When Is a Bond Broken? The Polarizability Perspective
The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the maxima of static polarizability along bond dissociation coordinates naturally define cutoff points for bond rupture, as they represent the ons...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 46; pp. e202312078 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
13.11.2023
Wiley Blackwell (John Wiley & Sons) |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the maxima of static polarizability along bond dissociation coordinates naturally define cutoff points for bond rupture, as they represent the onset of localization of shared electron density into constituent fragments. Examples of computed polarizability maxima over the course of bond cleavage in main‐group and transition metal compounds are provided, across covalent, dative and charge‐shift bonds. The behavior along reaction paths is also considered. Overall, the static polarizability is found to be a sensitive reporter of electronic structure reorganization associated with bond stretching, and thus can serve as a metric for describing bond cleavage (or diagnose the absence of a chemical bond).
Static polarizability maxima along bond dissociation coordinates represent the onset of electron density localization and thus can used to be define when is a chemical bond broken. |
---|---|
AbstractList | The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the maxima of static polarizability along bond dissociation coordinates naturally define cutoff points for bond rupture, as they represent the onset of localization of shared electron density into constituent fragments. Examples of computed polarizability maxima over the course of bond cleavage in main‐group and transition metal compounds are provided, across covalent, dative and charge‐shift bonds. The behavior along reaction paths is also considered. Overall, the static polarizability is found to be a sensitive reporter of electronic structure reorganization associated with bond stretching, and thus can serve as a metric for describing bond cleavage (or diagnose the absence of a chemical bond).
Static polarizability maxima along bond dissociation coordinates represent the onset of electron density localization and thus can used to be define when is a chemical bond broken. The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the maxima of static polarizability along bond dissociation coordinates naturally define cutoff points for bond rupture, as they represent the onset of localization of shared electron density into constituent fragments. Examples of computed polarizability maxima over the course of bond cleavage in main‐group and transition metal compounds are provided, across covalent, dative and charge‐shift bonds. The behavior along reaction paths is also considered. Overall, the static polarizability is found to be a sensitive reporter of electronic structure reorganization associated with bond stretching, and thus can serve as a metric for describing bond cleavage (or diagnose the absence of a chemical bond). Abstract The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the maxima of static polarizability along bond dissociation coordinates naturally define cutoff points for bond rupture, as they represent the onset of localization of shared electron density into constituent fragments. Examples of computed polarizability maxima over the course of bond cleavage in main‐group and transition metal compounds are provided, across covalent, dative and charge‐shift bonds. The behavior along reaction paths is also considered. Overall, the static polarizability is found to be a sensitive reporter of electronic structure reorganization associated with bond stretching, and thus can serve as a metric for describing bond cleavage (or diagnose the absence of a chemical bond). |
Author | Head‐Gordon, Martin Hait, Diptarka |
Author_xml | – sequence: 1 givenname: Diptarka orcidid: 0000-0003-1570-920X surname: Hait fullname: Hait, Diptarka email: diptarka@berkeley.edu organization: Stanford University – sequence: 2 givenname: Martin orcidid: 0000-0002-4309-6669 surname: Head‐Gordon fullname: Head‐Gordon, Martin email: mhg@cchem.berkeley.edu organization: Lawrence Berkeley National Laboratory |
BackLink | https://www.osti.gov/biblio/2282192$$D View this record in Osti.gov |
BookMark | eNqF0D1PwzAQBmALgUT5WJkjWFhS4nMSOxMqiI9KFTAUMVqOc1FdUrvYKaj8elwVgcTC5Bue93R-D8iudRYJOaHZkGYZXChrcAgZMAoZFztkQAugKeOc7cY5ZyzloqD75CCEefRCZOWAFC8ztMk4JCq5crZJrrx7RXuZTGeYPLlOefOpatOZfp08oQ9L1L15xyOy16ou4PH3e0ieb2-m1_fp5PFufD2apDqnXKSsUSoHxiue58iKgkJbt1Rx1lSsplABVG3d6Fq0Im9BaEQNFTKlG60LJTJ2SE63e13ojQza9Khn2lkbz5AAAmgFEZ1v0dK7txWGXi5M0Nh1yqJbBQmiLLigDDb7zv7QuVt5G78QlSjzMh5bRjXcKu1dCB5bufRmofxa0kxuqpabquVP1TFQbQMfpsP1P1qOHsY3v9kvSuyB3A |
CitedBy_id | crossref_primary_10_1021_acs_jctc_3c01415 crossref_primary_10_1021_acs_joc_4c00857 crossref_primary_10_1039_D3DT03978A |
Cites_doi | 10.1002/9783527664658 10.1021/jacs.5b12434 10.1063/5.0047386 10.1039/B606877D 10.1002/wcms.1331 10.1126/science.157.3784.13 10.1021/cr0505627 10.1002/ange.202102967 10.1063/1.5142048 10.1007/s00894-008-0400-2 10.1016/0009-2614(83)80005-0 10.1038/nature10367 10.1063/1.465038 10.1021/cr900359c 10.1063/1.5080122 10.1016/0009-2614(87)80521-3 10.1103/PhysRevLett.128.070602 10.1103/PhysRev.140.A1133 10.1002/qua.25569 10.1021/jp0014061 10.1007/BF01397394 10.1039/tf9292500668 10.1080/14786444908521726 10.1021/cr00005a013 10.1021/jp068071t 10.1073/pnas.1715763114 10.1016/S0009-2614(89)87395-6 10.1016/0040-4020(68)88057-3 10.1007/s00214-014-1514-5 10.1021/acs.organomet.1c00218 10.1016/j.cplett.2012.11.048 10.1021/ja00364a005 10.1002/chem.201603535 10.1063/1.1383589 10.1103/RevModPhys.34.326 10.1021/ct800535c 10.1021/jp0470804 10.1103/PhysRevLett.108.038302 10.1021/acs.chemrev.8b00722 10.1021/jp9711508 10.1021/jp961096f 10.1038/s41467-020-18670-8 10.1021/ar00094a001 10.1039/C5CC09816E 10.1126/science.283.5408.1727 10.1063/1.455702 10.1021/ct400453b 10.1063/1.1749227 10.1063/1.471637 10.1063/5.0055522 10.1021/ja00905a001 10.1063/1.3633329 10.1002/qua.21400 10.1002/anie.201907089 10.1103/PhysRevLett.82.370 10.1016/0301-0104(80)80045-0 10.1021/ja00314a049 10.1007/BF01397633 10.1002/ange.201910085 10.1002/ange.202000229 10.1021/jp503145u 10.1142/9789812839664_0016 10.1126/science.abe1951 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7TM K9. 7X8 OTOTI |
DOI | 10.1002/anie.202312078 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 2282192 10_1002_anie_202312078 ANIE202312078 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: Basic Energy Sciences funderid: DE-AC02-05CH11231; DE-SC0021266 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX CITATION 7TM K9. 7X8 OTOTI |
ID | FETCH-LOGICAL-c4178-3daa42379744e35512fbf1a73d93b129229fbdcb8f84f28ceec29e3acdcc5a803 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Mon Sep 23 03:25:09 EDT 2024 Fri Aug 16 07:14:36 EDT 2024 Thu Oct 10 17:02:08 EDT 2024 Fri Aug 23 02:00:34 EDT 2024 Sat Aug 24 00:48:43 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4178-3daa42379744e35512fbf1a73d93b129229fbdcb8f84f28ceec29e3acdcc5a803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE |
ORCID | 0000-0002-4309-6669 0000-0003-1570-920X 000000031570920X 0000000243096669 |
OpenAccessLink | https://doi.org/10.1002/anie.202312078 |
PQID | 2886462376 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_2282192 proquest_miscellaneous_2865781320 proquest_journals_2886462376 crossref_primary_10_1002_anie_202312078 wiley_primary_10_1002_anie_202312078_ANIE202312078 |
PublicationCentury | 2000 |
PublicationDate | November 13, 2023 |
PublicationDateYYYYMMDD | 2023-11-13 |
PublicationDate_xml | – month: 11 year: 2023 text: November 13, 2023 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2011; 477 1980; 48 1968; 24 2007; 107 1989; 157 1963; 85 1965; 140 2019; 58 1967; 157 1983; 97 1999; 283 1962; 34 1996; 100 2020; 11 1999; 82 1996; 104 2014; 133 2017; 114 1983; 16 2011; 111 2013; 9 1927; 43 1983; 105 1927; 44 2007; 135 2018; 8 2020; 132 2013; 556 2005; 105 1997; 101 1988; 89 2005; 109 1991; 91 2019; 119 2021; 155 2021; 154 1933; 1 2022; 128 2021; 40 2019; 150 2009; 15 2014; 118 2011; 135 1984; 106 2006; 110 2016; 52 1929; 25 2012; 108 2020; 152 1987; 136 2000; 104 2018; 118 1993; 98 2021; 371 2016; 138 2009; 5 2021; 133 1949; 40 2001; 115 2016; 22 e_1_2_3_50_1 e_1_2_3_2_1 e_1_2_3_6_1 e_1_2_3_16_1 e_1_2_3_39_1 e_1_2_3_4_1 e_1_2_3_18_1 e_1_2_3_12_1 e_1_2_3_35_1 e_1_2_3_58_1 e_1_2_3_56_1 e_1_2_3_8_1 e_1_2_3_14_1 e_1_2_3_37_1 e_1_2_3_31_1 e_1_2_3_52_1 e_1_2_3_10_1 e_1_2_3_33_1 e_1_2_3_54_1 e_1_2_3_62_1 e_1_2_3_60_1 e_1_2_3_28_1 e_1_2_3_49_1 e_1_2_3_24_1 e_1_2_3_45_1 e_1_2_3_26_1 e_1_2_3_47_1 e_1_2_3_20_1 e_1_2_3_41_1 e_1_2_3_66_1 e_1_2_3_22_1 e_1_2_3_43_1 e_1_2_3_64_1 e_1_2_3_51_1 e_1_2_3_1_1 e_1_2_3_5_1 e_1_2_3_17_1 e_1_2_3_38_1 e_1_2_3_3_1 e_1_2_3_19_1 e_1_2_3_57_1 e_1_2_3_9_1 e_1_2_3_13_1 e_1_2_3_34_1 e_1_2_3_59_1 e_1_2_3_7_1 e_1_2_3_15_1 e_1_2_3_36_1 e_1_2_3_30_1 e_1_2_3_53_1 e_1_2_3_55_1 e_1_2_3_11_1 e_1_2_3_32_1 e_1_2_3_61_1 e_1_2_3_40_1 e_1_2_3_27_1 e_1_2_3_29_1 e_1_2_3_23_1 e_1_2_3_46_1 e_1_2_3_25_1 e_1_2_3_48_1 e_1_2_3_42_1 e_1_2_3_65_1 e_1_2_3_21_1 e_1_2_3_44_1 e_1_2_3_63_1 |
References_xml | – volume: 11 start-page: 4893 year: 2020 publication-title: Nat. Commun. – volume: 128 year: 2022 publication-title: Phys. Rev. Lett. – volume: 1 start-page: 687 year: 1933 publication-title: J. Chem. Phys. – volume: 118 year: 2018 publication-title: Int. J. Quantum Chem. – volume: 98 start-page: 4305 year: 1993 publication-title: J. Chem. Phys. – volume: 34 start-page: 326 year: 1962 publication-title: Rev. Mod. Phys. – volume: 97 start-page: 270 year: 1983 publication-title: Chem. Phys. Lett. – volume: 155 year: 2021 publication-title: J. Chem. Phys. – volume: 9 start-page: 5286 year: 2013 publication-title: J. Chem. Theory Comput. – volume: 85 start-page: 3533 year: 1963 publication-title: J. Am. Chem. Soc. – volume: 100 start-page: 16126 year: 1996 publication-title: J. Phys. Chem. – volume: 44 start-page: 455 year: 1927 publication-title: Z. Phys. – volume: 110 start-page: 13939 year: 2006 publication-title: J. Phys. Chem. A – volume: 138 start-page: 3731 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 363 year: 1983 publication-title: Acc. Chem. Res. – volume: 22 start-page: 18678 year: 2016 publication-title: Chem. Eur. J. – volume: 15 start-page: 701 year: 2009 publication-title: J. Mol. Model. – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 132 start-page: 8836 year: 2020 publication-title: Angew. Chem. – volume: 114 start-page: 12649 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 89 start-page: 4246 year: 1988 publication-title: J. Chem. Phys. – volume: 105 start-page: 7512 year: 1983 publication-title: J. Am. Chem. Soc. – volume: 82 start-page: 370 year: 1999 publication-title: Phys. Rev. Lett. – volume: 91 start-page: 893 year: 1991 publication-title: Chem. Rev. – volume: 105 start-page: 4009 year: 2005 publication-title: Chem. Rev. – volume: 157 start-page: 479 year: 1989 publication-title: Chem. Phys. Lett. – volume: 48 start-page: 157 year: 1980 publication-title: Chem. Phys. – volume: 152 year: 2020 publication-title: J. Chem. Phys. – volume: 43 start-page: 563 year: 1927 publication-title: Z. Phys. – volume: 477 start-page: 308 year: 2011 publication-title: Nature – volume: 107 start-page: 2153 year: 2007 publication-title: Int. J. Quantum Chem. – volume: 5 start-page: 770 year: 2009 publication-title: J. Chem. Theory Comput. – volume: 132 start-page: 996 year: 2020 publication-title: Angew. Chem. – volume: 154 year: 2021 publication-title: J. Chem. Phys. – volume: 24 start-page: 1083 year: 1968 publication-title: Tetrahedron – volume: 118 start-page: 6664 year: 2014 publication-title: J. Phys. Chem. A – volume: 109 start-page: 615 year: 2005 publication-title: J. Phys. Chem. A – volume: 283 start-page: 1727 year: 1999 publication-title: Science – volume: 133 start-page: 1 year: 2014 publication-title: Theor. Chem. Acc. – volume: 8 year: 2018 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 104 start-page: 8418 year: 2000 publication-title: J. Phys. Chem. A – volume: 119 start-page: 8781 year: 2019 publication-title: Chem. Rev. – volume: 115 start-page: 2014 year: 2001 publication-title: J. Chem. Phys. – volume: 135 start-page: 161 year: 2007 publication-title: Faraday Discuss. – volume: 133 start-page: 17165 year: 2021 publication-title: Angew. Chem. – volume: 556 start-page: 346 year: 2013 publication-title: Chem. Phys. Lett. – volume: 58 start-page: 13789 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 150 year: 2019 publication-title: J. Chem. Phys. – volume: 25 start-page: 668 year: 1929 publication-title: Trans. Faraday Soc. – volume: 101 start-page: 7277 year: 1997 publication-title: J. Phys. Chem. A – volume: 104 start-page: 9047 year: 1996 publication-title: J. Chem. Phys. – volume: 106 start-page: 451 year: 1984 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 8183 year: 2016 publication-title: Chem. Commun. – volume: 140 start-page: A1133 year: 1965 publication-title: Phys. Rev. – volume: 135 year: 2011 publication-title: J. Chem. Phys. – volume: 157 start-page: 13 year: 1967 publication-title: Science – volume: 371 start-page: 160 year: 2021 publication-title: Science – volume: 40 start-page: 386 year: 1949 publication-title: Philos. Mag. – volume: 40 start-page: 1758 year: 2021 publication-title: Organometallics – volume: 136 start-page: 575 year: 1987 publication-title: Chem. Phys. Lett. – volume: 111 start-page: 863 year: 2011 publication-title: Chem. Rev. – ident: e_1_2_3_4_1 – ident: e_1_2_3_7_1 doi: 10.1002/9783527664658 – ident: e_1_2_3_8_1 doi: 10.1021/jacs.5b12434 – ident: e_1_2_3_30_1 doi: 10.1063/5.0047386 – ident: e_1_2_3_48_1 doi: 10.1039/B606877D – ident: e_1_2_3_65_1 doi: 10.1002/wcms.1331 – ident: e_1_2_3_5_1 doi: 10.1126/science.157.3784.13 – ident: e_1_2_3_45_1 doi: 10.1021/cr0505627 – ident: e_1_2_3_24_1 doi: 10.1002/ange.202102967 – ident: e_1_2_3_64_1 doi: 10.1063/1.5142048 – ident: e_1_2_3_19_1 doi: 10.1007/s00894-008-0400-2 – ident: e_1_2_3_39_1 doi: 10.1016/0009-2614(83)80005-0 – ident: e_1_2_3_26_1 doi: 10.1038/nature10367 – ident: e_1_2_3_32_1 doi: 10.1063/1.465038 – ident: e_1_2_3_57_1 doi: 10.1021/cr900359c – ident: e_1_2_3_31_1 doi: 10.1063/1.5080122 – ident: e_1_2_3_41_1 doi: 10.1016/0009-2614(87)80521-3 – ident: e_1_2_3_33_1 doi: 10.1103/PhysRevLett.128.070602 – ident: e_1_2_3_28_1 doi: 10.1103/PhysRev.140.A1133 – ident: e_1_2_3_34_1 doi: 10.1002/qua.25569 – ident: e_1_2_3_52_1 doi: 10.1021/jp0014061 – ident: e_1_2_3_1_1 doi: 10.1007/BF01397394 – ident: e_1_2_3_2_1 doi: 10.1039/tf9292500668 – ident: e_1_2_3_13_1 doi: 10.1080/14786444908521726 – ident: e_1_2_3_14_1 doi: 10.1021/cr00005a013 – ident: e_1_2_3_17_1 doi: 10.1021/jp068071t – ident: e_1_2_3_9_1 doi: 10.1073/pnas.1715763114 – ident: e_1_2_3_60_1 doi: 10.1016/S0009-2614(89)87395-6 – ident: e_1_2_3_38_1 doi: 10.1016/0040-4020(68)88057-3 – ident: e_1_2_3_62_1 doi: 10.1007/s00214-014-1514-5 – ident: e_1_2_3_27_1 doi: 10.1021/acs.organomet.1c00218 – ident: e_1_2_3_53_1 doi: 10.1016/j.cplett.2012.11.048 – ident: e_1_2_3_47_1 doi: 10.1021/ja00364a005 – ident: e_1_2_3_23_1 doi: 10.1002/chem.201603535 – ident: e_1_2_3_61_1 doi: 10.1063/1.1383589 – ident: e_1_2_3_6_1 doi: 10.1103/RevModPhys.34.326 – ident: e_1_2_3_20_1 doi: 10.1021/ct800535c – ident: e_1_2_3_55_1 doi: 10.1021/jp0470804 – ident: e_1_2_3_21_1 doi: 10.1103/PhysRevLett.108.038302 – ident: e_1_2_3_10_1 doi: 10.1021/acs.chemrev.8b00722 – ident: e_1_2_3_15_1 doi: 10.1021/jp9711508 – ident: e_1_2_3_54_1 doi: 10.1021/jp961096f – ident: e_1_2_3_29_1 – ident: e_1_2_3_12_1 doi: 10.1038/s41467-020-18670-8 – ident: e_1_2_3_42_1 doi: 10.1021/ar00094a001 – ident: e_1_2_3_22_1 doi: 10.1039/C5CC09816E – ident: e_1_2_3_16_1 doi: 10.1126/science.283.5408.1727 – ident: e_1_2_3_43_1 doi: 10.1063/1.455702 – ident: e_1_2_3_35_1 doi: 10.1021/ct400453b – ident: e_1_2_3_3_1 doi: 10.1063/1.1749227 – ident: e_1_2_3_44_1 doi: 10.1063/1.471637 – ident: e_1_2_3_59_1 doi: 10.1063/5.0055522 – ident: e_1_2_3_46_1 doi: 10.1021/ja00905a001 – ident: e_1_2_3_66_1 doi: 10.1063/1.3633329 – ident: e_1_2_3_18_1 doi: 10.1002/qua.21400 – ident: e_1_2_3_50_1 doi: 10.1002/anie.201907089 – ident: e_1_2_3_25_1 – ident: e_1_2_3_36_1 doi: 10.1103/PhysRevLett.82.370 – ident: e_1_2_3_63_1 doi: 10.1016/0301-0104(80)80045-0 – ident: e_1_2_3_56_1 doi: 10.1021/ja00314a049 – ident: e_1_2_3_40_1 doi: 10.1007/BF01397633 – ident: e_1_2_3_11_1 doi: 10.1002/ange.201910085 – ident: e_1_2_3_51_1 doi: 10.1002/ange.202000229 – ident: e_1_2_3_37_1 doi: 10.1021/jp503145u – ident: e_1_2_3_58_1 doi: 10.1142/9789812839664_0016 – ident: e_1_2_3_49_1 doi: 10.1126/science.abe1951 |
SSID | ssj0028806 |
Score | 2.5178938 |
Snippet | The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose that the... Abstract The question of when a chemical bond can be said to be broken is of fundamental chemical interest but has not been widely studied. Herein we propose... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | e202312078 |
SubjectTerms | bond dissociation chemical bonding Chemical bonds Cleavage Ductile-brittle transition Electron density electron localization Electronic structure Localization Metal compounds Polarizability reaction paths static polarizability Transition metal compounds |
Title | When Is a Bond Broken? The Polarizability Perspective |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202312078 https://www.proquest.com/docview/2886462376 https://search.proquest.com/docview/2865781320 https://www.osti.gov/biblio/2282192 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kF734FmNVVhA8pTa72zR7EvGBCoqIgrdlnxchFdse9Nc7kzTRehH0lpAsSeax-81m5huAQyWtzzltgQkrU-kznirnMXB1MQ-58L6oeGZv7_KrJ3nzPHj-VsVf80O0G27kGdV8TQ5u7Pj4izSUKrB71Pw7w0dRtW8mhpTTdf7Q8kdxNM66vEiIlLrQN6yNfX48P3xuVeqM0LvmEOd33FotPJcrYJpXrvNNXnrTie25jx9sjv_5plVYnqFSdlqb0RoshHIdFs-aZnAbMMBJu2TXY2YYNSJmGL2_hPKEoZWxe4qOKTmM0mzf2f1X-eYmPF1ePJ5dpbOOC6mTGeVJeGMoTwaDDBkQiWQ82piZofBKWEQGnKtovbNFLGTkBS6wjqsgjPPODUzRF1vQKUdl2AaWe5UVUbi-k1EObLSuCFKZoesHpRAFJXDUSFy_1sQauqZQ5prEoFsxJNAlhWiEBMRr6ygByE00x2AR4WkCu42e9Mz9xhoVn8ucEn4SOGgvo8job4gpw2hK9-Q4W1EFeQK8Usov76FP764v2rOdvwzqwhIdUy1jJnahM3mbhj0ENRO7XxnuJx9f7Eo |
link.rule.ids | 230,315,783,787,888,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VcIBLW6AIk7TdSkicHOLdjfGeKpSCkhaiCCUSt5X3dYnkoJIc4NczY8eGcKlEj36sbM9j95v1zDcAJ0oal3LaAhNGxtIlPFbWYeBqQ-pT4VxW8szejNPhTP6-69fZhFQLU_FDNBtu5BnlfE0OThvSZy-soVSC3aXu3wk-K9uCbfR5QU0Mft02DFIczbMqMBIipj70NW9jj59tjt9Yl1oL9K8NzPkauZZLz9UnMPVLVxkn8-5qabr26Q2f43991Wf4uAam7KKypD344It92BnU_eAOoI_zdsFGDyxn1IuYYQA_98VPhobGJhQgU34YZdo-sslLBecXmF1dTgfDeN10IbYyoVQJl-eUKoNxhvQIRhIeTEjyc-GUMAgOOFfBOGuykMnAM1xjLVde5NZZ28-znjiEVrEo_BGw1KkkC8L2rAyyb4KxmZcqP7c9rxQCoQhOa5Hr-4pbQ1csylyTGHQjhgjapBGNqICobS3lANml5hgvIkKNoFMrSq898EGj5lOZUs5PBD-ayygy-iGSF36xontSnLCoiDwCXmrlH--hL8ajy-bo-D2DvsPOcHpzra9H4z9t2KXzVNqYiA60ln9X_itinKX5VlrxM_Jm8GQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61i9RyKfSBmkJbV6rUU5bE9pr4hBCwYvtYraoicbP8vCBlUdk9wK9nJtkEthekcszDSjIP-xtn5huAr1q6oDhtgQkncxlKnmsfMHD1SUUlQqgantlfU3V2Lr9fjC4eVPG3_BD9hht5RjNfk4NfhbR_TxpKFdhDav5d4qOq57AhlSgoqevkd08gxdE62_oiIXJqQ9_RNhZ8f3382rI0mKN7rUHOh8C1WXnGW2C7d24TTi6Hy4Ub-tt_6Byf8lHb8GoFS9lRa0ev4Vms38DL464b3FsY4axds8k1s4w6ETMM3y9jfcjQzNiMwmPKDqM82xs2u6_ffAfn49M_x2f5quVC7mVJiRLBWkqUwShDRoQiJU8ulfZABC0cQgPOdXLBuypVMvEKV1jPdRTWB-9HtirEDgzqeR3fA1NBl1USvvAyyZFLzldRanvgi6g1wqAMvnUSN1cts4ZpOZS5ITGYXgwZ7JJCDGICIrb1lAHkF4ZjtIj4NIO9Tk9m5X_XBhWvpKKMnwy-9JdRZPQ7xNZxvqR7FE5XVEKeAW-U8sh7mKPp5LQ_-vA_gz7Di9nJ2PycTH_swiadprrGUuzBYPF3GT8iwFm4T40N3wElUu8T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+Is+a+Bond+Broken%3F+The+Polarizability+Perspective&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Hait%2C+Diptarka&rft.au=Head%E2%80%90Gordon%2C+Martin&rft.date=2023-11-13&rft.pub=Wiley+Blackwell+%28John+Wiley+%26+Sons%29&rft.issn=1433-7851&rft.volume=62&rft.issue=46&rft_id=info:doi/10.1002%2Fanie.202312078&rft.externalDocID=2282192 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |