Fast sparse adversarial attack for synthetic aperture radar target recognition
With the rapid development of artificial intelligence technology, deep learning has achieved significant advantages in synthetic aperture radar automatic target recognition (SAR-ATR). However, previous research showed that the addition of small perturbations not easily detected by the human eye can...
Saved in:
Published in | Journal of applied remote sensing Vol. 19; no. 1; p. 016502 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Society of Photo-Optical Instrumentation Engineers
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1931-3195 1931-3195 |
DOI | 10.1117/1.JRS.19.016502 |
Cover
Loading…
Abstract | With the rapid development of artificial intelligence technology, deep learning has achieved significant advantages in synthetic aperture radar automatic target recognition (SAR-ATR). However, previous research showed that the addition of small perturbations not easily detected by the human eye can lead to SAR-ATR model recognition errors; that is, they are affected by adversarial attacks. To solve the problem of long computation time in existing SAR sparse adversarial attack algorithms, we propose a SAR fast sparse adversarial attack (FSAA) algorithm. First, an end-to-end sparse adversarial attack framework is developed based on the lightweight generator ResNet model using two different upsampling modules to control the amplitude and position of the adversarial perturbation. A loss function for the generator is then constructed, which mainly consists of the linear addition of the attack loss, the amplitude distortion loss, and the sparsity loss. Finally, the SAR image is mapped through the trained generator model in a one-step process to generate sparse adversarial perturbations quickly and effectively. Compared with the existing SAR sparse adversarial attack algorithm, the experimental results show that the generation speed of the proposed method is at least 30 times higher when the perturbation is less than 0.05% of the pixels in the entire image, and the recognition rate of the model is >13%. |
---|---|
AbstractList | With the rapid development of artificial intelligence technology, deep learning has achieved significant advantages in synthetic aperture radar automatic target recognition (SAR-ATR). However, previous research showed that the addition of small perturbations not easily detected by the human eye can lead to SAR-ATR model recognition errors; that is, they are affected by adversarial attacks. To solve the problem of long computation time in existing SAR sparse adversarial attack algorithms, we propose a SAR fast sparse adversarial attack (FSAA) algorithm. First, an end-to-end sparse adversarial attack framework is developed based on the lightweight generator ResNet model using two different upsampling modules to control the amplitude and position of the adversarial perturbation. A loss function for the generator is then constructed, which mainly consists of the linear addition of the attack loss, the amplitude distortion loss, and the sparsity loss. Finally, the SAR image is mapped through the trained generator model in a one-step process to generate sparse adversarial perturbations quickly and effectively. Compared with the existing SAR sparse adversarial attack algorithm, the experimental results show that the generation speed of the proposed method is at least 30 times higher when the perturbation is less than 0.05% of the pixels in the entire image, and the recognition rate of the model is >13%. |
Author | Lu, Wanjie Wan, Xuanshen Liu, Wei Niu, Chaoyang Li, Yuanli |
Author_xml | – sequence: 1 givenname: Xuanshen orcidid: 0009-0005-4146-3567 surname: Wan fullname: Wan, Xuanshen email: allwan0010@163.com organization: PLA Information Engineering University, Institute of Data and Target Engineering, Zhengzhou, China – sequence: 2 givenname: Wei orcidid: 0000-0002-3395-6696 surname: Liu fullname: Liu, Wei email: greatliuliu@163.com organization: PLA Information Engineering University, Institute of Data and Target Engineering, Zhengzhou, China – sequence: 3 givenname: Chaoyang surname: Niu fullname: Niu, Chaoyang email: ncy_100@163.com organization: PLA Information Engineering University, Institute of Data and Target Engineering, Zhengzhou, China – sequence: 4 givenname: Wanjie surname: Lu fullname: Lu, Wanjie email: lwj285149763@163.com organization: PLA Information Engineering University, Institute of Data and Target Engineering, Zhengzhou, China – sequence: 5 givenname: Yuanli surname: Li fullname: Li, Yuanli email: likaojin@163.com organization: PLA Information Engineering University, Institute of Data and Target Engineering, Zhengzhou, China |
BookMark | eNqNkE9PwkAQxTcGExE9e90PYGGHdm17JCgqwT9RDt42w3YWi7htdhcS_PQW68GDJp5mkvm9Ny_vmHVsZYmxMxB9AEgH0J8-Pfch7wu4kGJ4wLqQxxDFkMvOj_2IHXu_EkLGWZZ22f0EfeC-RueJY7El59GVuOYYAuo3birH_c6GVwql5liTCxtH3GGBjgd0Swrcka6WtgxlZU_YocG1p9Pv2WPzydV8fBPNHq5vx6NZpBNIQwSQpVmmMc-N1pmROQ61JsIUhRYmXhjAuEi0kJQBikJSIhdDWUiTUAGUxD02aG21q7x3ZFTtynd0OwVC7dtQoJo2FOSqbaNR2Fbh65LUqto42-RT01FDbav1ngQ1cZUNL3cztMXj5UR9lHULfB1bo38xdWGah-e_Pfwr3ydH1ome |
Cites_doi | 10.1109/CVPR.2015.7298594 10.1109/CVPR.2017.634 10.1109/LGRS.2018.2877599 10.1109/TGRS.2023.3248040 10.1109/CVPR.2016.308 10.1109/Radar53847.2021.10028291 10.1109/TIP.2003.819861 10.1109/CCDC62350.2024.10588229 10.1109/MGRS.2013.2248301 10.1109/CVPR.2017.243 10.1016/j.sigpro.2019.01.006 10.16798/j.issn.1003-0530.2021.09.007 10.1117/12.242059 10.1109/JSTARS.2022.3141485 10.1109/IAEAC54830.2022.9929962 10.1109/JSTARS.2017.2787728 10.1016/j.jnca.2020.102632 10.1109/CVPR.2018.00716 10.1109/TEVC.2019.2890858 10.1117/1.JRS.17.016513 10.1016/j.na.2009.07.030 10.3390/rs13040596 10.1109/JSTARS.2024.3384188 10.1109/CVPR.2019.00930 10.3390/rs16142539 10.1201/9781351251389-8 10.1007/978-3-319-46475-6_43 10.1117/1.JRS.17.016502 10.1109/ICSIP55141.2022.9887044 |
ContentType | Journal Article |
Copyright | The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. |
Copyright_xml | – notice: The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. |
DBID | AAYXX CITATION |
DOI | 10.1117/1.JRS.19.016502 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1931-3195 |
EndPage | 016502 |
ExternalDocumentID | 10_1117_1_JRS_19_016502 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42201472 |
GroupedDBID | 0R~ 29J 5GY ABJNI ACGFO ACGFS ADMLS AENEX AKROS ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS FQ0 HZ~ O9- RNS SPBNH AAYXX CITATION M4X |
ID | FETCH-LOGICAL-c417t-118788ca99fcc8f59a2cceea7a0c0f3bf1a3d4c05e81a0d5e45b25d5f4ed1e43 |
ISSN | 1931-3195 |
IngestDate | Tue Jul 01 04:10:04 EDT 2025 Thu May 08 04:45:41 EDT 2025 Thu May 08 04:46:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | adversarial attack synthetic aperture radar automatic target recognition sparsity ResNet generator |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c417t-118788ca99fcc8f59a2cceea7a0c0f3bf1a3d4c05e81a0d5e45b25d5f4ed1e43 |
ORCID | 0000-0002-3395-6696 0009-0005-4146-3567 |
OpenAccessLink | http://www.dx.doi.org/10.1117/1.JRS.19.016502 |
PageCount | 1 |
ParticipantIDs | spie_journals_10_1117_1_JRS_19_016502 crossref_primary_10_1117_1_JRS_19_016502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of applied remote sensing |
PublicationTitleAlternate | J. Appl. Remote Sens |
PublicationYear | 2025 |
Publisher | Society of Photo-Optical Instrumentation Engineers |
Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers |
References | r2 r3 r4 r5 r6 r7 r8 Goodfellow (r16) r9 r30 r10 r31 r12 r11 r14 r15 r18 r19 Johnson (r24) r21 r20 r23 r22 r25 Kurakin (r17) r27 r26 r29 r28 Szegedy (r13) r1 |
References_xml | – ident: r27 doi: 10.1109/CVPR.2015.7298594 – ident: r29 doi: 10.1109/CVPR.2017.634 – ident: r8 doi: 10.1109/LGRS.2018.2877599 – ident: r6 doi: 10.1109/TGRS.2023.3248040 – ident: r28 doi: 10.1109/CVPR.2016.308 – ident: r20 doi: 10.1109/Radar53847.2021.10028291 – ident: r31 doi: 10.1109/TIP.2003.819861 – ident: r12 doi: 10.1109/CCDC62350.2024.10588229 – ident: r2 doi: 10.1109/MGRS.2013.2248301 – ident: r26 doi: 10.1109/CVPR.2017.243 – ident: r5 doi: 10.1016/j.sigpro.2019.01.006 – ident: r21 doi: 10.16798/j.issn.1003-0530.2021.09.007 – ident: r25 doi: 10.1117/12.242059 – ident: r7 doi: 10.1109/JSTARS.2022.3141485 – ident: r19 doi: 10.1109/IAEAC54830.2022.9929962 – ident: r1 doi: 10.1109/JSTARS.2017.2787728 – ident: r11 doi: 10.1016/j.jnca.2020.102632 – ident: r30 doi: 10.1109/CVPR.2018.00716 – ident: r14 doi: 10.1109/TEVC.2019.2890858 – ident: r16 article-title: Explaining and harnessing adversarial examples – ident: r9 doi: 10.1117/1.JRS.17.016513 – ident: r3 doi: 10.1016/j.na.2009.07.030 – ident: r4 doi: 10.3390/rs13040596 – ident: r13 article-title: Intriguing properties of neural networks – ident: r23 doi: 10.1109/JSTARS.2024.3384188 – ident: r15 doi: 10.1109/CVPR.2019.00930 – ident: r22 doi: 10.3390/rs16142539 – ident: r17 article-title: Adversarial examples in the physical world doi: 10.1201/9781351251389-8 – ident: r24 article-title: Perceptual losses for real-time style transfer and super-resolution doi: 10.1007/978-3-319-46475-6_43 – ident: r10 doi: 10.1117/1.JRS.17.016502 – ident: r18 doi: 10.1109/ICSIP55141.2022.9887044 |
SSID | ssj0053887 |
Score | 2.3457031 |
Snippet | With the rapid development of artificial intelligence technology, deep learning has achieved significant advantages in synthetic aperture radar automatic... |
SourceID | crossref spie |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 016502 |
Title | Fast sparse adversarial attack for synthetic aperture radar target recognition |
URI | http://www.dx.doi.org/10.1117/1.JRS.19.016502 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ji9swFBZp5tBeSlc63dChhUJwanmJ7WPoNAwhGUonhZxqtHnGLXiMl0Pm1_dJ8jZpBtJeTJBfhPD79N6T3obQBxo4zOZ2YgUJUyk5gWvRmZdYhM9s6rKI-ULdd6wvZuc_vOXW345GPwdRS3XFpvz2YF7J_3AVxoCvKkv2HzjbTQoD8Bv4C0_gMDyP4vGCltUEREJRSuXMB0uO6iYctKoo_60jCMtdBiaersqay0K7CwoqaDExIeCTLoCoYc_fdipt7NRCAlflpFQR74260xfxWmxta1B5131a2SqtdfSeTHvHR9249292tP__ytDR7FcqhzcQjj-4gTBCM3IJyHLTLHMqD4y1kjbaR9QBAa5LAEyX3y-nJJqqZCvb6XVV65_fU2FdYKE50gQxiWGCmESxmeABOnHgGGGP0cn8bL26bHU1SHvdQrFbbVP8Cab4vLeGO3bLuMxTObBDNk_Q44YxeG7Q8BSNZPYMPWx62V_vnqMLhQpsUIEHqMAGFRhQgTtU4BYVWKMCG1TgASpeoM3i6-bLudV0zbC4R4LKUv3jw5DTKEo4DxM_og4HS4gGVO1JlyWEusLjti9DQm3hS89nji_8xJOCSM99icbZTSZfIRzAYYKGIiDMll4UCGYzT0Sg3GGDwy7kp-hT-0ni3NRGie9hwCn6qD5Z3Gye8n66q7t0yzm8BvgoEhIvVFGP7XpFM_HtbBHfprkh0C_NDEfR5CJ5ffzi36BHPezfonFV1PIdmKIVe9_g6Q8Keokf |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+sparse+adversarial+attack+for+synthetic+aperture+radar+target+recognition&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Wan%2C+Xuanshen&rft.au=Liu%2C+Wei&rft.au=Niu%2C+Chaoyang&rft.au=Lu%2C+Wanjie&rft.date=2025-01-01&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1117%2F1.JRS.19.016502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1117_1_JRS_19_016502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon |