On Dini Helicoids in the Minkowski Space
The Dini helicoid is a surface obtained by a screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the three-dimensional Minkowski space. As profiles, we take nontrivial pseudo-Euclidean analogs of the tractrix different from pseudo-Euclidean circles. We pr...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 276; no. 4; pp. 517 - 524 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.11.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1072-3374 1573-8795 |
DOI | 10.1007/s10958-023-06772-9 |
Cover
Abstract | The Dini helicoid is a surface obtained by a screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the three-dimensional Minkowski space. As profiles, we take nontrivial pseudo-Euclidean analogs of the tractrix different from pseudo-Euclidean circles. We prove that on analogs of the Dini helicoid in a the pseudo-Euclidean space, one of the following metrics is induced: the metric of the Lobachevsky plane, the metric of the de Sitter plane, or a degenerate metric. |
---|---|
AbstractList | The Dini helicoid is a surface obtained by a screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the three-dimensional Minkowski space. As profiles, we take nontrivial pseudo-Euclidean analogs of the tractrix different from pseudo-Euclidean circles. We prove that on analogs of the Dini helicoid in a the pseudo-Euclidean space, one of the following metrics is induced: the metric of the Lobachevsky plane, the metric of the de Sitter plane, or a degenerate metric. The Dini helicoid is a surface obtained by a screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the three-dimensional Minkowski space. As profiles, we take nontrivial pseudo-Euclidean analogs of the tractrix different from pseudo-Euclidean circles. We prove that on analogs of the Dini helicoid in a the pseudo-Euclidean space, one of the following metrics is induced: the metric of the Lobachevsky plane, the metric of the de Sitter plane, or a degenerate metric. Keywords and phrases: Lobachevsky plane, de Sitter plane, Dini helicoid. AMS Subject Classification: 53A35, 53B30 |
Audience | Academic |
Author | Kostin, A. V. |
Author_xml | – sequence: 1 givenname: A. V. surname: Kostin fullname: Kostin, A. V. email: kostin_andrei@mail.ru organization: Yelabuga Institute, Kazan (Volga Region) Federal University |
BookMark | eNp9kV1LwzAUhoNMcJv-Aa8K3uhFZ9K0TXI55scGk4HT65ClpzNbl86kQ_33RieMyRi5SDg8Tw68bwe1bG0BoUuCewRjdusJFhmPcUJjnDOWxOIEtUnGaMyZyFrhjcOQUpaeoY73CxyknNM2up7Y6M5YEw2hMro2hY-MjZo3iJ6MXdYffmmi6VppOEenpao8XPzdXfT6cP8yGMbjyeNo0B_HOiVMxIxxnRaFEEWmZ8A0wyRRM0pIkYicc0woVgLjPBcZKCxKTWc5ZaABlyIRM0276Gr779rV7xvwjVzUG2fDSplwQUjGeZbvqLmqQBpb1o1TemW8ln3GspBFytJAxQeoOVhwqgoBliaM9_jeAT6cAlYhnEPCzZ4QmAY-m7naeC9H0-d9lm9Z7WrvHZRSm0Y1JihOmUoSLH-qlNsqZahS_lYpRVCTf-ramZVyX8clupV8gO0c3C7II9Y3ZY-tcQ |
CitedBy_id | crossref_primary_10_1016_j_physleta_2024_129674 |
Cites_doi | 10.2206/kyushujm.71.311 10.1016/j.jmaa.2016.07.062 10.3836/tjm/1255958182 10.1007/s00220-009-0850-0 10.36890/iejg.594497 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer |
Copyright_xml | – notice: Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10958-023-06772-9 |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 524 |
ExternalDocumentID | A775958474 10_1007_s10958_023_06772_9 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c4179-778c4dd99d5cbe7c7012ab311d296880130a9006695ea09fc3b637ece0f929bc3 |
IEDL.DBID | AGYKE |
ISSN | 1072-3374 |
