Age-related changes in the glutathione redox system

The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176...

Full description

Saved in:
Bibliographic Details
Published inCell biochemistry and function Vol. 20; no. 1; pp. 61 - 66
Main Authors Erden-İnal, Mine, Sunal, Emine, Kanbak, Güngör
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.03.2002
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n = 25; 0.2–1 years old); group 2 (n = 28; 2–11 years old); group 3 (n = 23; 12–24 years old); group 4 (n = 40; 25–40 years old); group 5 (n = 60; 41–69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p< 0.001). Conversely, GSSG levels were significantly high in these periods (p< 0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p< 0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p< 0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p< 0.001). Se levels were found to be low in the oldest group (p< 0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p< 0.01). We found negative correlations between age and GSH levels (r = 0.402; p< 0.001), selenium levels (r = 0.454; p< 0.001), GSH/GSSG molar ratio (r = 0.557; p< 0.001) and GSSGR activity (r = 0.556; p< 0.001). There were positive correlations between age and GPx (r = 0.538; p< 0.001) and GSSG level (r = 0.551; p< 0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level. Copyright © 2001 John Wiley & Sons, Ltd.
AbstractList The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 ( n  = 25; 0.2–1 years old); group 2 ( n  = 28; 2–11 years old); group 3 ( n  = 23; 12–24 years old); group 4 ( n  = 40; 25–40 years old); group 5 ( n  = 60; 41–69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups ( p < 0.001). Conversely, GSSG levels were significantly high in these periods ( p < 0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group ( p < 0.001, respectively). GPx activity in group 5 was increased as compared to the other groups ( p < 0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups ( p < 0.001). Se levels were found to be low in the oldest group ( p < 0.001). Selenium levels of women in group 5 were significantly high as compared to the men ( p < 0.01). We found negative correlations between age and GSH levels ( r  = 0.402; p < 0.001), selenium levels ( r  = 0.454; p < 0.001), GSH/GSSG molar ratio ( r  = 0.557; p < 0.001) and GSSGR activity ( r  = 0.556; p < 0.001). There were positive correlations between age and GPx ( r  = 0.538; p < 0.001) and GSSG level ( r  = 0.551; p < 0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level. Copyright © 2001 John Wiley & Sons, Ltd.
The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n=25; 0.2-1 years old); group 2 (n=28; 2-11 years old); group 3 (n=23; 12-24 years old); group 4 (n=40; 25-40 years old); group 5 (n=60; 41-69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p<0.001). Conversely, GSSG levels were significantly high in these periods (p<0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p<0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p<0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p<0.001). Se levels were found to be low in the oldest group (p<0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p<0.01). We found negative correlations between age and GSH levels (r=0.402; p<0.001), selenium levels (r=0.454; p<0.001), GSH/GSSG molar ratio (r=0.557; p<0.001) and GSSGR activity (r=0.556; p<0.001). There were positive correlations between age and GPx (r=0.538; p<0.001) and GSSG level (r=0.551; p<0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level.The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n=25; 0.2-1 years old); group 2 (n=28; 2-11 years old); group 3 (n=23; 12-24 years old); group 4 (n=40; 25-40 years old); group 5 (n=60; 41-69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p<0.001). Conversely, GSSG levels were significantly high in these periods (p<0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p<0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p<0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p<0.001). Se levels were found to be low in the oldest group (p<0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p<0.01). We found negative correlations between age and GSH levels (r=0.402; p<0.001), selenium levels (r=0.454; p<0.001), GSH/GSSG molar ratio (r=0.557; p<0.001) and GSSGR activity (r=0.556; p<0.001). There were positive correlations between age and GPx (r=0.538; p<0.001) and GSSG level (r=0.551; p<0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level.
The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n = 25; 0.2–1 years old); group 2 (n = 28; 2–11 years old); group 3 (n = 23; 12–24 years old); group 4 (n = 40; 25–40 years old); group 5 (n = 60; 41–69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p< 0.001). Conversely, GSSG levels were significantly high in these periods (p< 0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p< 0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p< 0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p< 0.001). Se levels were found to be low in the oldest group (p< 0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p< 0.01). We found negative correlations between age and GSH levels (r = 0.402; p< 0.001), selenium levels (r = 0.454; p< 0.001), GSH/GSSG molar ratio (r = 0.557; p< 0.001) and GSSGR activity (r = 0.556; p< 0.001). There were positive correlations between age and GPx (r = 0.538; p< 0.001) and GSSG level (r = 0.551; p< 0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level. Copyright © 2001 John Wiley & Sons, Ltd.
The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n=25; 0.2-1 years old); group 2 (n=28; 2-11 years old); group 3 (n=23; 12-24 years old); group 4 (n=40; 25-40 years old); group 5 (n=60; 41-69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p<0.001). Conversely, GSSG levels were significantly high in these periods (p<0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p<0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p<0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p<0.001). Se levels were found to be low in the oldest group (p<0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p<0.01). We found negative correlations between age and GSH levels (r=0.402; p<0.001), selenium levels (r=0.454; p<0.001), GSH/GSSG molar ratio (r=0.557; p<0.001) and GSSGR activity (r=0.556; p<0.001). There were positive correlations between age and GPx (r=0.538; p<0.001) and GSSG level (r=0.551; p<0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level.
Author Erden-İnal, Mine
Kanbak, Güngör
Sunal, Emine
Author_xml – sequence: 1
  givenname: Mine
  surname: Erden-İnal
  fullname: Erden-İnal, Mine
  email: minal@ogu.edu.tr
  organization: Osmangazi University, The Medical School, Department of Biochemistry Eskişehir, Turkey
– sequence: 2
  givenname: Emine
  surname: Sunal
  fullname: Sunal, Emine
  organization: Osmangazi University, The Medical School, Department of Biochemistry Eskişehir, Turkey
– sequence: 3
  givenname: Güngör
  surname: Kanbak
  fullname: Kanbak, Güngör
  organization: Osmangazi University, The Medical School, Department of Biochemistry Eskişehir, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11835271$$D View this record in MEDLINE/PubMed
BookMark eNp10M9LwzAUwPEgE_dD8T-QnvQgnUlf2rRHHW4KY6JMPIYkTbZq186kw-2_N7KpKHpKDh_e4327qFXVlUbomOA-wTi6UNL0M2B7qENwloU4pbSFOjhKIExoStuo69wzxjhLAB-gNiEpxBEjHQSXMx1aXYpG54Gai2qmXVBUQTPXwaxcNaKZF35VYHVerwO3cY1eHKJ9I0qnj3ZvDz0Or6eDm3B8N7odXI5DRQljocREyDQHBYQClbkBI6TJSYRxnkYK8thIkwqcEZVJJoDIhBoQ0v9iUBJDD51u5y5t_brSruGLwildlqLS9cpxRmgMzJ_SQyc7uJILnfOlLRbCbvjnmR6cbYGytXNWm2-C-UdA7gNyH9DL8JdUhY_gGzRWFOUf_nzr34pSb_4bywdXwx_TC99x_aWFfeEJAxbzp8mIT9g0SdOHMb-Hd5Mijhs
CitedBy_id crossref_primary_10_3390_antiox12081529
crossref_primary_10_1080_13547500600625828
crossref_primary_10_1515_CCLM_2005_131
crossref_primary_10_1292_jvms_17_0623
crossref_primary_10_3390_antiox9070618
crossref_primary_10_1177_1934578X19896676
crossref_primary_10_1016_j_redox_2016_09_010
crossref_primary_10_4236_jbm_2016_45001
crossref_primary_10_3390_antiox13091028
crossref_primary_10_1016_j_expneurol_2004_12_017
crossref_primary_10_1007_s12012_010_9096_5
crossref_primary_10_1016_j_jchromb_2015_12_035
crossref_primary_10_1139_apnm_2012_0219
crossref_primary_10_1152_ajpregu_00254_2005
crossref_primary_10_3174_ajnr_A6543
crossref_primary_10_5551_jat_56531
crossref_primary_10_1080_2314808X_2022_2065438
crossref_primary_10_1017_S0007114511002170
crossref_primary_10_3897_rrpharmacology_8_81358
crossref_primary_10_1080_13510002_2017_1324381
crossref_primary_10_1080_15287394_2010_484709
crossref_primary_10_1089_ars_2013_5728
crossref_primary_10_1016_j_jds_2013_11_002
crossref_primary_10_3389_fpsyt_2022_1035986
crossref_primary_10_1016_S0985_0562_02_00173_5
crossref_primary_10_1093_gerona_63_11_1168
crossref_primary_10_1093_jn_136_6_1694S
crossref_primary_10_1089_rej_2011_1166
crossref_primary_10_1100_2012_982594
crossref_primary_10_1007_s12011_009_8346_5
crossref_primary_10_1016_j_archger_2004_04_065
crossref_primary_10_1186_s12014_017_9138_0
crossref_primary_10_3945_ajcn_114_096701
crossref_primary_10_4236_jep_2018_94023
crossref_primary_10_1196_annals_1395_041
crossref_primary_10_1007_s00134_005_2687_0
crossref_primary_10_1016_S0531_5565_02_00175_4
crossref_primary_10_3390_vaccines10111892
crossref_primary_10_3390_metabo14010076
crossref_primary_10_1177_1091581817721675
crossref_primary_10_1016_j_fct_2020_111327
crossref_primary_10_1021_acs_jafc_7b01929
crossref_primary_10_4162_nrp_2011_5_4_357
crossref_primary_10_1097_01_ijg_0000243480_67532_1b
crossref_primary_10_1089_rej_2007_0652
crossref_primary_10_1517_17460441_2011_533653
crossref_primary_10_1016_j_mad_2013_02_008
crossref_primary_10_1016_j_clinbiochem_2008_10_026
crossref_primary_10_12968_jowc_2019_28_Sup7_S16
crossref_primary_10_3390_nu12113224
crossref_primary_10_1016_j_biopha_2010_09_010
crossref_primary_10_1038_sj_jhh_1001912
crossref_primary_10_1111_j_2042_7158_2012_01512_x
crossref_primary_10_1016_j_exger_2012_06_011
crossref_primary_10_1016_j_exger_2011_11_015
crossref_primary_10_3892_etm_2023_12184
crossref_primary_10_1016_j_anpedi_2009_01_019
crossref_primary_10_1016_j_abb_2016_01_017
crossref_primary_10_1016_j_nut_2005_01_006
crossref_primary_10_1208_s12248_024_00890_1
crossref_primary_10_1007_s11064_012_0775_4
crossref_primary_10_1186_s13099_015_0054_4
crossref_primary_10_1016_j_toxlet_2004_03_009
crossref_primary_10_1098_rstb_2005_1770
crossref_primary_10_1194_jlr_M048223
crossref_primary_10_1371_journal_pone_0161548
crossref_primary_10_3390_biom11050714
crossref_primary_10_3390_brainsci10070437
crossref_primary_10_1002_bmc_954
crossref_primary_10_1155_2011_624156
crossref_primary_10_1016_j_smrv_2022_101616
crossref_primary_10_1007_s10522_022_09987_6
crossref_primary_10_1515_BC_2008_031
crossref_primary_10_3390_antiox9030201
crossref_primary_10_1089_ars_2010_3453
crossref_primary_10_1080_10715760600592962
crossref_primary_10_3390_antiox11051026
crossref_primary_10_1016_S0211_139X_08_71177_6
crossref_primary_10_1067_mlc_2002_129505
crossref_primary_10_2478_v10011_011_0008_4
crossref_primary_10_1089_10945450260195658
crossref_primary_10_1155_2017_6568501
crossref_primary_10_1016_j_freeradbiomed_2013_07_021
crossref_primary_10_1002_aur_2436
crossref_primary_10_1519_JSC_0b013e3181b339ac
crossref_primary_10_1111_j_1582_4934_2008_00417_x
crossref_primary_10_1016_j_nutres_2012_03_012
crossref_primary_10_3746_jkfn_2002_31_5_834
crossref_primary_10_5432_ijshs_4_515
crossref_primary_10_1177_14746514070070060201
crossref_primary_10_1007_s00394_014_0706_z
crossref_primary_10_1016_j_pathophys_2006_05_007
crossref_primary_10_3945_ajcn_110_003483
crossref_primary_10_54005_geneltip_1005716
crossref_primary_10_1016_j_arr_2023_102066
crossref_primary_10_1016_j_redare_2015_07_001
crossref_primary_10_1016_j_jff_2013_12_017
crossref_primary_10_1155_2022_7911222
crossref_primary_10_1515_REVEH_2007_22_2_139
crossref_primary_10_1016_j_clnesp_2017_07_004
crossref_primary_10_1007_s00344_022_10800_4
crossref_primary_10_7314_APJCP_2014_15_18_7603
crossref_primary_10_1080_10715760600895191
crossref_primary_10_1186_s13568_019_0760_2
crossref_primary_10_1007_s12011_010_8840_9
crossref_primary_10_1007_s12035_019_01742_2
crossref_primary_10_1016_j_exger_2024_112593
crossref_primary_10_1016_j_jtemb_2021_126782
crossref_primary_10_1007_s00421_009_1004_y
crossref_primary_10_1002_jmri_24970
crossref_primary_10_1007_s00726_003_0025_9
crossref_primary_10_1080_10715760600953859
crossref_primary_10_1179_174329211X13002357050897
crossref_primary_10_1016_j_redar_2015_01_015
crossref_primary_10_1152_japplphysiol_00412_2005
crossref_primary_10_1016_j_freeradbiomed_2013_08_002
crossref_primary_10_1016_j_jchromb_2016_02_015
crossref_primary_10_1016_S1532_0456_03_00151_0
crossref_primary_10_1016_j_biomag_2011_03_001
crossref_primary_10_1016_j_arr_2005_02_005
crossref_primary_10_1016_S1570_0232_03_00061_8
crossref_primary_10_1007_s11920_017_0799_1
crossref_primary_10_1097_FJC_0b013e31824cc31c
crossref_primary_10_1016_j_jsbmb_2007_09_010
crossref_primary_10_1155_2016_3286365
crossref_primary_10_3390_nu10121989
crossref_primary_10_3390_antiox9070624
crossref_primary_10_7717_peerj_1055
Cites_doi 10.1096/fasebj.6.9.1612291
10.1016/0305-0491(87)90097-6
10.1016/0047-6374(90)90033-C
10.1152/physrev.1994.74.1.139
10.1016/S0076-6879(55)02291-X
10.1093/geronj/11.3.298
10.1079/BJN19890022
10.1016/0163-7258(90)90073-B
10.1016/0006-2944(84)90026-7
10.1111/j.2042-7158.1987.tb07154.x
10.1016/0047-6374(92)90054-H
10.3177/jnsv.43.497
10.1016/S0009-9120(99)00041-7
10.1126/science.273.5271.59
10.3109/10715769309111598
10.1073/pnas.90.17.7915
10.1620/tjem.165.247
10.4327/jsnfs.44.357
10.1016/S0009-9120(97)00047-7
ContentType Journal Article
Copyright Copyright © 2001 John Wiley & Sons, Ltd.
Copyright 2001 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2001 John Wiley & Sons, Ltd.
– notice: Copyright 2001 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/cbf.937
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1099-0844
EndPage 66
ExternalDocumentID 11835271
10_1002_cbf_937
CBF937
ark_67375_WNG_N7T688RL_Q
Genre article
Journal Article
Comparative Study
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NDZJH
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4177-b01ab8d3c31434bdf3fabfd1200d82c3d5fbf8a091c9b7a31b64f3aba3153cb03
IEDL.DBID DR2
ISSN 0263-6484
IngestDate Thu Jul 10 20:52:01 EDT 2025
Wed Feb 19 01:31:12 EST 2025
Tue Jul 01 02:49:04 EDT 2025
Thu Apr 24 23:12:56 EDT 2025
Wed Jan 22 17:04:32 EST 2025
Wed Oct 30 09:54:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2001 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4177-b01ab8d3c31434bdf3fabfd1200d82c3d5fbf8a091c9b7a31b64f3aba3153cb03
Notes ark:/67375/WNG-N7T688RL-Q
istex:EBCDF59FCF78C45C85088B38BB1454E302896E0A
ArticleID:CBF937
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 11835271
PQID 71453718
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_71453718
pubmed_primary_11835271
crossref_primary_10_1002_cbf_937
crossref_citationtrail_10_1002_cbf_937
wiley_primary_10_1002_cbf_937_CBF937
istex_primary_ark_67375_WNG_N7T688RL_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2002
PublicationDateYYYYMMDD 2002-03-01
PublicationDate_xml – month: 03
  year: 2002
  text: March 2002
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
PublicationTitle Cell biochemistry and function
PublicationTitleAlternate Cell Biochem. Funct
PublicationYear 2002
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Harris ED. Regulation of antioxidant enzymes. FASEB J 1992; 6: 2675-2683.
Yoshida M. Factors associated with variations in blood and urinary selenium concentrations among male employees of companies in Osaka Prefecture. Jpn Soc Nutr Food Sci 1991; 44: 357-363.
Alejendro DB, Martha SB, Nestor OB. Superoxide dismutase, catalase and glutathone peroxidase activities in human blood: Influence of sex, age and cigarette smoking. Clin Biochem 1997; 30: 449-453.
Gutteridge JMC. Free radicals in disease processes: a compilation of cause and consequence. Free Rad Res Commun 1993; 19: 141-158.
Irene CP, Jean MT, Annie T, Pierre MS, Marc T. Age-correlated modifications of copper-zinc superoxide dismutase and glutathione-related enzyme activities in human erythrocytes. Clin Chem 1992; 31: 66-70.
Yu BP. Cellular defences against damage from reactive oxygen species. Physiol Rev 1994; 74: 139-162.
Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70: 158-168.
Erden M, Bor NM. Changes of reduced glutahione,glutathione reductase, and glutathione peroxidase after radiation in guinea pigs. Biochem Med 1984; 31: 217-227.
Ellman B, Robson MJ, Buttenweiser E. The glutathione instability of drug sensivity red cells. J Lab Clin Med 1957; 49: 84-95.
Meister A. New aspects of glutathione biochemistry and transport. Selective alteration of glutathione metabolism. Fed Proc 1984; 43: 3031-3042.
Matsubara LS, Machado PEA. Age-related changes of glutathione content, glutathione reductase and glutathione peroxidase activity of human erythrocytes. Brazil J Med Biol Res 1991; 24: 449-459.
Farooqui YH, Day WW, Zamarano DM. Glutathione and lipid peroxidation in aging rat. Comp Biochem Physiol 1987; 88: 177-180.
Deguchi Y, Ogata A. Relationship between serum selenium concentration and atherogenic index in Japanase adults. Tohoku J Exp Med 1991; 165: 247-251.
Ames BN, Shigenaga MK, Hagen T. Oxidant, antioxidants, and degenerative diseases of aging. Proc Natl Acad Sci 1993; 90: 7915-7922.
Al-Turk W, Sindey JS, Fatma HER, Sadeg O. Changes in glutathione and its metabolizing enzymes in human erythrocytes and lymphocytes with age. J Pharm Pharmacol 1987; 39: 13-16.
Akihiko M, Mieko K, Yoshinori I. Selenium level and glutathione peroxidase activity in plasma, erythrocytes and platelets of healthy Japanase volunteers. J Nutr Sci Vitaminol 1997; 43: 497-504.
Portakal O, İnal M. Effects of pentoxyfilline and coenzyme Q10 in hepatic ischemia/reperfusion injury. Clin Biochem 1999; 36: 461-466.
Asensi M, Sastre J, Pallardo VF, Estrela MJ, Vina J. Methods in Enzymology vol 234. Academic Press: New York, 1994; 367-371.
Harman D. Aging. A theory based on free radical and radiation chemistry. J Gerantol 1956; 11: 298-300.
Compbell D, Bunker VW, Thomas AJ. Selenium and vitamin E status of healthy and institutionalized elderly subjects: analysis of plasma,erythrocytes and platelets. Br J Nutr 1989; 62: 221-227.
Sohal RS, Weindruch R. Oxidative stress,caloric restriction, and aging. Science 1996; 273: 59-63.
Güneral F, Sunguroğlu K. Fluorometric determination of selenium in plasma, erythrocytes and urine. Tr J Med Sci 1995; 23: 151-154.
Burk RF. Protection against free radical injury by seleno-enzymes. Pharmac Ther 1990; 45: 383-385.
Hall well B, Gutteridge JMC. Free Radicals in Biology and Medicine (2nd edn). Clarendon Press: Oxford, UK, 1989.
Sastre J, Joaquin VR, Federico VP, et al. Effect of aging on metabolic zonation in rat liver. Acinar distribution of GSH metabolism. Mech Age Develop 1992; 62: 181-190.
Govinda R, Erning X, Arlan R. Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats. Mech Age Develop 1990; 53: 49-60.
Masaaki K, Masatoshi S, Nihal SA. Antioxidant systems and erythrocyte life-span in mammals. Comp Biochem Physiol 1993; 106B: 477-487.
1989; 62
1990; 53
1997; 43
1984; 43
1956; 11
1994
1993; 90
1992; 31
1987; 39
1955
1992; 6
1991; 165
1987; 88
1984; 31
1967; 70
1993; 19
1990; 45
1993; 106B
1991; 24
1997; 30
1991; 44
1995; 23
1999; 36
1996; 273
1957; 49
1994; 74
1989
1992; 62
Irene CP (e_1_2_1_25_2) 1992; 31
Paglia DE (e_1_2_1_14_2) 1967; 70
Racker E (e_1_2_1_13_2) 1955
Asensi M (e_1_2_1_12_2) 1994
Meister A (e_1_2_1_24_2) 1984; 43
e_1_2_1_22_2
e_1_2_1_23_2
Hall well B (e_1_2_1_6_2) 1989
Güneral F (e_1_2_1_15_2) 1995; 23
e_1_2_1_26_2
e_1_2_1_27_2
Masaaki K (e_1_2_1_21_2) 1993; 106
e_1_2_1_28_2
e_1_2_1_29_2
Ellman B (e_1_2_1_11_2) 1957; 49
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_3_2
e_1_2_1_10_2
Matsubara LS (e_1_2_1_20_2) 1991; 24
e_1_2_1_16_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Farooqui YH, Day WW, Zamarano DM. Glutathione and lipid peroxidation in aging rat. Comp Biochem Physiol 1987; 88: 177-180.
– reference: Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70: 158-168.
– reference: Compbell D, Bunker VW, Thomas AJ. Selenium and vitamin E status of healthy and institutionalized elderly subjects: analysis of plasma,erythrocytes and platelets. Br J Nutr 1989; 62: 221-227.
– reference: Güneral F, Sunguroğlu K. Fluorometric determination of selenium in plasma, erythrocytes and urine. Tr J Med Sci 1995; 23: 151-154.
– reference: Meister A. New aspects of glutathione biochemistry and transport. Selective alteration of glutathione metabolism. Fed Proc 1984; 43: 3031-3042.
– reference: Portakal O, İnal M. Effects of pentoxyfilline and coenzyme Q10 in hepatic ischemia/reperfusion injury. Clin Biochem 1999; 36: 461-466.
– reference: Asensi M, Sastre J, Pallardo VF, Estrela MJ, Vina J. Methods in Enzymology vol 234. Academic Press: New York, 1994; 367-371.
– reference: Hall well B, Gutteridge JMC. Free Radicals in Biology and Medicine (2nd edn). Clarendon Press: Oxford, UK, 1989.
– reference: Al-Turk W, Sindey JS, Fatma HER, Sadeg O. Changes in glutathione and its metabolizing enzymes in human erythrocytes and lymphocytes with age. J Pharm Pharmacol 1987; 39: 13-16.
– reference: Sastre J, Joaquin VR, Federico VP, et al. Effect of aging on metabolic zonation in rat liver. Acinar distribution of GSH metabolism. Mech Age Develop 1992; 62: 181-190.
– reference: Gutteridge JMC. Free radicals in disease processes: a compilation of cause and consequence. Free Rad Res Commun 1993; 19: 141-158.
– reference: Alejendro DB, Martha SB, Nestor OB. Superoxide dismutase, catalase and glutathone peroxidase activities in human blood: Influence of sex, age and cigarette smoking. Clin Biochem 1997; 30: 449-453.
– reference: Harman D. Aging. A theory based on free radical and radiation chemistry. J Gerantol 1956; 11: 298-300.
– reference: Matsubara LS, Machado PEA. Age-related changes of glutathione content, glutathione reductase and glutathione peroxidase activity of human erythrocytes. Brazil J Med Biol Res 1991; 24: 449-459.
– reference: Govinda R, Erning X, Arlan R. Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats. Mech Age Develop 1990; 53: 49-60.
– reference: Masaaki K, Masatoshi S, Nihal SA. Antioxidant systems and erythrocyte life-span in mammals. Comp Biochem Physiol 1993; 106B: 477-487.
– reference: Burk RF. Protection against free radical injury by seleno-enzymes. Pharmac Ther 1990; 45: 383-385.
– reference: Yoshida M. Factors associated with variations in blood and urinary selenium concentrations among male employees of companies in Osaka Prefecture. Jpn Soc Nutr Food Sci 1991; 44: 357-363.
– reference: Ames BN, Shigenaga MK, Hagen T. Oxidant, antioxidants, and degenerative diseases of aging. Proc Natl Acad Sci 1993; 90: 7915-7922.
– reference: Ellman B, Robson MJ, Buttenweiser E. The glutathione instability of drug sensivity red cells. J Lab Clin Med 1957; 49: 84-95.
– reference: Sohal RS, Weindruch R. Oxidative stress,caloric restriction, and aging. Science 1996; 273: 59-63.
– reference: Irene CP, Jean MT, Annie T, Pierre MS, Marc T. Age-correlated modifications of copper-zinc superoxide dismutase and glutathione-related enzyme activities in human erythrocytes. Clin Chem 1992; 31: 66-70.
– reference: Akihiko M, Mieko K, Yoshinori I. Selenium level and glutathione peroxidase activity in plasma, erythrocytes and platelets of healthy Japanase volunteers. J Nutr Sci Vitaminol 1997; 43: 497-504.
– reference: Erden M, Bor NM. Changes of reduced glutahione,glutathione reductase, and glutathione peroxidase after radiation in guinea pigs. Biochem Med 1984; 31: 217-227.
– reference: Yu BP. Cellular defences against damage from reactive oxygen species. Physiol Rev 1994; 74: 139-162.
– reference: Harris ED. Regulation of antioxidant enzymes. FASEB J 1992; 6: 2675-2683.
– reference: Deguchi Y, Ogata A. Relationship between serum selenium concentration and atherogenic index in Japanase adults. Tohoku J Exp Med 1991; 165: 247-251.
– volume: 31
  start-page: 217
  year: 1984
  end-page: 227
  article-title: Changes of reduced glutahione,glutathione reductase, and glutathione peroxidase after radiation in guinea pigs
  publication-title: Biochem Med
– start-page: 367
  year: 1994
  end-page: 371
– volume: 53
  start-page: 49
  year: 1990
  end-page: 60
  article-title: Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats
  publication-title: Mech Age Develop
– year: 1989
– volume: 23
  start-page: 151
  year: 1995
  end-page: 154
  article-title: Fluorometric determination of selenium in plasma, erythrocytes and urine
  publication-title: Tr J Med Sci
– volume: 49
  start-page: 84
  year: 1957
  end-page: 95
  article-title: The glutathione instability of drug sensivity red cells
  publication-title: J Lab Clin Med
– start-page: 722
  year: 1955
  end-page: 725
– volume: 19
  start-page: 141
  year: 1993
  end-page: 158
  article-title: Free radicals in disease processes: a compilation of cause and consequence
  publication-title: Free Rad Res Commun
– volume: 273
  start-page: 59
  year: 1996
  end-page: 63
  article-title: Oxidative stress,caloric restriction, and aging
  publication-title: Science
– volume: 44
  start-page: 357
  year: 1991
  end-page: 363
  article-title: Factors associated with variations in blood and urinary selenium concentrations among male employees of companies in Osaka Prefecture
  publication-title: Jpn Soc Nutr Food Sci
– volume: 24
  start-page: 449
  year: 1991
  end-page: 459
  article-title: Age‐related changes of glutathione content, glutathione reductase and glutathione peroxidase activity of human erythrocytes
  publication-title: Brazil J Med Biol Res
– volume: 36
  start-page: 461
  year: 1999
  end-page: 466
  article-title: Effects of pentoxyfilline and coenzyme Q in hepatic ischemia/reperfusion injury
  publication-title: Clin Biochem
– volume: 11
  start-page: 298
  year: 1956
  end-page: 300
  article-title: Aging. A theory based on free radical and radiation chemistry
  publication-title: J Gerantol
– volume: 106B
  start-page: 477
  year: 1993
  end-page: 487
  article-title: Antioxidant systems and erythrocyte life‐span in mammals
  publication-title: Comp Biochem Physiol
– volume: 45
  start-page: 383
  year: 1990
  end-page: 385
  article-title: Protection against free radical injury by seleno‐enzymes
  publication-title: Pharmac Ther
– volume: 74
  start-page: 139
  year: 1994
  end-page: 162
  article-title: Cellular defences against damage from reactive oxygen species
  publication-title: Physiol Rev
– volume: 88
  start-page: 177
  year: 1987
  end-page: 180
  article-title: Glutathione and lipid peroxidation in aging rat
  publication-title: Comp Biochem Physiol
– volume: 165
  start-page: 247
  year: 1991
  end-page: 251
  article-title: Relationship between serum selenium concentration and atherogenic index in Japanase adults
  publication-title: Tohoku J Exp Med
– volume: 62
  start-page: 221
  year: 1989
  end-page: 227
  article-title: Selenium and vitamin E status of healthy and institutionalized elderly subjects: analysis of plasma,erythrocytes and platelets
  publication-title: Br J Nutr
– volume: 43
  start-page: 497
  year: 1997
  end-page: 504
  article-title: Selenium level and glutathione peroxidase activity in plasma, erythrocytes and platelets of healthy Japanase volunteers
  publication-title: J Nutr Sci Vitaminol
– volume: 70
  start-page: 158
  year: 1967
  end-page: 168
  article-title: Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase
  publication-title: J Lab Clin Med
– volume: 39
  start-page: 13
  year: 1987
  end-page: 16
  article-title: Changes in glutathione and its metabolizing enzymes in human erythrocytes and lymphocytes with age
  publication-title: J Pharm Pharmacol
– volume: 6
  start-page: 2675
  year: 1992
  end-page: 2683
  article-title: Regulation of antioxidant enzymes
  publication-title: FASEB J
– volume: 31
  start-page: 66
  year: 1992
  end-page: 70
  article-title: Age‐correlated modifications of copper‐zinc superoxide dismutase and glutathione‐related enzyme activities in human erythrocytes
  publication-title: Clin Chem
– volume: 90
  start-page: 7915
  year: 1993
  end-page: 7922
  article-title: Oxidant, antioxidants, and degenerative diseases of aging
  publication-title: Proc Natl Acad Sci
– volume: 62
  start-page: 181
  year: 1992
  end-page: 190
  article-title: Effect of aging on metabolic zonation in rat liver. Acinar distribution of GSH metabolism
  publication-title: Mech Age Develop
– volume: 30
  start-page: 449
  year: 1997
  end-page: 453
  article-title: Superoxide dismutase, catalase and glutathone peroxidase activities in human blood: Influence of sex, age and cigarette smoking
  publication-title: Clin Biochem
– volume: 43
  start-page: 3031
  year: 1984
  end-page: 3042
  article-title: New aspects of glutathione biochemistry and transport. Selective alteration of glutathione metabolism
  publication-title: Fed Proc
– ident: e_1_2_1_9_2
  doi: 10.1096/fasebj.6.9.1612291
– volume: 23
  start-page: 151
  year: 1995
  ident: e_1_2_1_15_2
  article-title: Fluorometric determination of selenium in plasma, erythrocytes and urine
  publication-title: Tr J Med Sci
– volume: 49
  start-page: 84
  year: 1957
  ident: e_1_2_1_11_2
  article-title: The glutathione instability of drug sensivity red cells
  publication-title: J Lab Clin Med
– ident: e_1_2_1_23_2
  doi: 10.1016/0305-0491(87)90097-6
– volume-title: Free Radicals in Biology and Medicine
  year: 1989
  ident: e_1_2_1_6_2
– ident: e_1_2_1_17_2
  doi: 10.1016/0047-6374(90)90033-C
– ident: e_1_2_1_5_2
  doi: 10.1152/physrev.1994.74.1.139
– start-page: 367
  volume-title: Methods in Enzymology vol 234
  year: 1994
  ident: e_1_2_1_12_2
– start-page: 722
  volume-title: Methods in Enzymology vol. 2. I
  year: 1955
  ident: e_1_2_1_13_2
  doi: 10.1016/S0076-6879(55)02291-X
– volume: 106
  start-page: 477
  year: 1993
  ident: e_1_2_1_21_2
  article-title: Antioxidant systems and erythrocyte life‐span in mammals
  publication-title: Comp Biochem Physiol
– ident: e_1_2_1_2_2
  doi: 10.1093/geronj/11.3.298
– ident: e_1_2_1_10_2
  doi: 10.1079/BJN19890022
– ident: e_1_2_1_27_2
  doi: 10.1016/0163-7258(90)90073-B
– ident: e_1_2_1_7_2
  doi: 10.1016/0006-2944(84)90026-7
– ident: e_1_2_1_22_2
  doi: 10.1111/j.2042-7158.1987.tb07154.x
– ident: e_1_2_1_16_2
  doi: 10.1016/0047-6374(92)90054-H
– ident: e_1_2_1_26_2
  doi: 10.3177/jnsv.43.497
– ident: e_1_2_1_8_2
  doi: 10.1016/S0009-9120(99)00041-7
– volume: 24
  start-page: 449
  year: 1991
  ident: e_1_2_1_20_2
  article-title: Age‐related changes of glutathione content, glutathione reductase and glutathione peroxidase activity of human erythrocytes
  publication-title: Brazil J Med Biol Res
– ident: e_1_2_1_3_2
  doi: 10.1126/science.273.5271.59
– volume: 43
  start-page: 3031
  year: 1984
  ident: e_1_2_1_24_2
  article-title: New aspects of glutathione biochemistry and transport. Selective alteration of glutathione metabolism
  publication-title: Fed Proc
– ident: e_1_2_1_18_2
  doi: 10.3109/10715769309111598
– ident: e_1_2_1_4_2
  doi: 10.1073/pnas.90.17.7915
– ident: e_1_2_1_28_2
  doi: 10.1620/tjem.165.247
– ident: e_1_2_1_29_2
  doi: 10.4327/jsnfs.44.357
– volume: 70
  start-page: 158
  year: 1967
  ident: e_1_2_1_14_2
  article-title: Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase
  publication-title: J Lab Clin Med
– ident: e_1_2_1_19_2
  doi: 10.1016/S0009-9120(97)00047-7
– volume: 31
  start-page: 66
  year: 1992
  ident: e_1_2_1_25_2
  article-title: Age‐correlated modifications of copper‐zinc superoxide dismutase and glutathione‐related enzyme activities in human erythrocytes
  publication-title: Clin Chem
SSID ssj0009630
Score 2.0193202
Snippet The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 61
SubjectTerms Adolescent
Adult
Aged
aging
Aging - blood
antioxidant enzymes
Antioxidants - metabolism
Child
Child, Preschool
Erythrocytes - enzymology
Erythrocytes - metabolism
Female
glutathione
Glutathione - blood
Glutathione Peroxidase - metabolism
Glutathione Reductase - metabolism
Humans
Infant
Male
Middle Aged
Oxidation-Reduction
Oxidative Stress
selenium
Selenium - blood
Title Age-related changes in the glutathione redox system
URI https://api.istex.fr/ark:/67375/WNG-N7T688RL-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.937
https://www.ncbi.nlm.nih.gov/pubmed/11835271
https://www.proquest.com/docview/71453718
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6hIgQXHuUVnj5UvW0ax3bWeywRoUIQiaoVFRfL40dVFW1Rk0iFEz-B38gvYWxvEspDQpx2pR3vemfGnm-9428AtqJs6Os_rbhTOKokD6pC34TKDQdN8I7HOqf8v52O9g7l6yN19FOpr8IPsVpwSyMjz9dpgFuc7axJQx3GPsVWmn1TplaCQ_tr4ihyq251RVQjqWXZLpta7nTtLsWhq0mlF38CmZcxaw46k1vwYdndkmty2l_Mse--_MLk-F_vcxtudlCU7RbfuQNXQrsJ10pxys-bcH28rAV3F9Tucfj-9Vve-BI8K7uFZ-ykZYQf2TF5b0piPGsDS_yjF6zwQ9-Dw8nLg_Fe1RVcqJzkdV3hgFvUXjhBKEqijyJajJ7TSPJ66IRXEaO2BDFcg7UVHEcyCot0poTDgbgPGy096yEw6a12IWplPUq0JOPiQKPSdMPQRN6D7aX6jevYyFNRjI-m8CgPDenDkD56wFaCnwoBx-8i29l-q-v2_DTlq9XKvJ--MtP6YKT1_hvzrgfPlwY2pMD0a8S24WwxMzWXSlCY7sGDYvf1s3jCqDV1eCtb72-dMOMXEzo8-jexx3Ajl5XJyWxPYGN-vghPCd3M8Vl25B-F4fee
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5BK9ReeBQogUJ9qHrbNI7trPdYooYAaSSqVFTiYPlZoVbbqk2kwomfwG_klzC2N4nKQ0KcdqUd73pnxjvj2ZlvAHYCr3D3HyPuaI4KTr0ojKt8YbudyjtLQ5lS_g_HveExf3ciTpqsylgLk_EhFgG3uDLS9zou8BiQ3luihloT2mhc78Jq7OedtlNHS-goVKwmvsKKHpc8F8zGoXvNwFuWaDUy9eZPbuZtrzWZncED-DSfcM42OWvPpqZtv_6C5fh_b_QQ7jfeKNnP6vMI7vh6A-7l_pRfNmCtP28H9xjE_qn_8e17qn3xjuSC4WvyuSboQpJTVOCYx3hRexIhSG9Ihoh-AseDg0l_WDQ9FwrLaVkWpkO1kY5Zho4UNy6woE1wFBeTk13LnAgmSI1ehq1MqRk1PR6YNngmmDUd9hRWanzWMyDcaWl9kEI7w41GGhs60giJN_RVoC3YnfNf2QaQPPbFOFcZSrmrkB8K-dECsiC8zBgcv5PsJgEuruurs5iyVgr1cfxGjctJT8qjkfrQgu25hBUyMP4d0bW_mF2rknLB0FK3YDMLfvksGt3UEie8k8T3t0mo_usBHp7_G9k2rA0nhyM1ejt-_wLWU5eZlNu2BSvTq5l_ic7O1LxKWv0T75r7uQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BKx4XHuW1vOpD1Vu28dpOnGPZshQoK6haUXGx_KxQUVq1u1LhxE_gN_JLGNvZXcpDQpwSKePYmRlnvjjjbwDWAm_w6z-uuGM4Kjj1ojCu8YUdlI13loY6pfy_GVfb-_zVgTj4qdRX5oeYL7jFmZHe13GCn7iwsSANtSb0MbZehmVelTI69NbugjkK_apbXmFFxSXP-2Vj042u4YVAtBx1ev4nlHkRtKaoM7oJH2bjzckmR_3pxPTtl1-oHP_rgW7BjQ6Lks3sPLfhkm9X4EquTvl5Ba4NZ8Xg7oDYPPTfv35LO1-8I3m78Bn52BIEkOQQ3TdmMR63nkQC0nOSCaLvwv7o-d5wu-gqLhSW07ouTEm1kY5ZhjCKGxdY0CY4ilPJyYFlTgQTpEaMYRtTa0ZNxQPTBs8Es6Zk92Cpxb4eAOFOS-uDFNoZbjTK2FBKIyTe0DeB9mB9pn5lOzryWBXjk8pEygOF-lCojx6QueBJZuD4XWQ92W9-XZ8exYS1Wqj34xdqXO9VUu7uqHc9WJ0ZWKEC478R3frj6ZmqKRcM43QP7me7L_qiEaTWOOC1ZL2_DUINn43w8PDfxFbh6tutkdp5OX79CK6nEjMpse0xLE1Op_4JIp2JeZp8-gcnBvpx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age-related+changes+in+the+glutathione+redox+system&rft.jtitle=Cell+biochemistry+and+function&rft.au=Erden-%C4%B0nal%2C+Mine&rft.au=Sunal%2C+Emine&rft.au=Kanbak%2C+G%C3%BCng%C3%B6r&rft.date=2002-03-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0263-6484&rft.eissn=1099-0844&rft.volume=20&rft.issue=1&rft.spage=61&rft.epage=66&rft_id=info:doi/10.1002%2Fcbf.937&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_N7T688RL_Q
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6484&client=summon