Machine learning approach effectively discriminates between Parkinson’s disease and progressive supranuclear palsy: Multi-level indices of rs-fMRI

Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic reson...

Full description

Saved in:
Bibliographic Details
Published inBrain research bulletin Vol. 229; p. 111476
Main Authors Cheng, Weiling, Liang, Xiao, Zeng, Wei, Guo, Jiali, Yin, Zhibiao, Dai, Jiankun, Hong, Daojun, Zhou, Fuqing, Li, Fangjun, Fang, Xin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach. A total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales. The classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates. The utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level. •Machine learning with rs-fMRI indices effectively differentiates PD from PSP.•Multi-level rs-fMRI features enhance classification accuracy in individual diagnosis.•LR and SVM models outperform others, achieving AUC > 0.9 in validation.•Key discriminative features involve DMN, SMN, and cerebellum networks.
AbstractList Parkinson's disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach. A total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales. The classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates. The utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level.
Parkinson's disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach.AIMParkinson's disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach.A total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales.MATERIALS AND METHODSA total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales.The classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates.RESULTSThe classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates.The utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level.CONCLUSIONSThe utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level.
Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach. A total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales. The classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates. The utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level. •Machine learning with rs-fMRI indices effectively differentiates PD from PSP.•Multi-level rs-fMRI features enhance classification accuracy in individual diagnosis.•LR and SVM models outperform others, achieving AUC > 0.9 in validation.•Key discriminative features involve DMN, SMN, and cerebellum networks.
Aim: Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ significantly. Therefore, we aimed to discriminate between PD and PSP based on multi-level indices of resting-state functional magnetic resonance imaging (rs-fMRI) via the machine learning approach. Materials and methods: A total of 58 PD and 52 PSP patients were prospectively enrolled in this study. Participants were randomly allocated to a training set and a validation set in a 7:3 ratio. Various rs-fMRI indices were extracted, followed by a comprehensive feature screening for each index. We constructed fifteen distinct combinations of indices and selected four machine learning algorithms for model development. Subsequently, different validation templates were employed to assess the classification results and investigate the relationship between the most significant features and clinical assessment scales. Results: The classification performance of logistic regression (LR) and support vector machine (SVM) models, based on multiple index combinations, was significantly superior to that of other machine learning models and combinations when utilizing automatic anatomical labeling (AAL) templates. This has been verified across different templates. Conclusions: The utilization of multiple rs-fMRI indices significantly enhances the performance of machine learning models and can effectively achieve the automatic identification of PD and PSP at the individual level.
ArticleNumber 111476
Author Zeng, Wei
Fang, Xin
Guo, Jiali
Hong, Daojun
Liang, Xiao
Zhou, Fuqing
Yin, Zhibiao
Li, Fangjun
Cheng, Weiling
Dai, Jiankun
Author_xml – sequence: 1
  givenname: Weiling
  surname: Cheng
  fullname: Cheng, Weiling
  organization: Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
– sequence: 2
  givenname: Xiao
  surname: Liang
  fullname: Liang, Xiao
  organization: Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
– sequence: 3
  givenname: Wei
  surname: Zeng
  fullname: Zeng, Wei
  organization: Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
– sequence: 4
  givenname: Jiali
  surname: Guo
  fullname: Guo, Jiali
  organization: Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
– sequence: 5
  givenname: Zhibiao
  surname: Yin
  fullname: Yin, Zhibiao
  organization: Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
– sequence: 6
  givenname: Jiankun
  surname: Dai
  fullname: Dai, Jiankun
  organization: MRI research, GE Healthcare, Beijing, China
– sequence: 7
  givenname: Daojun
  surname: Hong
  fullname: Hong, Daojun
  organization: Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
– sequence: 8
  givenname: Fuqing
  surname: Zhou
  fullname: Zhou, Fuqing
  email: ndyfy02301@ncu.edu.cn
  organization: Jiangxi Provincial Key Laboratory for Precision Pathology and Intelligent Diagnosis, Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
– sequence: 9
  givenname: Fangjun
  surname: Li
  fullname: Li, Fangjun
  email: fishmonger@126.com
  organization: Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
– sequence: 10
  givenname: Xin
  surname: Fang
  fullname: Fang, Xin
  email: fangx2011@163.com
  organization: Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40706759$$D View this record in MEDLINE/PubMed
BookMark eNqNks9u1DAQxiNURLeFV0AWJy5Z7Di2k96gpbBSVyAEZ2vijBdvvc5iJ0V760Nw4fV4ErxsqRCnnkYaffObf99JcRSGgEXxgtE5o0y-Ws-7CC5ETN3k_byilZgzxmolHxUz1iheVqpWR8WMcsnKtuL0uDhJaU0plY2QT4rjmioqlWhnxY8lmK8uIPEIMbiwIrDdxiEnCVqLZnQ36Hekd8lEt3EBRkykw_E7YiAfIV67kIbw6_Zn2msQEhIIPcmIVZ4v5WqSpm2EMJl9B7IFn3ZnZDn50ZUeM5y40DuTqYMlMZV2-WnxtHhssw6f3cXT4svl28_n78urD-8W56-vSlMzJUtsa1kx23HBmWlbI4ToW95IBGuUbQBELYRsjAVqubJdX1MLjVKsA9yn-GmxOHD7AdZ6mxeEuNMDOP0nMcSVhji6PLkGQVG1nWiM6GtDJTS0F5h7qa5WfdVm1ssDK6_-bcI06k2-GXoPAYcpaV5xXgnFa5mlz--kU7fB_r7x369kwdlBYOKQUkR7L2FU7y2g1_pfC-i9BfTBArn44lCM-XI3DqNOxmEw2LuY_5lXcw_DvPkPY7wLzoC_xt1DIb8BUILbig
Cites_doi 10.1002/mds.28762
10.3174/ajnr.A4229
10.1016/j.parkreldis.2020.04.014
10.1016/j.parkreldis.2023.105883
10.1002/mds.26424
10.1093/cercor/bhae094
10.1016/B978-0-12-804766-8.00016-9
10.1002/mds.22340
10.1016/j.parkreldis.2018.07.016
10.1016/j.neuroimage.2011.01.017
10.1186/s12889-024-18653-0
10.1093/brain/aws360
10.1016/j.tics.2012.10.008
10.1016/j.neulet.2023.137298
10.1055/s-0037-1602422
10.1136/jnnp-2019-321354
10.1002/mds.26987
10.1016/j.neuroimage.2011.10.003
10.1016/j.parkreldis.2021.08.003
10.1016/j.jad.2021.12.065
10.1111/jon.12932
10.1016/j.parkreldis.2011.05.013
10.1002/ana.26961
10.1093/cercor/bhz152
10.3389/fneur.2021.648548
10.3390/diagnostics12020385
10.1212/WNL.0b013e31827689d6
10.3389/fneur.2020.00831
10.1002/mds.25737
10.1088/1741-2552/abbff2
10.1152/jn.01132.2015
10.1016/S0072-9752(07)01242-0
10.1017/S0317167100014232
10.1016/j.jneumeth.2013.11.016
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright © 2025. Published by Elsevier Inc.
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Copyright © 2025. Published by Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.brainresbull.2025.111476
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-2747
ExternalDocumentID oai_doaj_org_article_a50e79b58c5d4c06a80d5e86e7b47d29
40706759
10_1016_j_brainresbull_2025_111476
S0361923025002886
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
41~
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMQ
HVGLF
HZ~
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
WUQ
Z5R
ZGI
~G-
6I.
AAFTH
AAYXX
AFCTW
CITATION
RIG
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
SSH
ID FETCH-LOGICAL-c4176-e94621fb3531c99c555d9386eafc7f8aa545568cfa0f37fbd40fa8771baea0f33
IEDL.DBID .~1
ISSN 0361-9230
1873-2747
IngestDate Wed Aug 27 01:25:24 EDT 2025
Fri Jul 25 19:12:33 EDT 2025
Wed Aug 06 16:36:34 EDT 2025
Thu Aug 14 00:10:09 EDT 2025
Sat Aug 30 17:12:48 EDT 2025
Tue Aug 26 18:07:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Progressive supranuclear palsy
Parkinson’s disease
Rs-fMRI
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4176-e94621fb3531c99c555d9386eafc7f8aa545568cfa0f37fbd40fa8771baea0f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0361923025002886
PMID 40706759
PQID 3233257346
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a50e79b58c5d4c06a80d5e86e7b47d29
proquest_miscellaneous_3233257346
pubmed_primary_40706759
crossref_primary_10_1016_j_brainresbull_2025_111476
elsevier_sciencedirect_doi_10_1016_j_brainresbull_2025_111476
elsevier_clinicalkey_doi_10_1016_j_brainresbull_2025_111476
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Brain research bulletin
PublicationTitleAlternate Brain Res Bull
PublicationYear 2025
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Lo Vercio, Amador, Bannister, Crites, Gutierrez, MacDonald, Moore, Mouches, Rajashekar, Schimert, Subbanna, Tuladhar, Wang, Wilms, Winder, Forkert (bib15) 2020; 17
Picillo, Tepedino, Abate, Erro, Ponticorvo, Tartaglione, Volpe, Frosini, Cecchi, Cosottini, Ceravolo, Esposito, Pellecchia, Barone, Manara (bib21) 2020; 91
Coughlin, Litvan (bib6) 2020; 73
Talai, Sedlacik, Boelmans, Forkert (bib27) 2021; 12
Dai, Yan, Wang, Wang, Xia, Li, He (bib7) 2012; 59
Lewis, Galley, Johnson, Stevenson, Huang, McKeown (bib14) 2013; 40
Sun, Liu, Chen, Zhou, Zhong, Tang, Wang, Zhou, Zhou, Shao, Ye, Zhang, Jia, Pan, Huang, Liu, Liu, Tian, Wang (bib26) 2022; 300
Meng, Wu, Huang, Liang, Fang (bib17) 2024; 24
Höglinger, Respondek, Stamelou, Kurz, Josephs, Lang, Mollenhauer, Müller, Nilsson, Whitwell, Arzberger, Englund, Gelpi, Giese, Irwin, Meissner, Pantelyat, Rajput, van Swieten, Troakes, Antonini, Bhatia, Bordelon, Compta, Corvol, Colosimo, Dickson, Dodel, Ferguson, Grossman, Kassubek, Krismer, Levin, Lorenzl, Morris, Nestor, Oertel, Poewe, Rabinovici, Rowe, Schellenberg, Seppi, van Eimeren, Wenning, Boxer, Golbe, Litvan, Movement Disorder Society-endorsed PSP Study (bib12) 2017; 32
Wu, Hallett (bib34) 2013; 136
Virhammar, Blohmé, Nyholm, Georgiopoulos, Fällmar (bib29) 2022; 32
Piattella, Tona, Bologna, Sbardella, Formica, Petsas, Filippini, Berardelli, Pantano (bib20) 2015; 36
Tessitore, Esposito, Vitale, Santangelo, Amboni, Russo, Corbo, Cirillo, Barone, Tedeschi (bib28) 2012; 79
Zampogna, Suppa, Bove, Cavallieri, Castrioto, Meoni, Pelissier, Schmitt, Chabardes, Fraix, Moro (bib35) 2024; 96
Golbe (bib11) 2008; 89
Alster, Nieciecki, Migda, Kutyłowski, Madetko, Duszyńska-Wąs, Charzyńska, Koziorowski, Królicki, Friedman (bib1) 2022; 12
Anticevic, Cole, Murray, Corlett, Wang, Krystal (bib2) 2012; 16
Wang, Li, Yao, He, Tang, Chen, Long, Chen, Kemp, Lui, Li (bib30) 2024; 34
Postuma, Berg, Stern, Poewe, Olanow, Oertel, Obeso, Marek, Litvan, Lang, Halliday, Goetz, Gasser, Dubois, Chan, Bloem, Adler, Deuschl (bib22) 2015; 30
Mirdamadi (bib18) 2016; 116
Whitwell, Avula, Master, Vemuri, Senjem, Jones, Jack CR, Josephs (bib33) 2011; 17
Wang, Sun, Liu, Chen, Jia, Zhong, Pan, Huang, Tian (bib31) 2020; 30
Salvatore, Cerasa, Castiglioni, Gallivanone, Augimeri, Lopez, Arabia, Morelli, Gilardi, Quattrone (bib25) 2014; 222
Laganà, Pirastru, Pelizzari, Rossetto, Di Tella, Bergsland, Nemni, Meloni, Baglio (bib13) 2020; 11
Goetz, Tilley, Shaftman, Stebbins, Fahn, Martinez-Martin, Poewe, Sampaio, Stern, Dodel, Dubois, Holloway, Jankovic, Kulisevsky, Lang, Lees, Leurgans, LeWitt, Nyenhuis, Olanow, Rascol, Schrag, Teresi, van Hilten, LaPelle, Movement Disorder Society UPDRS Revision Task (bib10) 2008; 23
Cherubini, Morelli, Nisticó, Salsone, Arabia, Vasta, Augimeri, Caligiuri, Quattrone (bib5) 2014; 29
McFarland, Hess (bib16) 2017; 37
Pang, Yu, Yu, Cao, Li, Guo, Cao, Fan (bib19) 2021; 90
Baudrexel, Witte, Seifried, von Wegner, Beissner, Klein, Steinmetz, Deichmann, Roeper, Hilker (bib4) 2011; 55
Dewey, Feltrin, Shah, Pinho, DeBevits, Achilleos, McCreary, Lynch, Chitnis, Dewey (bib9) 2023; 13
Dale, Ali, Anderson, Bruno, Comeau, Diaz, Golbe, Honig, Schmidt, Spears, Shurer (bib8) 2023; 116
Qi, Yin, Wang, Qu, Kan, Zhang, Zhang, Xiao, Deng, Dong, Shi, Meng, Chan, Wang (bib23) 2021; 36
Wang, Wei, Bai, Shen, Zhang, Ma, Meng, Yue, Xie, Zhang, Guo, Wang (bib32) 2023; 809
Armstrong, McFarland (bib3) 2019; 167
Quattrone, Morelli, Nigro, Quattrone, Vescio, Arabia, Nicoletti, Nisticò, Salsone, Novellino, Barbagallo, Le Piane, Pugliese, Bosco, Vaccaro, Chiriaco, Sabatini, Vescio, Stanà, Rocca, Gullà, Caracciolo (bib24) 2018; 54
Coughlin (10.1016/j.brainresbull.2025.111476_bib6) 2020; 73
Salvatore (10.1016/j.brainresbull.2025.111476_bib25) 2014; 222
Talai (10.1016/j.brainresbull.2025.111476_bib27) 2021; 12
Alster (10.1016/j.brainresbull.2025.111476_bib1) 2022; 12
Virhammar (10.1016/j.brainresbull.2025.111476_bib29) 2022; 32
Meng (10.1016/j.brainresbull.2025.111476_bib17) 2024; 24
Pang (10.1016/j.brainresbull.2025.111476_bib19) 2021; 90
Dale (10.1016/j.brainresbull.2025.111476_bib8) 2023; 116
McFarland (10.1016/j.brainresbull.2025.111476_bib16) 2017; 37
Anticevic (10.1016/j.brainresbull.2025.111476_bib2) 2012; 16
Qi (10.1016/j.brainresbull.2025.111476_bib23) 2021; 36
Golbe (10.1016/j.brainresbull.2025.111476_bib11) 2008; 89
Postuma (10.1016/j.brainresbull.2025.111476_bib22) 2015; 30
Tessitore (10.1016/j.brainresbull.2025.111476_bib28) 2012; 79
Whitwell (10.1016/j.brainresbull.2025.111476_bib33) 2011; 17
Höglinger (10.1016/j.brainresbull.2025.111476_bib12) 2017; 32
Wang (10.1016/j.brainresbull.2025.111476_bib30) 2024; 34
Armstrong (10.1016/j.brainresbull.2025.111476_bib3) 2019; 167
Dai (10.1016/j.brainresbull.2025.111476_bib7) 2012; 59
Goetz (10.1016/j.brainresbull.2025.111476_bib10) 2008; 23
Lo Vercio (10.1016/j.brainresbull.2025.111476_bib15) 2020; 17
Piattella (10.1016/j.brainresbull.2025.111476_bib20) 2015; 36
Mirdamadi (10.1016/j.brainresbull.2025.111476_bib18) 2016; 116
Zampogna (10.1016/j.brainresbull.2025.111476_bib35) 2024; 96
Sun (10.1016/j.brainresbull.2025.111476_bib26) 2022; 300
Cherubini (10.1016/j.brainresbull.2025.111476_bib5) 2014; 29
Laganà (10.1016/j.brainresbull.2025.111476_bib13) 2020; 11
Wu (10.1016/j.brainresbull.2025.111476_bib34) 2013; 136
Dewey (10.1016/j.brainresbull.2025.111476_bib9) 2023; 13
Baudrexel (10.1016/j.brainresbull.2025.111476_bib4) 2011; 55
Lewis (10.1016/j.brainresbull.2025.111476_bib14) 2013; 40
Wang (10.1016/j.brainresbull.2025.111476_bib32) 2023; 809
Quattrone (10.1016/j.brainresbull.2025.111476_bib24) 2018; 54
Wang (10.1016/j.brainresbull.2025.111476_bib31) 2020; 30
Picillo (10.1016/j.brainresbull.2025.111476_bib21) 2020; 91
References_xml – volume: 55
  start-page: 1728
  year: 2011
  end-page: 1738
  ident: bib4
  article-title: Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson's disease
  publication-title: Neuroimage
– volume: 13
  year: 2023
  ident: bib9
  article-title: Structural MRI ratios fail to distinguish progressive supranuclear palsy from parkinson disease in individual patients
  publication-title: Neurol. Clin. Pr.
– volume: 222
  start-page: 230
  year: 2014
  end-page: 237
  ident: bib25
  article-title: Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and progressive supranuclear palsy
  publication-title: J. Neurosci. Methods
– volume: 36
  start-page: 915
  year: 2015
  end-page: 921
  ident: bib20
  article-title: Disrupted resting-state functional connectivity in progressive supranuclear palsy
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 59
  start-page: 2187
  year: 2012
  end-page: 2195
  ident: bib7
  article-title: Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)
  publication-title: Neuroimage
– volume: 40
  start-page: 299
  year: 2013
  end-page: 306
  ident: bib14
  article-title: The role of the cerebellum in the pathophysiology of Parkinson's disease
  publication-title: Can. J. Neurol. Sci.
– volume: 17
  year: 2020
  ident: bib15
  article-title: Supervised machine learning tools: a tutorial for clinicians
  publication-title: J. Neural Eng.
– volume: 11
  start-page: 831
  year: 2020
  ident: bib13
  article-title: Multimodal evaluation of neurovascular functionality in early Parkinson's disease
  publication-title: Front Neurol.
– volume: 32
  start-page: 853
  year: 2017
  end-page: 864
  ident: bib12
  article-title: Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria
  publication-title: Mov. Disord.
– volume: 91
  start-page: 98
  year: 2020
  end-page: 103
  ident: bib21
  article-title: Midbrain MRI assessments in progressive supranuclear palsy subtypes
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 79
  start-page: 2226
  year: 2012
  end-page: 2232
  ident: bib28
  article-title: Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease
  publication-title: Neurology
– volume: 36
  start-page: 2940
  year: 2021
  end-page: 2944
  ident: bib23
  article-title: Prevalence of Parkinson's disease: a community-based study in China
  publication-title: Mov. Disord.
– volume: 96
  start-page: 234
  year: 2024
  end-page: 246
  ident: bib35
  article-title: Disentangling bradykinesia and rigidity in Parkinson's disease: evidence from short- and long-term subthalamic nucleus deep brain stimulation
  publication-title: Ann. Neurol.
– volume: 167
  start-page: 301
  year: 2019
  end-page: 320
  ident: bib3
  article-title: Recognizing and treating atypical Parkinson disorders
  publication-title: Handb. Clin. Neurol.
– volume: 30
  start-page: 1591
  year: 2015
  end-page: 1601
  ident: bib22
  article-title: MDS clinical diagnostic criteria for Parkinson's disease
  publication-title: Mov. Disord.
– volume: 54
  start-page: 3
  year: 2018
  end-page: 8
  ident: bib24
  article-title: A new MR imaging index for differentiation of progressive supranuclear palsy-parkinsonism from Parkinson's disease
  publication-title: Park. Relat. Disord.
– volume: 30
  start-page: 1117
  year: 2020
  end-page: 1128
  ident: bib31
  article-title: Classification of unmedicated bipolar disorder using whole-brain functional activity and connectivity: a radiomics analysis
  publication-title: Cereb. Cortex
– volume: 29
  start-page: 266
  year: 2014
  end-page: 269
  ident: bib5
  article-title: Magnetic resonance support vector machine discriminates between Parkinson disease and progressive supranuclear palsy
  publication-title: Mov. Disord.
– volume: 34
  year: 2024
  ident: bib30
  article-title: Shared and differing functional connectivity abnormalities of the default mode network in mild cognitive impairment and Alzheimer's disease
  publication-title: Cereb. Cortex
– volume: 116
  year: 2023
  ident: bib8
  article-title: Patients with progressive supranuclear palsy need to be seen sooner and more frequently
  publication-title: Park. Relat. Disord.
– volume: 90
  start-page: 65
  year: 2021
  end-page: 72
  ident: bib19
  article-title: Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI
  publication-title: Park. Relat. Disord.
– volume: 24
  start-page: 1218
  year: 2024
  ident: bib17
  article-title: Prevalence of Parkinson's disease among adults aged 45 years and older in China: a cross-sectional study based on the China health and retirement longitudinal study
  publication-title: BMC Public Health
– volume: 12
  year: 2022
  ident: bib1
  article-title: The strengths and obstacles in the differential diagnosis of progressive supranuclear palsy-parkinsonism predominant (PSP-P) and multiple system atrophy (MSA) using magnetic resonance imaging (MRI) and perfusion single photon emission computed tomography (SPECT)
  publication-title: Diagnostics
– volume: 116
  start-page: 917
  year: 2016
  end-page: 919
  ident: bib18
  article-title: Cerebellar role in Parkinson's disease
  publication-title: J. Neurophysiol.
– volume: 300
  start-page: 1
  year: 2022
  end-page: 9
  ident: bib26
  article-title: A two-center radiomic analysis for differentiating major depressive disorder using multi-modality MRI data under different parcellation methods
  publication-title: J. Affect Disord.
– volume: 23
  start-page: 2129
  year: 2008
  end-page: 2170
  ident: bib10
  article-title: Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results
  publication-title: Mov. Disord.
– volume: 32
  start-page: 90
  year: 2022
  end-page: 96
  ident: bib29
  article-title: Midbrain area and the hummingbird sign from brain MRI in progressive supranuclear palsy and idiopathic normal pressure hydrocephalus
  publication-title: J. Neuroimaging
– volume: 16
  start-page: 584
  year: 2012
  end-page: 592
  ident: bib2
  article-title: The role of default network deactivation in cognition and disease
  publication-title: Trends Cogn. Sci.
– volume: 89
  start-page: 457
  year: 2008
  end-page: 459
  ident: bib11
  article-title: The epidemiology of progressive supranuclear palsy
  publication-title: Handb. Clin. Neurol.
– volume: 809
  year: 2023
  ident: bib32
  article-title: Intrinsic brain activity alterations in patients with Parkinson's disease
  publication-title: Neurosci. Lett.
– volume: 37
  start-page: 215
  year: 2017
  end-page: 227
  ident: bib16
  article-title: Recognizing atypical Parkinsonisms: "red flags" and therapeutic approaches
  publication-title: Semin Neurol.
– volume: 17
  start-page: 599
  year: 2011
  end-page: 605
  ident: bib33
  article-title: Disrupted thalamocortical connectivity in PSP: a resting-state fMRI, DTI, and VBM study
  publication-title: Park. Relat. Disord.
– volume: 136
  start-page: 696
  year: 2013
  end-page: 709
  ident: bib34
  article-title: The cerebellum in Parkinson's disease
  publication-title: Brain
– volume: 73
  start-page: 105
  year: 2020
  end-page: 116
  ident: bib6
  article-title: Progressive supranuclear palsy: advances in diagnosis and management
  publication-title: Park. Relat. Disord.
– volume: 12
  year: 2021
  ident: bib27
  article-title: Utility of multi-modal MRI for differentiating of Parkinson's disease and progressive supranuclear palsy using machine learning
  publication-title: Front Neurol.
– volume: 36
  start-page: 2940
  issue: 12
  year: 2021
  ident: 10.1016/j.brainresbull.2025.111476_bib23
  article-title: Prevalence of Parkinson's disease: a community-based study in China
  publication-title: Mov. Disord.
  doi: 10.1002/mds.28762
– volume: 36
  start-page: 915
  issue: 5
  year: 2015
  ident: 10.1016/j.brainresbull.2025.111476_bib20
  article-title: Disrupted resting-state functional connectivity in progressive supranuclear palsy
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4229
– volume: 73
  start-page: 105
  year: 2020
  ident: 10.1016/j.brainresbull.2025.111476_bib6
  article-title: Progressive supranuclear palsy: advances in diagnosis and management
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2020.04.014
– volume: 116
  year: 2023
  ident: 10.1016/j.brainresbull.2025.111476_bib8
  article-title: Patients with progressive supranuclear palsy need to be seen sooner and more frequently
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2023.105883
– volume: 30
  start-page: 1591
  issue: 12
  year: 2015
  ident: 10.1016/j.brainresbull.2025.111476_bib22
  article-title: MDS clinical diagnostic criteria for Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26424
– volume: 34
  issue: 3
  year: 2024
  ident: 10.1016/j.brainresbull.2025.111476_bib30
  article-title: Shared and differing functional connectivity abnormalities of the default mode network in mild cognitive impairment and Alzheimer's disease
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhae094
– volume: 167
  start-page: 301
  year: 2019
  ident: 10.1016/j.brainresbull.2025.111476_bib3
  article-title: Recognizing and treating atypical Parkinson disorders
  publication-title: Handb. Clin. Neurol.
  doi: 10.1016/B978-0-12-804766-8.00016-9
– volume: 23
  start-page: 2129
  issue: 15
  year: 2008
  ident: 10.1016/j.brainresbull.2025.111476_bib10
  article-title: Movement disorder society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22340
– volume: 54
  start-page: 3
  year: 2018
  ident: 10.1016/j.brainresbull.2025.111476_bib24
  article-title: A new MR imaging index for differentiation of progressive supranuclear palsy-parkinsonism from Parkinson's disease
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2018.07.016
– volume: 55
  start-page: 1728
  issue: 4
  year: 2011
  ident: 10.1016/j.brainresbull.2025.111476_bib4
  article-title: Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.017
– volume: 24
  start-page: 1218
  issue: 1
  year: 2024
  ident: 10.1016/j.brainresbull.2025.111476_bib17
  article-title: Prevalence of Parkinson's disease among adults aged 45 years and older in China: a cross-sectional study based on the China health and retirement longitudinal study
  publication-title: BMC Public Health
  doi: 10.1186/s12889-024-18653-0
– volume: 136
  start-page: 696
  issue: Pt 3
  year: 2013
  ident: 10.1016/j.brainresbull.2025.111476_bib34
  article-title: The cerebellum in Parkinson's disease
  publication-title: Brain
  doi: 10.1093/brain/aws360
– volume: 16
  start-page: 584
  issue: 12
  year: 2012
  ident: 10.1016/j.brainresbull.2025.111476_bib2
  article-title: The role of default network deactivation in cognition and disease
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2012.10.008
– volume: 809
  year: 2023
  ident: 10.1016/j.brainresbull.2025.111476_bib32
  article-title: Intrinsic brain activity alterations in patients with Parkinson's disease
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2023.137298
– volume: 37
  start-page: 215
  issue: 2
  year: 2017
  ident: 10.1016/j.brainresbull.2025.111476_bib16
  article-title: Recognizing atypical Parkinsonisms: "red flags" and therapeutic approaches
  publication-title: Semin Neurol.
  doi: 10.1055/s-0037-1602422
– volume: 91
  start-page: 98
  issue: 1
  year: 2020
  ident: 10.1016/j.brainresbull.2025.111476_bib21
  article-title: Midbrain MRI assessments in progressive supranuclear palsy subtypes
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2019-321354
– volume: 32
  start-page: 853
  issue: 6
  year: 2017
  ident: 10.1016/j.brainresbull.2025.111476_bib12
  article-title: Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26987
– volume: 59
  start-page: 2187
  issue: 3
  year: 2012
  ident: 10.1016/j.brainresbull.2025.111476_bib7
  article-title: Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.003
– volume: 90
  start-page: 65
  year: 2021
  ident: 10.1016/j.brainresbull.2025.111476_bib19
  article-title: Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2021.08.003
– volume: 300
  start-page: 1
  year: 2022
  ident: 10.1016/j.brainresbull.2025.111476_bib26
  article-title: A two-center radiomic analysis for differentiating major depressive disorder using multi-modality MRI data under different parcellation methods
  publication-title: J. Affect Disord.
  doi: 10.1016/j.jad.2021.12.065
– volume: 32
  start-page: 90
  issue: 1
  year: 2022
  ident: 10.1016/j.brainresbull.2025.111476_bib29
  article-title: Midbrain area and the hummingbird sign from brain MRI in progressive supranuclear palsy and idiopathic normal pressure hydrocephalus
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.12932
– volume: 17
  start-page: 599
  issue: 8
  year: 2011
  ident: 10.1016/j.brainresbull.2025.111476_bib33
  article-title: Disrupted thalamocortical connectivity in PSP: a resting-state fMRI, DTI, and VBM study
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2011.05.013
– volume: 96
  start-page: 234
  issue: 2
  year: 2024
  ident: 10.1016/j.brainresbull.2025.111476_bib35
  article-title: Disentangling bradykinesia and rigidity in Parkinson's disease: evidence from short- and long-term subthalamic nucleus deep brain stimulation
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.26961
– volume: 30
  start-page: 1117
  issue: 3
  year: 2020
  ident: 10.1016/j.brainresbull.2025.111476_bib31
  article-title: Classification of unmedicated bipolar disorder using whole-brain functional activity and connectivity: a radiomics analysis
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhz152
– volume: 12
  year: 2021
  ident: 10.1016/j.brainresbull.2025.111476_bib27
  article-title: Utility of multi-modal MRI for differentiating of Parkinson's disease and progressive supranuclear palsy using machine learning
  publication-title: Front Neurol.
  doi: 10.3389/fneur.2021.648548
– volume: 12
  issue: 2
  year: 2022
  ident: 10.1016/j.brainresbull.2025.111476_bib1
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12020385
– volume: 79
  start-page: 2226
  issue: 23
  year: 2012
  ident: 10.1016/j.brainresbull.2025.111476_bib28
  article-title: Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31827689d6
– volume: 11
  start-page: 831
  year: 2020
  ident: 10.1016/j.brainresbull.2025.111476_bib13
  article-title: Multimodal evaluation of neurovascular functionality in early Parkinson's disease
  publication-title: Front Neurol.
  doi: 10.3389/fneur.2020.00831
– volume: 29
  start-page: 266
  issue: 2
  year: 2014
  ident: 10.1016/j.brainresbull.2025.111476_bib5
  article-title: Magnetic resonance support vector machine discriminates between Parkinson disease and progressive supranuclear palsy
  publication-title: Mov. Disord.
  doi: 10.1002/mds.25737
– volume: 17
  issue: 6
  year: 2020
  ident: 10.1016/j.brainresbull.2025.111476_bib15
  article-title: Supervised machine learning tools: a tutorial for clinicians
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abbff2
– volume: 116
  start-page: 917
  issue: 3
  year: 2016
  ident: 10.1016/j.brainresbull.2025.111476_bib18
  article-title: Cerebellar role in Parkinson's disease
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01132.2015
– volume: 13
  issue: 3
  year: 2023
  ident: 10.1016/j.brainresbull.2025.111476_bib9
  article-title: Structural MRI ratios fail to distinguish progressive supranuclear palsy from parkinson disease in individual patients
  publication-title: Neurol. Clin. Pr.
– volume: 89
  start-page: 457
  year: 2008
  ident: 10.1016/j.brainresbull.2025.111476_bib11
  article-title: The epidemiology of progressive supranuclear palsy
  publication-title: Handb. Clin. Neurol.
  doi: 10.1016/S0072-9752(07)01242-0
– volume: 40
  start-page: 299
  issue: 3
  year: 2013
  ident: 10.1016/j.brainresbull.2025.111476_bib14
  article-title: The role of the cerebellum in the pathophysiology of Parkinson's disease
  publication-title: Can. J. Neurol. Sci.
  doi: 10.1017/S0317167100014232
– volume: 222
  start-page: 230
  year: 2014
  ident: 10.1016/j.brainresbull.2025.111476_bib25
  article-title: Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and progressive supranuclear palsy
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.11.016
SSID ssj0006856
Score 2.4607885
Snippet Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ...
Parkinson's disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis differ...
Aim: Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) present similar clinical symptoms, but their treatment options and clinical prognosis...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 111476
SubjectTerms Aged
Brain - diagnostic imaging
Brain - physiopathology
Female
Humans
Machine Learning
Magnetic Resonance Imaging - methods
Male
Middle Aged
Parkinson Disease - diagnosis
Parkinson Disease - diagnostic imaging
Parkinson Disease - physiopathology
Parkinson’s disease
Progressive supranuclear palsy
Prospective Studies
Rs-fMRI
Support Vector Machine
Supranuclear Palsy, Progressive - diagnosis
Supranuclear Palsy, Progressive - diagnostic imaging
Supranuclear Palsy, Progressive - physiopathology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yJy-iro_xRQnirbG781Y8rOKyCuNBXNhbyFOUtWeY2RHm5o_w4t_zl1hJuofxIO7Ba9MJ6VSlHp2vviLkSfCMskB1g_mPaJh0EY-U7hrlk9KpcyzyXJw8fy9OTtm7M3621-orY8IqPXDduGeWt1Fqx5XngflWWNUGHpWI0jEZ-lK6hz5vSqZGGywUFxPFaEFzudxwARNYh4kdZoU9z7aCZaaRPXdUWPv_8Ep_izqL9zm-Tq6NYSMc1eXeIFficJMcHg2YMn_dwlMoQM7yh_yQ_JgXgGSEsSPEJ5iIw6GiN9DAnW8h1-PWnl4YbcKI14JcBV0Kwn59_7mG8foG7BCgILkyaPZbhPVmiT4uUyHbFSxRg7fPoZTyNucZhAT5IhwNECwSrNZNmn94e4ucHr_5-PqkGZsvNJ51UjRRM9F3yVE8pF5rzzkPmuK-2-RlUtZi6MUFitS2icrkAmuTVVJ2zsb8iN4mB8NiiHcJtEkH37WuFzhpJ62KaCdCLFz7vuu7GaGTDMyycmyYCXz2xexLzmTJmSq5GXmVxbUbkXmyywPUHjNqj_mX9szIi0nYZipFReOJE32-1BJe7kaPAUsNRC49_vGkXwZPdb6qsUNcbNaG9pTiJlGG79ypirf7UEzBc5qn7_2PDbhPruYFVdTcA3JwsdrEhxhmXbhH5UT9BqClK6U
  priority: 102
  providerName: Directory of Open Access Journals
Title Machine learning approach effectively discriminates between Parkinson’s disease and progressive supranuclear palsy: Multi-level indices of rs-fMRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0361923025002886
https://dx.doi.org/10.1016/j.brainresbull.2025.111476
https://www.ncbi.nlm.nih.gov/pubmed/40706759
https://www.proquest.com/docview/3233257346
https://doaj.org/article/a50e79b58c5d4c06a80d5e86e7b47d29
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqcuGCKOVnoayMhLiFTWI7tkEclopqC9oegEq9WXZiV4tKdrXbRdoL4iG48Ho8CTOOs7QHpEocY9mJkxl_MxN_MybkeVNzxhumM4h_qoxL52FJ6SJTdVA6FI57gcnJ05Nqcsrfn4mzHXLY58IgrTJhf4fpEa1Tyyh9zdFiNht9AuxF9wSNOBhJhWW3OZeo5S-__6V5VEqk_coiw9594dHI8XJ4DAOEtQ7CPYgVS4EIwrH-yBUjFWv5X7NV__JFo006ukvuJGeSjrv57pEd394j--MWAumvG_qCRnpn_G--T35OI23S03ROxDnty4nTjtMBsHexoZil2530BT4oTSwuirnRMU3s949fK5o2dahtGxr5XUil_ebpar0Ay4cFku2SLkCvN69oTPDNLpCaRHF7HGCJzgNdrrIw_Xh8n5wevft8OMnSkQxZzQtZZV7zqiyCY7B0a61rIUSjmaq8DbUMylpwyEQFgrZ5YDK4hufBKikLZz02sQdkt523_hGhedBNXeSurOCmhbTKA3o0Plbgr4uyGBDWy8AsusobpqekfTFXJWdQcqaT3IC8RXFtR2D17NgwX56bpD7GitxL7YSqRcPrvLIqb4SHt5COy6bUA_K6F7bpE1QBUuFGsxtN4c129DVVvvH4Z71-GVjruIFjWz9frwwrGYOPxDj0edgp3vZFITDH4E8__s-nPyG38aqj0R2Q3cvl2j8Fv-vSDePCGpJb4-MPk5Nh_HvxBzcuM18
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxELVKeoALAspHypeRELdVdtf27hrEIVRUCW1ygFbqzbK9dhVUNlHSVMqNH8GFv8cvYcbrjdoDUiWuTrzZ3Rm_mYnfPBPytrac8ZrJBOqfIuGlcbCkZJZU1lfSZ4Y7gc3Jk2kxOuVfzsTZDjnoemGQVhmxv8X0gNZxZBDf5mAxmw2-AfZieoJBHIJkVdwhu6hOJXpkdzg-Gk23gFxUIm5ZZglO6LRHA83L4EkMUNkaqPigXMwFgghHCZJrcSrI-d8IV_9KR0NYOnxA7sd8kg7bW35IdlzziOwNG6ilf2zoOxoYnuGv8z3yaxKYk47GoyLOaacoTltaByDfxYZio2572BekoTQSuSi2R4dOsT8_f69o3NehuqlpoHghm_bK0dV6AcEPNZL1ki7AtTfvaejxTS6QnURxhxyQic49Xa4SP_k6fkxODz-fHIySeCpDYnlWFomTvMgzbxisXiulFULUklWF096WvtIacjJRgK116lnpTc1Tr6uyzIx2OMSekF4zb9wzQlMva5ulJi_golmpKwcAUrsgwm-zPOsT1tlALVrxDdWx0r6r65ZTaDnVWq5PPqG5tjNQQDsMzJfnKnqQ0iJ1pTSisqLmNi10ldbCwVOUhpd1LvvkQ2ds1fWoAqrChWa3uoWP29k3vPnW8990_qVgueMejm7cfL1SLGcMXhLj8J2nreNtHxRqc6z_5P5__vprcnd0MjlWx-Pp0XNyDz9pWXUvSO9yuXYvIQ27NK_iMvsLW-Q1Gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+approach+effectively+discriminates+between+Parkinson%27s+disease+and+progressive+supranuclear+palsy%3A+multi-level+indices+of+rs-fMRI&rft.jtitle=Brain+research+bulletin&rft.au=Cheng%2C+Weiling&rft.au=Liang%2C+Xiao&rft.au=Zeng%2C+Wei&rft.au=Guo%2C+Jiali&rft.date=2025-09-01&rft.issn=1873-2747&rft.eissn=1873-2747&rft.spage=111476&rft_id=info:doi/10.1016%2Fj.brainresbull.2025.111476&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-9230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-9230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-9230&client=summon