Machine learning approach effectively discriminates between Parkinson’s disease and progressive supranuclear palsy: Multi-level indices of rs-fMRI
Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic reson...
Saved in:
Published in | Brain research bulletin Vol. 229; p. 111476 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach.
A total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales.
The classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates.
The utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level.
•Machine learning with rs-fMRI indices effectively differentiates PD from PSP.•Multi-level rs-fMRI features enhance classification accuracy in individual diagnosis.•LR and SVM models outperform others, achieving AUC > 0.9 in validation.•Key discriminative features involve DMN, SMN, and cerebellum networks. |
---|---|
AbstractList | Parkinson's disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach.
A total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales.
The classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates.
The utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level. Parkinson's disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach.AIMParkinson's disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach.A total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales.MATERIALS AND METHODSA total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales.The classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates.RESULTSThe classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates.The utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level.CONCLUSIONSThe utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level. Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach. A total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales. The classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates. The utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level. •Machine learning with rs-fMRI indices effectively differentiates PD from PSP.•Multi-level rs-fMRI features enhance classification accuracy in individual diagnosis.•LR and SVM models outperform others, achieving AUC > 0.9 in validation.•Key discriminative features involve DMN, SMN, and cerebellum networks. Aim: Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach. Materials and methods: A total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales. Results: The classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates. Conclusions: The utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level. |
ArticleNumber | 111476 |
Author | Zeng, Wei Fang, Xin Guo, Jiali Hong, Daojun Liang, Xiao Zhou, Fuqing Yin, Zhibiao Li, Fangjun Cheng, Weiling Dai, Jiankun |
Author_xml | – sequence: 1 givenname: Weiling surname: Cheng fullname: Cheng, Weiling organization: Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China – sequence: 2 givenname: Xiao surname: Liang fullname: Liang, Xiao organization: Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China – sequence: 3 givenname: Wei surname: Zeng fullname: Zeng, Wei organization: Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China – sequence: 4 givenname: Jiali surname: Guo fullname: Guo, Jiali organization: Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China – sequence: 5 givenname: Zhibiao surname: Yin fullname: Yin, Zhibiao organization: Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China – sequence: 6 givenname: Jiankun surname: Dai fullname: Dai, Jiankun organization: MRI research, GE Healthcare, Beijing, China – sequence: 7 givenname: Daojun surname: Hong fullname: Hong, Daojun organization: Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China – sequence: 8 givenname: Fuqing surname: Zhou fullname: Zhou, Fuqing email: ndyfy02301@ncu.edu.cn organization: Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China – sequence: 9 givenname: Fangjun surname: Li fullname: Li, Fangjun email: fishmonger@126.com organization: Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China – sequence: 10 givenname: Xin surname: Fang fullname: Fang, Xin email: fangx2011@163.com organization: Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40706759$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9u1DAQxiNURLeFV0AWJy5Z7Di2k96gpbBSVyAEZ2vijBdvvc5iJ0V760Nw4fV4ErxsqRCnnkYaffObf99JcRSGgEXxgtE5o0y-Ws-7CC5ETN3k_byilZgzxmolHxUz1iheVqpWR8WMcsnKtuL0uDhJaU0plY2QT4rjmioqlWhnxY8lmK8uIPEIMbiwIrDdxiEnCVqLZnQ36Hekd8lEt3EBRkykw_E7YiAfIV67kIbw6_Zn2msQEhIIPcmIVZ4v5WqSpm2EMJl9B7IFn3ZnZDn50ZUeM5y40DuTqYMlMZV2-WnxtHhssw6f3cXT4svl28_n78urD-8W56-vSlMzJUtsa1kx23HBmWlbI4ToW95IBGuUbQBELYRsjAVqubJdX1MLjVKsA9yn-GmxOHD7AdZ6mxeEuNMDOP0nMcSVhji6PLkGQVG1nWiM6GtDJTS0F5h7qa5WfdVm1ssDK6_-bcI06k2-GXoPAYcpaV5xXgnFa5mlz--kU7fB_r7x369kwdlBYOKQUkR7L2FU7y2g1_pfC-i9BfTBArn44lCM-XI3DqNOxmEw2LuY_5lXcw_DvPkPY7wLzoC_xt1DIb8BUILbig |
Cites_doi | 10.1002/mds.28762 10.3174/ajnr.A4229 10.1016/j.parkreldis.2020.04.014 10.1016/j.parkreldis.2023.105883 10.1002/mds.26424 10.1093/cercor/bhae094 10.1016/B978-0-12-804766-8.00016-9 10.1002/mds.22340 10.1016/j.parkreldis.2018.07.016 10.1016/j.neuroimage.2011.01.017 10.1186/s12889-024-18653-0 10.1093/brain/aws360 10.1016/j.tics.2012.10.008 10.1016/j.neulet.2023.137298 10.1055/s-0037-1602422 10.1136/jnnp-2019-321354 10.1002/mds.26987 10.1016/j.neuroimage.2011.10.003 10.1016/j.parkreldis.2021.08.003 10.1016/j.jad.2021.12.065 10.1111/jon.12932 10.1016/j.parkreldis.2011.05.013 10.1002/ana.26961 10.1093/cercor/bhz152 10.3389/fneur.2021.648548 10.3390/diagnostics12020385 10.1212/WNL.0b013e31827689d6 10.3389/fneur.2020.00831 10.1002/mds.25737 10.1088/1741-2552/abbff2 10.1152/jn.01132.2015 10.1016/S0072-9752(07)01242-0 10.1017/S0317167100014232 10.1016/j.jneumeth.2013.11.016 |
ContentType | Journal Article |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. Copyright © 2025. Published by Elsevier Inc. |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright © 2025. Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.brainresbull.2025.111476 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-2747 |
ExternalDocumentID | oai_doaj_org_article_a50e79b58c5d4c06a80d5e86e7b47d29 40706759 10_1016_j_brainresbull_2025_111476 S0361923025002886 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 41~ 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMQ HVGLF HZ~ IHE J1W KOM M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K WUQ Z5R ZGI ~G- 6I. AAFTH AAYXX AFCTW CITATION RIG AGRNS BNPGV CGR CUY CVF ECM EIF NPM 7X8 SSH |
ID | FETCH-LOGICAL-c4176-e94621fb3531c99c555d9386eafc7f8aa545568cfa0f37fbd40fa8771baea0f33 |
IEDL.DBID | .~1 |
ISSN | 0361-9230 1873-2747 |
IngestDate | Wed Aug 27 01:25:24 EDT 2025 Fri Jul 25 19:12:33 EDT 2025 Wed Aug 06 16:36:34 EDT 2025 Thu Aug 14 00:10:09 EDT 2025 Sat Aug 30 17:12:48 EDT 2025 Tue Aug 26 18:07:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Progressive supranuclear palsy Parkinson’s disease Rs-fMRI |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4176-e94621fb3531c99c555d9386eafc7f8aa545568cfa0f37fbd40fa8771baea0f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0361923025002886 |
PMID | 40706759 |
PQID | 3233257346 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a50e79b58c5d4c06a80d5e86e7b47d29 proquest_miscellaneous_3233257346 pubmed_primary_40706759 crossref_primary_10_1016_j_brainresbull_2025_111476 elsevier_sciencedirect_doi_10_1016_j_brainresbull_2025_111476 elsevier_clinicalkey_doi_10_1016_j_brainresbull_2025_111476 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Brain research bulletin |
PublicationTitleAlternate | Brain Res Bull |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Lo Vercio, Amador, Bannister, Crites, Gutierrez, MacDonald, Moore, Mouches, Rajashekar, Schimert, Subbanna, Tuladhar, Wang, Wilms, Winder, Forkert (bib15) 2020; 17 Picillo, Tepedino, Abate, Erro, Ponticorvo, Tartaglione, Volpe, Frosini, Cecchi, Cosottini, Ceravolo, Esposito, Pellecchia, Barone, Manara (bib21) 2020; 91 Coughlin, Litvan (bib6) 2020; 73 Talai, Sedlacik, Boelmans, Forkert (bib27) 2021; 12 Dai, Yan, Wang, Wang, Xia, Li, He (bib7) 2012; 59 Lewis, Galley, Johnson, Stevenson, Huang, McKeown (bib14) 2013; 40 Sun, Liu, Chen, Zhou, Zhong, Tang, Wang, Zhou, Zhou, Shao, Ye, Zhang, Jia, Pan, Huang, Liu, Liu, Tian, Wang (bib26) 2022; 300 Meng, Wu, Huang, Liang, Fang (bib17) 2024; 24 Höglinger, Respondek, Stamelou, Kurz, Josephs, Lang, Mollenhauer, Müller, Nilsson, Whitwell, Arzberger, Englund, Gelpi, Giese, Irwin, Meissner, Pantelyat, Rajput, van Swieten, Troakes, Antonini, Bhatia, Bordelon, Compta, Corvol, Colosimo, Dickson, Dodel, Ferguson, Grossman, Kassubek, Krismer, Levin, Lorenzl, Morris, Nestor, Oertel, Poewe, Rabinovici, Rowe, Schellenberg, Seppi, van Eimeren, Wenning, Boxer, Golbe, Litvan, Movement Disorder Society-endorsed PSP Study (bib12) 2017; 32 Wu, Hallett (bib34) 2013; 136 Virhammar, Blohmé, Nyholm, Georgiopoulos, Fällmar (bib29) 2022; 32 Piattella, Tona, Bologna, Sbardella, Formica, Petsas, Filippini, Berardelli, Pantano (bib20) 2015; 36 Tessitore, Esposito, Vitale, Santangelo, Amboni, Russo, Corbo, Cirillo, Barone, Tedeschi (bib28) 2012; 79 Zampogna, Suppa, Bove, Cavallieri, Castrioto, Meoni, Pelissier, Schmitt, Chabardes, Fraix, Moro (bib35) 2024; 96 Golbe (bib11) 2008; 89 Alster, Nieciecki, Migda, Kutyłowski, Madetko, Duszyńska-Wąs, Charzyńska, Koziorowski, Królicki, Friedman (bib1) 2022; 12 Anticevic, Cole, Murray, Corlett, Wang, Krystal (bib2) 2012; 16 Wang, Li, Yao, He, Tang, Chen, Long, Chen, Kemp, Lui, Li (bib30) 2024; 34 Postuma, Berg, Stern, Poewe, Olanow, Oertel, Obeso, Marek, Litvan, Lang, Halliday, Goetz, Gasser, Dubois, Chan, Bloem, Adler, Deuschl (bib22) 2015; 30 Mirdamadi (bib18) 2016; 116 Whitwell, Avula, Master, Vemuri, Senjem, Jones, Jack CR, Josephs (bib33) 2011; 17 Wang, Sun, Liu, Chen, Jia, Zhong, Pan, Huang, Tian (bib31) 2020; 30 Salvatore, Cerasa, Castiglioni, Gallivanone, Augimeri, Lopez, Arabia, Morelli, Gilardi, Quattrone (bib25) 2014; 222 Laganà, Pirastru, Pelizzari, Rossetto, Di Tella, Bergsland, Nemni, Meloni, Baglio (bib13) 2020; 11 Goetz, Tilley, Shaftman, Stebbins, Fahn, Martinez-Martin, Poewe, Sampaio, Stern, Dodel, Dubois, Holloway, Jankovic, Kulisevsky, Lang, Lees, Leurgans, LeWitt, Nyenhuis, Olanow, Rascol, Schrag, Teresi, van Hilten, LaPelle, Movement Disorder Society UPDRS Revision Task (bib10) 2008; 23 Cherubini, Morelli, Nisticó, Salsone, Arabia, Vasta, Augimeri, Caligiuri, Quattrone (bib5) 2014; 29 McFarland, Hess (bib16) 2017; 37 Pang, Yu, Yu, Cao, Li, Guo, Cao, Fan (bib19) 2021; 90 Baudrexel, Witte, Seifried, von Wegner, Beissner, Klein, Steinmetz, Deichmann, Roeper, Hilker (bib4) 2011; 55 Dewey, Feltrin, Shah, Pinho, DeBevits, Achilleos, McCreary, Lynch, Chitnis, Dewey (bib9) 2023; 13 Dale, Ali, Anderson, Bruno, Comeau, Diaz, Golbe, Honig, Schmidt, Spears, Shurer (bib8) 2023; 116 Qi, Yin, Wang, Qu, Kan, Zhang, Zhang, Xiao, Deng, Dong, Shi, Meng, Chan, Wang (bib23) 2021; 36 Wang, Wei, Bai, Shen, Zhang, Ma, Meng, Yue, Xie, Zhang, Guo, Wang (bib32) 2023; 809 Armstrong, McFarland (bib3) 2019; 167 Quattrone, Morelli, Nigro, Quattrone, Vescio, Arabia, Nicoletti, Nisticò, Salsone, Novellino, Barbagallo, Le Piane, Pugliese, Bosco, Vaccaro, Chiriaco, Sabatini, Vescio, Stanà, Rocca, Gullà, Caracciolo (bib24) 2018; 54 Coughlin (10.1016/j.brainresbull.2025.111476_bib6) 2020; 73 Salvatore (10.1016/j.brainresbull.2025.111476_bib25) 2014; 222 Talai (10.1016/j.brainresbull.2025.111476_bib27) 2021; 12 Alster (10.1016/j.brainresbull.2025.111476_bib1) 2022; 12 Virhammar (10.1016/j.brainresbull.2025.111476_bib29) 2022; 32 Meng (10.1016/j.brainresbull.2025.111476_bib17) 2024; 24 Pang (10.1016/j.brainresbull.2025.111476_bib19) 2021; 90 Dale (10.1016/j.brainresbull.2025.111476_bib8) 2023; 116 McFarland (10.1016/j.brainresbull.2025.111476_bib16) 2017; 37 Anticevic (10.1016/j.brainresbull.2025.111476_bib2) 2012; 16 Qi (10.1016/j.brainresbull.2025.111476_bib23) 2021; 36 Golbe (10.1016/j.brainresbull.2025.111476_bib11) 2008; 89 Postuma (10.1016/j.brainresbull.2025.111476_bib22) 2015; 30 Tessitore (10.1016/j.brainresbull.2025.111476_bib28) 2012; 79 Whitwell (10.1016/j.brainresbull.2025.111476_bib33) 2011; 17 Höglinger (10.1016/j.brainresbull.2025.111476_bib12) 2017; 32 Wang (10.1016/j.brainresbull.2025.111476_bib30) 2024; 34 Armstrong (10.1016/j.brainresbull.2025.111476_bib3) 2019; 167 Dai (10.1016/j.brainresbull.2025.111476_bib7) 2012; 59 Goetz (10.1016/j.brainresbull.2025.111476_bib10) 2008; 23 Lo Vercio (10.1016/j.brainresbull.2025.111476_bib15) 2020; 17 Piattella (10.1016/j.brainresbull.2025.111476_bib20) 2015; 36 Mirdamadi (10.1016/j.brainresbull.2025.111476_bib18) 2016; 116 Zampogna (10.1016/j.brainresbull.2025.111476_bib35) 2024; 96 Sun (10.1016/j.brainresbull.2025.111476_bib26) 2022; 300 Cherubini (10.1016/j.brainresbull.2025.111476_bib5) 2014; 29 Laganà (10.1016/j.brainresbull.2025.111476_bib13) 2020; 11 Wu (10.1016/j.brainresbull.2025.111476_bib34) 2013; 136 Dewey (10.1016/j.brainresbull.2025.111476_bib9) 2023; 13 Baudrexel (10.1016/j.brainresbull.2025.111476_bib4) 2011; 55 Lewis (10.1016/j.brainresbull.2025.111476_bib14) 2013; 40 Wang (10.1016/j.brainresbull.2025.111476_bib32) 2023; 809 Quattrone (10.1016/j.brainresbull.2025.111476_bib24) 2018; 54 Wang (10.1016/j.brainresbull.2025.111476_bib31) 2020; 30 Picillo (10.1016/j.brainresbull.2025.111476_bib21) 2020; 91 |
References_xml | – volume: 55 start-page: 1728 year: 2011 end-page: 1738 ident: bib4 article-title: Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson's disease publication-title: Neuroimage – volume: 13 year: 2023 ident: bib9 article-title: Structural MRI ratios fail to distinguish progressive supranuclear palsy from parkinson disease in individual patients publication-title: Neurol. Clin. Pr. – volume: 222 start-page: 230 year: 2014 end-page: 237 ident: bib25 article-title: Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and progressive supranuclear palsy publication-title: J. Neurosci. Methods – volume: 36 start-page: 915 year: 2015 end-page: 921 ident: bib20 article-title: Disrupted resting-state functional connectivity in progressive supranuclear palsy publication-title: AJNR Am. J. Neuroradiol. – volume: 59 start-page: 2187 year: 2012 end-page: 2195 ident: bib7 article-title: Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3) publication-title: Neuroimage – volume: 40 start-page: 299 year: 2013 end-page: 306 ident: bib14 article-title: The role of the cerebellum in the pathophysiology of Parkinson's disease publication-title: Can. J. Neurol. Sci. – volume: 17 year: 2020 ident: bib15 article-title: Supervised machine learning tools: a tutorial for clinicians publication-title: J. Neural Eng. – volume: 11 start-page: 831 year: 2020 ident: bib13 article-title: Multimodal evaluation of neurovascular functionality in early Parkinson's disease publication-title: Front Neurol. – volume: 32 start-page: 853 year: 2017 end-page: 864 ident: bib12 article-title: Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria publication-title: Mov. Disord. – volume: 91 start-page: 98 year: 2020 end-page: 103 ident: bib21 article-title: Midbrain MRI assessments in progressive supranuclear palsy subtypes publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 79 start-page: 2226 year: 2012 end-page: 2232 ident: bib28 article-title: Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease publication-title: Neurology – volume: 36 start-page: 2940 year: 2021 end-page: 2944 ident: bib23 article-title: Prevalence of Parkinson's disease: a community-based study in China publication-title: Mov. Disord. – volume: 96 start-page: 234 year: 2024 end-page: 246 ident: bib35 article-title: Disentangling bradykinesia and rigidity in Parkinson's disease: evidence from short- and long-term subthalamic nucleus deep brain stimulation publication-title: Ann. Neurol. – volume: 167 start-page: 301 year: 2019 end-page: 320 ident: bib3 article-title: Recognizing and treating atypical Parkinson disorders publication-title: Handb. Clin. Neurol. – volume: 30 start-page: 1591 year: 2015 end-page: 1601 ident: bib22 article-title: MDS clinical diagnostic criteria for Parkinson's disease publication-title: Mov. Disord. – volume: 54 start-page: 3 year: 2018 end-page: 8 ident: bib24 article-title: A new MR imaging index for differentiation of progressive supranuclear palsy-parkinsonism from Parkinson's disease publication-title: Park. Relat. Disord. – volume: 30 start-page: 1117 year: 2020 end-page: 1128 ident: bib31 article-title: Classification of unmedicated bipolar disorder using whole-brain functional activity and connectivity: a radiomics analysis publication-title: Cereb. Cortex – volume: 29 start-page: 266 year: 2014 end-page: 269 ident: bib5 article-title: Magnetic resonance support vector machine discriminates between Parkinson disease and progressive supranuclear palsy publication-title: Mov. Disord. – volume: 34 year: 2024 ident: bib30 article-title: Shared and differing functional connectivity abnormalities of the default mode network in mild cognitive impairment and Alzheimer's disease publication-title: Cereb. Cortex – volume: 116 year: 2023 ident: bib8 article-title: Patients with progressive supranuclear palsy need to be seen sooner and more frequently publication-title: Park. Relat. Disord. – volume: 90 start-page: 65 year: 2021 end-page: 72 ident: bib19 article-title: Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI publication-title: Park. Relat. Disord. – volume: 24 start-page: 1218 year: 2024 ident: bib17 article-title: Prevalence of Parkinson's disease among adults aged 45 years and older in China: a cross-sectional study based on the China health and retirement longitudinal study publication-title: BMC Public Health – volume: 12 year: 2022 ident: bib1 article-title: The strengths and obstacles in the differential diagnosis of progressive supranuclear palsy-parkinsonism predominant (PSP-P) and multiple system atrophy (MSA) using magnetic resonance imaging (MRI) and perfusion single photon emission computed tomography (SPECT) publication-title: Diagnostics – volume: 116 start-page: 917 year: 2016 end-page: 919 ident: bib18 article-title: Cerebellar role in Parkinson's disease publication-title: J. Neurophysiol. – volume: 300 start-page: 1 year: 2022 end-page: 9 ident: bib26 article-title: A two-center radiomic analysis for differentiating major depressive disorder using multi-modality MRI data under different parcellation methods publication-title: J. Affect Disord. – volume: 23 start-page: 2129 year: 2008 end-page: 2170 ident: bib10 article-title: Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results publication-title: Mov. Disord. – volume: 32 start-page: 90 year: 2022 end-page: 96 ident: bib29 article-title: Midbrain area and the hummingbird sign from brain MRI in progressive supranuclear palsy and idiopathic normal pressure hydrocephalus publication-title: J. Neuroimaging – volume: 16 start-page: 584 year: 2012 end-page: 592 ident: bib2 article-title: The role of default network deactivation in cognition and disease publication-title: Trends Cogn. Sci. – volume: 89 start-page: 457 year: 2008 end-page: 459 ident: bib11 article-title: The epidemiology of progressive supranuclear palsy publication-title: Handb. Clin. Neurol. – volume: 809 year: 2023 ident: bib32 article-title: Intrinsic brain activity alterations in patients with Parkinson's disease publication-title: Neurosci. Lett. – volume: 37 start-page: 215 year: 2017 end-page: 227 ident: bib16 article-title: Recognizing atypical Parkinsonisms: "red flags" and therapeutic approaches publication-title: Semin Neurol. – volume: 17 start-page: 599 year: 2011 end-page: 605 ident: bib33 article-title: Disrupted thalamocortical connectivity in PSP: a resting-state fMRI, DTI, and VBM study publication-title: Park. Relat. Disord. – volume: 136 start-page: 696 year: 2013 end-page: 709 ident: bib34 article-title: The cerebellum in Parkinson's disease publication-title: Brain – volume: 73 start-page: 105 year: 2020 end-page: 116 ident: bib6 article-title: Progressive supranuclear palsy: advances in diagnosis and management publication-title: Park. Relat. Disord. – volume: 12 year: 2021 ident: bib27 article-title: Utility of multi-modal MRI for differentiating of Parkinson's disease and progressive supranuclear palsy using machine learning publication-title: Front Neurol. – volume: 36 start-page: 2940 issue: 12 year: 2021 ident: 10.1016/j.brainresbull.2025.111476_bib23 article-title: Prevalence of Parkinson's disease: a community-based study in China publication-title: Mov. Disord. doi: 10.1002/mds.28762 – volume: 36 start-page: 915 issue: 5 year: 2015 ident: 10.1016/j.brainresbull.2025.111476_bib20 article-title: Disrupted resting-state functional connectivity in progressive supranuclear palsy publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A4229 – volume: 73 start-page: 105 year: 2020 ident: 10.1016/j.brainresbull.2025.111476_bib6 article-title: Progressive supranuclear palsy: advances in diagnosis and management publication-title: Park. Relat. Disord. doi: 10.1016/j.parkreldis.2020.04.014 – volume: 116 year: 2023 ident: 10.1016/j.brainresbull.2025.111476_bib8 article-title: Patients with progressive supranuclear palsy need to be seen sooner and more frequently publication-title: Park. Relat. Disord. doi: 10.1016/j.parkreldis.2023.105883 – volume: 30 start-page: 1591 issue: 12 year: 2015 ident: 10.1016/j.brainresbull.2025.111476_bib22 article-title: MDS clinical diagnostic criteria for Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.26424 – volume: 34 issue: 3 year: 2024 ident: 10.1016/j.brainresbull.2025.111476_bib30 article-title: Shared and differing functional connectivity abnormalities of the default mode network in mild cognitive impairment and Alzheimer's disease publication-title: Cereb. Cortex doi: 10.1093/cercor/bhae094 – volume: 167 start-page: 301 year: 2019 ident: 10.1016/j.brainresbull.2025.111476_bib3 article-title: Recognizing and treating atypical Parkinson disorders publication-title: Handb. Clin. Neurol. doi: 10.1016/B978-0-12-804766-8.00016-9 – volume: 23 start-page: 2129 issue: 15 year: 2008 ident: 10.1016/j.brainresbull.2025.111476_bib10 article-title: Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results publication-title: Mov. Disord. doi: 10.1002/mds.22340 – volume: 54 start-page: 3 year: 2018 ident: 10.1016/j.brainresbull.2025.111476_bib24 article-title: A new MR imaging index for differentiation of progressive supranuclear palsy-parkinsonism from Parkinson's disease publication-title: Park. Relat. Disord. doi: 10.1016/j.parkreldis.2018.07.016 – volume: 55 start-page: 1728 issue: 4 year: 2011 ident: 10.1016/j.brainresbull.2025.111476_bib4 article-title: Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.017 – volume: 24 start-page: 1218 issue: 1 year: 2024 ident: 10.1016/j.brainresbull.2025.111476_bib17 article-title: Prevalence of Parkinson's disease among adults aged 45 years and older in China: a cross-sectional study based on the China health and retirement longitudinal study publication-title: BMC Public Health doi: 10.1186/s12889-024-18653-0 – volume: 136 start-page: 696 issue: Pt 3 year: 2013 ident: 10.1016/j.brainresbull.2025.111476_bib34 article-title: The cerebellum in Parkinson's disease publication-title: Brain doi: 10.1093/brain/aws360 – volume: 16 start-page: 584 issue: 12 year: 2012 ident: 10.1016/j.brainresbull.2025.111476_bib2 article-title: The role of default network deactivation in cognition and disease publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2012.10.008 – volume: 809 year: 2023 ident: 10.1016/j.brainresbull.2025.111476_bib32 article-title: Intrinsic brain activity alterations in patients with Parkinson's disease publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2023.137298 – volume: 37 start-page: 215 issue: 2 year: 2017 ident: 10.1016/j.brainresbull.2025.111476_bib16 article-title: Recognizing atypical Parkinsonisms: "red flags" and therapeutic approaches publication-title: Semin Neurol. doi: 10.1055/s-0037-1602422 – volume: 91 start-page: 98 issue: 1 year: 2020 ident: 10.1016/j.brainresbull.2025.111476_bib21 article-title: Midbrain MRI assessments in progressive supranuclear palsy subtypes publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp-2019-321354 – volume: 32 start-page: 853 issue: 6 year: 2017 ident: 10.1016/j.brainresbull.2025.111476_bib12 article-title: Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria publication-title: Mov. Disord. doi: 10.1002/mds.26987 – volume: 59 start-page: 2187 issue: 3 year: 2012 ident: 10.1016/j.brainresbull.2025.111476_bib7 article-title: Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3) publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.003 – volume: 90 start-page: 65 year: 2021 ident: 10.1016/j.brainresbull.2025.111476_bib19 article-title: Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI publication-title: Park. Relat. Disord. doi: 10.1016/j.parkreldis.2021.08.003 – volume: 300 start-page: 1 year: 2022 ident: 10.1016/j.brainresbull.2025.111476_bib26 article-title: A two-center radiomic analysis for differentiating major depressive disorder using multi-modality MRI data under different parcellation methods publication-title: J. Affect Disord. doi: 10.1016/j.jad.2021.12.065 – volume: 32 start-page: 90 issue: 1 year: 2022 ident: 10.1016/j.brainresbull.2025.111476_bib29 article-title: Midbrain area and the hummingbird sign from brain MRI in progressive supranuclear palsy and idiopathic normal pressure hydrocephalus publication-title: J. Neuroimaging doi: 10.1111/jon.12932 – volume: 17 start-page: 599 issue: 8 year: 2011 ident: 10.1016/j.brainresbull.2025.111476_bib33 article-title: Disrupted thalamocortical connectivity in PSP: a resting-state fMRI, DTI, and VBM study publication-title: Park. Relat. Disord. doi: 10.1016/j.parkreldis.2011.05.013 – volume: 96 start-page: 234 issue: 2 year: 2024 ident: 10.1016/j.brainresbull.2025.111476_bib35 article-title: Disentangling bradykinesia and rigidity in Parkinson's disease: evidence from short- and long-term subthalamic nucleus deep brain stimulation publication-title: Ann. Neurol. doi: 10.1002/ana.26961 – volume: 30 start-page: 1117 issue: 3 year: 2020 ident: 10.1016/j.brainresbull.2025.111476_bib31 article-title: Classification of unmedicated bipolar disorder using whole-brain functional activity and connectivity: a radiomics analysis publication-title: Cereb. Cortex doi: 10.1093/cercor/bhz152 – volume: 12 year: 2021 ident: 10.1016/j.brainresbull.2025.111476_bib27 article-title: Utility of multi-modal MRI for differentiating of Parkinson's disease and progressive supranuclear palsy using machine learning publication-title: Front Neurol. doi: 10.3389/fneur.2021.648548 – volume: 12 issue: 2 year: 2022 ident: 10.1016/j.brainresbull.2025.111476_bib1 publication-title: Diagnostics doi: 10.3390/diagnostics12020385 – volume: 79 start-page: 2226 issue: 23 year: 2012 ident: 10.1016/j.brainresbull.2025.111476_bib28 article-title: Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease publication-title: Neurology doi: 10.1212/WNL.0b013e31827689d6 – volume: 11 start-page: 831 year: 2020 ident: 10.1016/j.brainresbull.2025.111476_bib13 article-title: Multimodal evaluation of neurovascular functionality in early Parkinson's disease publication-title: Front Neurol. doi: 10.3389/fneur.2020.00831 – volume: 29 start-page: 266 issue: 2 year: 2014 ident: 10.1016/j.brainresbull.2025.111476_bib5 article-title: Magnetic resonance support vector machine discriminates between Parkinson disease and progressive supranuclear palsy publication-title: Mov. Disord. doi: 10.1002/mds.25737 – volume: 17 issue: 6 year: 2020 ident: 10.1016/j.brainresbull.2025.111476_bib15 article-title: Supervised machine learning tools: a tutorial for clinicians publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abbff2 – volume: 116 start-page: 917 issue: 3 year: 2016 ident: 10.1016/j.brainresbull.2025.111476_bib18 article-title: Cerebellar role in Parkinson's disease publication-title: J. Neurophysiol. doi: 10.1152/jn.01132.2015 – volume: 13 issue: 3 year: 2023 ident: 10.1016/j.brainresbull.2025.111476_bib9 article-title: Structural MRI ratios fail to distinguish progressive supranuclear palsy from parkinson disease in individual patients publication-title: Neurol. Clin. Pr. – volume: 89 start-page: 457 year: 2008 ident: 10.1016/j.brainresbull.2025.111476_bib11 article-title: The epidemiology of progressive supranuclear palsy publication-title: Handb. Clin. Neurol. doi: 10.1016/S0072-9752(07)01242-0 – volume: 40 start-page: 299 issue: 3 year: 2013 ident: 10.1016/j.brainresbull.2025.111476_bib14 article-title: The role of the cerebellum in the pathophysiology of Parkinson's disease publication-title: Can. J. Neurol. Sci. doi: 10.1017/S0317167100014232 – volume: 222 start-page: 230 year: 2014 ident: 10.1016/j.brainresbull.2025.111476_bib25 article-title: Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and progressive supranuclear palsy publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.11.016 |
SSID | ssj0006856 |
Score | 2.4607885 |
Snippet | Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ... Parkinson's disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ... Aim: Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 111476 |
SubjectTerms | Aged Brain - diagnostic imaging Brain - physiopathology Female Humans Machine Learning Magnetic Resonance Imaging - methods Male Middle Aged Parkinson Disease - diagnosis Parkinson Disease - diagnostic imaging Parkinson Disease - physiopathology Parkinson’s disease Progressive supranuclear palsy Prospective Studies Rs-fMRI Support Vector Machine Supranuclear Palsy, Progressive - diagnosis Supranuclear Palsy, Progressive - diagnostic imaging Supranuclear Palsy, Progressive - physiopathology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yJy-iro_xRQnirbG781Y8rOKyCuNBXNhbyFOUtWeY2RHm5o_w4t_zl1hJuofxIO7Ba9MJ6VSlHp2vviLkSfCMskB1g_mPaJh0EY-U7hrlk9KpcyzyXJw8fy9OTtm7M3621-orY8IqPXDduGeWt1Fqx5XngflWWNUGHpWI0jEZ-lK6hz5vSqZGGywUFxPFaEFzudxwARNYh4kdZoU9z7aCZaaRPXdUWPv_8Ep_izqL9zm-Tq6NYSMc1eXeIFficJMcHg2YMn_dwlMoQM7yh_yQ_JgXgGSEsSPEJ5iIw6GiN9DAnW8h1-PWnl4YbcKI14JcBV0Kwn59_7mG8foG7BCgILkyaPZbhPVmiT4uUyHbFSxRg7fPoZTyNucZhAT5IhwNECwSrNZNmn94e4ucHr_5-PqkGZsvNJ51UjRRM9F3yVE8pF5rzzkPmuK-2-RlUtZi6MUFitS2icrkAmuTVVJ2zsb8iN4mB8NiiHcJtEkH37WuFzhpJ62KaCdCLFz7vuu7GaGTDMyycmyYCXz2xexLzmTJmSq5GXmVxbUbkXmyywPUHjNqj_mX9szIi0nYZipFReOJE32-1BJe7kaPAUsNRC49_vGkXwZPdb6qsUNcbNaG9pTiJlGG79ypirf7UEzBc5qn7_2PDbhPruYFVdTcA3JwsdrEhxhmXbhH5UT9BqClK6U priority: 102 providerName: Directory of Open Access Journals |
Title | Machine learning approach effectively discriminates between Parkinson’s disease and progressive supranuclear palsy: Multi-level indices of rs-fMRI |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0361923025002886 https://dx.doi.org/10.1016/j.brainresbull.2025.111476 https://www.ncbi.nlm.nih.gov/pubmed/40706759 https://www.proquest.com/docview/3233257346 https://doaj.org/article/a50e79b58c5d4c06a80d5e86e7b47d29 |
Volume | 229 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqcuGCKOVnoayMhLiFTWI7tkEclopqC9oegEq9WXZiV4tKdrXbRdoL4iG48Ho8CTOOs7QHpEocY9mJkxl_MxN_MybkeVNzxhumM4h_qoxL52FJ6SJTdVA6FI57gcnJ05Nqcsrfn4mzHXLY58IgrTJhf4fpEa1Tyyh9zdFiNht9AuxF9wSNOBhJhWW3OZeo5S-__6V5VEqk_coiw9594dHI8XJ4DAOEtQ7CPYgVS4EIwrH-yBUjFWv5X7NV__JFo006ukvuJGeSjrv57pEd394j--MWAumvG_qCRnpn_G--T35OI23S03ROxDnty4nTjtMBsHexoZil2530BT4oTSwuirnRMU3s949fK5o2dahtGxr5XUil_ebpar0Ay4cFku2SLkCvN69oTPDNLpCaRHF7HGCJzgNdrrIw_Xh8n5wevft8OMnSkQxZzQtZZV7zqiyCY7B0a61rIUSjmaq8DbUMylpwyEQFgrZ5YDK4hufBKikLZz02sQdkt523_hGhedBNXeSurOCmhbTKA3o0Plbgr4uyGBDWy8AsusobpqekfTFXJWdQcqaT3IC8RXFtR2D17NgwX56bpD7GitxL7YSqRcPrvLIqb4SHt5COy6bUA_K6F7bpE1QBUuFGsxtN4c129DVVvvH4Z71-GVjruIFjWz9frwwrGYOPxDj0edgp3vZFITDH4E8__s-nPyG38aqj0R2Q3cvl2j8Fv-vSDePCGpJb4-MPk5Nh_HvxBzcuM18 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELVKeoALAspHypeRELdVdtf27hrEIVRUCW1ygFbqzbK9dhVUNlHSVMqNH8GFv8cvYcbrjdoDUiWuTrzZ3Rm_mYnfPBPytrac8ZrJBOqfIuGlcbCkZJZU1lfSZ4Y7gc3Jk2kxOuVfzsTZDjnoemGQVhmxv8X0gNZxZBDf5mAxmw2-AfZieoJBHIJkVdwhu6hOJXpkdzg-Gk23gFxUIm5ZZglO6LRHA83L4EkMUNkaqPigXMwFgghHCZJrcSrI-d8IV_9KR0NYOnxA7sd8kg7bW35IdlzziOwNG6ilf2zoOxoYnuGv8z3yaxKYk47GoyLOaacoTltaByDfxYZio2572BekoTQSuSi2R4dOsT8_f69o3NehuqlpoHghm_bK0dV6AcEPNZL1ki7AtTfvaejxTS6QnURxhxyQic49Xa4SP_k6fkxODz-fHIySeCpDYnlWFomTvMgzbxisXiulFULUklWF096WvtIacjJRgK116lnpTc1Tr6uyzIx2OMSekF4zb9wzQlMva5ulJi_golmpKwcAUrsgwm-zPOsT1tlALVrxDdWx0r6r65ZTaDnVWq5PPqG5tjNQQDsMzJfnKnqQ0iJ1pTSisqLmNi10ldbCwVOUhpd1LvvkQ2ds1fWoAqrChWa3uoWP29k3vPnW8990_qVgueMejm7cfL1SLGcMXhLj8J2nreNtHxRqc6z_5P5__vprcnd0MjlWx-Pp0XNyDz9pWXUvSO9yuXYvIQ27NK_iMvsLW-Q1Gw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approach+effectively+discriminates+between+Parkinson%27s+disease+and+progressive+supranuclear+palsy%3A+multi-level+indices+of+rs-fMRI&rft.jtitle=Brain+research+bulletin&rft.au=Cheng%2C+Weiling&rft.au=Liang%2C+Xiao&rft.au=Zeng%2C+Wei&rft.au=Guo%2C+Jiali&rft.date=2025-09-01&rft.issn=1873-2747&rft.eissn=1873-2747&rft.spage=111476&rft_id=info:doi/10.1016%2Fj.brainresbull.2025.111476&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-9230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-9230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-9230&client=summon |