IngestDate | Fri Jul 25 11:00:36 EDT 2025 Tue Jun 17 22:03:35 EDT 2025 Fri Jun 13 00:07:58 EDT 2025 Tue Jun 10 21:02:56 EDT 2025 Fri Jun 27 05:27:02 EDT 2025 Tue Jul 01 01:42:24 EDT 2025 Thu Apr 24 22:54:39 EDT 2025 Fri Feb 21 02:41:37 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | 53B30 Lobachevsky plane Dini helicoid de Sitter plane 53A35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4179-778c4dd99d5cbe7c7012ab311d296880130a9006695ea09fc3b637ece0f929bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10958-023-06772-9.pdf |
PQID | 2891158856 |
PQPubID | 2043545 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2891158856 gale_infotracmisc_A775958474 gale_infotracgeneralonefile_A775958474 gale_infotracacademiconefile_A775958474 gale_incontextgauss_ISR_A775958474 crossref_citationtrail_10_1007_s10958_023_06772_9 crossref_primary_10_1007_s10958_023_06772_9 springer_journals_10_1007_s10958_023_06772_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231100 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Albujer, Caballero (CR1) 2017; 445 CR10 Bour (CR3) 1862; 39 Ikawa (CR6) 2001; 24 CR4 Ji, Kim (CR7) 2013; 220 Kostin (CR9) 2019; 21 Barros, Caballero, Ortega (CR2) 2009; 290 CR8 Lopez (CR11) 2014; 7 Lopez, Kaya (CR12) 2017; 71 Güler, Vanli (CR5) 2006; 46 T Ikawa (6772_CR6) 2001; 24 6772_CR10 F Ji (6772_CR7) 2013; 220 R Lopez (6772_CR12) 2017; 71 M Barros (6772_CR2) 2009; 290 E Bour (6772_CR3) 1862; 39 6772_CR8 AV Kostin (6772_CR9) 2019; 21 E Güler (6772_CR5) 2006; 46 AL Albujer (6772_CR1) 2017; 445 6772_CR4 R Lopez (6772_CR11) 2014; 7 |
References_xml | – volume: 71 start-page: 311 issue: 2 year: 2017 end-page: 327 ident: CR12 article-title: New examples of maximal surfaces in Lorentz-Minkowski space publication-title: Kyushu J. Math. doi: 10.2206/kyushujm.71.311 – volume: 445 start-page: 1013 issue: 1 year: 2017 end-page: 1024 ident: CR1 article-title: Geometric properties of surfaces with the same mean curvature in ℝ and 𝕃 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2016.07.062 – volume: 24 start-page: 377 issue: 2 year: 2001 end-page: 394 ident: CR6 article-title: Bour’s theorem in Minkowski geometry publication-title: Tokyo J. Math. doi: 10.3836/tjm/1255958182 – volume: 46 start-page: 47 issue: 1 year: 2006 end-page: 63 ident: CR5 article-title: Bour’s theorem in Minkowski 3-space publication-title: J. Math. Kyoto Univ. – ident: CR8 – volume: 21 start-page: 14 issue: 1 year: 2019 end-page: 24 ident: CR9 article-title: On asymptotic lines on pseudospherical surfaces publication-title: Vladikavkaz. Mat. Zh. – volume: 290 start-page: 437 issue: 2 year: 2009 end-page: 477 ident: CR2 article-title: Rotational surfaces in 𝕃 and solutions of the nonlinear sigma model publication-title: Commun. Math. Phys. doi: 10.1007/s00220-009-0850-0 – ident: CR4 – volume: 220 start-page: 1 year: 2013 end-page: 11 ident: CR7 article-title: Isometries between minimal helicoidal surfaces and rotation surfaces in Minkowski space publication-title: Appl. Math. Comput. – volume: 7 start-page: 44 issue: 1 year: 2014 end-page: 107 ident: CR11 article-title: Differential geometry of curves and surfaces in Lorentz-Minkowski space publication-title: Int. Electron. J. Geom. doi: 10.36890/iejg.594497 – volume: 39 start-page: 1 year: 1862 end-page: 148 ident: CR3 article-title: Memoire sur le deformation de surfaces publication-title: J. Ecole Polytechn. – ident: CR10 – volume: 71 start-page: 311 issue: 2 year: 2017 ident: 6772_CR12 publication-title: Kyushu J. Math. doi: 10.2206/kyushujm.71.311 – volume: 39 start-page: 1 year: 1862 ident: 6772_CR3 publication-title: J. Ecole Polytechn. – ident: 6772_CR4 – volume: 21 start-page: 14 issue: 1 year: 2019 ident: 6772_CR9 publication-title: Vladikavkaz. Mat. Zh. – volume: 24 start-page: 377 issue: 2 year: 2001 ident: 6772_CR6 publication-title: Tokyo J. Math. doi: 10.3836/tjm/1255958182 – ident: 6772_CR8 – ident: 6772_CR10 – volume: 445 start-page: 1013 issue: 1 year: 2017 ident: 6772_CR1 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2016.07.062 – volume: 290 start-page: 437 issue: 2 year: 2009 ident: 6772_CR2 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-009-0850-0 – volume: 220 start-page: 1 year: 2013 ident: 6772_CR7 publication-title: Appl. Math. Comput. – volume: 46 start-page: 47 issue: 1 year: 2006 ident: 6772_CR5 publication-title: J. Math. Kyoto Univ. – volume: 7 start-page: 44 issue: 1 year: 2014 ident: 6772_CR11 publication-title: Int. Electron. J. Geom. doi: 10.36890/iejg.594497 |
SSID | ssj0007683 |
Score | 2.2954526 |
Snippet | The Dini helicoid is a surface obtained by a screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 517 |
SubjectTerms | Analogs Euclidean geometry Mathematics Mathematics and Statistics Minkowski space |
Title | On Dini Helicoids in the Minkowski Space |
URI | https://link.springer.com/article/10.1007/s10958-023-06772-9 https://www.proquest.com/docview/2891158856 |
Volume | 276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD6C8rI9jLGLVmBVNE3bpM0oNyf2Yxl0bFOZNFaJPVm-BUWgFJFWSPz6HTdOIVwm8ZwvcXxybo7P-QzwnhtlYx3FRLNYkdSGmsgwLIhSLE4MzSTX7j_k-DA7mKQ_jumxbwqr22r3dkty4alvNLtxygjGGOJYz2LCV2GNRoyzHqwNv_39ub_0wJhCN4X1iEqSPPXNMvc_pROQbrvlO_uji7AzWodJ-8JNtcnpznymdvTVLS7Hx87oOTzzeWgwbBRnA1Zs9QKejpckrvVL-PSrCvbKqgwwNKG-lKYOyipAQDDGwaaX9WkZHOGS276CyWj_z9cD4g9WINodOIYZNdOpMZwbqpXNdY5RSqokikzMMzRojGuSu2SEUytDXuhEZUlutQ0LzKaUTl5Dr5pW9g0EacgkLqJVSo1Kca3IiwxzMGkiR5UnE9OHqJWu0J513B1-cSau-ZKdFARKQSykIHgfPi_vOW84N_6Lfuc-mnBkFpWrljmR87oW349-i2GeU-72gdM-fPSgYorDa-mbD3ASjv-qg_zQQZ407N_3Abc7QDRL3b3cKpHwbqEWuLrFDJwxmvXhS6sT15cfnuTm4-Bb8CR2arXomdyG3uxibt9i8jRTA7SV0e7u4cDbzABWJ_HwH-n2DCc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48HtQH8cR6BhEVdCF3so_Fg3pUwbbg27JXSlBSMS3-fWebpBov8Hm_JOzsMd9kd74BOKBKaFc6LpGxK4ivbUm4bSdEiNj1VBByKs1_yPZd2Or514_BY5kUlle33asjyfFO_SnZjQYxQR9DjOqZS-g0zCIZiE3dgp7bnOy_SKCLa_WI8bzIL1Nlfn5HzR193ZS_nY6Onc7lEiyWbNFqFsO7DFM6W4GF9kRqNV-F4_vMOk-z1EIHgqOaqtxKMwsBVhs7OXjLn1Krg4GxXoPe5UX3rEXK8gdEmrJgyHtj6StFqQqk0JGM0Jdw4TmOcmmIyw69D6eGMtBAc5sm0hOhF2mp7QQ5j5DeOsxkg0xvgOXbMcdQV_iBEj5GdDQJkSlx5RhBO-6pBjiVFZgstcFNiYpn9qFqbCzH0HJsbDlGG3AyeealUMb4E71vjMuM5ERm7rT0-SjP2VXngTWjKKDmtNZvwFEJSgb4ecnLFAHshFGpqiEPa8h-odH9E3C7BsTFI-vN1WCzcvHmDGNQ5MlxHIQNOK0mwEfz753c_B98D-Za3fYtu726u9mCeVPIvshy3IaZ4etI7yDdGYrd8ex-B9cB740 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48QPRBPDGeQUQFXZo72ceiFq-qqAXflr1SgpKKqfj3nW3SarzA5_2SsLPHfJPd-QZghyqhPel6RCaeIIF2JOGOkxIhEs9XYcSpNP8h21fRaSc4fwgfPmXxD267D48ky5wGo9KU9xvPKm18SnyjYULQ3xCjgOYROg6TuB27ZqZ3vOZoL0YyXV6xR4zvx0GVNvPzO2qu6esG_e2kdOCAWnMwWzFHu1kO9TyM6XwBZtoj2dViEfavc_s4yzMbnQmOcKYKO8ttBNht7HDvrXjM7DsMkvUSdFon90enpCqFQKQpEYYcOJGBUpSqUAodyxj9Che-6yqPRrgE0RNxaugDDTV3aCp9EfmxltpJkf8I6S_DRN7L9QrYgZNwDHtFECoRYHRH0whZE1euEbfjvrLAHVqByUon3JSreGIfCsfGcgwtxwaWY9SCg9Ezz6VKxp_obWNcZuQncnO_pctfi4Kd3d2yZhyH1JzcBhbsVaC0h5-XvEoXwE4YxaoacreG7JZ63T8B12tAXEiy3jwcbFYt5IJhPIqcOUnCyILD4QT4aP69k6v_g2_B1M1xi12eXV2swbSpaV8mPK7DRP_lVW8g8-mLzcHkfgf16_PJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Dini+Helicoids+in+the+Minkowski+Space&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kostin%2C+A.+V.&rft.date=2023-11-01&rft.pub=Springer+International+Publishing&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=276&rft.issue=4&rft.spage=517&rft.epage=524&rft_id=info:doi/10.1007%2Fs10958-023-06772-9&rft.externalDocID=10_1007_s10958_023_06772_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |