Fast sparse adversarial attack for synthetic aperture radar target recognition

With the rapid development of artificial intelligence technology, deep learning has achieved significant advantages in synthetic aperture radar automatic target recognition (SAR-ATR). However, previous research showed that the addition of small perturbations not easily detected by the human eye can...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied remote sensing Vol. 19; no. 1; p. 016502
Main Authors Wan, Xuanshen, Liu, Wei, Niu, Chaoyang, Lu, Wanjie, Li, Yuanli
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 01.01.2025
Subjects
Online AccessGet full text
ISSN1931-3195
1931-3195
DOI10.1117/1.JRS.19.016502

Cover

Loading…
Abstract With the rapid development of artificial intelligence technology, deep learning has achieved significant advantages in synthetic aperture radar automatic target recognition (SAR-ATR). However, previous research showed that the addition of small perturbations not easily detected by the human eye can lead to SAR-ATR model recognition errors; that is, they are affected by adversarial attacks. To solve the problem of long computation time in existing SAR sparse adversarial attack algorithms, we propose a SAR fast sparse adversarial attack (FSAA) algorithm. First, an end-to-end sparse adversarial attack framework is developed based on the lightweight generator ResNet model using two different upsampling modules to control the amplitude and position of the adversarial perturbation. A loss function for the generator is then constructed, which mainly consists of the linear addition of the attack loss, the amplitude distortion loss, and the sparsity loss. Finally, the SAR image is mapped through the trained generator model in a one-step process to generate sparse adversarial perturbations quickly and effectively. Compared with the existing SAR sparse adversarial attack algorithm, the experimental results show that the generation speed of the proposed method is at least 30 times higher when the perturbation is less than 0.05% of the pixels in the entire image, and the recognition rate of the model is >13%.
AbstractList With the rapid development of artificial intelligence technology, deep learning has achieved significant advantages in synthetic aperture radar automatic target recognition (SAR-ATR). However, previous research showed that the addition of small perturbations not easily detected by the human eye can lead to SAR-ATR model recognition errors; that is, they are affected by adversarial attacks. To solve the problem of long computation time in existing SAR sparse adversarial attack algorithms, we propose a SAR fast sparse adversarial attack (FSAA) algorithm. First, an end-to-end sparse adversarial attack framework is developed based on the lightweight generator ResNet model using two different upsampling modules to control the amplitude and position of the adversarial perturbation. A loss function for the generator is then constructed, which mainly consists of the linear addition of the attack loss, the amplitude distortion loss, and the sparsity loss. Finally, the SAR image is mapped through the trained generator model in a one-step process to generate sparse adversarial perturbations quickly and effectively. Compared with the existing SAR sparse adversarial attack algorithm, the experimental results show that the generation speed of the proposed method is at least 30 times higher when the perturbation is less than 0.05% of the pixels in the entire image, and the recognition rate of the model is >13%.
Author Lu, Wanjie
Wan, Xuanshen
Liu, Wei
Niu, Chaoyang
Li, Yuanli
Author_xml – sequence: 1
  givenname: Xuanshen
  orcidid: 0009-0005-4146-3567
  surname: Wan
  fullname: Wan, Xuanshen
  email: allwan0010@163.com
  organization: PLA Information Engineering University, Institute of Data and Target Engineering, Zhengzhou, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-3395-6696
  surname: Liu
  fullname: Liu, Wei
  email: greatliuliu@163.com
  organization: PLA Information Engineering University, Institute of Data and Target Engineering, Zhengzhou, China
– sequence: 3
  givenname: Chaoyang
  surname: Niu
  fullname: Niu, Chaoyang
  email: ncy_100@163.com
  organization: PLA Information Engineering University, Institute of Data and Target Engineering, Zhengzhou, China
– sequence: 4
  givenname: Wanjie
  surname: Lu
  fullname: Lu, Wanjie
  email: lwj285149763@163.com
  organization: PLA Information Engineering University, Institute of Data and Target Engineering, Zhengzhou, China
– sequence: 5
  givenname: Yuanli
  surname: Li
  fullname: Li, Yuanli
  email: likaojin@163.com
  organization: PLA Information Engineering University, Institute of Data and Target Engineering, Zhengzhou, China
BookMark eNqNkE9PwkAQxTcGExE9e90PYGGHdm17JCgqwT9RDt42w3YWi7htdhcS_PQW68GDJp5mkvm9Ny_vmHVsZYmxMxB9AEgH0J8-Pfch7wu4kGJ4wLqQxxDFkMvOj_2IHXu_EkLGWZZ22f0EfeC-RueJY7El59GVuOYYAuo3birH_c6GVwql5liTCxtH3GGBjgd0Swrcka6WtgxlZU_YocG1p9Pv2WPzydV8fBPNHq5vx6NZpBNIQwSQpVmmMc-N1pmROQ61JsIUhRYmXhjAuEi0kJQBikJSIhdDWUiTUAGUxD02aG21q7x3ZFTtynd0OwVC7dtQoJo2FOSqbaNR2Fbh65LUqto42-RT01FDbav1ngQ1cZUNL3cztMXj5UR9lHULfB1bo38xdWGah-e_Pfwr3ydH1ome
Cites_doi 10.1109/CVPR.2015.7298594
10.1109/CVPR.2017.634
10.1109/LGRS.2018.2877599
10.1109/TGRS.2023.3248040
10.1109/CVPR.2016.308
10.1109/Radar53847.2021.10028291
10.1109/TIP.2003.819861
10.1109/CCDC62350.2024.10588229
10.1109/MGRS.2013.2248301
10.1109/CVPR.2017.243
10.1016/j.sigpro.2019.01.006
10.16798/j.issn.1003-0530.2021.09.007
10.1117/12.242059
10.1109/JSTARS.2022.3141485
10.1109/IAEAC54830.2022.9929962
10.1109/JSTARS.2017.2787728
10.1016/j.jnca.2020.102632
10.1109/CVPR.2018.00716
10.1109/TEVC.2019.2890858
10.1117/1.JRS.17.016513
10.1016/j.na.2009.07.030
10.3390/rs13040596
10.1109/JSTARS.2024.3384188
10.1109/CVPR.2019.00930
10.3390/rs16142539
10.1201/9781351251389-8
10.1007/978-3-319-46475-6_43
10.1117/1.JRS.17.016502
10.1109/ICSIP55141.2022.9887044
ContentType Journal Article
Copyright The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Copyright_xml – notice: The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
DBID AAYXX
CITATION
DOI 10.1117/1.JRS.19.016502
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1931-3195
EndPage 016502
ExternalDocumentID 10_1117_1_JRS_19_016502
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42201472
GroupedDBID 0R~
29J
5GY
ABJNI
ACGFO
ACGFS
ADMLS
AENEX
AKROS
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
FQ0
HZ~
O9-
RNS
SPBNH
AAYXX
CITATION
M4X
ID FETCH-LOGICAL-c417t-118788ca99fcc8f59a2cceea7a0c0f3bf1a3d4c05e81a0d5e45b25d5f4ed1e43
ISSN 1931-3195
IngestDate Tue Jul 01 04:10:04 EDT 2025
Thu May 08 04:45:41 EDT 2025
Thu May 08 04:46:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords adversarial attack
synthetic aperture radar
automatic target recognition
sparsity
ResNet generator
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c417t-118788ca99fcc8f59a2cceea7a0c0f3bf1a3d4c05e81a0d5e45b25d5f4ed1e43
ORCID 0000-0002-3395-6696
0009-0005-4146-3567
OpenAccessLink http://www.dx.doi.org/10.1117/1.JRS.19.016502
PageCount 1
ParticipantIDs spie_journals_10_1117_1_JRS_19_016502
crossref_primary_10_1117_1_JRS_19_016502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of applied remote sensing
PublicationTitleAlternate J. Appl. Remote Sens
PublicationYear 2025
Publisher Society of Photo-Optical Instrumentation Engineers
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
References r2
r3
r4
r5
r6
r7
r8
Goodfellow (r16)
r9
r30
r10
r31
r12
r11
r14
r15
r18
r19
Johnson (r24)
r21
r20
r23
r22
r25
Kurakin (r17)
r27
r26
r29
r28
Szegedy (r13)
r1
References_xml – ident: r27
  doi: 10.1109/CVPR.2015.7298594
– ident: r29
  doi: 10.1109/CVPR.2017.634
– ident: r8
  doi: 10.1109/LGRS.2018.2877599
– ident: r6
  doi: 10.1109/TGRS.2023.3248040
– ident: r28
  doi: 10.1109/CVPR.2016.308
– ident: r20
  doi: 10.1109/Radar53847.2021.10028291
– ident: r31
  doi: 10.1109/TIP.2003.819861
– ident: r12
  doi: 10.1109/CCDC62350.2024.10588229
– ident: r2
  doi: 10.1109/MGRS.2013.2248301
– ident: r26
  doi: 10.1109/CVPR.2017.243
– ident: r5
  doi: 10.1016/j.sigpro.2019.01.006
– ident: r21
  doi: 10.16798/j.issn.1003-0530.2021.09.007
– ident: r25
  doi: 10.1117/12.242059
– ident: r7
  doi: 10.1109/JSTARS.2022.3141485
– ident: r19
  doi: 10.1109/IAEAC54830.2022.9929962
– ident: r1
  doi: 10.1109/JSTARS.2017.2787728
– ident: r11
  doi: 10.1016/j.jnca.2020.102632
– ident: r30
  doi: 10.1109/CVPR.2018.00716
– ident: r14
  doi: 10.1109/TEVC.2019.2890858
– ident: r16
  article-title: Explaining and harnessing adversarial examples
– ident: r9
  doi: 10.1117/1.JRS.17.016513
– ident: r3
  doi: 10.1016/j.na.2009.07.030
– ident: r4
  doi: 10.3390/rs13040596
– ident: r13
  article-title: Intriguing properties of neural networks
– ident: r23
  doi: 10.1109/JSTARS.2024.3384188
– ident: r15
  doi: 10.1109/CVPR.2019.00930
– ident: r22
  doi: 10.3390/rs16142539
– ident: r17
  article-title: Adversarial examples in the physical world
  doi: 10.1201/9781351251389-8
– ident: r24
  article-title: Perceptual losses for real-time style transfer and super-resolution
  doi: 10.1007/978-3-319-46475-6_43
– ident: r10
  doi: 10.1117/1.JRS.17.016502
– ident: r18
  doi: 10.1109/ICSIP55141.2022.9887044
SSID ssj0053887
Score 2.3457031
Snippet With the rapid development of artificial intelligence technology, deep learning has achieved significant advantages in synthetic aperture radar automatic...
SourceID crossref
spie
SourceType Index Database
Enrichment Source
Publisher
StartPage 016502
Title Fast sparse adversarial attack for synthetic aperture radar target recognition
URI http://www.dx.doi.org/10.1117/1.JRS.19.016502
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ji9swFBZp5tBeSlc63dChhUJwanmJ7WPoNAwhGUonhZxqtHnGLXiMl0Pm1_dJ8jZpBtJeTJBfhPD79N6T3obQBxo4zOZ2YgUJUyk5gWvRmZdYhM9s6rKI-ULdd6wvZuc_vOXW345GPwdRS3XFpvz2YF7J_3AVxoCvKkv2HzjbTQoD8Bv4C0_gMDyP4vGCltUEREJRSuXMB0uO6iYctKoo_60jCMtdBiaersqay0K7CwoqaDExIeCTLoCoYc_fdipt7NRCAlflpFQR74260xfxWmxta1B5131a2SqtdfSeTHvHR9249292tP__ytDR7FcqhzcQjj-4gTBCM3IJyHLTLHMqD4y1kjbaR9QBAa5LAEyX3y-nJJqqZCvb6XVV65_fU2FdYKE50gQxiWGCmESxmeABOnHgGGGP0cn8bL26bHU1SHvdQrFbbVP8Cab4vLeGO3bLuMxTObBDNk_Q44YxeG7Q8BSNZPYMPWx62V_vnqMLhQpsUIEHqMAGFRhQgTtU4BYVWKMCG1TgASpeoM3i6-bLudV0zbC4R4LKUv3jw5DTKEo4DxM_og4HS4gGVO1JlyWEusLjti9DQm3hS89nji_8xJOCSM99icbZTSZfIRzAYYKGIiDMll4UCGYzT0Sg3GGDwy7kp-hT-0ni3NRGie9hwCn6qD5Z3Gye8n66q7t0yzm8BvgoEhIvVFGP7XpFM_HtbBHfprkh0C_NDEfR5CJ5ffzi36BHPezfonFV1PIdmKIVe9_g6Q8Keokf
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+sparse+adversarial+attack+for+synthetic+aperture+radar+target+recognition&rft.jtitle=Journal+of+applied+remote+sensing&rft.au=Wan%2C+Xuanshen&rft.au=Liu%2C+Wei&rft.au=Niu%2C+Chaoyang&rft.au=Lu%2C+Wanjie&rft.date=2025-01-01&rft.issn=1931-3195&rft.eissn=1931-3195&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1117%2F1.JRS.19.016502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1117_1_JRS_19_016502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3195&client=summon