When Is a Bond Broken? The Polarizability Perspective

The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the maxima of static polarizability along bond dissociation coordinates naturally define cutoff points for bond rupture, as they represent the ons...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 46; pp. e202312078 - n/a
Main Authors Hait, Diptarka, Head‐Gordon, Martin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 13.11.2023
Wiley Blackwell (John Wiley & Sons)
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the maxima of static polarizability along bond dissociation coordinates naturally define cutoff points for bond rupture, as they represent the onset of localization of shared electron density into constituent fragments. Examples of computed polarizability maxima over the course of bond cleavage in main‐group and transition metal compounds are provided, across covalent, dative and charge‐shift bonds. The behavior along reaction paths is also considered. Overall, the static polarizability is found to be a sensitive reporter of electronic structure reorganization associated with bond stretching, and thus can serve as a metric for describing bond cleavage (or diagnose the absence of a chemical bond). Static polarizability maxima along bond dissociation coordinates represent the onset of electron density localization and thus can used to be define when is a chemical bond broken.
AbstractList The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the maxima of static polarizability along bond dissociation coordinates naturally define cutoff points for bond rupture, as they represent the onset of localization of shared electron density into constituent fragments. Examples of computed polarizability maxima over the course of bond cleavage in main‐group and transition metal compounds are provided, across covalent, dative and charge‐shift bonds. The behavior along reaction paths is also considered. Overall, the static polarizability is found to be a sensitive reporter of electronic structure reorganization associated with bond stretching, and thus can serve as a metric for describing bond cleavage (or diagnose the absence of a chemical bond). Static polarizability maxima along bond dissociation coordinates represent the onset of electron density localization and thus can used to be define when is a chemical bond broken.
The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the maxima of static polarizability along bond dissociation coordinates naturally define cutoff points for bond rupture, as they represent the onset of localization of shared electron density into constituent fragments. Examples of computed polarizability maxima over the course of bond cleavage in main‐group and transition metal compounds are provided, across covalent, dative and charge‐shift bonds. The behavior along reaction paths is also considered. Overall, the static polarizability is found to be a sensitive reporter of electronic structure reorganization associated with bond stretching, and thus can serve as a metric for describing bond cleavage (or diagnose the absence of a chemical bond).
Abstract The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the maxima of static polarizability along bond dissociation coordinates naturally define cutoff points for bond rupture, as they represent the onset of localization of shared electron density into constituent fragments. Examples of computed polarizability maxima over the course of bond cleavage in main‐group and transition metal compounds are provided, across covalent, dative and charge‐shift bonds. The behavior along reaction paths is also considered. Overall, the static polarizability is found to be a sensitive reporter of electronic structure reorganization associated with bond stretching, and thus can serve as a metric for describing bond cleavage (or diagnose the absence of a chemical bond).
Author Head‐Gordon, Martin
Hait, Diptarka
Author_xml – sequence: 1
  givenname: Diptarka
  orcidid: 0000-0003-1570-920X
  surname: Hait
  fullname: Hait, Diptarka
  email: diptarka@berkeley.edu
  organization: Stanford University
– sequence: 2
  givenname: Martin
  orcidid: 0000-0002-4309-6669
  surname: Head‐Gordon
  fullname: Head‐Gordon, Martin
  email: mhg@cchem.berkeley.edu
  organization: Lawrence Berkeley National Laboratory
BackLink https://www.osti.gov/biblio/2282192$$D View this record in Osti.gov
BookMark eNqF0D1PwzAQBmALgUT5WJkjWFhS4nMSOxMqiI9KFTAUMVqOc1FdUrvYKaj8elwVgcTC5Bue93R-D8iudRYJOaHZkGYZXChrcAgZMAoZFztkQAugKeOc7cY5ZyzloqD75CCEefRCZOWAFC8ztMk4JCq5crZJrrx7RXuZTGeYPLlOefOpatOZfp08oQ9L1L15xyOy16ou4PH3e0ieb2-m1_fp5PFufD2apDqnXKSsUSoHxiue58iKgkJbt1Rx1lSsplABVG3d6Fq0Im9BaEQNFTKlG60LJTJ2SE63e13ojQza9Khn2lkbz5AAAmgFEZ1v0dK7txWGXi5M0Nh1yqJbBQmiLLigDDb7zv7QuVt5G78QlSjzMh5bRjXcKu1dCB5bufRmofxa0kxuqpabquVP1TFQbQMfpsP1P1qOHsY3v9kvSuyB3A
CitedBy_id crossref_primary_10_1021_acs_jctc_3c01415
crossref_primary_10_1021_acs_joc_4c00857
crossref_primary_10_1039_D3DT03978A
Cites_doi 10.1002/9783527664658
10.1021/jacs.5b12434
10.1063/5.0047386
10.1039/B606877D
10.1002/wcms.1331
10.1126/science.157.3784.13
10.1021/cr0505627
10.1002/ange.202102967
10.1063/1.5142048
10.1007/s00894-008-0400-2
10.1016/0009-2614(83)80005-0
10.1038/nature10367
10.1063/1.465038
10.1021/cr900359c
10.1063/1.5080122
10.1016/0009-2614(87)80521-3
10.1103/PhysRevLett.128.070602
10.1103/PhysRev.140.A1133
10.1002/qua.25569
10.1021/jp0014061
10.1007/BF01397394
10.1039/tf9292500668
10.1080/14786444908521726
10.1021/cr00005a013
10.1021/jp068071t
10.1073/pnas.1715763114
10.1016/S0009-2614(89)87395-6
10.1016/0040-4020(68)88057-3
10.1007/s00214-014-1514-5
10.1021/acs.organomet.1c00218
10.1016/j.cplett.2012.11.048
10.1021/ja00364a005
10.1002/chem.201603535
10.1063/1.1383589
10.1103/RevModPhys.34.326
10.1021/ct800535c
10.1021/jp0470804
10.1103/PhysRevLett.108.038302
10.1021/acs.chemrev.8b00722
10.1021/jp9711508
10.1021/jp961096f
10.1038/s41467-020-18670-8
10.1021/ar00094a001
10.1039/C5CC09816E
10.1126/science.283.5408.1727
10.1063/1.455702
10.1021/ct400453b
10.1063/1.1749227
10.1063/1.471637
10.1063/5.0055522
10.1021/ja00905a001
10.1063/1.3633329
10.1002/qua.21400
10.1002/anie.201907089
10.1103/PhysRevLett.82.370
10.1016/0301-0104(80)80045-0
10.1021/ja00314a049
10.1007/BF01397633
10.1002/ange.201910085
10.1002/ange.202000229
10.1021/jp503145u
10.1142/9789812839664_0016
10.1126/science.abe1951
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7TM
K9.
7X8
OTOTI
DOI 10.1002/anie.202312078
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 2282192
10_1002_anie_202312078
ANIE202312078
Genre shortCommunication
GrantInformation_xml – fundername: Basic Energy Sciences
  funderid: DE-AC02-05CH11231; DE-SC0021266
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
7TM
K9.
