A Micrometer‐Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon
Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporou...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 40; pp. e2103095 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.10.2021
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high‐temperature treatment. The resulting micrometer‐sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si‐based anode with 80% of pitch‐derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high‐energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures.
A micrometer‐sized silicon/carbon composite anode developed by facile and scalable impregnation of petroleum pitch that stabilizes nanoporous Si against sintering at high temperature is reported. The composite anode including single nanometer‐sized primary particles shielded by pitch‐derived carbon exhibits outstanding battery performance such as 80% capacity retention after 450 cycles in the full cell system. |
---|---|
AbstractList | Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high-energy lithium (Li)-ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high-temperature treatment. The resulting micrometer-sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si-based anode with 80% of pitch-derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high-energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures.Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high-energy lithium (Li)-ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high-temperature treatment. The resulting micrometer-sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si-based anode with 80% of pitch-derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high-energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures. Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high‐temperature treatment. The resulting micrometer‐sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si‐based anode with 80% of pitch‐derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high‐energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures. Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high‐temperature treatment. The resulting micrometer‐sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si‐based anode with 80% of pitch‐derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O 2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high‐energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures. Abstract Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high‐temperature treatment. The resulting micrometer‐sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si‐based anode with 80% of pitch‐derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O 2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high‐energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures. Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high‐temperature treatment. The resulting micrometer‐sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si‐based anode with 80% of pitch‐derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high‐energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures. A micrometer‐sized silicon/carbon composite anode developed by facile and scalable impregnation of petroleum pitch that stabilizes nanoporous Si against sintering at high temperature is reported. The composite anode including single nanometer‐sized primary particles shielded by pitch‐derived carbon exhibits outstanding battery performance such as 80% capacity retention after 450 cycles in the full cell system. |
Author | Lim, Hyung‐Seok Zhang, Ji‐Guang Chae, Sujong Yi, Ran Li, Xiaolin Xu, Yaobin Velickovic, Dusan Li, Qiuyan Wang, Chongmin |
Author_xml | – sequence: 1 givenname: Sujong orcidid: 0000-0001-6793-0817 surname: Chae fullname: Chae, Sujong organization: Pukyong National University – sequence: 2 givenname: Yaobin surname: Xu fullname: Xu, Yaobin organization: Pacific Northwest National Laboratory – sequence: 3 givenname: Ran surname: Yi fullname: Yi, Ran email: ran.yi@pnnl.gov organization: Pacific Northwest National Laboratory – sequence: 4 givenname: Hyung‐Seok surname: Lim fullname: Lim, Hyung‐Seok organization: Pacific Northwest National Laboratory – sequence: 5 givenname: Dusan surname: Velickovic fullname: Velickovic, Dusan organization: Pacific Northwest National Laboratory – sequence: 6 givenname: Xiaolin surname: Li fullname: Li, Xiaolin organization: Pacific Northwest National Laboratory – sequence: 7 givenname: Qiuyan surname: Li fullname: Li, Qiuyan organization: Pacific Northwest National Laboratory – sequence: 8 givenname: Chongmin surname: Wang fullname: Wang, Chongmin organization: Pacific Northwest National Laboratory – sequence: 9 givenname: Ji‐Guang orcidid: 0000-0001-7343-4609 surname: Zhang fullname: Zhang, Ji‐Guang email: jiguang.zhang@pnnl.gov organization: Pacific Northwest National Laboratory |
BackLink | https://www.osti.gov/biblio/1821051$$D View this record in Osti.gov |
BookMark | eNqFkcFu1DAURa2qSEwLW9ZW2bDJ1HbsJF5GQ4FKLVSasrY8zkvHVWIH26N2WPEJfCNfgqcDVKqEurG9OPc-v3uP0KHzDhB6Q8mcEsJOdTfqOSOMkpJIcYBmVDBa8Pw-RDMiS1HIijcv0VGMt4QQWZFqhu5bfGlN8CMkCL9-_Fza79DhpR2s8e50ocPKO7zw4-SjTYBb5zvAy61La4gP6GqLz8cpwI3TyWbW9_gKUvADbEZ8ZZNZY-vwZ-385IPfxL_er9CLXg8RXv-5j9HXD2fXi0_FxZeP54v2ojCc1qLQXS91WUswvJQdaN2UdS9ErTkzdUf7kq_4SkjQQGrRdKTi3BgiadVBPpqmPEYne18fk1XR5C3MOs93YJKiTU5L0Ay920NT8N82EJMabTQwDNpB_rNioqKSCcZ2fm-foLd-E1xeIVO1JHVZMZEpvqdytDEG6FUe_BBQCtoOihK160ztOlP_Osuy-RPZFOyow_b_ArkX3NkBts_Qqn1_2T5qfwMW2K0c |
CitedBy_id | crossref_primary_10_1016_j_jechem_2023_04_004 crossref_primary_10_1007_s10008_024_05967_7 crossref_primary_10_1007_s12598_024_02872_w crossref_primary_10_1007_s12598_023_02395_w crossref_primary_10_1016_j_cej_2024_153055 crossref_primary_10_1021_acsami_2c15452 crossref_primary_10_1007_s41918_024_00214_z crossref_primary_10_1016_j_est_2025_115838 crossref_primary_10_1016_j_ensm_2023_102996 crossref_primary_10_1021_acsaem_3c00534 crossref_primary_10_1016_j_cej_2025_160149 crossref_primary_10_1016_j_ensm_2022_12_045 crossref_primary_10_1016_j_fuel_2024_131325 crossref_primary_10_1002_cssc_202401459 crossref_primary_10_1002_anie_202300384 crossref_primary_10_1021_acsaem_2c01655 crossref_primary_10_1039_D2CC06351D crossref_primary_10_1021_acsnano_1c08866 crossref_primary_10_1016_j_jallcom_2023_169846 crossref_primary_10_1039_D4EE05595K crossref_primary_10_1021_acs_nanolett_4c00469 crossref_primary_10_1002_smll_202405005 crossref_primary_10_1002_bte2_20230068 crossref_primary_10_1002_smll_202407016 crossref_primary_10_1021_acsami_2c21866 crossref_primary_10_1016_j_jallcom_2023_169681 crossref_primary_10_1002_adfm_202403032 crossref_primary_10_1007_s12274_023_6239_4 crossref_primary_10_1016_j_conbuildmat_2024_138232 crossref_primary_10_1039_D4YA00174E crossref_primary_10_1002_smll_202203102 crossref_primary_10_1016_j_mseb_2023_116676 crossref_primary_10_1002_eem2_12482 crossref_primary_10_1088_1742_6596_2300_1_012005 crossref_primary_10_1002_advs_202104685 crossref_primary_10_1002_advs_202405116 crossref_primary_10_1016_j_carbon_2024_119389 crossref_primary_10_1021_acsaem_3c01531 crossref_primary_10_1016_j_cej_2024_151488 crossref_primary_10_1016_j_matchemphys_2022_126721 crossref_primary_10_54097_nsc8hh62 crossref_primary_10_1007_s12598_024_02793_8 crossref_primary_10_1021_acsami_4c14767 crossref_primary_10_1021_acsnano_1c11098 crossref_primary_10_1016_j_jelechem_2023_117530 crossref_primary_10_1002_cey2_377 crossref_primary_10_1021_acsanm_3c00911 crossref_primary_10_3103_S0003701X23601801 crossref_primary_10_1016_j_electacta_2021_139671 crossref_primary_10_1021_acsapm_2c02204 crossref_primary_10_1063_5_0102083 crossref_primary_10_1007_s42823_024_00779_1 crossref_primary_10_1016_j_flatc_2025_100833 crossref_primary_10_1016_j_apsusc_2022_154627 crossref_primary_10_1016_j_jiec_2024_01_001 crossref_primary_10_1016_j_mtcomm_2024_110846 crossref_primary_10_1021_acsami_4c03759 crossref_primary_10_1016_j_apsusc_2023_159255 crossref_primary_10_1016_j_cej_2024_158032 crossref_primary_10_1016_j_jallcom_2022_165364 crossref_primary_10_1016_j_jallcom_2022_167785 crossref_primary_10_1021_acsami_1c17841 crossref_primary_10_15541_jim20240036 crossref_primary_10_1002_advs_202407540 crossref_primary_10_1016_j_cej_2024_151012 crossref_primary_10_1016_j_mtener_2022_101090 crossref_primary_10_1038_s41560_023_01221_y crossref_primary_10_3390_ma15124264 crossref_primary_10_1016_j_jpcs_2022_111019 crossref_primary_10_1016_j_apsusc_2024_162031 crossref_primary_10_1016_j_est_2024_113794 crossref_primary_10_1016_j_jallcom_2023_170200 crossref_primary_10_1016_S1872_5805_24_60850_4 crossref_primary_10_1016_j_jallcom_2024_177777 crossref_primary_10_1021_acsanm_2c03196 crossref_primary_10_2139_ssrn_4090248 crossref_primary_10_1002_adma_202212157 crossref_primary_10_1002_adma_202304803 crossref_primary_10_1039_D2RA06977F crossref_primary_10_1016_j_cej_2024_149428 crossref_primary_10_1002_adfm_202211648 crossref_primary_10_1002_adma_202209652 crossref_primary_10_1016_j_mser_2025_100954 crossref_primary_10_1016_j_jpowsour_2022_231591 crossref_primary_10_1002_smll_202406489 crossref_primary_10_1016_j_electacta_2024_145468 crossref_primary_10_1021_acssuschemeng_4c05808 crossref_primary_10_1021_jacs_4c09824 crossref_primary_10_1007_s11581_023_05052_5 crossref_primary_10_1007_s12274_022_4275_9 crossref_primary_10_1016_j_jpowsour_2023_233245 crossref_primary_10_1002_adfm_202208586 crossref_primary_10_1016_j_carbon_2024_119615 crossref_primary_10_1021_acsenergylett_2c00099 crossref_primary_10_3390_batteries9030148 crossref_primary_10_1016_j_electacta_2023_141950 crossref_primary_10_1021_acssuschemeng_2c04123 crossref_primary_10_1039_D1TA09862D crossref_primary_10_1016_j_ceramint_2022_10_311 crossref_primary_10_1016_j_jallcom_2024_173507 crossref_primary_10_1016_j_cej_2024_151110 crossref_primary_10_1021_acs_nanolett_4c04106 crossref_primary_10_1007_s11581_024_05485_6 crossref_primary_10_1016_j_carbon_2022_10_010 crossref_primary_10_1016_j_est_2023_108484 crossref_primary_10_1016_j_jallcom_2024_174722 crossref_primary_10_1016_j_apsusc_2024_160076 crossref_primary_10_1016_j_ensm_2023_01_048 crossref_primary_10_1002_ange_202300384 crossref_primary_10_1007_s11814_022_1227_8 crossref_primary_10_1016_j_jechem_2022_09_020 crossref_primary_10_1039_D1CC05657C crossref_primary_10_1016_j_est_2023_108715 crossref_primary_10_1007_s11581_022_04655_8 crossref_primary_10_1016_j_electacta_2024_145440 crossref_primary_10_1002_adma_202200777 crossref_primary_10_1002_adfm_202213363 crossref_primary_10_1002_adma_202200894 crossref_primary_10_1002_smll_202311779 crossref_primary_10_1002_advs_202403530 crossref_primary_10_1007_s12274_022_4526_9 crossref_primary_10_1021_acsami_2c07606 crossref_primary_10_1016_j_ensm_2023_102857 crossref_primary_10_1016_j_cej_2025_160846 crossref_primary_10_1021_acsnano_2c12869 crossref_primary_10_1016_j_est_2023_107582 crossref_primary_10_1016_j_mtnano_2023_100321 crossref_primary_10_3390_coatings13020436 crossref_primary_10_1016_j_jcis_2024_03_053 crossref_primary_10_1007_s11581_023_05189_3 crossref_primary_10_1021_acs_energyfuels_2c03702 crossref_primary_10_1002_adfm_202314176 crossref_primary_10_1016_j_carbon_2024_119074 crossref_primary_10_1016_j_carbon_2024_119195 crossref_primary_10_3390_nano14010018 crossref_primary_10_15541_jim20210739 crossref_primary_10_1002_batt_202300186 crossref_primary_10_1016_j_est_2023_110183 crossref_primary_10_1016_j_jallcom_2024_173930 crossref_primary_10_1016_j_carbon_2025_120240 crossref_primary_10_3390_molecules27103241 crossref_primary_10_1002_adfm_202408145 crossref_primary_10_1016_S1872_5805_24_60871_1 crossref_primary_10_1002_adma_202109658 crossref_primary_10_1002_smll_202303864 crossref_primary_10_1007_s10854_024_12237_9 |
Cites_doi | 10.1007/BF01568084 10.1002/ppsc.201300231 10.1149/1.3474225 10.1002/adma.201301795 10.1038/nenergy.2016.71 10.1039/C6QM00302H 10.1039/C5EE01363A 10.1021/nl204063u 10.1038/srep03863 10.1016/j.nanoen.2018.11.092 10.1002/anie.201902085 10.1016/j.nanoen.2016.11.013 10.1063/1.2182018 10.1038/451652a 10.1039/C9EE03857D 10.1038/s41467-020-15217-9 10.1021/acs.nanolett.9b05216 10.1038/ncomms5105 10.1038/nnano.2014.6 10.1038/nnano.2016.207 10.1038/natrevmats.2016.13 10.1002/aenm.201803121 10.1134/S1063782619070236 10.1002/adma.201800561 10.1016/j.mattod.2014.10.040 10.1002/aenm.201700715 10.1038/s41560-018-0107-2 10.1038/nenergy.2016.113 10.1038/nnano.2007.411 10.1149/1.2402112 10.1016/j.joule.2017.07.006 10.1002/aenm.201200857 10.1038/s41467-018-02824-w 10.1149/1.1390899 10.1186/1556-276X-6-372 10.1002/adma.201804822 10.1016/j.nanoen.2020.105101 10.1021/acs.nanolett.0c04347 10.1016/j.fuel.2019.02.040 10.1039/C8CS00441B |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 OTOTI |
DOI | 10.1002/adma.202103095 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1821051 10_1002_adma_202103095 ADMA202103095 |
Genre | article |
GrantInformation_xml | – fundername: Office of Energy Efficiency and Renewable Energy – fundername: Vehicle Technologies Office funderid: DE‐AC05‐76RLO1830 – fundername: U.S. Department of Energy |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 OTOTI |
ID | FETCH-LOGICAL-c4175-adf9a379ec439deaa837f557a42c7d1f34b4b59eae0758d0644cc0916de916883 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Sun Jul 13 03:03:14 EDT 2025 Thu Jul 10 18:56:34 EDT 2025 Sun Jul 13 04:05:26 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 Tue Jul 01 02:33:06 EDT 2025 Wed Jan 22 16:29:02 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4175-adf9a379ec439deaa837f557a42c7d1f34b4b59eae0758d0644cc0916de916883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE |
ORCID | 0000-0001-7343-4609 0000-0001-6793-0817 0000000167930817 0000000173434609 |
OpenAccessLink | https://www.osti.gov/biblio/1821051 |
PQID | 2579073625 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1821051 proquest_miscellaneous_2561925228 proquest_journals_2579073625 crossref_citationtrail_10_1002_adma_202103095 crossref_primary_10_1002_adma_202103095 wiley_primary_10_1002_adma_202103095_ADMA202103095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2017; 7 2019; 9 2017; 1 2013; 3 2013; 25 2015; 18 2020; 20 2019; 53 2019; 31 2019; 56 2020; 59 2019; 245 2020; 13 2020; 78 1999; 2 2008; 3 2020; 11 2015; 8 2011; 6 2012; 12 2016; 11 2017; 31 2018; 9 2018; 3 2014; 5 2016; 1 2014; 4 2006; 88 2007; 154 2019; 48 2010; 157 1996; 62 2018; 30 2014; 9 2008; 451 2014; 31 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 56 start-page: 875 year: 2019 publication-title: Nano Energy – volume: 31 start-page: 113 year: 2017 publication-title: Nano Energy – volume: 62 start-page: 33 year: 1996 publication-title: Appl. Phys. A – volume: 25 start-page: 4966 year: 2013 publication-title: Adv. Mater. – volume: 5 start-page: 4105 year: 2014 publication-title: Nat. Commun. – volume: 11 start-page: 1474 year: 2020 publication-title: Nat. Commun. – volume: 31 start-page: 317 year: 2014 publication-title: Part. Part. Syst. Charact. – volume: 48 start-page: 285 year: 2019 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 372 year: 2011 publication-title: Nanoscale Res. Lett. – volume: 4 start-page: 3863 year: 2014 publication-title: Sci. Rep. – volume: 9 start-page: 187 year: 2014 publication-title: Nat. Nanotechnol. – volume: 20 start-page: 8435 year: 2020 publication-title: Nano Lett. – volume: 8 start-page: 2371 year: 2015 publication-title: Energy Environ. Sci. – volume: 157 year: 2010 publication-title: J. Electrochem. Soc. – volume: 20 start-page: 1944 year: 2020 publication-title: Nano Lett. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 3 start-page: 31 year: 2008 publication-title: Nat. Nanotechnol. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 1 start-page: 1691 year: 2017 publication-title: Mater. Chem. Front. – volume: 12 start-page: 1392 year: 2012 publication-title: Nano Lett. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 154 start-page: A103 year: 2007 publication-title: J. Electrochem. Soc. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 start-page: 295 year: 2013 publication-title: Adv. Energy Mater. – volume: 3 start-page: 267 year: 2018 publication-title: Nat. Energy – volume: 18 start-page: 252 year: 2015 publication-title: Mater. Today – volume: 59 start-page: 110 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 245 start-page: 478 year: 2019 publication-title: Fuel – volume: 1 start-page: 47 year: 2017 publication-title: Joule – volume: 9 start-page: 479 year: 2018 publication-title: Nat. Commun. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 11 start-page: 1031 year: 2016 publication-title: Nat. Nanotechnol. – volume: 88 year: 2006 publication-title: Appl. Phys. Lett. – volume: 2 start-page: 547 year: 1999 publication-title: Electrochem. Solid‐State Lett. – volume: 53 start-page: 947 year: 2019 publication-title: Semiconductors – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 13 start-page: 1212 year: 2020 publication-title: Energy Environ. Sci. – ident: e_1_2_8_33_1 doi: 10.1007/BF01568084 – ident: e_1_2_8_7_1 doi: 10.1002/ppsc.201300231 – ident: e_1_2_8_11_1 doi: 10.1149/1.3474225 – ident: e_1_2_8_12_1 doi: 10.1002/adma.201301795 – ident: e_1_2_8_21_1 doi: 10.1038/nenergy.2016.71 – ident: e_1_2_8_15_1 doi: 10.1039/C6QM00302H – ident: e_1_2_8_22_1 doi: 10.1039/C5EE01363A – ident: e_1_2_8_37_1 doi: 10.1021/nl204063u – ident: e_1_2_8_38_1 doi: 10.1038/srep03863 – ident: e_1_2_8_40_1 doi: 10.1016/j.nanoen.2018.11.092 – ident: e_1_2_8_14_1 doi: 10.1002/anie.201902085 – ident: e_1_2_8_19_1 doi: 10.1016/j.nanoen.2016.11.013 – ident: e_1_2_8_29_1 doi: 10.1063/1.2182018 – ident: e_1_2_8_3_1 doi: 10.1038/451652a – ident: e_1_2_8_20_1 doi: 10.1039/C9EE03857D – ident: e_1_2_8_26_1 doi: 10.1038/s41467-020-15217-9 – ident: e_1_2_8_39_1 doi: 10.1021/acs.nanolett.9b05216 – ident: e_1_2_8_25_1 doi: 10.1038/ncomms5105 – ident: e_1_2_8_23_1 doi: 10.1038/nnano.2014.6 – ident: e_1_2_8_17_1 doi: 10.1038/nnano.2016.207 – ident: e_1_2_8_8_1 doi: 10.1038/natrevmats.2016.13 – ident: e_1_2_8_28_1 doi: 10.1002/aenm.201803121 – ident: e_1_2_8_30_1 doi: 10.1134/S1063782619070236 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201800561 – ident: e_1_2_8_10_1 doi: 10.1016/j.mattod.2014.10.040 – ident: e_1_2_8_16_1 doi: 10.1002/aenm.201700715 – ident: e_1_2_8_4_1 doi: 10.1038/s41560-018-0107-2 – ident: e_1_2_8_24_1 doi: 10.1038/nenergy.2016.113 – ident: e_1_2_8_6_1 doi: 10.1038/nnano.2007.411 – ident: e_1_2_8_9_1 doi: 10.1149/1.2402112 – ident: e_1_2_8_13_1 doi: 10.1016/j.joule.2017.07.006 – ident: e_1_2_8_27_1 doi: 10.1002/aenm.201200857 – ident: e_1_2_8_35_1 doi: 10.1038/s41467-018-02824-w – ident: e_1_2_8_2_1 doi: 10.1149/1.1390899 – ident: e_1_2_8_32_1 doi: 10.1186/1556-276X-6-372 – ident: e_1_2_8_36_1 doi: 10.1002/adma.201804822 – ident: e_1_2_8_34_1 doi: 10.1016/j.nanoen.2020.105101 – ident: e_1_2_8_1_1 doi: 10.1021/acs.nanolett.0c04347 – ident: e_1_2_8_31_1 doi: 10.1016/j.fuel.2019.02.040 – ident: e_1_2_8_18_1 doi: 10.1039/C8CS00441B |
SSID | ssj0009606 |
Score | 2.6776047 |
Snippet | Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs).... Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high-energy lithium (Li)-ion batteries (LIBs).... Abstract Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2103095 |
SubjectTerms | anode materials Anodes Carbon Charge transfer Cycles Electrode materials Electrolytes High temperature Impregnation Lithium lithium‐ion batteries Nanocomposites pitch Porosity Porous silicon Sintering (powder metallurgy) |
Title | A Micrometer‐Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202103095 https://www.proquest.com/docview/2579073625 https://www.proquest.com/docview/2561925228 https://www.osti.gov/biblio/1821051 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1La9tAEMeH4lN66CstVZOGLQRyUmxLq9dR5EEouJS4gdyW2YeKqbMqsQ1NTv0I_Yz9JJ2RLMUulEJ7ERZeGWk9M_ub1ex_AQ4tDVmprTB0JraUoCRRiM64MBthjCM5zjHlxcmTD-nFlXx_nVxvrOJv9SH6CTf2jCZes4OjXgwfREPRNrpBEe-TVfAqcy7YYiq6fNCPYjxvxPbiJCxSmXeqjaNouH351qg0qMm7tohzk1ubgef8KWB3y229yZfj1VIfm_vf1Bz_55mewZM1lYqyNaPn8Mj5F_B4Q6twF76VYtIU73H9zM_vP6aze2fFdDYnU_LDE7zVtRccXbgKzInS19aJ6Z0nwFw0TfWd4BkM97mdfxR1JXg7r3ruVjfi44ysR8y8oGhfU0pQrxbdb7-Eq_OzTycX4XrbhtBIgpEQbVVgnBXOEOxYh0g5cJUkGcrIZHZcxVJLnRQOHeFKbomJpDGELal1dMjz-BUMfO3daxB5lejMEGRhqmVFNIpJZPJxhQYjHn4DCLu_TZm1pjlvrTFXrRpzpLhHVd-jARz17b-2ah5_bLnHVqCIQ1hM13DVkVkqysYISMcB7HfGodY-v1AU_AoKmJRQBvCu_5q8lV_BoHfUc9SGE1Zi3jyAqLGEv9yHKk8nZX_25l8u2oMd_txWIO7DYHm7cm-JpJb6oPGWX7hHFqk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6V9AAcym-F20IXCcTJTbJe_x04WA1VSpsKkVbqbVnvrlFEaldNIkhPPAKvwqvwCDwJM3bsNkgICakHLpGcrC1nd2a-b9bjbwBeGISswGTKtdozmKD43FVWWzfsKE91RDdSAb2cPDgK-ifi7al_ugLf63dhKn2IZsONPKOM1-TgtCHdvlINVaYUDuLUKCuu6yoP7PwzZm2T1_s9XOKXnO-9Od7tu4vGAq4WCJeuMlmsvDC2GuHYWKUwS8t8P1SC69B0M0-kIvVjqywCamQQtYXWCKyBsfgRRR5e9xasUhtxkuvvvb9SrKKEoJT383w3DkRU60R2eHv5fpdwsFWgPy9x3OtMuYS6vXvwo56kqsLl085smu7oy9_0I_-rWbwPawvizZLKUx7Ais0fwt1rcoyP4EvCBmV9IpUI_fz6bTi6tIYNR2P0lry9qy7SImcUQKnQzbIkL4xlw3mOHHpSDk3njDZp7Mdqi5UVGaOOZcXYzs7YuxE6CBvlDAGtwKynmE3qaz-Gkxv56-vQyovcPgEWZX4aauSRKkhFhoRb-VxH3UxpxYlhOODWdiL1QraduoeMZSU4zSWtoGxW0IFXzfjzSrDkjyM3yewkUi3SC9ZUWKWnEhNO5NxdB7Zqa5SLsDaRGN9jxATMmR143vyMAYmeMqnc4szhGMrJkdZHDvDS9P5yHzLpDZLmaONfTtqG2_3jwaE83D862IQ79H1VcLkFrenFzD5F4jhNn5WuyuDDTVv1L7OcdME |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VICE4tPxVuC2wSCBObpL1-u_AwWqIWkqqilCpt2W9u0YRqV01iUp64hF4lL4Kr8CTMGPHboOEkJB64BLJydpydmfm-2Y9_gbgpUHICkymXKs9gwmKz11ltXXDjvJUR3QjFdDLyYODYPdIvDv2j1fgsn4XptKHaDbcyDPKeE0Ofmqy9pVoqDKlbhCnPllxXVa5b-fnmLRN3uz1cIVfcd5_-3Fn1130FXC1QLR0lcli5YWx1YjGxiqFSVrm-6ESXIemm3kiFakfW2URTyODoC20RlwNjMWPKPLwurfgtgg6MTWL6H24EqyifKBU9_N8Nw5EVMtEdnh7-X6XYLBVoDsvUdzrRLlEuv4a_KjnqCpw-bI9m6bb-uI3-cj_aRLvw-qCdrOk8pMHsGLzh3DvmhjjI_iasEFZnUgFQj-_fR-OLqxhw9EYfSVv76iztMgZhU8qc7MsyQtj2XCeI4OelEPTOaMtGvu52mBlRcaoX1kxtrMTdjhC92CjnCGcFZjzFLNJfe3HcHQjf30dWnmR2yfAosxPQ40sUgWpyJBuK5_rqJsprTjxCwfc2kykXoi2U--QsazkprmkFZTNCjrwuhl_WsmV_HHkJlmdRKJFasGayqr0VGK6iYy768BWbYxyEdQmEqN7jIiAGbMDL5qfMRzRMyaVW5w5HEMZOZL6yAFeWt5f7kMmvUHSHG38y0nP4c5hry_f7x3sb8Jd-rqqttyC1vRsZp8ia5ymz0pHZfDppo36F8bXc3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Micrometer-Sized+Silicon%2FCarbon+Composite+Anode+Synthesized+by+Impregnation+of+Petroleum+Pitch+in+Nanoporous+Silicon&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chae%2C+Sujong&rft.au=Xu%2C+Yaobin&rft.au=Yi%2C+Ran&rft.au=Lim%2C+Hyung-Seok&rft.date=2021-10-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=40&rft.spage=e2103095&rft_id=info:doi/10.1002%2Fadma.202103095&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |