A Particle Swarm Optimization-Based Flexible Convolutional Autoencoder for Image Classification

Convolutional autoencoders (CAEs) have shown their remarkable performance in stacking to deep convolutional neural networks (CNNs) for classifying image data during the past several years. However, they are unable to construct the state-of-the-art CNNs due to their intrinsic architectures. In this r...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 30; no. 8; pp. 2295 - 2309
Main Authors Sun, Yanan, Xue, Bing, Zhang, Mengjie, Yen, Gary G.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Convolutional autoencoders (CAEs) have shown their remarkable performance in stacking to deep convolutional neural networks (CNNs) for classifying image data during the past several years. However, they are unable to construct the state-of-the-art CNNs due to their intrinsic architectures. In this regard, we propose a flexible CAE (FCAE) by eliminating the constraints on the numbers of convolutional layers and pooling layers from the traditional CAE. We also design an architecture discovery method by exploiting particle swarm optimization, which is capable of automatically searching for the optimal architectures of the proposed FCAE with much less computational resource and without any manual intervention. We test the proposed approach on four extensively used image classification data sets. Experimental results show that our proposed approach in this paper significantly outperforms the peer competitors including the state-of-the-art algorithms.
AbstractList Convolutional autoencoders (CAEs) have shown their remarkable performance in stacking to deep convolutional neural networks (CNNs) for classifying image data during the past several years. However, they are unable to construct the state-of-the-art CNNs due to their intrinsic architectures. In this regard, we propose a flexible CAE (FCAE) by eliminating the constraints on the numbers of convolutional layers and pooling layers from the traditional CAE. We also design an architecture discovery method by exploiting particle swarm optimization, which is capable of automatically searching for the optimal architectures of the proposed FCAE with much less computational resource and without any manual intervention. We test the proposed approach on four extensively used image classification data sets. Experimental results show that our proposed approach in this paper significantly outperforms the peer competitors including the state-of-the-art algorithms.Convolutional autoencoders (CAEs) have shown their remarkable performance in stacking to deep convolutional neural networks (CNNs) for classifying image data during the past several years. However, they are unable to construct the state-of-the-art CNNs due to their intrinsic architectures. In this regard, we propose a flexible CAE (FCAE) by eliminating the constraints on the numbers of convolutional layers and pooling layers from the traditional CAE. We also design an architecture discovery method by exploiting particle swarm optimization, which is capable of automatically searching for the optimal architectures of the proposed FCAE with much less computational resource and without any manual intervention. We test the proposed approach on four extensively used image classification data sets. Experimental results show that our proposed approach in this paper significantly outperforms the peer competitors including the state-of-the-art algorithms.
Convolutional autoencoders (CAEs) have shown their remarkable performance in stacking to deep convolutional neural networks (CNNs) for classifying image data during the past several years. However, they are unable to construct the state-of-the-art CNNs due to their intrinsic architectures. In this regard, we propose a flexible CAE (FCAE) by eliminating the constraints on the numbers of convolutional layers and pooling layers from the traditional CAE. We also design an architecture discovery method by exploiting particle swarm optimization, which is capable of automatically searching for the optimal architectures of the proposed FCAE with much less computational resource and without any manual intervention. We test the proposed approach on four extensively used image classification data sets. Experimental results show that our proposed approach in this paper significantly outperforms the peer competitors including the state-of-the-art algorithms.
Author Xue, Bing
Zhang, Mengjie
Yen, Gary G.
Sun, Yanan
Author_xml – sequence: 1
  givenname: Yanan
  orcidid: 0000-0001-6374-1429
  surname: Sun
  fullname: Sun, Yanan
  email: yanan.sun@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 2
  givenname: Bing
  orcidid: 0000-0002-4865-8026
  surname: Xue
  fullname: Xue, Bing
  email: bing.xue@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 3
  givenname: Mengjie
  orcidid: 0000-0003-4463-9538
  surname: Zhang
  fullname: Zhang, Mengjie
  email: mengjie.zhang@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 4
  givenname: Gary G.
  orcidid: 0000-0001-8851-5348
  surname: Yen
  fullname: Yen, Gary G.
  email: gyen@okstate.edu
  organization: School of Electrical and Computer Engineering, Oklahoma State University-Stillwater, Stillwater, OK, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30530340$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1UREvpC4CEIrFhk8HXjhN7OYwoVBq1SC0SO8tJrpErJx7sBGifHs8Ps-gCb2zJ3zlX95yX5GQMIxLyGugCgKoPd9fX69sFoyAXTEqAij8jZwxqVjIu5cnx3Xw_JRcp3dN8airqSr0gp5wKTnlFz4heFl9NnFznsbj9beJQ3GwmN7hHM7kwlh9Nwr649PjHtZlYhfFX8PP2y_hiOU8Bxy70GAsbYnE1mB-Z8SYlZ123c3hFnlvjE14c7nPy7fLT3epLub75fLVarsuugmYqgaLgQhhVVQxVC62lsjOqaVrJWmmVFH1dg2kQemWYbbjqK-TCcNu2vKOWn5P3e99NDD9nTJMeXOrQezNimJNmIEQORMo6o--eoPdhjnmhTLEapKqoEpl6e6DmdsBeb6IbTHzQ_6LLANsDXQwpRbRHBKjeVqR3FeltRfpQURbJJ6LOTbugpmic_7_0zV7qEPE4S4oGQAL_C5Mgneg
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s40815_019_00697_9
crossref_primary_10_1093_bib_bbab090
crossref_primary_10_1016_j_eswa_2021_115945
crossref_primary_10_1016_j_eswa_2019_113113
crossref_primary_10_1016_j_neucom_2022_01_099
crossref_primary_10_3390_s22228881
crossref_primary_10_3390_axioms10030139
crossref_primary_10_1016_j_neucom_2021_04_111
crossref_primary_10_1109_TEVC_2023_3346969
crossref_primary_10_1093_jcde_qwac075
crossref_primary_10_1007_s10596_022_10177_z
crossref_primary_10_20965_jaciii_2023_p0165
crossref_primary_10_1007_s00500_021_06711_3
crossref_primary_10_1016_j_ins_2021_01_064
crossref_primary_10_1109_TFUZZ_2024_3388023
crossref_primary_10_1007_s10462_021_09992_0
crossref_primary_10_1007_s10489_021_02589_8
crossref_primary_10_1016_j_compeleceng_2021_107108
crossref_primary_10_1109_ACCESS_2022_3177544
crossref_primary_10_1016_j_compbiomed_2023_107579
crossref_primary_10_1111_exsy_12690
crossref_primary_10_1109_TNNLS_2020_3027308
crossref_primary_10_1109_TCDS_2022_3179482
crossref_primary_10_1007_s10489_022_03422_6
crossref_primary_10_1109_ACCESS_2019_2937339
crossref_primary_10_1109_TII_2020_2998107
crossref_primary_10_3390_info14110604
crossref_primary_10_1007_s00521_020_04769_y
crossref_primary_10_1109_TNNLS_2021_3109953
crossref_primary_10_3390_electronics12010113
crossref_primary_10_12720_jait_15_9_1011_1018
crossref_primary_10_3390_healthcare10040677
crossref_primary_10_1109_TEVC_2021_3079320
crossref_primary_10_1109_TEVC_2023_3245322
crossref_primary_10_1109_ACCESS_2020_3010543
crossref_primary_10_1109_TC_2024_3365949
crossref_primary_10_1631_FITEE_1900116
crossref_primary_10_1016_j_neunet_2025_107368
crossref_primary_10_1109_ACCESS_2020_2981141
crossref_primary_10_1016_j_patcog_2022_109215
crossref_primary_10_32604_cmc_2022_024232
crossref_primary_10_1016_j_asoc_2024_112392
crossref_primary_10_1016_j_dajour_2024_100470
crossref_primary_10_1109_LGRS_2024_3431216
crossref_primary_10_3390_en13040807
crossref_primary_10_1109_TNNLS_2021_3106399
crossref_primary_10_1016_j_ins_2024_121443
crossref_primary_10_1016_j_knosys_2022_110210
crossref_primary_10_1016_j_asej_2024_102734
crossref_primary_10_1016_j_ndteint_2024_103262
crossref_primary_10_1631_FITEE_2200515
crossref_primary_10_3390_math10193581
crossref_primary_10_1109_TEVC_2022_3217290
crossref_primary_10_1016_j_engappai_2023_107498
crossref_primary_10_1109_TEVC_2021_3068842
crossref_primary_10_1109_ACCESS_2020_3046078
crossref_primary_10_1016_j_asoc_2023_110079
crossref_primary_10_1016_j_asoc_2023_111049
crossref_primary_10_22399_ijcesen_493
crossref_primary_10_1016_j_mex_2024_102747
crossref_primary_10_1109_ACCESS_2019_2903015
crossref_primary_10_1109_TEVC_2021_3079985
crossref_primary_10_1155_2022_3571364
crossref_primary_10_1016_j_knosys_2024_112527
crossref_primary_10_1142_S021800142052014X
crossref_primary_10_1016_j_ins_2022_05_100
crossref_primary_10_3390_electronics9111880
crossref_primary_10_1016_j_eswa_2023_120678
crossref_primary_10_1145_3603704
crossref_primary_10_1109_TNNLS_2021_3100554
crossref_primary_10_1109_TCYB_2023_3267109
crossref_primary_10_1016_j_artmed_2023_102571
crossref_primary_10_1016_j_neunet_2024_106104
crossref_primary_10_1109_TEVC_2021_3088631
crossref_primary_10_1007_s12555_021_0062_8
crossref_primary_10_1109_TEVC_2023_3252612
crossref_primary_10_1002_aisy_202300406
crossref_primary_10_1016_j_aej_2022_05_028
crossref_primary_10_1186_s41074_020_00065_9
crossref_primary_10_3390_sym14112323
crossref_primary_10_1016_j_asoc_2023_110412
crossref_primary_10_1109_TEVC_2020_3047220
crossref_primary_10_1145_3439730
crossref_primary_10_1145_3473330
crossref_primary_10_1007_s12046_021_01787_x
crossref_primary_10_1109_ACCESS_2021_3106062
crossref_primary_10_1109_TNNLS_2023_3297624
crossref_primary_10_1109_TEVC_2023_3307245
crossref_primary_10_1142_S0129065721500350
crossref_primary_10_1016_j_patcog_2020_107794
crossref_primary_10_1177_09544119221135714
crossref_primary_10_1016_j_eswa_2019_04_051
crossref_primary_10_1109_TNNLS_2021_3107049
crossref_primary_10_1109_TCYB_2020_3035518
crossref_primary_10_1109_TEVC_2022_3189500
crossref_primary_10_1002_ett_4443
crossref_primary_10_1016_j_swevo_2024_101520
crossref_primary_10_1142_S012906572450014X
Cites_doi 10.1145/2463372.2463459
10.1109/TEVC.2018.2808689
10.1109/SIS.2007.368035
10.1109/CVPR.2017.243
10.1109/TEVC.2013.2281543
10.1109/TCYB.2016.2536638
10.1109/CVPR.2010.5539957
10.1016/S0925-2312(02)00623-9
10.1109/CVPR.2016.90
10.1109/TMI.2003.815867
10.1109/CVPR.2009.5206577
10.1162/neco.2006.18.7.1527
10.1162/artl.2009.15.2.15202
10.1109/TNNLS.2016.2536741
10.1109/TAI.1997.632235
10.1007/978-3-642-35289-8_34
10.1109/5.726791
10.1109/CVPR.2007.383157
10.1109/TNNLS.2017.2695223
10.1109/CEC.2018.8477921
10.1016/S0042-6989(97)00169-7
10.1109/ICNN.1995.488968
10.1109/ICCV.2011.6126474
10.1109/TNNLS.2015.2469673
10.1007/BF00332918
10.1109/CVPR.2015.7298594
10.1126/science.1127647
10.1016/j.neucom.2007.10.013
10.1145/1553374.1553453
10.1109/TPAMI.2012.277
10.1016/j.ins.2013.05.031
10.1016/j.neucom.2004.07.002
10.1109/TSMCB.2003.818557
10.1038/nature14539
10.1109/CEC.2009.4983254
10.1109/TPAMI.2012.231
10.1109/MHS.1995.494215
10.1109/TSMCB.2012.2227469
10.1016/j.cviu.2005.09.012
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2881143
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2309
ExternalDocumentID 30530340
10_1109_TNNLS_2018_2881143
8571181
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Marsden Fund
  grantid: VUW1209; VUW1509; VUW1615
  funderid: 10.13039/501100009193
– fundername: National Natural Science Foundation of China
  grantid: 61803277
  funderid: 10.13039/501100001809
– fundername: Huawei Industry Fund
  grantid: E2880/3663
– fundername: National Natural Science Fund of China for Distinguished Young Scholar
  grantid: 61625204
– fundername: Victoria University of Wellington
  grantid: 209862/3580; 213150/3662
  funderid: 10.13039/501100001538
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c417t-10e5355a9442e9b1bf08ca977b82b8f985d661a7e1d9a2f739d4e35a3fbb3c0f3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 22:23:23 EDT 2025
Mon Jun 30 05:07:04 EDT 2025
Thu Apr 03 07:26:22 EDT 2025
Tue Jul 01 00:27:29 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Wed Aug 27 05:50:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c417t-10e5355a9442e9b1bf08ca977b82b8f985d661a7e1d9a2f739d4e35a3fbb3c0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4865-8026
0000-0003-4463-9538
0000-0001-6374-1429
0000-0001-8851-5348
PMID 30530340
PQID 2261894095
PQPubID 85436
PageCount 15
ParticipantIDs ieee_primary_8571181
crossref_citationtrail_10_1109_TNNLS_2018_2881143
proquest_journals_2261894095
crossref_primary_10_1109_TNNLS_2018_2881143
pubmed_primary_30530340
proquest_miscellaneous_2155162886
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
settles (ref48) 2003
ref15
glorot (ref66) 2011
hinton (ref3) 1994
ref53
rumelhart (ref1) 1988; 5
ref52
ref11
masci (ref16) 2011
ioffe (ref68) 2015
ref17
kavukcuoglu (ref23) 2010
ref19
schwenk (ref4) 1995
smolensky (ref18) 1986
krizhevsky (ref70) 2010; 40
ref51
ref50
lecun (ref7) 2015; 521
ref46
ref45
ref47
ref42
ref44
ref43
hutter (ref32) 2011; 5
bergstra (ref28) 2012; 13
coates (ref55) 2011
ref49
ref8
fei-fei (ref56) 2007; 106
ref9
krizhevsky (ref10) 2012
ref5
krizhevsky (ref54) 2009
ref35
ref34
srivastava (ref65) 2014; 15
bergstra (ref31) 2011
atanassov (ref58) 2009
ref33
sutton (ref59) 1998; 1
kim (ref40) 2015
abadi (ref69) 2016
ref2
ref39
ref38
real (ref37) 2017
glorot (ref64) 2010
rasmussen (ref29) 2006; 1
kingma (ref67) 2014
ref71
bengio (ref6) 2007
ref24
ref26
vincent (ref25) 2010; 11
ref20
ref63
simonyan (ref27) 2014
ref22
baker (ref36) 2017
ref21
krogh (ref61) 1992
mo?kus (ref30) 1975
fernando (ref41) 2016
weston (ref72) 2012
pass (ref14) 1997
ref60
ref62
References_xml – ident: ref39
  doi: 10.1145/2463372.2463459
– start-page: 153
  year: 2007
  ident: ref6
  article-title: Greedy layer-wise training of deep networks
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref65
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 5
  start-page: 507
  year: 2011
  ident: ref32
  article-title: Sequential model-based optimization for general algorithm configuration
  publication-title: Proc LION
– year: 2017
  ident: ref36
  article-title: Designing neural network architectures using reinforcement learning
  publication-title: Proc Int Conf Learning Represent
– volume: 5
  start-page: 1
  year: 1988
  ident: ref1
  article-title: Learning representations by back-propagating errors
  publication-title: Modeling Cognition
– ident: ref33
  doi: 10.1109/TEVC.2018.2808689
– ident: ref63
  doi: 10.1109/SIS.2007.368035
– volume: 1
  year: 2006
  ident: ref29
  publication-title: Gaussian Processes for Machine Learning
– year: 2014
  ident: ref67
  publication-title: Adam A method for stochastic optimization
– ident: ref57
  doi: 10.1109/CVPR.2017.243
– ident: ref53
  doi: 10.1109/TEVC.2013.2281543
– ident: ref24
  doi: 10.1109/TCYB.2016.2536638
– start-page: 992
  year: 1995
  ident: ref4
  article-title: Transformation invariant autoassociation with application to handwritten character recognition
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1109/CVPR.2010.5539957
– ident: ref51
  doi: 10.1016/S0925-2312(02)00623-9
– ident: ref26
  doi: 10.1109/CVPR.2016.90
– volume: 40
  year: 2010
  ident: ref70
  article-title: Convolutional deep belief networks on cifar-10
– start-page: 950
  year: 1992
  ident: ref61
  article-title: A simple weight decay can improve generalization
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref37
  publication-title: Large-scale evolution of image classifiers
– start-page: 215
  year: 2011
  ident: ref55
  article-title: An analysis of single-layer networks in unsupervised feature learning
  publication-title: Proc 14th Int Conf Artif Intell Statist
– ident: ref13
  doi: 10.1109/TMI.2003.815867
– year: 1986
  ident: ref18
  article-title: Information processing in dynamical systems: Foundations of harmony theory
– volume: 1
  year: 1998
  ident: ref59
  publication-title: Reinforcement Learning An Introduction
– ident: ref17
  doi: 10.1109/CVPR.2009.5206577
– ident: ref8
  doi: 10.1162/neco.2006.18.7.1527
– start-page: 200
  year: 2003
  ident: ref48
  article-title: Comparison of genetic algorithm and particle swarm optimizer when evolving a recurrent neural network
  publication-title: Genetic and Evolutionary Computation
– ident: ref38
  doi: 10.1162/artl.2009.15.2.15202
– ident: ref15
  doi: 10.1109/TNNLS.2016.2536741
– ident: ref52
  doi: 10.1109/TAI.1997.632235
– start-page: 109
  year: 2016
  ident: ref41
  article-title: Convolution by evolution: Differentiable pattern producing networks
  publication-title: Proc Genet Evol Comput Conf
– start-page: 639
  year: 2012
  ident: ref72
  article-title: Deep learning via semi-supervised embedding
  publication-title: Neural Networks Tricks of the Trade
  doi: 10.1007/978-3-642-35289-8_34
– start-page: 448
  year: 2015
  ident: ref68
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc Int Conf Mach Learn
– start-page: 1097
  year: 2012
  ident: ref10
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref9
  doi: 10.1109/5.726791
– ident: ref71
  doi: 10.1109/CVPR.2007.383157
– ident: ref34
  doi: 10.1109/TNNLS.2017.2695223
– start-page: 160
  year: 2015
  ident: ref40
  article-title: Deep clustered convolutional kernels
  publication-title: Feature Extraction Modern Questions and Challenge
– ident: ref60
  doi: 10.1109/CEC.2018.8477921
– ident: ref22
  doi: 10.1016/S0042-6989(97)00169-7
– start-page: 1090
  year: 2010
  ident: ref23
  article-title: Learning convolutional feature hierarchies for visual recognition
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref42
  doi: 10.1109/ICNN.1995.488968
– ident: ref21
  doi: 10.1109/ICCV.2011.6126474
– year: 2009
  ident: ref54
  article-title: Learning multiple layers of features from tiny images
– start-page: 315
  year: 2011
  ident: ref66
  article-title: Deep sparse rectifier neural networks
  publication-title: Proc 14th Int Conf Artif Intell Statist
– ident: ref35
  doi: 10.1109/TNNLS.2015.2469673
– start-page: 249
  year: 2010
  ident: ref64
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref2
  doi: 10.1007/BF00332918
– volume: 13
  start-page: 281
  year: 2012
  ident: ref28
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– ident: ref12
  doi: 10.1109/CVPR.2015.7298594
– ident: ref5
  doi: 10.1126/science.1127647
– start-page: 3
  year: 1994
  ident: ref3
  article-title: Autoencoders, minimum description length and Helmholtz free energy
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2546
  year: 2011
  ident: ref31
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2014
  ident: ref27
  publication-title: Very Deep Convolutional Networks for Large-scale Image Recognition
– ident: ref47
  doi: 10.1016/j.neucom.2007.10.013
– start-page: 52
  year: 2011
  ident: ref16
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: Artificial Neural Networks in Machine Learning
– year: 2016
  ident: ref69
  publication-title: Tensorflow Large-scale machine learning on heterogeneous distributed systems
– start-page: 459
  year: 2009
  ident: ref58
  article-title: Tuning the generation of Sobol sequence with Owen scrambling
  publication-title: Large-Scale Scientific Computing
– ident: ref19
  doi: 10.1145/1553374.1553453
– ident: ref62
  doi: 10.1109/TPAMI.2012.277
– ident: ref46
  doi: 10.1016/j.ins.2013.05.031
– ident: ref49
  doi: 10.1016/j.neucom.2004.07.002
– ident: ref50
  doi: 10.1109/TSMCB.2003.818557
– volume: 521
  start-page: 436
  year: 2015
  ident: ref7
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 65
  year: 1997
  ident: ref14
  article-title: Comparing images using color coherence vectors
  publication-title: Proc 4th ACM Int Conf Multimedia
– ident: ref45
  doi: 10.1109/CEC.2009.4983254
– ident: ref11
  doi: 10.1109/TPAMI.2012.231
– ident: ref43
  doi: 10.1109/MHS.1995.494215
– ident: ref44
  doi: 10.1109/TSMCB.2012.2227469
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref25
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– start-page: 400
  year: 1975
  ident: ref30
  article-title: On Bayesian methods for seeking the extremum
  publication-title: Proc Optim Techn IFIP Tech Conf
– volume: 106
  start-page: 59
  year: 2007
  ident: ref56
  article-title: Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
  publication-title: Comput Vis Image Understand
  doi: 10.1016/j.cviu.2005.09.012
SSID ssj0000605649
Score 2.592004
Snippet Convolutional autoencoders (CAEs) have shown their remarkable performance in stacking to deep convolutional neural networks (CNNs) for classifying image data...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2295
SubjectTerms Algorithms
Artificial neural networks
Classification
Computer applications
Computer architecture
Convolution
Convolutional autoencoder (CAE)
Convolutional codes
deep learning
Image classification
Neural networks
Optimization
Particle swarm optimization
particle swarm optimization (PSO)
Stacking
Title A Particle Swarm Optimization-Based Flexible Convolutional Autoencoder for Image Classification
URI https://ieeexplore.ieee.org/document/8571181
https://www.ncbi.nlm.nih.gov/pubmed/30530340
https://www.proquest.com/docview/2261894095
https://www.proquest.com/docview/2155162886
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PXGhQHkECjISN8g2ju3YPpaKVUGwILWV9hbFjn0pm6CSgMSvZ-w4EUKAuEWKPXE045lv7HkAvPDcauopz5nxPudWmBztvMwltb6snC1pG6t9bqrzK_5uK7Z78GrJhXHOxeAztwqP8S6_7e0YjspOlJAhT3If9tFxm3K1lvOUAnF5FdFuSasyL5nczjkyhT653GzeX4RALrUqlUIfIPTPQVFHBR6OPX4xSbHHyt_hZjQ760P4MC94ija5Xo2DWdkfv9Vy_N8_ugO3E_4kp5PA3IU9192Dw7m3A0lb_QjqU_IpSRW5-N7c7MhHVC67lLWZv0bj15J1qKZpcMRZ331LMhyIj0Mf6mO2SBAxMXm7Q6VFYvvNEJgUKdyHq_Wby7PzPDVjyC2nckB17QRik0ZzXjptqPGFsg2iR6NKo7xWokVT30hHW92UXjLdcsdEw7wxzBaePYCDru_cIyCNVM6KwhTMKS5apYW0NExnDL1JqTKgMz9qmyqVh4YZn-vosRS6juysAzvrxM4MXi5zvkx1Ov45-ijwYhmZ2JDB8cz2Om3lrzXiU6o0usEig-fLa9yE4Wal6Vw_4ph434jEqwweTuKy0J6l7PGfv_kEbuHK9BRTeAwHw83oniLOGcyzKOA_AXZg9hA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALBQolUCBI3CDb2I5j-1gqVlvYLkjdSnuLYse-wGZRSUDi1zN2nAghQNwiZTxxNOOZz_Y8AF66wijiSJEx7VxWGK4z9PMiE8Q4WlpDSROqfa7KxVXxbsM3e_B6yoWx1obgMzvzj-Euv9mZ3h-VnUgufJ7kDbiJfp_TIVtrOlHJEZmXAe9SUtKMMrEZs2RydbJerZaXPpRLzqiUuAvwHXRQ2dGE-4OPX5xS6LLyd8AZHM_8AC7GKQ_xJp9mfadn5sdv1Rz_95_uwp2IQNPTQWXuwZ5t78PB2N0hjYv9EKrT9GPUq_Tye329TT-gednGvM3sDbq_Jp37epoaKc527beoxZ553-18hcwGGSIqTs-3aLbS0IDThyYFDg_gav52fbbIYjuGzBREdGiwLUd0UquioFZpol0uTY34UUuqpVOSN-jsa2FJo2rqBFNNYRmvmdOamdyxh7Df7lr7CNJaSGt4rnNmZcEbqbgwxA9nDPeTQiZARnlUJtYq9y0zPldhz5KrKoiz8uKsojgTeDWN-TJU6vgn9aGXxUQZxZDA8Sj2Ki7mrxUiVCIVboR5Ai-m17gM_d1K3dpdjzThxhGZlwkcDeoy8R617PGfv_kcbi3WF8tqeb56_wRu4yzVEGF4DPvddW-fIurp9LOg7D8BdcT5Wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Particle+Swarm+Optimization-Based+Flexible+Convolutional+Autoencoder+for+Image+Classification&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Sun%2C+Yanan&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.au=Yen%2C+Gary+G&rft.date=2019-08-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=30&rft.issue=8&rft.spage=2295&rft_id=info:doi/10.1109%2FTNNLS.2018.2881143&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon