On Drell-Yan production of scalar leptoquarks coupling to heavy-quark flavours

A bstract Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2022; no. 11; pp. 106 - 21
Main Authors Haisch, Ulrich, Schnell, Luc, Schulte, Stefan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 18.11.2022
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant dilepton searches at the Large Hadron Collider (LHC) turn out to be phenomenologically relevant. Based on the latest LHC dilepton analyses corresponding to an integrated luminosity of around 140 fb − 1 of proton-proton collisions at s = 13 TeV, we present improved limits on the scalar LQ couplings that involve heavy-quark flavours and light or heavy dileptons. In particular, we show that effects beyond the leading order that are related to real QCD emissions are relevant in this context, since the inclusion of additional heavy-flavoured jets notably improves the exclusion limits that derive from the high-mass dilepton tails. The impact of electroweak corrections and interference effects between signal and background is also analysed. Within the POWHEG-BOX framework we provide a dedicated Monte Carlo code that allows for an on-the-fly signal event generation including all the LQ corrections considered in this article.
AbstractList Abstract Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant dilepton searches at the Large Hadron Collider (LHC) turn out to be phenomenologically relevant. Based on the latest LHC dilepton analyses corresponding to an integrated luminosity of around 140 fb −1 of proton-proton collisions at s $$ \sqrt{s} $$ = 13 TeV, we present improved limits on the scalar LQ couplings that involve heavy-quark flavours and light or heavy dileptons. In particular, we show that effects beyond the leading order that are related to real QCD emissions are relevant in this context, since the inclusion of additional heavy-flavoured jets notably improves the exclusion limits that derive from the high-mass dilepton tails. The impact of electroweak corrections and interference effects between signal and background is also analysed. Within the POWHEG-BOX framework we provide a dedicated Monte Carlo code that allows for an on-the-fly signal event generation including all the LQ corrections considered in this article.
A bstract Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant dilepton searches at the Large Hadron Collider (LHC) turn out to be phenomenologically relevant. Based on the latest LHC dilepton analyses corresponding to an integrated luminosity of around 140 fb − 1 of proton-proton collisions at s = 13 TeV, we present improved limits on the scalar LQ couplings that involve heavy-quark flavours and light or heavy dileptons. In particular, we show that effects beyond the leading order that are related to real QCD emissions are relevant in this context, since the inclusion of additional heavy-flavoured jets notably improves the exclusion limits that derive from the high-mass dilepton tails. The impact of electroweak corrections and interference effects between signal and background is also analysed. Within the POWHEG-BOX framework we provide a dedicated Monte Carlo code that allows for an on-the-fly signal event generation including all the LQ corrections considered in this article.
Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant dilepton searches at the Large Hadron Collider (LHC) turn out to be phenomenologically relevant. Based on the latest LHC dilepton analyses corresponding to an integrated luminosity of around 140 fb−1 of proton-proton collisions at s = 13 TeV, we present improved limits on the scalar LQ couplings that involve heavy-quark flavours and light or heavy dileptons. In particular, we show that effects beyond the leading order that are related to real QCD emissions are relevant in this context, since the inclusion of additional heavy-flavoured jets notably improves the exclusion limits that derive from the high-mass dilepton tails. The impact of electroweak corrections and interference effects between signal and background is also analysed. Within the POWHEG-BOX framework we provide a dedicated Monte Carlo code that allows for an on-the-fly signal event generation including all the LQ corrections considered in this article.
Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant dilepton searches at the Large Hadron Collider (LHC) turn out to be phenomenologically relevant. Based on the latest LHC dilepton analyses corresponding to an integrated luminosity of around 140 fb − 1 of proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV, we present improved limits on the scalar LQ couplings that involve heavy-quark flavours and light or heavy dileptons. In particular, we show that effects beyond the leading order that are related to real QCD emissions are relevant in this context, since the inclusion of additional heavy-flavoured jets notably improves the exclusion limits that derive from the high-mass dilepton tails. The impact of electroweak corrections and interference effects between signal and background is also analysed. Within the POWHEG-BOX framework we provide a dedicated Monte Carlo code that allows for an on-the-fly signal event generation including all the LQ corrections considered in this article.
ArticleNumber 106
Author Schnell, Luc
Schulte, Stefan
Haisch, Ulrich
Author_xml – sequence: 1
  givenname: Ulrich
  surname: Haisch
  fullname: Haisch, Ulrich
  organization: Max Planck Institute for Physics
– sequence: 2
  givenname: Luc
  orcidid: 0000-0003-2073-9817
  surname: Schnell
  fullname: Schnell, Luc
  email: schnell@mpp.mpg.de
  organization: Max Planck Institute for Physics, Technische Universität München, Physik-Department
– sequence: 3
  givenname: Stefan
  surname: Schulte
  fullname: Schulte, Stefan
  organization: Max Planck Institute for Physics, Technische Universität München, Physik-Department
BookMark eNp1UU1PGzEUtCoqFVLOvVri0h6W-GO9ax8rGpogRHooh56st1473WDWwd5F4t_XyRaBkDjZmjczmvfmBB31obcIfaHknBJSz6-Wi1-UfmWEsW-UVB_QMSVMFbKs1dGr_yd0ktKWECqoIsfoZt3jH9F6X_yBHu9iaEczdKHHweFkwEPE3u6G8DBCvEvYhHHnu36Dh4D_Wnh8Kg4D7Dw8hjGmz-ijA5_s6f93hm4vF78vlsX1-ufq4vt1YUpaDwUthQRWto3grTCiJq4upVOuEU5UZeUk5yTjivKSN4xJ13ArQYrWOlaxVvEZWk2-bYCt3sXuHuKTDtDpAxDiRkMcOuOtdq5tQFLZKpbdKqaytVLKEClBWb73Opu88vYPo02D3uZV-hxfs5rXkuZr1pklJpaJIaVonTbdAPtTDRE6rynR-xr0VIPe15CBKuvmb3TPad9XkEmRMrPf2PiS5z3JPypWmUk
CitedBy_id crossref_primary_10_1007_JHEP11_2023_147
crossref_primary_10_1007_JHEP02_2023_070
crossref_primary_10_1103_PhysRevD_109_055018
crossref_primary_10_1007_JHEP05_2023_087
crossref_primary_10_1007_JHEP03_2023_064
crossref_primary_10_1140_epjc_s10052_024_12618_8
crossref_primary_10_1007_JHEP08_2024_176
crossref_primary_10_1140_epjc_s10052_023_11304_5
crossref_primary_10_1103_PhysRevD_109_055033
Cites_doi 10.1007/JHEP03(2018)021
10.22323/1.260.0068
10.1016/0370-2693(87)90637-X
10.1103/PhysRevD.71.057503
10.1007/JHEP01(2019)132
10.1140/epjc/s10052-019-6853-x
10.1103/PhysRevD.101.115017
10.1016/j.cpc.2015.01.024
10.1016/j.nuclphysb.2017.10.014
10.1088/1126-6708/2008/04/063
10.1007/JHEP02(2022)157
10.1007/JHEP10(2022)149
10.1103/PhysRevD.100.075001
10.1007/JHEP07(2015)148
10.1103/PhysRevD.16.2219
10.1103/PhysRevD.95.015011
10.1088/1126-6708/2007/11/070
10.1007/JHEP08(2018)056
10.1016/S0370-2693(98)01541-X
10.1007/JHEP10(2021)221
10.1103/PhysRevD.99.095005
10.1007/JHEP02(2014)057
10.1016/j.cpc.2014.04.012
10.1103/PhysRevD.104.035016
10.1103/PhysRevD.105.115017
10.1016/j.cpc.2015.08.017
10.1088/1126-6708/2004/11/040
10.1016/j.cpc.2009.02.020
10.1103/PhysRevLett.125.231804
10.1140/epjc/s10052-022-10328-7
10.1007/JHEP05(2021)057
10.1007/JHEP08(2021)050
10.1007/JHEP05(2018)126
10.1007/JHEP02(2022)106
10.1016/0550-3213(96)00110-1
10.1103/PhysRevD.96.095010
10.1007/JHEP06(2010)043
10.1103/PhysRevD.103.115023
10.1007/JHEP08(2020)019
10.1140/epjc/s10052-012-1896-2
10.1103/PhysRevD.93.035018
10.1016/S0550-3213(97)00574-9
10.1103/PhysRevD.101.056019
10.1007/JHEP02(2021)182
10.1140/epjc/s10052-020-8210-5
10.1007/JHEP12(2020)035
10.1016/S0010-4655(98)00173-8
10.1016/j.physrep.2016.06.001
10.1103/PhysRevLett.79.341
10.1103/PhysRevD.10.275
10.1088/1748-0221/15/12/P12012
10.1007/JHEP03(2021)279
10.1103/PhysRevD.98.015037
10.1007/JHEP03(2019)137
10.1103/PhysRevD.99.055028
10.1016/S0010-4655(01)00290-9
10.1140/epjc/s10052-017-5119-8
10.1007/JHEP06(2022)169
10.1103/PhysRevD.104.115016
10.1140/epjc/s10052-011-1554-0
10.1016/j.physletb.2016.11.011
10.1103/PhysRevD.8.1240
10.1016/j.cpc.2012.09.009
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP11(2022)106
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 21
ExternalDocumentID oai_doaj_org_article_ffdba818d92343629305999c088a9e39
10_1007_JHEP11_2022_106
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c417t-1458a24db53d5c570f748f9fb5f5646f83305c591343b228fb3e8a85def262d93
IEDL.DBID DOA
ISSN 1029-8479
IngestDate Wed Aug 27 01:15:17 EDT 2025
Thu Jul 17 07:10:51 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
Tue Jul 01 01:00:37 EDT 2025
Fri Feb 21 02:45:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Specific QCD Phenomenology
Specific BSM Phenomenology
Bottom Quarks
Higher-Order Perturbative Calculations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-1458a24db53d5c570f748f9fb5f5646f83305c591343b228fb3e8a85def262d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2073-9817
OpenAccessLink https://doaj.org/article/ffdba818d92343629305999c088a9e39
PQID 2737811067
PQPubID 2034718
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_ffdba818d92343629305999c088a9e39
proquest_journals_2737811067
crossref_citationtrail_10_1007_JHEP11_2022_106
crossref_primary_10_1007_JHEP11_2022_106
springer_journals_10_1007_JHEP11_2022_106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-18
PublicationDateYYYYMMDD 2022-11-18
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-18
  day: 18
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References IguroSTobeKR(D(*)) in a general two Higgs doublet modelNucl. Phys. B20179255602017NuPhB.925..560I373049210.1016/j.nuclphysb.2017.10.0141375.81248[arXiv:1708.06176] [INSPIRE]
CMS collaboration, Identification of hadronic tau lepton decays using a deep neural network, 2022 JINST17 P07023 [arXiv:2201.08458] [INSPIRE].
J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D10 (1974) 275 [Erratum ibid.11 (1975) 703] [INSPIRE].
NNPDF collaboration, The path to proton structure at 1% accuracy, Eur. Phys. J. C82 (2022) 428 [arXiv:2109.02653] [INSPIRE].
CornellaCFaroughyDAFuentes-MartinJIsidoriGNeubertMReading the footprints of the B-meson flavor anomaliesJHEP2021080502021JHEP...08..050C10.1007/JHEP08(2021)050[arXiv:2103.16558] [INSPIRE]
BELLE collaboration, Test of lepton flavor universality and search for lepton flavor violation in B → Kℓℓ decays, JHEP03 (2021) 105 [arXiv:1908.01848] [INSPIRE].
CrivellinAFuksBSchnellLExplaining the hints for lepton flavour universality violation with three S2leptoquark generationsJHEP2022061692022JHEP...06..169C10.1007/JHEP06(2022)169[arXiv:2203.10111] [INSPIRE]
CMS collaboration, Search for resonant and nonresonant new phenomena in high-mass dilepton final states ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP07 (2021) 208 [arXiv:2103.02708] [INSPIRE].
AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A10.1007/JHEP06(2010)0431290.81155[arXiv:1002.2581] [INSPIRE]
FaroughyDAGreljoAKamenikJFConfronting lepton flavor universality violation in B decays with high-pTtau lepton searches at LHCPhys. Lett. B20177641262017PhLB..764..126F10.1016/j.physletb.2016.11.011[arXiv:1609.07138] [INSPIRE]
H. Qu and L. Gouskos, ParticleNet: Jet Tagging via Particle Clouds, Phys. Rev. D101 (2020) 056019 [arXiv:1902.08570] [INSPIRE].
S. Bansal, R.M. Capdevilla, A. Delgado, C. Kolda, A. Martin and N. Raj, Hunting leptoquarks in monolepton searches, Phys. Rev. D98 (2018) 015037 [arXiv:1806.02370] [INSPIRE].
P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B446 (1999) 278 [hep-ph/9809321] [INSPIRE].
ATLAS collaboration, Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. Lett.125 (2020) 051801 [arXiv:2002.12223] [INSPIRE].
Belle collaboration, Test of Lepton-Flavor Universality in B → K*ℓ+ℓ−Decays at Belle, Phys. Rev. Lett.126 (2021) 161801 [arXiv:1904.02440] [INSPIRE].
D. Choudhury, N. Kumar and A. Kundu, Search for an opposite sign muon-tau pair and a b-jet at the LHC in the context of flavor anomalies, Phys. Rev. D100 (2019) 075001 [arXiv:1905.07982] [INSPIRE].
S. Alioli et al., The POWHEG BOX, (2022) http://powhegbox.mib.infn.it.
CMS collaboration, Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP08 (2022) 063 [arXiv:2202.12327] [INSPIRE].
ConteEFuksBSerretGMadAnalysis 5, A User-Friendly Framework for Collider PhenomenologyComput. Phys. Commun.20131842222013CoPhC.184..222C299170410.1016/j.cpc.2012.09.009[arXiv:1206.1599] [INSPIRE]
LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the B0 → D*−τ+ντbranching fraction using three-prong τ decays, Phys. Rev. D97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].
MarzoccaDMinUSonMBottom-Flavored Mono-Tau Tails at the LHCJHEP2020120352020JHEP...12..035M10.1007/JHEP12(2020)035[arXiv:2008.07541] [INSPIRE]
FrixioneSNasonPOleariCMatching NLO QCD computations with Parton Shower simulations: the POWHEG methodJHEP2007110702007JHEP...11..070F10.1088/1126-6708/2007/11/070[arXiv:0709.2092] [INSPIRE]
DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
AfikYCohenJGozaniEKajomovitzERozenYEstablishing a Search for b → sℓ+ℓ−Anomalies at the LHCJHEP2018080562018JHEP...08..056A10.1007/JHEP08(2018)056[arXiv:1805.11402] [INSPIRE]
ATLAS collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Eur. Phys. J. C76 (2016) 292 [arXiv:1603.05598] [INSPIRE].
CMS collaboration, Searches for additional Higgs bosons and vector leptoquarks in ττ final states in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, CERN, Geneva, Switzerland (2022) [CMS-PAS-HIG-21-001].
B.C. Allanach, T. Corbett, M.J. Dolan and T. You, Hadron collider sensitivity to fat flavourful Z′s forRK∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {R}_{K^{\left(\ast \right)}} $$\end{document}, JHEP03 (2019) 137 [arXiv:1810.02166] [INSPIRE].
CacciariMSalamGPSoyezGFastJet User ManualEur. Phys. J. C20127218962012EPJC...72.1896C10.1140/epjc/s10052-012-1896-21393.81007[arXiv:1111.6097] [INSPIRE]
LHCb collaboration, Test of lepton universality in beauty-quark decays, Nature Phys.18 (2022) 277 [arXiv:2103.11769] [INSPIRE].
LHCb collaboration, Measurement of the ratio of the B0 → D*−τ+ντand B0 → D*−μ+νμbranching fractions using three-prong τ-lepton decays, Phys. Rev. Lett.120 (2018) 171802 [arXiv:1708.08856] [INSPIRE].
BakerMJFuentes-MartínJIsidoriGKönigMHigh-pTsignatures in vector-leptoquark modelsEur. Phys. J. C2019793342019EPJC...79..334B10.1140/epjc/s10052-019-6853-x[arXiv:1901.10480] [INSPIRE]
BuonocoreLNasonPTramontanoFZanderighiGLeptons in the protonJHEP2020080192020JHEP...08..019B10.1007/JHEP08(2020)019[arXiv:2005.06477] [INSPIRE]
ATLAS collaboration, Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector, JHEP11 (2020) 005 [Erratum JHEP04 (2021) 142] [arXiv:2006.12946] [INSPIRE].
GreljoASelimovicNLepton-Quark Fusion at Hadron Colliders, preciselyJHEP20210327910.1007/JHEP03(2021)279[arXiv:2012.02092] [INSPIRE]
M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Pair production of scalar leptoquarks at the CERN LHC, Phys. Rev. D71 (2005) 057503 [hep-ph/0411038] [INSPIRE].
E. Bols, J. Kieseler, M. Verzetti, M. Stoye and A. Stakia, Jet Flavour Classification Using DeepJet, 2020 JINST15 P12012 [arXiv:2008.10519] [INSPIRE].
CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, 2018 JINST13 P05011 [arXiv:1712.07158] [INSPIRE].
CollinsJCSoperDEAngular Distribution of Dileptons in High-Energy Hadron CollisionsPhys. Rev. D19771622191977PhRvD..16.2219C10.1103/PhysRevD.16.2219[INSPIRE]
G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C71 (2011) 1554 [Erratum ibid.73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
AlloulAChristensenNDDegrandeCDuhrCFuksBFeynRules 2.0 — A complete toolbox for tree-level phenomenologyComput. Phys. Commun.201418522502014CoPhC.185.2250A10.1016/j.cpc.2014.04.012[arXiv:1310.1921] [INSPIRE]
A. Crivellin, D. Müller and L. Schnell, Combined constraints on first generation leptoquarks, Phys. Rev. D103 (2021) 115023 [Addendum ibid.104 (2021) 055020] [arXiv:2104.06417] [INSPIRE].
CrivellinAGreubCMüllerDSaturninoFScalar Leptoquarks in Leptonic ProcessesJHEP2021021822021JHEP...02..182C10.1007/JHEP02(2021)182[arXiv:2010.06593] [INSPIRE]
GreljoAMarzoccaDHigh-pTdilepton tails and flavor physicsEur. Phys. J. C2017775482017EPJC...77..548G10.1140/epjc/s10052-017-5119-8[arXiv:1704.09015] [INSPIRE]
DoršnerIGreljoALeptoquark toolbox for precision collider studiesJHEP2018051262018JHEP...05..126D10.1007/JHEP05(2018)126[arXiv:1801.07641] [INSPIRE]
A. Crivellin, C.A. Manzari and M. Montull, Correlating nonresonant di-electron searches at the LHC to the Cabibbo-angle anomaly and lepton flavor universality violation, Phys. Rev. D104 (2021) 115016 [arXiv:2103.12003] [INSPIRE].
J.C. Pati and A. Salam, Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions, Phys. Rev. D8 (1973) 1240 [INSPIRE].
M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Pair production of scalar leptoquarks at the Tevatron, Phys. Rev. Lett.79 (1997) 341 [hep-ph/9704322] [INSPIRE].
P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
ATLAS collaboration, ATLAS b-jet identification performance and efficiency measurement withtt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}events in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepa
19670_CR41
19670_CR85
19670_CR86
M Cacciari (19670_CR74) 2012; 72
19670_CR87
19670_CR44
19670_CR81
A Crivellin (19670_CR26) 2022; 06
19670_CR82
19670_CR83
19670_CR84
19670_CR49
T Sjöstrand (19670_CR71) 2015; 191
19670_CR45
19670_CR89
19670_CR47
19670_CR48
C Borschensky (19670_CR53) 2022; 02
D Marzocca (19670_CR42) 2020; 12
JC Collins (19670_CR88) 1977; 16
L Buonocore (19670_CR50) 2020; 08
A Greljo (19670_CR51) 2021; 03
19670_CR90
19670_CR91
A Azatov (19670_CR27) 2022; 10
M Endo (19670_CR43) 2022; 02
19670_CR54
19670_CR55
S Frixione (19670_CR56) 2007; 11
19670_CR92
19670_CR8
19670_CR16
19670_CR18
M Cacciari (19670_CR73) 2008; 04
HH Patel (19670_CR66) 2015; 197
19670_CR13
S Alioli (19670_CR57) 2010; 06
A Greljo (19670_CR9) 2017; 77
19670_CR14
19670_CR58
19670_CR59
M Schmaltz (19670_CR15) 2019; 01
19670_CR6
19670_CR5
19670_CR4
19670_CR3
19670_CR2
19670_CR1
DA Faroughy (19670_CR7) 2017; 764
BC Allanach (19670_CR10) 2018; 03
19670_CR63
19670_CR20
19670_CR64
19670_CR21
19670_CR65
A Angelescu (19670_CR19) 2020; 80
C Cornella (19670_CR22) 2021; 08
19670_CR60
19670_CR28
A Alloul (19670_CR62) 2014; 185
19670_CR29
19670_CR23
19670_CR67
19670_CR68
19670_CR25
A Crivellin (19670_CR69) 2021; 02
U Haisch (19670_CR52) 2021; 05
Y Afik (19670_CR12) 2018; 08
19670_CR30
19670_CR31
19670_CR75
19670_CR32
19670_CR76
19670_CR33
19670_CR77
19670_CR70
19670_CR72
19670_CR38
19670_CR39
S Iguro (19670_CR40) 2017; 925
19670_CR34
19670_CR35
I Doršner (19670_CR61) 2016; 641
19670_CR79
19670_CR36
19670_CR37
I Doršner (19670_CR11) 2018; 05
A Crivellin (19670_CR24) 2021; 10
MJ Baker (19670_CR17) 2019; 79
19670_CR80
E Conte (19670_CR78) 2013; 184
JB Hammett (19670_CR46) 2015; 07
References_xml – reference: IguroSTobeKR(D(*)) in a general two Higgs doublet modelNucl. Phys. B20179255602017NuPhB.925..560I373049210.1016/j.nuclphysb.2017.10.0141375.81248[arXiv:1708.06176] [INSPIRE]
– reference: T. Mandal, S. Mitra and S. Seth, Pair Production of Scalar Leptoquarks at the LHC to NLO Parton Shower Accuracy, Phys. Rev. D93 (2016) 035018 [arXiv:1506.07369] [INSPIRE].
– reference: NNPDF collaboration, The path to proton structure at 1% accuracy, Eur. Phys. J. C82 (2022) 428 [arXiv:2109.02653] [INSPIRE].
– reference: EndoMIguroSKitaharaTTakeuchiMWatanabeRNon-resonant new physics search at the LHC for the b → cτν anomaliesJHEP2022021062022JHEP...02..106E10.1007/JHEP02(2022)106[arXiv:2111.04748] [INSPIRE]
– reference: BuonocoreLNasonPTramontanoFZanderighiGLeptons in the protonJHEP2020080192020JHEP...08..019B10.1007/JHEP08(2020)019[arXiv:2005.06477] [INSPIRE]
– reference: DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
– reference: CrivellinAHoferichterMKirkMManzariCASchnellLFirst-generation new physics in simplified models: from low-energy parity violation to the LHCJHEP2021102212021JHEP...10..221C10.1007/JHEP10(2021)221[arXiv:2107.13569] [INSPIRE]
– reference: N. Raj, Anticipating nonresonant new physics in dilepton angular spectra at the LHC, Phys. Rev. D95 (2017) 015011 [arXiv:1610.03795] [INSPIRE].
– reference: A. Crivellin, D. Müller and L. Schnell, Combined constraints on first generation leptoquarks, Phys. Rev. D103 (2021) 115023 [Addendum ibid.104 (2021) 055020] [arXiv:2104.06417] [INSPIRE].
– reference: BaBar collaboration, Measurement of an Excess ofB¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B} $$\end{document}→ D(*)τ−ν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\nu} $$\end{document}τDecays and Implications for Charged Higgs Bosons, Phys. Rev. D88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
– reference: SjöstrandTAn introduction to PYTHIA 8.2Comput. Phys. Commun.20151911592015CoPhC.191..159S10.1016/j.cpc.2015.01.0241344.81029[arXiv:1410.3012] [INSPIRE]
– reference: AllanachBCGripaiosBYouTThe case for future hadron colliders from B → K(*)μ+μ−decaysJHEP2018030212018JHEP...03..021A10.1007/JHEP03(2018)021[arXiv:1710.06363] [INSPIRE]
– reference: BaBar collaboration, Evidence for an excess ofB¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B} $$\end{document}→ D(*)τ−ν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\nu} $$\end{document}τdecays, Phys. Rev. Lett.109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
– reference: BorschenskyCFuksBKuleszaASchwartländerDScalar leptoquark pair production at the LHC: precision predictions in the era of flavour anomaliesJHEP2022021572022JHEP...02..157B10.1007/JHEP02(2022)157[arXiv:2108.11404] [INSPIRE]
– reference: M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Pair production of scalar leptoquarks at the Tevatron, Phys. Rev. Lett.79 (1997) 341 [hep-ph/9704322] [INSPIRE].
– reference: E. Bols, J. Kieseler, M. Verzetti, M. Stoye and A. Stakia, Jet Flavour Classification Using DeepJet, 2020 JINST15 P12012 [arXiv:2008.10519] [INSPIRE].
– reference: AlloulAChristensenNDDegrandeCDuhrCFuksBFeynRules 2.0 — A complete toolbox for tree-level phenomenologyComput. Phys. Commun.201418522502014CoPhC.185.2250A10.1016/j.cpc.2014.04.012[arXiv:1310.1921] [INSPIRE]
– reference: FrixioneSNasonPOleariCMatching NLO QCD computations with Parton Shower simulations: the POWHEG methodJHEP2007110702007JHEP...11..070F10.1088/1126-6708/2007/11/070[arXiv:0709.2092] [INSPIRE]
– reference: S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B467 (1996) 399 [hep-ph/9512328] [INSPIRE].
– reference: P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B446 (1999) 278 [hep-ph/9809321] [INSPIRE].
– reference: HammettJBRossDANLO Leptoquark Production and Decay: The Narrow-Width Approximation and BeyondJHEP2015071482015JHEP...07..148H10.1007/JHEP07(2015)148[arXiv:1501.06719] [INSPIRE]
– reference: T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE].
– reference: CrivellinAGreubCMüllerDSaturninoFScalar Leptoquarks in Leptonic ProcessesJHEP2021021822021JHEP...02..182C10.1007/JHEP02(2021)182[arXiv:2010.06593] [INSPIRE]
– reference: M. Abdullah, J. Calle, B. Dutta, A. Flórez and D. Restrepo, Probing a simplified, W′ model of R(D(*)) anomalies using b-tags, τ leptons and missing energy, Phys. Rev. D98 (2018) 055016 [arXiv:1805.01869] [INSPIRE].
– reference: D. Choudhury, N. Kumar and A. Kundu, Search for an opposite sign muon-tau pair and a b-jet at the LHC in the context of flavor anomalies, Phys. Rev. D100 (2019) 075001 [arXiv:1905.07982] [INSPIRE].
– reference: LHCb collaboration, Measurement of the ratio of the B0 → D*−τ+ντand B0 → D*−μ+νμbranching fractions using three-prong τ-lepton decays, Phys. Rev. Lett.120 (2018) 171802 [arXiv:1708.08856] [INSPIRE].
– reference: FaroughyDAGreljoAKamenikJFConfronting lepton flavor universality violation in B decays with high-pTtau lepton searches at LHCPhys. Lett. B20177641262017PhLB..764..126F10.1016/j.physletb.2016.11.011[arXiv:1609.07138] [INSPIRE]
– reference: A. Bhaskar, D. Das, T. Mandal, S. Mitra and C. Neeraj, Precise limits on the charge-2/3 U1vector leptoquark, Phys. Rev. D104 (2021) 035016 [arXiv:2101.12069] [INSPIRE].
– reference: AfikYCohenJGozaniEKajomovitzERozenYEstablishing a Search for b → sℓ+ℓ−Anomalies at the LHCJHEP2018080562018JHEP...08..056A10.1007/JHEP08(2018)056[arXiv:1805.11402] [INSPIRE]
– reference: CornellaCFaroughyDAFuentes-MartinJIsidoriGNeubertMReading the footprints of the B-meson flavor anomaliesJHEP2021080502021JHEP...08..050C10.1007/JHEP08(2021)050[arXiv:2103.16558] [INSPIRE]
– reference: LHCb collaboration, Test of lepton universality in beauty-quark decays, Nature Phys.18 (2022) 277 [arXiv:2103.11769] [INSPIRE].
– reference: PatelHHPackage-X: A Mathematica package for the analytic calculation of one-loop integralsComput. Phys. Commun.20151972762015CoPhC.197..276P340174610.1016/j.cpc.2015.08.0171351.81011[arXiv:1503.01469] [INSPIRE]
– reference: ATLAS collaboration, Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector, Eur. Phys. J. C82 (2022) 717 [arXiv:2201.11428] [INSPIRE].
– reference: ATLAS collaboration, Search for new phenomena in pp collisions in final states with tau leptons, b-jets, and missing transverse momentum with the ATLAS detector, Phys. Rev. D104 (2021) 112005 [arXiv:2108.07665] [INSPIRE].
– reference: A. Crivellin, C.A. Manzari and M. Montull, Correlating nonresonant di-electron searches at the LHC to the Cabibbo-angle anomaly and lepton flavor universality violation, Phys. Rev. D104 (2021) 115016 [arXiv:2103.12003] [INSPIRE].
– reference: ATLAS collaboration, Performance of the ATLAS muon triggers in Run 2, 2020 JINST15 P09015 [arXiv:2004.13447] [INSPIRE].
– reference: A. Alves, O.J.P. Éboli, G. Grilli Di Cortona and R.R. Moreira, Indirect and monojet constraints on scalar leptoquarks, Phys. Rev. D99 (2019) 095005 [arXiv:1812.08632] [INSPIRE].
– reference: CMS collaboration, Searches for additional Higgs bosons and vector leptoquarks in ττ final states in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, CERN, Geneva, Switzerland (2022) [CMS-PAS-HIG-21-001].
– reference: T. Mandal, S. Mitra and S. Raz, RD∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {R}_{D^{\left(\ast \right)}} $$\end{document}motivatedS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document}1leptoquark scenarios: Impact of interference on the exclusion limits from LHC data, Phys. Rev. D99 (2019) 055028 [arXiv:1811.03561] [INSPIRE].
– reference: AngelescuAFaroughyDASumensariOLepton Flavor Violation and Dilepton Tails at the LHCEur. Phys. J. C2020806412020EPJC...80..641A10.1140/epjc/s10052-020-8210-5[arXiv:2002.05684] [INSPIRE]
– reference: P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
– reference: S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys. B507 (1997) 295 [hep-ph/9706545] [INSPIRE].
– reference: ConteEFuksBSerretGMadAnalysis 5, A User-Friendly Framework for Collider PhenomenologyComput. Phys. Commun.20131842222013CoPhC.184..222C299170410.1016/j.cpc.2012.09.009[arXiv:1206.1599] [INSPIRE]
– reference: LHCb collaboration, Measurement of the ratio of branching fractionsB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B} $$\end{document}(B¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B} $$\end{document}0 → D*+τ−ν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\nu} $$\end{document}τ)/B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B} $$\end{document}(B¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{B} $$\end{document}0 → D*+μ−ν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\nu} $$\end{document}μ), Phys. Rev. Lett.115 (2015) 111803 [Erratum ibid.115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
– reference: B. Garland, S. Jäger, C.K. Khosa and S. Kvedaraite˙, Probing B anomalies via dimuon tails at a future collider, Phys. Rev. D105 (2022) 115017 [arXiv:2112.05127] [INSPIRE].
– reference: Belle collaboration, Test of Lepton-Flavor Universality in B → K*ℓ+ℓ−Decays at Belle, Phys. Rev. Lett.126 (2021) 161801 [arXiv:1904.02440] [INSPIRE].
– reference: HaischUPoleselloGResonant third-generation leptoquark signatures at the Large Hadron ColliderJHEP2021050572021JHEP...05..057H10.1007/JHEP05(2021)057[arXiv:2012.11474] [INSPIRE]
– reference: GreljoASelimovicNLepton-Quark Fusion at Hadron Colliders, preciselyJHEP20210327910.1007/JHEP03(2021)279[arXiv:2012.02092] [INSPIRE]
– reference: M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Pair production of scalar leptoquarks at the CERN LHC, Phys. Rev. D71 (2005) 057503 [hep-ph/0411038] [INSPIRE].
– reference: ATLAS collaboration, Search for New Phenomena in Final States with Two Leptons and One or No b-Tagged Jets ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV Using the ATLAS Detector, Phys. Rev. Lett.127 (2021) 141801 [arXiv:2105.13847] [INSPIRE].
– reference: T. Hahn, S. Paßehr and C. Schappacher, FormCalc 9 and Extensions, PoSLL2016 (2016) 068 [J. Phys. Conf. Ser.762 (2016) 012065] [arXiv:1604.04611] [INSPIRE].
– reference: CollinsJCSoperDEAngular Distribution of Dileptons in High-Energy Hadron CollisionsPhys. Rev. D19771622191977PhRvD..16.2219C10.1103/PhysRevD.16.2219[INSPIRE]
– reference: D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun.180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].
– reference: CMS collaboration, Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, arXiv:2205.05550 [INSPIRE].
– reference: T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [INSPIRE].
– reference: LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the B0 → D*−τ+ντbranching fraction using three-prong τ decays, Phys. Rev. D97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].
– reference: ATLAS collaboration, Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons ins\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV pp collisions with the ATLAS detector, JHEP10 (2020) 112 [arXiv:2006.05872] [INSPIRE].
– reference: SchmaltzMZhongY-MThe leptoquark Hunter’s guide: large couplingJHEP2019011322019JHEP...01..132S10.1007/JHEP01(2019)132[arXiv:1810.10017] [INSPIRE]
– reference: DoršnerIFajferSGreljoAKamenikJFKošnikNPhysics of leptoquarks in precision experiments and at particle collidersPhys. Rept.201664112016PhR...641....1D352230610.1016/j.physrep.2016.06.001[arXiv:1603.04993] [INSPIRE]
– reference: CrivellinAFuksBSchnellLExplaining the hints for lepton flavour universality violation with three S2leptoquark generationsJHEP2022061692022JHEP...06..169C10.1007/JHEP06(2022)169[arXiv:2203.10111] [INSPIRE]
– reference: CacciariMSalamGPSoyezGThe anti-ktjet clustering algorithmJHEP2008040632008JHEP...04..063C10.1088/1126-6708/2008/04/0631369.81100[arXiv:0802.1189] [INSPIRE]
– reference: ATLAS collaboration, ATLAS b-jet identification performance and efficiency measurement withtt¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document}events in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Eur. Phys. J. C79 (2019) 970 [arXiv:1907.05120] [INSPIRE].
– reference: CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, 2018 JINST13 P05011 [arXiv:1712.07158] [INSPIRE].
– reference: G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C71 (2011) 1554 [Erratum ibid.73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
– reference: S. Alioli et al., The POWHEG BOX, (2022) http://powhegbox.mib.infn.it.
– reference: MarzoccaDMinUSonMBottom-Flavored Mono-Tau Tails at the LHCJHEP2020120352020JHEP...12..035M10.1007/JHEP12(2020)035[arXiv:2008.07541] [INSPIRE]
– reference: H. Qu and L. Gouskos, ParticleNet: Jet Tagging via Particle Clouds, Phys. Rev. D101 (2020) 056019 [arXiv:1902.08570] [INSPIRE].
– reference: ATLAS collaboration, Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector, JHEP11 (2020) 005 [Erratum JHEP04 (2021) 142] [arXiv:2006.12946] [INSPIRE].
– reference: W. Altmannshofer, P.S. Bhupal Dev and A. Soni, RD∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {R}_{D^{\left(\ast \right)}} $$\end{document}anomaly: A possible hint for natural supersymmetry with R-parity violation, Phys. Rev. D96 (2017) 095010 [arXiv:1704.06659] [INSPIRE].
– reference: GreljoAMarzoccaDHigh-pTdilepton tails and flavor physicsEur. Phys. J. C2017775482017EPJC...77..548G10.1140/epjc/s10052-017-5119-8[arXiv:1704.09015] [INSPIRE]
– reference: BakerMJFuentes-MartínJIsidoriGKönigMHigh-pTsignatures in vector-leptoquark modelsEur. Phys. J. C2019793342019EPJC...79..334B10.1140/epjc/s10052-019-6853-x[arXiv:1901.10480] [INSPIRE]
– reference: W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in Lepton-Quark Collisions, Phys. Lett. B191 (1987) 442 [Erratum ibid.448 (1999) 320] [INSPIRE].
– reference: ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 8 TeV with the ATLAS detector, JHEP11 (2014) 056 [arXiv:1409.6064] [INSPIRE].
– reference: BELLE collaboration, Test of lepton flavor universality and search for lepton flavor violation in B → Kℓℓ decays, JHEP03 (2021) 105 [arXiv:1908.01848] [INSPIRE].
– reference: Belle collaboration, Measurement ofR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{R} $$\end{document}(D) andR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{R} $$\end{document}(D*) with a semileptonic tagging method, arXiv:1904.08794 [INSPIRE].
– reference: C. Borschensky, B. Fuks, A. Kulesza and D. Schwartländer, Scalar leptoquark pair production at hadron colliders, Phys. Rev. D101 (2020) 115017 [arXiv:2002.08971] [INSPIRE].
– reference: ATLAS collaboration, Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Phys. Rev. Lett.125 (2020) 051801 [arXiv:2002.12223] [INSPIRE].
– reference: CMS collaboration, Search for resonant and nonresonant new phenomena in high-mass dilepton final states ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP07 (2021) 208 [arXiv:2103.02708] [INSPIRE].
– reference: S. Bansal, R.M. Capdevilla, A. Delgado, C. Kolda, A. Martin and N. Raj, Hunting leptoquarks in monolepton searches, Phys. Rev. D98 (2018) 015037 [arXiv:1806.02370] [INSPIRE].
– reference: CMS collaboration, Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, JHEP08 (2022) 063 [arXiv:2202.12327] [INSPIRE].
– reference: DoršnerIGreljoALeptoquark toolbox for precision collider studiesJHEP2018051262018JHEP...05..126D10.1007/JHEP05(2018)126[arXiv:1801.07641] [INSPIRE]
– reference: ATLAS collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data ats\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s} $$\end{document} = 13 TeV, Eur. Phys. J. C76 (2016) 292 [arXiv:1603.05598] [INSPIRE].
– reference: J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D10 (1974) 275 [Erratum ibid.11 (1975) 703] [INSPIRE].
– reference: LHCb collaboration, Test of lepton universality with B0 → K*0ℓ+ℓ−decays, JHEP08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
– reference: L. Buonocore, U. Haisch, P. Nason, F. Tramontano and G. Zanderighi, Lepton-Quark Collisions at the Large Hadron Collider, Phys. Rev. Lett.125 (2020) 231804 [arXiv:2005.06475] [INSPIRE].
– reference: B.C. Allanach, T. Corbett, M.J. Dolan and T. You, Hadron collider sensitivity to fat flavourful Z′s forRK∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {R}_{K^{\left(\ast \right)}} $$\end{document}, JHEP03 (2019) 137 [arXiv:1810.02166] [INSPIRE].
– reference: AzatovAGarosiFGreljoAMarzoccaDSalkoJTrifinopoulosSNew physics in b → sμμ: FCC-hh or a muon collider?JHEP2022101492022JHEP...10..149A10.1007/JHEP10(2022)149[arXiv:2205.13552] [INSPIRE]
– reference: AlioliSNasonPOleariCReEA general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOXJHEP2010060432010JHEP...06..043A10.1007/JHEP06(2010)0431290.81155[arXiv:1002.2581] [INSPIRE]
– reference: J.C. Pati and A. Salam, Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions, Phys. Rev. D8 (1973) 1240 [INSPIRE].
– reference: CMS collaboration, Identification of hadronic tau lepton decays using a deep neural network, 2022 JINST17 P07023 [arXiv:2201.08458] [INSPIRE].
– reference: LHCb collaboration, Search for lepton-universality violation in B+ → K+ℓ+ℓ−decays, Phys. Rev. Lett.122 (2019) 191801 [arXiv:1903.09252] [INSPIRE].
– reference: CacciariMSalamGPSoyezGFastJet User ManualEur. Phys. J. C20127218962012EPJC...72.1896C10.1140/epjc/s10052-012-1896-21393.81007[arXiv:1111.6097] [INSPIRE]
– volume: 03
  start-page: 021
  year: 2018
  ident: 19670_CR10
  publication-title: JHEP
  doi: 10.1007/JHEP03(2018)021
– ident: 19670_CR64
  doi: 10.22323/1.260.0068
– ident: 19670_CR38
– ident: 19670_CR60
  doi: 10.1016/0370-2693(87)90637-X
– ident: 19670_CR45
  doi: 10.1103/PhysRevD.71.057503
– volume: 01
  start-page: 132
  year: 2019
  ident: 19670_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)132
– volume: 79
  start-page: 334
  year: 2019
  ident: 19670_CR17
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-6853-x
– ident: 19670_CR48
  doi: 10.1103/PhysRevD.101.115017
– volume: 191
  start-page: 159
  year: 2015
  ident: 19670_CR71
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.01.024
– volume: 925
  start-page: 560
  year: 2017
  ident: 19670_CR40
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2017.10.014
– volume: 04
  start-page: 063
  year: 2008
  ident: 19670_CR73
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/04/063
– volume: 02
  start-page: 157
  year: 2022
  ident: 19670_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)157
– ident: 19670_CR3
– volume: 10
  start-page: 149
  year: 2022
  ident: 19670_CR27
  publication-title: JHEP
  doi: 10.1007/JHEP10(2022)149
– ident: 19670_CR31
– ident: 19670_CR18
  doi: 10.1103/PhysRevD.100.075001
– volume: 07
  start-page: 148
  year: 2015
  ident: 19670_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP07(2015)148
– volume: 16
  start-page: 2219
  year: 1977
  ident: 19670_CR88
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.16.2219
– ident: 19670_CR8
  doi: 10.1103/PhysRevD.95.015011
– volume: 11
  start-page: 070
  year: 2007
  ident: 19670_CR56
  publication-title: JHEP
  doi: 10.1088/1126-6708/2007/11/070
– ident: 19670_CR35
– volume: 08
  start-page: 056
  year: 2018
  ident: 19670_CR12
  publication-title: JHEP
  doi: 10.1007/JHEP08(2018)056
– ident: 19670_CR72
  doi: 10.1016/S0370-2693(98)01541-X
– volume: 10
  start-page: 221
  year: 2021
  ident: 19670_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP10(2021)221
– ident: 19670_CR77
– ident: 19670_CR54
  doi: 10.1103/PhysRevD.99.095005
– ident: 19670_CR79
  doi: 10.1007/JHEP02(2014)057
– ident: 19670_CR92
– ident: 19670_CR37
– volume: 185
  start-page: 2250
  year: 2014
  ident: 19670_CR62
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.04.012
– ident: 19670_CR20
  doi: 10.1103/PhysRevD.104.035016
– ident: 19670_CR81
– ident: 19670_CR29
– ident: 19670_CR85
– ident: 19670_CR25
  doi: 10.1103/PhysRevD.105.115017
– volume: 197
  start-page: 276
  year: 2015
  ident: 19670_CR66
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.08.017
– ident: 19670_CR55
  doi: 10.1088/1126-6708/2004/11/040
– ident: 19670_CR4
– ident: 19670_CR89
  doi: 10.1016/j.cpc.2009.02.020
– ident: 19670_CR49
  doi: 10.1103/PhysRevLett.125.231804
– ident: 19670_CR32
– ident: 19670_CR70
  doi: 10.1140/epjc/s10052-022-10328-7
– volume: 05
  start-page: 057
  year: 2021
  ident: 19670_CR52
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)057
– ident: 19670_CR36
– ident: 19670_CR91
– volume: 08
  start-page: 050
  year: 2021
  ident: 19670_CR22
  publication-title: JHEP
  doi: 10.1007/JHEP08(2021)050
– volume: 05
  start-page: 126
  year: 2018
  ident: 19670_CR11
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)126
– volume: 02
  start-page: 106
  year: 2022
  ident: 19670_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)106
– ident: 19670_CR67
  doi: 10.1016/0550-3213(96)00110-1
– ident: 19670_CR39
  doi: 10.1103/PhysRevD.96.095010
– volume: 06
  start-page: 043
  year: 2010
  ident: 19670_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP06(2010)043
– ident: 19670_CR23
  doi: 10.1103/PhysRevD.103.115023
– volume: 08
  start-page: 019
  year: 2020
  ident: 19670_CR50
  publication-title: JHEP
  doi: 10.1007/JHEP08(2020)019
– volume: 72
  start-page: 1896
  year: 2012
  ident: 19670_CR74
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-012-1896-2
– ident: 19670_CR47
  doi: 10.1103/PhysRevD.93.035018
– ident: 19670_CR68
  doi: 10.1016/S0550-3213(97)00574-9
– ident: 19670_CR80
– ident: 19670_CR90
  doi: 10.1103/PhysRevD.101.056019
– ident: 19670_CR84
– volume: 02
  start-page: 182
  year: 2021
  ident: 19670_CR69
  publication-title: JHEP
  doi: 10.1007/JHEP02(2021)182
– ident: 19670_CR1
– volume: 80
  start-page: 641
  year: 2020
  ident: 19670_CR19
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8210-5
– volume: 12
  start-page: 035
  year: 2020
  ident: 19670_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP12(2020)035
– ident: 19670_CR65
  doi: 10.1016/S0010-4655(98)00173-8
– ident: 19670_CR33
– ident: 19670_CR5
– volume: 641
  start-page: 1
  year: 2016
  ident: 19670_CR61
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2016.06.001
– ident: 19670_CR75
– ident: 19670_CR44
  doi: 10.1103/PhysRevLett.79.341
– ident: 19670_CR58
  doi: 10.1103/PhysRevD.10.275
– ident: 19670_CR82
  doi: 10.1088/1748-0221/15/12/P12012
– ident: 19670_CR87
– ident: 19670_CR41
– volume: 03
  start-page: 279
  year: 2021
  ident: 19670_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)279
– ident: 19670_CR13
  doi: 10.1103/PhysRevD.98.015037
– ident: 19670_CR14
  doi: 10.1007/JHEP03(2019)137
– ident: 19670_CR16
  doi: 10.1103/PhysRevD.99.055028
– ident: 19670_CR63
  doi: 10.1016/S0010-4655(01)00290-9
– volume: 77
  start-page: 548
  year: 2017
  ident: 19670_CR9
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5119-8
– volume: 06
  start-page: 169
  year: 2022
  ident: 19670_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP06(2022)169
– ident: 19670_CR83
– ident: 19670_CR2
– ident: 19670_CR28
– ident: 19670_CR30
– ident: 19670_CR6
– ident: 19670_CR21
  doi: 10.1103/PhysRevD.104.115016
– ident: 19670_CR34
– ident: 19670_CR86
  doi: 10.1140/epjc/s10052-011-1554-0
– volume: 764
  start-page: 126
  year: 2017
  ident: 19670_CR7
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2016.11.011
– ident: 19670_CR59
  doi: 10.1103/PhysRevD.8.1240
– volume: 184
  start-page: 222
  year: 2013
  ident: 19670_CR78
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.09.009
– ident: 19670_CR76
SSID ssj0015190
Score 2.4732676
Snippet A bstract Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours...
Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are...
Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are...
Abstract Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106
SubjectTerms Bottom Quarks
Classical and Quantum Gravitation
Constraint modelling
Couplings
Elementary Particles
Flavor (particle physics)
High energy physics
Higher-Order Perturbative Calculations
Large Hadron Collider
Leptons
Luminosity
Particle collisions
Physics
Physics and Astronomy
Protons
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Quarks
Regular Article - Theoretical Physics
Relativity Theory
Signal generation
Specific BSM Phenomenology
Specific QCD Phenomenology
String Theory
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbaRZV6QX2qC7TyoQc4GNaxndgnVNpFKw5bVIEEp8hPDo2SbRKQ-PeMs85CK9Gr7cTRN_bMxOP5BqGvYOOVM1oTUTBHwEIFYoLShItiZiwPOnPDBdllvrjkZ1fiKh24dela5agTB0XtGhvPyI_AzMakSFCux6s_JFaNitHVVELjJdoCFSzlBG2dzJfnvzZxBPBPZiOhz6w4OlvMzyndhx_-7IDGIkdPbNFA2f-Xn_lPaHSwOKdv0HZyFfG3tWzfohe-fodeDVc2bfceLX_W-Efrq4pc6xqv1sytgDJuAu4Aed3iyq96mEa3vztsm9uYfHuD-waDAr67J0MHDpW-g5m6D-jydH7xfUFSdQRiOS16QrmQOuPOCOaEBWhDwWVQwYggcp4HyWArWxEj68xkmQyGeamlcD5kOUiAfUSTuqn9J4SpKDINtlzNpOXeFVJRFXLFaBZYYZiYosMRp9Im6vBYwaIqR9LjNbBlBBYa8ina3zywWrNmPD_0JAK_GRbproeGpr0p0-4pQ4D1BK6FA3eUg8lVLNLKKAsqUivP1BTtjWIr0x7syscVM0UHoygfu5_5np3_v2oXvY4jYzYilXto0re3_jO4Jb35ktbeA-Q73kY
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQCIkF8RTlJQ8MdDDUsZ3YIxSqqgMwgARTZDs2A1FaNQGJf885TYpa1IEt8kOOvrN9n3W-zwhdgI9XmdGaiIRlBDyUJ8YrTbhIesZyr6OsviD7EA9f-OhVvDYiSSEXZil-fz0a3j9ReglH9KhLg7T2hqAsCW809OP-PFwANKTX6vb87bTgcmpl_gU6uRQBrR3LYAdtN4wQ38xMuIvWXLGHNuubmbbcRw-PBb6bujwnb7rAk5lAK4CJxx6XALCe4txNKhhGTz9KbMefIcf2HVdjDPvs1zepK7DP9ReMVB6gl8H9c39ImkcQiOU0qQjlQuqIZ0awTFhA0CdceuWN8CLmsZcMVqwVIYDOTBRJb5iTWorM-SgGoNkhWi_GhTtCmIok0uCyVU9a7rJEKqp8rBiNPEsMEx101eKU2kYhPDxUkaettvEM2DQACwVxB13OO0xm4hirm94G4OfNgqp1XQDGTptFknoP0wYYRAask4NnVSyoxygLO6FWjqkOOm3NljZLrUyBf4VsWfC6HdRtTflbveJ_jv_R9gRthc-QgUjlKVqvpp_uDKhIZc7rafgDtE7UWA
  priority: 102
  providerName: Springer Nature
Title On Drell-Yan production of scalar leptoquarks coupling to heavy-quark flavours
URI https://link.springer.com/article/10.1007/JHEP11(2022)106
https://www.proquest.com/docview/2737811067
https://doaj.org/article/ffdba818d92343629305999c088a9e39
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERIXxFMslJUPHNqD6fqV2Md22WXVw1IhViqnyHZsDo2yq01aiX_POI9SkCouXCzFdmLrm9jfWPZ8BviAHG9KZy1VuSgpMlSkLhpLpcpnzstoedkdkF1nq408v1SXd676SmfCenngHriTGPFTyColeiISZ1sjkqKI8Tg6rAmiC91DzhsXU8P-Afols1HIZ5afnK8WF4wd4UKfH7N0udEdDuqk-v_wL__aEu2YZvkMng4uIjntu_YcHoT6BTzujmr65iWsv9Tk0z5UFf1ua7LrFVsRXbKNpEHE7Z5UYddiM3Z_1RC_vU5Btz9IuyU48d78pF0BiZW9wZaaV7BZLr7NV3S4FYF6yfKWMqm05bJ0SpTKI6Qxlzqa6FRUmcyiFoiQV2lHXTjOdXQiaKtVGSLPEHnxGg7qbR3eAGEq5xY53My0l6HMtWEmZkYwHkXuhJrAxxGnwg-S4enmiqoYxY57YIsELGZkEzi6fWHXq2XcX_UsAX9bLclcdxlo_GIwfvEv40_gcDRbMYy9pkCHLIXPIg1P4Hg05e_ie_rz9n_05x08Sd9LsYpMH8JBu78O79Fpad0UHurl5yk8OlusL77i05zLlGbzaffnYrrhp78Aaf7pog
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgSXiqfYtoAPILUH0_UriQ8IAe2yfbBwaKVySp3E7qFRsk3SVv1T_EbGeWwBqdx6teOHZsbzjTOeGYC3iPE6S4yhKhQZRYRyNHHaUKnCcZJKZ3jWPpCdBdMjuXesjpfg1xAL459VDjqxVdRZmfp_5FsIsz4oEpXrx_k59VWjvHd1KKHRicW-vb7CK1v9YXcb-fuO88nO4Zcp7asK0FSysKFMqshwmSVKZCrFLblQRk67RDkVyMBFeMPHdu-RFgnnkUuEjUykMut4gDsXOO89uC8FIrmPTJ98XXgt0BoaD-mDxuHW3nTnB2MbHGFyk_mSSn8gX1sg4C-r9h9HbItvk8ew0hum5FMnSU9gyRZP4UH7QDStn8Hse0G2K5vn9KcpyLzLE4s8JaUjNfLZVCS38waXMdVZTdLywof6npKmJKjuL69p20Fcbi5xpfo5HN0J1V7AclEW9iUQpkJu0HLQ4yiVNgsjzbQLtGDciTARagTvBzrFaZ-o3NfLyOMhxXJH2NgTFhuCEWwsBsy7HB23f_rZE37xmU-u3TaU1Wncn9XYOZReNGQyNH4lArwWPomNTlEhG22FHsH6wLa4P_F1fCOfI9gcWHnTfct-Vv8_1Rt4OD38dhAf7M721-CRH-XjIFm0DstNdWFfoUHUJK9bKSRwctdi_xtY_Rit
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSgbig8hKBFvYAUntYEu_D9h4qREmitEUhQlQqJ3dt7_aAZQfbLeqv9euY9SMFpHLrdd-emZ2Z9bwA3qKMV2msNZUBTylKKEtjqzQVMhjHibCapY2D7MKfn4ijU3m6Add9LIxzq-x5YsOo0yJx_8hHKGZdUCQy15Ht3CKWk9mH1U_qKkg5S2tfTqMlkWNz9Qufb9X-4QRx_Y6x2fTbpzntKgzQRHhBTT0hQ81EGkueygSPZwMRWmVjaaUvfBviax_bnXWax4yFNuYm1KFMjWU-fgXHde_BZuBeRQPYPJgull_XNgzUjcZ9MqFxMDqaT5eet8tQaO55rsDSH3KwKRfwl477j1m2kXazLXjUqankY0tXj2HD5E_gfuMumlRPYfElJ5PSZBn9rnOyarPGIoZJYUmFWNclycyqxm10-aMiSXHhAn_PSV0QZP6XV7TpIDbTl7hT9QxO7gRuz2GQF7l5AcSTAdOoR6hxmAiTBqHylPUV95jlQczlEN73cIqSLm25q56RRX3C5RawkQMsNvhD2F1PWLUZO24feuAAvx7mUm03DUV5HnU3N7IWaRnVmhRVYYHiXnGX0kYlyJ61MlwNYbtHW9Td_yq6odYh7PWovOm-5Twv_7_UG3iAJB99Plwcv4KHbpILivTCbRjU5YXZQe2ojl93ZEjg7K4p_zdLHh4_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Drell-Yan+production+of+scalar+leptoquarks+coupling+to+heavy-quark+flavours&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Ulrich+Haisch&rft.au=Luc+Schnell&rft.au=Stefan+Schulte&rft.date=2022-11-18&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2022&rft.issue=11&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1007%2FJHEP11%282022%29106&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ffdba818d92343629305999c088a9e39
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon