On Dini Helicoids in the Minkowski Space
The Dini helicoid is a surface obtained by a screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the three-dimensional Minkowski space. As profiles, we take nontrivial pseudo-Euclidean analogs of the tractrix different from pseudo-Euclidean circles. We pr...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 276; no. 4; pp. 517 - 524 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.11.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1072-3374 1573-8795 |
DOI | 10.1007/s10958-023-06772-9 |
Cover
Loading…
Summary: | The Dini helicoid is a surface obtained by a screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the three-dimensional Minkowski space. As profiles, we take nontrivial pseudo-Euclidean analogs of the tractrix different from pseudo-Euclidean circles. We prove that on analogs of the Dini helicoid in a the pseudo-Euclidean space, one of the following metrics is induced: the metric of the Lobachevsky plane, the metric of the de Sitter plane, or a degenerate metric. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-023-06772-9 |