7X8
OTOTI
ID FETCH-LOGICAL-c4178-3daa42379744e35512fbf1a73d93b129229fbdcb8f84f28ceec29e3acdcc5a803
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Mon Sep 23 03:25:09 EDT 2024
Fri Aug 16 07:14:36 EDT 2024
Thu Oct 10 17:02:08 EDT 2024
Fri Aug 23 02:00:34 EDT 2024
Sat Aug 24 00:48:43 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4178-3daa42379744e35512fbf1a73d93b129229fbdcb8f84f28ceec29e3acdcc5a803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
ORCID 0000-0002-4309-6669
0000-0003-1570-920X
000000031570920X
0000000243096669
OpenAccessLink https://doi.org/10.1002/anie.202312078
PQID 2886462376
PQPubID 946352
PageCount 7
ParticipantIDs osti_scitechconnect_2282192
proquest_miscellaneous_2865781320
proquest_journals_2886462376
crossref_primary_10_1002_anie_202312078
wiley_primary_10_1002_anie_202312078_ANIE202312078
PublicationCentury 2000
PublicationDate November 13, 2023
PublicationDateYYYYMMDD 2023-11-13
PublicationDate_xml – month: 11
  year: 2023
  text: November 13, 2023
  day: 13
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2011; 477
1980; 48
1968; 24
2007; 107
1989; 157
1963; 85
1965; 140
2019; 58
1967; 157
1983; 97
1999; 283
1962; 34
1996; 100
2020; 11
1999; 82
1996; 104
2014; 133
2017; 114
1983; 16
2011; 111
2013; 9
1927; 43
1983; 105
1927; 44
2007; 135
2018; 8
2020; 132
2013; 556
2005; 105
1997; 101
1988; 89
2005; 109
1991; 91
2019; 119
2021; 155
2021; 154
1933; 1
2022; 128
2021; 40
2019; 150
2009; 15
2014; 118
2011; 135
1984; 106
2006; 110
2016; 52
1929; 25
2012; 108
2020; 152
1987; 136
2000; 104
2018; 118
1993; 98
2021; 371
2016; 138
2009; 5
2021; 133
1949; 40
2001; 115
2016; 22
e_1_2_3_50_1
e_1_2_3_2_1
e_1_2_3_6_1
e_1_2_3_16_1
e_1_2_3_39_1
e_1_2_3_4_1
e_1_2_3_18_1
e_1_2_3_12_1
e_1_2_3_35_1
e_1_2_3_58_1
e_1_2_3_56_1
e_1_2_3_8_1
e_1_2_3_14_1
e_1_2_3_37_1
e_1_2_3_31_1
e_1_2_3_52_1
e_1_2_3_10_1
e_1_2_3_33_1
e_1_2_3_54_1
e_1_2_3_62_1
e_1_2_3_60_1
e_1_2_3_28_1
e_1_2_3_49_1
e_1_2_3_24_1
e_1_2_3_45_1
e_1_2_3_26_1
e_1_2_3_47_1
e_1_2_3_20_1
e_1_2_3_41_1
e_1_2_3_66_1
e_1_2_3_22_1
e_1_2_3_43_1
e_1_2_3_64_1
e_1_2_3_51_1
e_1_2_3_1_1
e_1_2_3_5_1
e_1_2_3_17_1
e_1_2_3_38_1
e_1_2_3_3_1
e_1_2_3_19_1
e_1_2_3_57_1
e_1_2_3_9_1
e_1_2_3_13_1
e_1_2_3_34_1
e_1_2_3_59_1
e_1_2_3_7_1
e_1_2_3_15_1
e_1_2_3_36_1
e_1_2_3_30_1
e_1_2_3_53_1
e_1_2_3_55_1
e_1_2_3_11_1
e_1_2_3_32_1
e_1_2_3_61_1
e_1_2_3_40_1
e_1_2_3_27_1
e_1_2_3_29_1
e_1_2_3_23_1
e_1_2_3_46_1
e_1_2_3_25_1
e_1_2_3_48_1
e_1_2_3_42_1
e_1_2_3_65_1
e_1_2_3_21_1
e_1_2_3_44_1
e_1_2_3_63_1
References_xml – volume: 11
  start-page: 4893
  year: 2020
  publication-title: Nat. Commun.
– volume: 128
  year: 2022
  publication-title: Phys. Rev. Lett.
– volume: 1
  start-page: 687
  year: 1933
  publication-title: J. Chem. Phys.
– volume: 118
  year: 2018
  publication-title: Int. J. Quantum Chem.
– volume: 98
  start-page: 4305
  year: 1993
  publication-title: J. Chem. Phys.
– volume: 34
  start-page: 326
  year: 1962
  publication-title: Rev. Mod. Phys.
– volume: 97
  start-page: 270
  year: 1983
  publication-title: Chem. Phys. Lett.
– volume: 155
  year: 2021
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 5286
  year: 2013
  publication-title: J. Chem. Theory Comput.
– volume: 85
  start-page: 3533
  year: 1963
  publication-title: J. Am. Chem. Soc.
– volume: 100
  start-page: 16126
  year: 1996
  publication-title: J. Phys. Chem.
– volume: 44
  start-page: 455
  year: 1927
  publication-title: Z. Phys.
– volume: 110
  start-page: 13939
  year: 2006
  publication-title: J. Phys. Chem. A
– volume: 138
  start-page: 3731
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 363
  year: 1983
  publication-title: Acc. Chem. Res.
– volume: 22
  start-page: 18678
  year: 2016
  publication-title: Chem. Eur. J.
– volume: 15
  start-page: 701
  year: 2009
  publication-title: J. Mol. Model.
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 132
  start-page: 8836
  year: 2020
  publication-title: Angew. Chem.
– volume: 114
  start-page: 12649
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 89
  start-page: 4246
  year: 1988
  publication-title: J. Chem. Phys.
– volume: 105
  start-page: 7512
  year: 1983
  publication-title: J. Am. Chem. Soc.
– volume: 82
  start-page: 370
  year: 1999
  publication-title: Phys. Rev. Lett.
– volume: 91
  start-page: 893
  year: 1991
  publication-title: Chem. Rev.
– volume: 105
  start-page: 4009
  year: 2005
  publication-title: Chem. Rev.
– volume: 157
  start-page: 479
  year: 1989
  publication-title: Chem. Phys. Lett.
– volume: 48
  start-page: 157
  year: 1980
  publication-title: Chem. Phys.
– volume: 152
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 43
  start-page: 563
  year: 1927
  publication-title: Z. Phys.
– volume: 477
  start-page: 308
  year: 2011
  publication-title: Nature
– volume: 107
  start-page: 2153
  year: 2007
  publication-title: Int. J. Quantum Chem.
– volume: 5
  start-page: 770
  year: 2009
  publication-title: J. Chem. Theory Comput.
– volume: 132
  start-page: 996
  year: 2020
  publication-title: Angew. Chem.
– volume: 154
  year: 2021
  publication-title: J. Chem. Phys.
– volume: 24
  start-page: 1083
  year: 1968
  publication-title: Tetrahedron
– volume: 118
  start-page: 6664
  year: 2014
  publication-title: J. Phys. Chem. A
– volume: 109
  start-page: 615
  year: 2005
  publication-title: J. Phys. Chem. A
– volume: 283
  start-page: 1727
  year: 1999
  publication-title: Science
– volume: 133
  start-page: 1
  year: 2014
  publication-title: Theor. Chem. Acc.
– volume: 8
  year: 2018
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 104
  start-page: 8418
  year: 2000
  publication-title: J. Phys. Chem. A
– volume: 119
  start-page: 8781
  year: 2019
  publication-title: Chem. Rev.
– volume: 115
  start-page: 2014
  year: 2001
  publication-title: J. Chem. Phys.
– volume: 135
  start-page: 161
  year: 2007
  publication-title: Faraday Discuss.
– volume: 133
  start-page: 17165
  year: 2021
  publication-title: Angew. Chem.
– volume: 556
  start-page: 346
  year: 2013
  publication-title: Chem. Phys. Lett.
– volume: 58
  start-page: 13789
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 150
  year: 2019
  publication-title: J. Chem. Phys.
– volume: 25
  start-page: 668
  year: 1929
  publication-title: Trans. Faraday Soc.
– volume: 101
  start-page: 7277
  year: 1997
  publication-title: J. Phys. Chem. A
– volume: 104
  start-page: 9047
  year: 1996
  publication-title: J. Chem. Phys.
– volume: 106
  start-page: 451
  year: 1984
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 8183
  year: 2016
  publication-title: Chem. Commun.
– volume: 140
  start-page: A1133
  year: 1965
  publication-title: Phys. Rev.
– volume: 135
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 157
  start-page: 13
  year: 1967
  publication-title: Science
– volume: 371
  start-page: 160
  year: 2021
  publication-title: Science
– volume: 40
  start-page: 386
  year: 1949
  publication-title: Philos. Mag.
– volume: 40
  start-page: 1758
  year: 2021
  publication-title: Organometallics
– volume: 136
  start-page: 575
  year: 1987
  publication-title: Chem. Phys. Lett.
– volume: 111
  start-page: 863
  year: 2011
  publication-title: Chem. Rev.
– ident: e_1_2_3_4_1
– ident: e_1_2_3_7_1
  doi: 10.1002/9783527664658
– ident: e_1_2_3_8_1
  doi: 10.1021/jacs.5b12434
– ident: e_1_2_3_30_1
  doi: 10.1063/5.0047386
– ident: e_1_2_3_48_1
  doi: 10.1039/B606877D
– ident: e_1_2_3_65_1
  doi: 10.1002/wcms.1331
– ident: e_1_2_3_5_1
  doi: 10.1126/science.157.3784.13
– ident: e_1_2_3_45_1
  doi: 10.1021/cr0505627
– ident: e_1_2_3_24_1
  doi: 10.1002/ange.202102967
– ident: e_1_2_3_64_1
  doi: 10.1063/1.5142048
– ident: e_1_2_3_19_1
  doi: 10.1007/s00894-008-0400-2
– ident: e_1_2_3_39_1
  doi: 10.1016/0009-2614(83)80005-0
– ident: e_1_2_3_26_1
  doi: 10.1038/nature10367
– ident: e_1_2_3_32_1
  doi: 10.1063/1.465038
– ident: e_1_2_3_57_1
  doi: 10.1021/cr900359c
– ident: e_1_2_3_31_1
  doi: 10.1063/1.5080122
– ident: e_1_2_3_41_1
  doi: 10.1016/0009-2614(87)80521-3
– ident: e_1_2_3_33_1
  doi: 10.1103/PhysRevLett.128.070602
– ident: e_1_2_3_28_1
  doi: 10.1103/PhysRev.140.A1133
– ident: e_1_2_3_34_1
  doi: 10.1002/qua.25569
– ident: e_1_2_3_52_1
  doi: 10.1021/jp0014061
– ident: e_1_2_3_1_1
  doi: 10.1007/BF01397394
– ident: e_1_2_3_2_1
  doi: 10.1039/tf9292500668
– ident: e_1_2_3_13_1
  doi: 10.1080/14786444908521726
– ident: e_1_2_3_14_1
  doi: 10.1021/cr00005a013
– ident: e_1_2_3_17_1
  doi: 10.1021/jp068071t
– ident: e_1_2_3_9_1
  doi: 10.1073/pnas.1715763114
– ident: e_1_2_3_60_1
  doi: 10.1016/S0009-2614(89)87395-6
– ident: e_1_2_3_38_1
  doi: 10.1016/0040-4020(68)88057-3
– ident: e_1_2_3_62_1
  doi: 10.1007/s00214-014-1514-5
– ident: e_1_2_3_27_1
  doi: 10.1021/acs.organomet.1c00218
– ident: e_1_2_3_53_1
  doi: 10.1016/j.cplett.2012.11.048
– ident: e_1_2_3_47_1
  doi: 10.1021/ja00364a005
– ident: e_1_2_3_23_1
  doi: 10.1002/chem.201603535
– ident: e_1_2_3_61_1
  doi: 10.1063/1.1383589
– ident: e_1_2_3_6_1
  doi: 10.1103/RevModPhys.34.326
– ident: e_1_2_3_20_1
  doi: 10.1021/ct800535c
– ident: e_1_2_3_55_1
  doi: 10.1021/jp0470804
– ident: e_1_2_3_21_1
  doi: 10.1103/PhysRevLett.108.038302
– ident: e_1_2_3_10_1
  doi: 10.1021/acs.chemrev.8b00722
– ident: e_1_2_3_15_1
  doi: 10.1021/jp9711508
– ident: e_1_2_3_54_1
  doi: 10.1021/jp961096f
– ident: e_1_2_3_29_1
– ident: e_1_2_3_12_1
  doi: 10.1038/s41467-020-18670-8
– ident: e_1_2_3_42_1
  doi: 10.1021/ar00094a001
– ident: e_1_2_3_22_1
  doi: 10.1039/C5CC09816E
– ident: e_1_2_3_16_1
  doi: 10.1126/science.283.5408.1727
– ident: e_1_2_3_43_1
  doi: 10.1063/1.455702
– ident: e_1_2_3_35_1
  doi: 10.1021/ct400453b
– ident: e_1_2_3_3_1
  doi: 10.1063/1.1749227
– ident: e_1_2_3_44_1
  doi: 10.1063/1.471637
– ident: e_1_2_3_59_1
  doi: 10.1063/5.0055522
– ident: e_1_2_3_46_1
  doi: 10.1021/ja00905a001
– ident: e_1_2_3_66_1
  doi: 10.1063/1.3633329
– ident: e_1_2_3_18_1
  doi: 10.1002/qua.21400
– ident: e_1_2_3_50_1
  doi: 10.1002/anie.201907089
– ident: e_1_2_3_25_1
– ident: e_1_2_3_36_1
  doi: 10.1103/PhysRevLett.82.370
– ident: e_1_2_3_63_1
  doi: 10.1016/0301-0104(80)80045-0
– ident: e_1_2_3_56_1
  doi: 10.1021/ja00314a049
– ident: e_1_2_3_40_1
  doi: 10.1007/BF01397633
– ident: e_1_2_3_11_1
  doi: 10.1002/ange.201910085
– ident: e_1_2_3_51_1
  doi: 10.1002/ange.202000229
– ident: e_1_2_3_37_1
  doi: 10.1021/jp503145u
– ident: e_1_2_3_58_1
  doi: 10.1142/9789812839664_0016
– ident: e_1_2_3_49_1
  doi: 10.1126/science.abe1951
SSID ssj0028806
Score 2.5178938
Snippet The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the...
Abstract The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage e202312078
SubjectTerms bond dissociation
chemical bonding
Chemical bonds
Cleavage
Ductile-brittle transition
Electron density
electron localization
Electronic structure
Localization
Metal compounds
Polarizability
reaction paths
static polarizability
Transition metal compounds
Title When Is a Bond Broken? The Polarizability Perspective
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202312078
https://www.proquest.com/docview/2886462376
https://search.proquest.com/docview/2865781320
https://www.osti.gov/biblio/2282192
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kF734FmNVVhA8pTa72zR7EvGBCoqIgrdlnxchFdse9Nc7kzTRehH0lpAsSeax-81m5huAQyWtzzltgQkrU-kznirnMXB1MQ-58L6oeGZv7_KrJ3nzPHj-VsVf80O0G27kGdV8TQ5u7Pj4izSUKrB71Pw7w0dRtW8mhpTTdf7Q8kdxNM66vEiIlLrQN6yNfX48P3xuVeqM0LvmEOd33FotPJcrYJpXrvNNXnrTie25jx9sjv_5plVYnqFSdlqb0RoshHIdFs-aZnAbMMBJu2TXY2YYNSJmGL2_hPKEoZWxe4qOKTmM0mzf2f1X-eYmPF1ePJ5dpbOOC6mTGeVJeGMoTwaDDBkQiWQ82piZofBKWEQGnKtovbNFLGTkBS6wjqsgjPPODUzRF1vQKUdl2AaWe5UVUbi-k1EObLSuCFKZoesHpRAFJXDUSFy_1sQauqZQ5prEoFsxJNAlhWiEBMRr6ygByE00x2AR4WkCu42e9Mz9xhoVn8ucEn4SOGgvo8job4gpw2hK9-Q4W1EFeQK8Usov76FP764v2rOdvwzqwhIdUy1jJnahM3mbhj0ENRO7XxnuJx9f7Eo
link.rule.ids 230,315,783,787,888,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VcIBLW6AIk7TdSkicHOLdjfGeKpSCkhaiCCUSt5X3dYnkoJIc4NczY8eGcKlEj36sbM9j95v1zDcAJ0oal3LaAhNGxtIlPFbWYeBqQ-pT4VxW8szejNPhTP6-69fZhFQLU_FDNBtu5BnlfE0OThvSZy-soVSC3aXu3wk-K9uCbfR5QU0Mft02DFIczbMqMBIipj70NW9jj59tjt9Yl1oL9K8NzPkauZZLz9UnMPVLVxkn8-5qabr26Q2f43991Wf4uAam7KKypD344It92BnU_eAOoI_zdsFGDyxn1IuYYQA_98VPhobGJhQgU34YZdo-sslLBecXmF1dTgfDeN10IbYyoVQJl-eUKoNxhvQIRhIeTEjyc-GUMAgOOFfBOGuykMnAM1xjLVde5NZZ28-znjiEVrEo_BGw1KkkC8L2rAyyb4KxmZcqP7c9rxQCoQhOa5Hr-4pbQ1csylyTGHQjhgjapBGNqICobS3lANml5hgvIkKNoFMrSq898EGj5lOZUs5PBD-ayygy-iGSF36xontSnLCoiDwCXmrlH--hL8ajy-bo-D2DvsPOcHpzra9H4z9t2KXzVNqYiA60ln9X_itinKX5VlrxM_Jm8GQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61i9RyKfSBmkJbV6rUU5bE9pr4hBCwYvtYraoicbP8vCBlUdk9wK9nJtkEthekcszDSjIP-xtn5huAr1q6oDhtgQkncxlKnmsfMHD1SUUlQqgantlfU3V2Lr9fjC4eVPG3_BD9hht5RjNfk4NfhbR_TxpKFdhDav5d4qOq57AhlSgoqevkd08gxdE62_oiIXJqQ9_RNhZ8f3382rI0mKN7rUHOh8C1WXnGW2C7d24TTi6Hy4Ub-tt_6Byf8lHb8GoFS9lRa0ev4Vms38DL464b3FsY4axds8k1s4w6ETMM3y9jfcjQzNiMwmPKDqM82xs2u6_ffAfn49M_x2f5quVC7mVJiRLBWkqUwShDRoQiJU8ulfZABC0cQgPOdXLBuypVMvEKV1jPdRTWB-9HtirEDgzqeR3fA1NBl1USvvAyyZFLzldRanvgi6g1wqAMvnUSN1cts4ZpOZS5ITGYXgwZ7JJCDGICIrb1lAHkF4ZjtIj4NIO9Tk9m5X_XBhWvpKKMnwy-9JdRZPQ7xNZxvqR7FE5XVEKeAW-U8sh7mKPp5LQ_-vA_gz7Di9nJ2PycTH_swiadprrGUuzBYPF3GT8iwFm4T40N3wElUu8T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+Is+a+Bond+Broken%3F+The+Polarizability+Perspective&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Hait%2C+Diptarka&rft.au=Head%E2%80%90Gordon%2C+Martin&rft.date=2023-11-13&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1433-7851&rft.volume=62&rft.issue=46&rft_id=info:doi/10.1002%2Fanie.202312078&rft.externalDocID=2282192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon