On Dini Helicoids in the Minkowski Space

The Dini helicoid is a surface obtained by a screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the three-dimensional Minkowski space. As profiles, we take nontrivial pseudo-Euclidean analogs of the tractrix different from pseudo-Euclidean circles. We pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 276; no. 4; pp. 517 - 524
Main Author Kostin, A. V.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1072-3374
1573-8795
DOI10.1007/s10958-023-06772-9

Cover

Abstract The Dini helicoid is a surface obtained by a screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the three-dimensional Minkowski space. As profiles, we take nontrivial pseudo-Euclidean analogs of the tractrix different from pseudo-Euclidean circles. We prove that on analogs of the Dini helicoid in a the pseudo-Euclidean space, one of the following metrics is induced: the metric of the Lobachevsky plane, the metric of the de Sitter plane, or a degenerate metric.
AbstractList The Dini helicoid is a surface obtained by a screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the three-dimensional Minkowski space. As profiles, we take nontrivial pseudo-Euclidean analogs of the tractrix different from pseudo-Euclidean circles. We prove that on analogs of the Dini helicoid in a the pseudo-Euclidean space, one of the following metrics is induced: the metric of the Lobachevsky plane, the metric of the de Sitter plane, or a degenerate metric.
The Dini helicoid is a surface obtained by a screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the three-dimensional Minkowski space. As profiles, we take nontrivial pseudo-Euclidean analogs of the tractrix different from pseudo-Euclidean circles. We prove that on analogs of the Dini helicoid in a the pseudo-Euclidean space, one of the following metrics is induced: the metric of the Lobachevsky plane, the metric of the de Sitter plane, or a degenerate metric. Keywords and phrases: Lobachevsky plane, de Sitter plane, Dini helicoid. AMS Subject Classification: 53A35, 53B30
Audience Academic
Author Kostin, A. V.
Author_xml – sequence: 1
  givenname: A. V.
  surname: Kostin
  fullname: Kostin, A. V.
  email: kostin_andrei@mail.ru
  organization: Yelabuga Institute, Kazan (Volga Region) Federal University
BookMark eNp9kV1LwzAUhoNMcJv-Aa8K3uhFZ9K0TXI55scGk4HT65ClpzNbl86kQ_33RieMyRi5SDg8Tw68bwe1bG0BoUuCewRjdusJFhmPcUJjnDOWxOIEtUnGaMyZyFrhjcOQUpaeoY73CxyknNM2up7Y6M5YEw2hMro2hY-MjZo3iJ6MXdYffmmi6VppOEenpao8XPzdXfT6cP8yGMbjyeNo0B_HOiVMxIxxnRaFEEWmZ8A0wyRRM0pIkYicc0woVgLjPBcZKCxKTWc5ZaABlyIRM0276Gr779rV7xvwjVzUG2fDSplwQUjGeZbvqLmqQBpb1o1TemW8ln3GspBFytJAxQeoOVhwqgoBliaM9_jeAT6cAlYhnEPCzZ4QmAY-m7naeC9H0-d9lm9Z7WrvHZRSm0Y1JihOmUoSLH-qlNsqZahS_lYpRVCTf-ramZVyX8clupV8gO0c3C7II9Y3ZY-tcQ
CitedBy_id crossref_primary_10_1016_j_physleta_2024_129674
Cites_doi 10.2206/kyushujm.71.311
10.1016/j.jmaa.2016.07.062
10.3836/tjm/1255958182
10.1007/s00220-009-0850-0
10.36890/iejg.594497
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-023-06772-9
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 524
ExternalDocumentID A775958474
10_1007_s10958_023_06772_9
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c4179-778c4dd99d5cbe7c7012ab311d296880130a9006695ea09fc3b637ece0f929bc3
IEDL.DBID AGYKE
ISSN 1072-3374
IngestDate Fri Jul 25 11:00:36 EDT 2025
Tue Jun 17 22:03:35 EDT 2025
Fri Jun 13 00:07:58 EDT 2025
Tue Jun 10 21:02:56 EDT 2025
Fri Jun 27 05:27:02 EDT 2025
Tue Jul 01 01:42:24 EDT 2025
Thu Apr 24 22:54:39 EDT 2025
Fri Feb 21 02:41:37 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 53B30
Lobachevsky plane
Dini helicoid
de Sitter plane
53A35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4179-778c4dd99d5cbe7c7012ab311d296880130a9006695ea09fc3b637ece0f929bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10958-023-06772-9.pdf
PQID 2891158856
PQPubID 2043545
PageCount 8
ParticipantIDs proquest_journals_2891158856
gale_infotracmisc_A775958474
gale_infotracgeneralonefile_A775958474
gale_infotracacademiconefile_A775958474
gale_incontextgauss_ISR_A775958474
crossref_citationtrail_10_1007_s10958_023_06772_9
crossref_primary_10_1007_s10958_023_06772_9
springer_journals_10_1007_s10958_023_06772_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231100
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2023
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Albujer, Caballero (CR1) 2017; 445
CR10
Bour (CR3) 1862; 39
Ikawa (CR6) 2001; 24
CR4
Ji, Kim (CR7) 2013; 220
Kostin (CR9) 2019; 21
Barros, Caballero, Ortega (CR2) 2009; 290
CR8
Lopez (CR11) 2014; 7
Lopez, Kaya (CR12) 2017; 71
Güler, Vanli (CR5) 2006; 46
T Ikawa (6772_CR6) 2001; 24
6772_CR10
F Ji (6772_CR7) 2013; 220
R Lopez (6772_CR12) 2017; 71
M Barros (6772_CR2) 2009; 290
E Bour (6772_CR3) 1862; 39
6772_CR8
AV Kostin (6772_CR9) 2019; 21
E Güler (6772_CR5) 2006; 46
AL Albujer (6772_CR1) 2017; 445
6772_CR4
R Lopez (6772_CR11) 2014; 7
References_xml – volume: 71
  start-page: 311
  issue: 2
  year: 2017
  end-page: 327
  ident: CR12
  article-title: New examples of maximal surfaces in Lorentz-Minkowski space
  publication-title: Kyushu J. Math.
  doi: 10.2206/kyushujm.71.311
– volume: 445
  start-page: 1013
  issue: 1
  year: 2017
  end-page: 1024
  ident: CR1
  article-title: Geometric properties of surfaces with the same mean curvature in ℝ and 𝕃
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.07.062
– volume: 24
  start-page: 377
  issue: 2
  year: 2001
  end-page: 394
  ident: CR6
  article-title: Bour’s theorem in Minkowski geometry
  publication-title: Tokyo J. Math.
  doi: 10.3836/tjm/1255958182
– volume: 46
  start-page: 47
  issue: 1
  year: 2006
  end-page: 63
  ident: CR5
  article-title: Bour’s theorem in Minkowski 3-space
  publication-title: J. Math. Kyoto Univ.
– ident: CR8
– volume: 21
  start-page: 14
  issue: 1
  year: 2019
  end-page: 24
  ident: CR9
  article-title: On asymptotic lines on pseudospherical surfaces
  publication-title: Vladikavkaz. Mat. Zh.
– volume: 290
  start-page: 437
  issue: 2
  year: 2009
  end-page: 477
  ident: CR2
  article-title: Rotational surfaces in 𝕃 and solutions of the nonlinear sigma model
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0850-0
– ident: CR4
– volume: 220
  start-page: 1
  year: 2013
  end-page: 11
  ident: CR7
  article-title: Isometries between minimal helicoidal surfaces and rotation surfaces in Minkowski space
  publication-title: Appl. Math. Comput.
– volume: 7
  start-page: 44
  issue: 1
  year: 2014
  end-page: 107
  ident: CR11
  article-title: Differential geometry of curves and surfaces in Lorentz-Minkowski space
  publication-title: Int. Electron. J. Geom.
  doi: 10.36890/iejg.594497
– volume: 39
  start-page: 1
  year: 1862
  end-page: 148
  ident: CR3
  article-title: Memoire sur le deformation de surfaces
  publication-title: J. Ecole Polytechn.
– ident: CR10
– volume: 71
  start-page: 311
  issue: 2
  year: 2017
  ident: 6772_CR12
  publication-title: Kyushu J. Math.
  doi: 10.2206/kyushujm.71.311
– volume: 39
  start-page: 1
  year: 1862
  ident: 6772_CR3
  publication-title: J. Ecole Polytechn.
– ident: 6772_CR4
– volume: 21
  start-page: 14
  issue: 1
  year: 2019
  ident: 6772_CR9
  publication-title: Vladikavkaz. Mat. Zh.
– volume: 24
  start-page: 377
  issue: 2
  year: 2001
  ident: 6772_CR6
  publication-title: Tokyo J. Math.
  doi: 10.3836/tjm/1255958182
– ident: 6772_CR8
– ident: 6772_CR10
– volume: 445
  start-page: 1013
  issue: 1
  year: 2017
  ident: 6772_CR1
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.07.062
– volume: 290
  start-page: 437
  issue: 2
  year: 2009
  ident: 6772_CR2
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0850-0
– volume: 220
  start-page: 1
  year: 2013
  ident: 6772_CR7
  publication-title: Appl. Math. Comput.
– volume: 46
  start-page: 47
  issue: 1
  year: 2006
  ident: 6772_CR5
  publication-title: J. Math. Kyoto Univ.
– volume: 7
  start-page: 44
  issue: 1
  year: 2014
  ident: 6772_CR11
  publication-title: Int. Electron. J. Geom.
  doi: 10.36890/iejg.594497
SSID ssj0007683
Score 2.2954526
Snippet The Dini helicoid is a surface obtained by a screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 517
SubjectTerms Analogs
Euclidean geometry
Mathematics
Mathematics and Statistics
Minkowski space
Title On Dini Helicoids in the Minkowski Space
URI https://link.springer.com/article/10.1007/s10958-023-06772-9
https://www.proquest.com/docview/2891158856
Volume 276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD6C8rI9jLGLVmBVNE3bpM0oNyf2Yxl0bFOZNFaJPVm-BUWgFJFWSPz6HTdOIVwm8ZwvcXxybo7P-QzwnhtlYx3FRLNYkdSGmsgwLIhSLE4MzSTX7j_k-DA7mKQ_jumxbwqr22r3dkty4alvNLtxygjGGOJYz2LCV2GNRoyzHqwNv_39ub_0wJhCN4X1iEqSPPXNMvc_pROQbrvlO_uji7AzWodJ-8JNtcnpznymdvTVLS7Hx87oOTzzeWgwbBRnA1Zs9QKejpckrvVL-PSrCvbKqgwwNKG-lKYOyipAQDDGwaaX9WkZHOGS276CyWj_z9cD4g9WINodOIYZNdOpMZwbqpXNdY5RSqokikzMMzRojGuSu2SEUytDXuhEZUlutQ0LzKaUTl5Dr5pW9g0EacgkLqJVSo1Kca3IiwxzMGkiR5UnE9OHqJWu0J513B1-cSau-ZKdFARKQSykIHgfPi_vOW84N_6Lfuc-mnBkFpWrljmR87oW349-i2GeU-72gdM-fPSgYorDa-mbD3ASjv-qg_zQQZ407N_3Abc7QDRL3b3cKpHwbqEWuLrFDJwxmvXhS6sT15cfnuTm4-Bb8CR2arXomdyG3uxibt9i8jRTA7SV0e7u4cDbzABWJ_HwH-n2DCc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48HtQH8cR6BhEVdCF3so_Fg3pUwbbg27JXSlBSMS3-fWebpBov8Hm_JOzsMd9kd74BOKBKaFc6LpGxK4ivbUm4bSdEiNj1VBByKs1_yPZd2Or514_BY5kUlle33asjyfFO_SnZjQYxQR9DjOqZS-g0zCIZiE3dgp7bnOy_SKCLa_WI8bzIL1Nlfn5HzR193ZS_nY6Onc7lEiyWbNFqFsO7DFM6W4GF9kRqNV-F4_vMOk-z1EIHgqOaqtxKMwsBVhs7OXjLn1Krg4GxXoPe5UX3rEXK8gdEmrJgyHtj6StFqQqk0JGM0Jdw4TmOcmmIyw69D6eGMtBAc5sm0hOhF2mp7QQ5j5DeOsxkg0xvgOXbMcdQV_iBEj5GdDQJkSlx5RhBO-6pBjiVFZgstcFNiYpn9qFqbCzH0HJsbDlGG3AyeealUMb4E71vjMuM5ERm7rT0-SjP2VXngTWjKKDmtNZvwFEJSgb4ecnLFAHshFGpqiEPa8h-odH9E3C7BsTFI-vN1WCzcvHmDGNQ5MlxHIQNOK0mwEfz753c_B98D-Za3fYtu726u9mCeVPIvshy3IaZ4etI7yDdGYrd8ex-B9cB740
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48QPRBPDGeQUQFXZo72ceiFq-qqAXflr1SgpKKqfj3nW3SarzA5_2SsLPHfJPd-QZghyqhPel6RCaeIIF2JOGOkxIhEs9XYcSpNP8h21fRaSc4fwgfPmXxD267D48ky5wGo9KU9xvPKm18SnyjYULQ3xCjgOYROg6TuB27ZqZ3vOZoL0YyXV6xR4zvx0GVNvPzO2qu6esG_e2kdOCAWnMwWzFHu1kO9TyM6XwBZtoj2dViEfavc_s4yzMbnQmOcKYKO8ttBNht7HDvrXjM7DsMkvUSdFon90enpCqFQKQpEYYcOJGBUpSqUAodyxj9Che-6yqPRrgE0RNxaugDDTV3aCp9EfmxltpJkf8I6S_DRN7L9QrYgZNwDHtFECoRYHRH0whZE1euEbfjvrLAHVqByUon3JSreGIfCsfGcgwtxwaWY9SCg9Ezz6VKxp_obWNcZuQncnO_pctfi4Kd3d2yZhyH1JzcBhbsVaC0h5-XvEoXwE4YxaoacreG7JZ63T8B12tAXEiy3jwcbFYt5IJhPIqcOUnCyILD4QT4aP69k6v_g2_B1M1xi12eXV2swbSpaV8mPK7DRP_lVW8g8-mLzcHkfgf16_PJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Dini+Helicoids+in+the+Minkowski+Space&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Kostin%2C+A.+V.&rft.date=2023-11-01&rft.pub=Springer+International+Publishing&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=276&rft.issue=4&rft.spage=517&rft.epage=524&rft_id=info:doi/10.1007%2Fs10958-023-06772-9&rft.externalDocID=10_1007_s10958_023_06772_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon