGIoZJYUmFWNclycyqxm10-aMiSXHhAn_PSV0QZP6XV7TpIDbTl7hT9QxO7gRuz2GQF7l5AcSTAdOoR6hxmAiTBqHylPUV95jlQczlEN73cIqSLm25q56RRX3C5RawkQMsNvhD2F1PWLUZO24feuAAvx7mUm03DUV5HnU3N7IWaRnVmhRVYYHiXnGX0kYlyJ61MlwNYbtHW9Td_yq6odYh7PWovOm-5Twv_7_UG3iAJB99Plwcv4KHbpILivTCbRjU5YXZQe2ojl93ZEjg7K4p_zdLHh4_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Drell-Yan+production+of+scalar+leptoquarks+coupling+to+heavy-quark+flavours&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Ulrich+Haisch&rft.au=Luc+Schnell&rft.au=Stefan+Schulte&rft.date=2022-11-18&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2022&rft.issue=11&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1007%2FJHEP11%282022%29106&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ffdba818d92343629305999c088a9e39 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |