A Micrometer‐Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon

Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporou...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 40; pp. e2103095 - n/a
Main Authors Chae, Sujong, Xu, Yaobin, Yi, Ran, Lim, Hyung‐Seok, Velickovic, Dusan, Li, Xiaolin, Li, Qiuyan, Wang, Chongmin, Zhang, Ji‐Guang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.10.2021
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high‐temperature treatment. The resulting micrometer‐sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si‐based anode with 80% of pitch‐derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high‐energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures. A micrometer‐sized silicon/carbon composite anode developed by facile and scalable impregnation of petroleum pitch that stabilizes nanoporous Si against sintering at high temperature is reported. The composite anode including single nanometer‐sized primary particles shielded by pitch‐derived carbon exhibits outstanding battery performance such as 80% capacity retention after 450 cycles in the full cell system.
AbstractList Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high-energy lithium (Li)-ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high-temperature treatment. The resulting micrometer-sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si-based anode with 80% of pitch-derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high-energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures.Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high-energy lithium (Li)-ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high-temperature treatment. The resulting micrometer-sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si-based anode with 80% of pitch-derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high-energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures.
Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high‐temperature treatment. The resulting micrometer‐sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si‐based anode with 80% of pitch‐derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high‐energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures.
Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high‐temperature treatment. The resulting micrometer‐sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si‐based anode with 80% of pitch‐derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O 2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high‐energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures.
Abstract Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high‐temperature treatment. The resulting micrometer‐sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si‐based anode with 80% of pitch‐derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O 2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high‐energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures.
Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs). However, shrinking of the pores and sintering of Si in the nanoporous structure during fabrication often diminishes the full benefits of nanoporous Si. Herein, a scalable method is reported to preserve the porous Si nanostructure by impregnating petroleum pitch inside of porous Si before high‐temperature treatment. The resulting micrometer‐sized Si/C composite maintains a desired porosity to accommodate large volume change and high conductivity to facilitate charge transfer. It also forms a stable surface coating that limits the penetration of electrolyte into nanoporous Si and minimizes the side reaction between electrolyte and Si during cycling and storage. A Si‐based anode with 80% of pitch‐derived carbon/nanoporous Si enables very stable cycling of a Si||Li(Ni0.5Co0.2Mn0.3)O2 (NMC532) battery (80% capacity retention after 450 cycles). It also leads to low swelling in both particle and electrode levels required for the next generation of high‐energy LIBs. The process also can be used to preserve the porous structure of other nanoporous materials that need to be treated at high temperatures. A micrometer‐sized silicon/carbon composite anode developed by facile and scalable impregnation of petroleum pitch that stabilizes nanoporous Si against sintering at high temperature is reported. The composite anode including single nanometer‐sized primary particles shielded by pitch‐derived carbon exhibits outstanding battery performance such as 80% capacity retention after 450 cycles in the full cell system.
Author Lim, Hyung‐Seok
Zhang, Ji‐Guang
Chae, Sujong
Yi, Ran
Li, Xiaolin
Xu, Yaobin
Velickovic, Dusan
Li, Qiuyan
Wang, Chongmin
Author_xml – sequence: 1
  givenname: Sujong
  orcidid: 0000-0001-6793-0817
  surname: Chae
  fullname: Chae, Sujong
  organization: Pukyong National University
– sequence: 2
  givenname: Yaobin
  surname: Xu
  fullname: Xu, Yaobin
  organization: Pacific Northwest National Laboratory
– sequence: 3
  givenname: Ran
  surname: Yi
  fullname: Yi, Ran
  email: ran.yi@pnnl.gov
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Hyung‐Seok
  surname: Lim
  fullname: Lim, Hyung‐Seok
  organization: Pacific Northwest National Laboratory
– sequence: 5
  givenname: Dusan
  surname: Velickovic
  fullname: Velickovic, Dusan
  organization: Pacific Northwest National Laboratory
– sequence: 6
  givenname: Xiaolin
  surname: Li
  fullname: Li, Xiaolin
  organization: Pacific Northwest National Laboratory
– sequence: 7
  givenname: Qiuyan
  surname: Li
  fullname: Li, Qiuyan
  organization: Pacific Northwest National Laboratory
– sequence: 8
  givenname: Chongmin
  surname: Wang
  fullname: Wang, Chongmin
  organization: Pacific Northwest National Laboratory
– sequence: 9
  givenname: Ji‐Guang
  orcidid: 0000-0001-7343-4609
  surname: Zhang
  fullname: Zhang, Ji‐Guang
  email: jiguang.zhang@pnnl.gov
  organization: Pacific Northwest National Laboratory
BackLink https://www.osti.gov/biblio/1821051$$D View this record in Osti.gov
BookMark eNqFkcFu1DAURa2qSEwLW9ZW2bDJ1HbsJF5GQ4FKLVSasrY8zkvHVWIH26N2WPEJfCNfgqcDVKqEurG9OPc-v3uP0KHzDhB6Q8mcEsJOdTfqOSOMkpJIcYBmVDBa8Pw-RDMiS1HIijcv0VGMt4QQWZFqhu5bfGlN8CMkCL9-_Fza79DhpR2s8e50ocPKO7zw4-SjTYBb5zvAy61La4gP6GqLz8cpwI3TyWbW9_gKUvADbEZ8ZZNZY-vwZ-385IPfxL_er9CLXg8RXv-5j9HXD2fXi0_FxZeP54v2ojCc1qLQXS91WUswvJQdaN2UdS9ErTkzdUf7kq_4SkjQQGrRdKTi3BgiadVBPpqmPEYne18fk1XR5C3MOs93YJKiTU5L0Ay920NT8N82EJMabTQwDNpB_rNioqKSCcZ2fm-foLd-E1xeIVO1JHVZMZEpvqdytDEG6FUe_BBQCtoOihK160ztOlP_Osuy-RPZFOyow_b_ArkX3NkBts_Qqn1_2T5qfwMW2K0c
CitedBy_id crossref_primary_10_1016_j_jechem_2023_04_004
crossref_primary_10_1007_s10008_024_05967_7
crossref_primary_10_1007_s12598_024_02872_w
crossref_primary_10_1007_s12598_023_02395_w
crossref_primary_10_1016_j_cej_2024_153055
crossref_primary_10_1021_acsami_2c15452
crossref_primary_10_1007_s41918_024_00214_z
crossref_primary_10_1016_j_est_2025_115838
crossref_primary_10_1016_j_ensm_2023_102996
crossref_primary_10_1021_acsaem_3c00534
crossref_primary_10_1016_j_cej_2025_160149
crossref_primary_10_1016_j_ensm_2022_12_045
crossref_primary_10_1016_j_fuel_2024_131325
crossref_primary_10_1002_cssc_202401459
crossref_primary_10_1002_anie_202300384
crossref_primary_10_1021_acsaem_2c01655
crossref_primary_10_1039_D2CC06351D
crossref_primary_10_1021_acsnano_1c08866
crossref_primary_10_1016_j_jallcom_2023_169846
crossref_primary_10_1039_D4EE05595K
crossref_primary_10_1021_acs_nanolett_4c00469
crossref_primary_10_1002_smll_202405005
crossref_primary_10_1002_bte2_20230068
crossref_primary_10_1002_smll_202407016
crossref_primary_10_1021_acsami_2c21866
crossref_primary_10_1016_j_jallcom_2023_169681
crossref_primary_10_1002_adfm_202403032
crossref_primary_10_1007_s12274_023_6239_4
crossref_primary_10_1016_j_conbuildmat_2024_138232
crossref_primary_10_1039_D4YA00174E
crossref_primary_10_1002_smll_202203102
crossref_primary_10_1016_j_mseb_2023_116676
crossref_primary_10_1002_eem2_12482
crossref_primary_10_1088_1742_6596_2300_1_012005
crossref_primary_10_1002_advs_202104685
crossref_primary_10_1002_advs_202405116
crossref_primary_10_1016_j_carbon_2024_119389
crossref_primary_10_1021_acsaem_3c01531
crossref_primary_10_1016_j_cej_2024_151488
crossref_primary_10_1016_j_matchemphys_2022_126721
crossref_primary_10_54097_nsc8hh62
crossref_primary_10_1007_s12598_024_02793_8
crossref_primary_10_1021_acsami_4c14767
crossref_primary_10_1021_acsnano_1c11098
crossref_primary_10_1016_j_jelechem_2023_117530
crossref_primary_10_1002_cey2_377
crossref_primary_10_1021_acsanm_3c00911
crossref_primary_10_3103_S0003701X23601801
crossref_primary_10_1016_j_electacta_2021_139671
crossref_primary_10_1021_acsapm_2c02204
crossref_primary_10_1063_5_0102083
crossref_primary_10_1007_s42823_024_00779_1
crossref_primary_10_1016_j_flatc_2025_100833
crossref_primary_10_1016_j_apsusc_2022_154627
crossref_primary_10_1016_j_jiec_2024_01_001
crossref_primary_10_1016_j_mtcomm_2024_110846
crossref_primary_10_1021_acsami_4c03759
crossref_primary_10_1016_j_apsusc_2023_159255
crossref_primary_10_1016_j_cej_2024_158032
crossref_primary_10_1016_j_jallcom_2022_165364
crossref_primary_10_1016_j_jallcom_2022_167785
crossref_primary_10_1021_acsami_1c17841
crossref_primary_10_15541_jim20240036
crossref_primary_10_1002_advs_202407540
crossref_primary_10_1016_j_cej_2024_151012
crossref_primary_10_1016_j_mtener_2022_101090
crossref_primary_10_1038_s41560_023_01221_y
crossref_primary_10_3390_ma15124264
crossref_primary_10_1016_j_jpcs_2022_111019
crossref_primary_10_1016_j_apsusc_2024_162031
crossref_primary_10_1016_j_est_2024_113794
crossref_primary_10_1016_j_jallcom_2023_170200
crossref_primary_10_1016_S1872_5805_24_60850_4
crossref_primary_10_1016_j_jallcom_2024_177777
crossref_primary_10_1021_acsanm_2c03196
crossref_primary_10_2139_ssrn_4090248
crossref_primary_10_1002_adma_202212157
crossref_primary_10_1002_adma_202304803
crossref_primary_10_1039_D2RA06977F
crossref_primary_10_1016_j_cej_2024_149428
crossref_primary_10_1002_adfm_202211648
crossref_primary_10_1002_adma_202209652
crossref_primary_10_1016_j_mser_2025_100954
crossref_primary_10_1016_j_jpowsour_2022_231591
crossref_primary_10_1002_smll_202406489
crossref_primary_10_1016_j_electacta_2024_145468
crossref_primary_10_1021_acssuschemeng_4c05808
crossref_primary_10_1021_jacs_4c09824
crossref_primary_10_1007_s11581_023_05052_5
crossref_primary_10_1007_s12274_022_4275_9
crossref_primary_10_1016_j_jpowsour_2023_233245
crossref_primary_10_1002_adfm_202208586
crossref_primary_10_1016_j_carbon_2024_119615
crossref_primary_10_1021_acsenergylett_2c00099
crossref_primary_10_3390_batteries9030148
crossref_primary_10_1016_j_electacta_2023_141950
crossref_primary_10_1021_acssuschemeng_2c04123
crossref_primary_10_1039_D1TA09862D
crossref_primary_10_1016_j_ceramint_2022_10_311
crossref_primary_10_1016_j_jallcom_2024_173507
crossref_primary_10_1016_j_cej_2024_151110
crossref_primary_10_1021_acs_nanolett_4c04106
crossref_primary_10_1007_s11581_024_05485_6
crossref_primary_10_1016_j_carbon_2022_10_010
crossref_primary_10_1016_j_est_2023_108484
crossref_primary_10_1016_j_jallcom_2024_174722
crossref_primary_10_1016_j_apsusc_2024_160076
crossref_primary_10_1016_j_ensm_2023_01_048
crossref_primary_10_1002_ange_202300384
crossref_primary_10_1007_s11814_022_1227_8
crossref_primary_10_1016_j_jechem_2022_09_020
crossref_primary_10_1039_D1CC05657C
crossref_primary_10_1016_j_est_2023_108715
crossref_primary_10_1007_s11581_022_04655_8
crossref_primary_10_1016_j_electacta_2024_145440
crossref_primary_10_1002_adma_202200777
crossref_primary_10_1002_adfm_202213363
crossref_primary_10_1002_adma_202200894
crossref_primary_10_1002_smll_202311779
crossref_primary_10_1002_advs_202403530
crossref_primary_10_1007_s12274_022_4526_9
crossref_primary_10_1021_acsami_2c07606
crossref_primary_10_1016_j_ensm_2023_102857
crossref_primary_10_1016_j_cej_2025_160846
crossref_primary_10_1021_acsnano_2c12869
crossref_primary_10_1016_j_est_2023_107582
crossref_primary_10_1016_j_mtnano_2023_100321
crossref_primary_10_3390_coatings13020436
crossref_primary_10_1016_j_jcis_2024_03_053
crossref_primary_10_1007_s11581_023_05189_3
crossref_primary_10_1021_acs_energyfuels_2c03702
crossref_primary_10_1002_adfm_202314176
crossref_primary_10_1016_j_carbon_2024_119074
crossref_primary_10_1016_j_carbon_2024_119195
crossref_primary_10_3390_nano14010018
crossref_primary_10_15541_jim20210739
crossref_primary_10_1002_batt_202300186
crossref_primary_10_1016_j_est_2023_110183
crossref_primary_10_1016_j_jallcom_2024_173930
crossref_primary_10_1016_j_carbon_2025_120240
crossref_primary_10_3390_molecules27103241
crossref_primary_10_1002_adfm_202408145
crossref_primary_10_1016_S1872_5805_24_60871_1
crossref_primary_10_1002_adma_202109658
crossref_primary_10_1002_smll_202303864
crossref_primary_10_1007_s10854_024_12237_9
Cites_doi 10.1007/BF01568084
10.1002/ppsc.201300231
10.1149/1.3474225
10.1002/adma.201301795
10.1038/nenergy.2016.71
10.1039/C6QM00302H
10.1039/C5EE01363A
10.1021/nl204063u
10.1038/srep03863
10.1016/j.nanoen.2018.11.092
10.1002/anie.201902085
10.1016/j.nanoen.2016.11.013
10.1063/1.2182018
10.1038/451652a
10.1039/C9EE03857D
10.1038/s41467-020-15217-9
10.1021/acs.nanolett.9b05216
10.1038/ncomms5105
10.1038/nnano.2014.6
10.1038/nnano.2016.207
10.1038/natrevmats.2016.13
10.1002/aenm.201803121
10.1134/S1063782619070236
10.1002/adma.201800561
10.1016/j.mattod.2014.10.040
10.1002/aenm.201700715
10.1038/s41560-018-0107-2
10.1038/nenergy.2016.113
10.1038/nnano.2007.411
10.1149/1.2402112
10.1016/j.joule.2017.07.006
10.1002/aenm.201200857
10.1038/s41467-018-02824-w
10.1149/1.1390899
10.1186/1556-276X-6-372
10.1002/adma.201804822
10.1016/j.nanoen.2020.105101
10.1021/acs.nanolett.0c04347
10.1016/j.fuel.2019.02.040
10.1039/C8CS00441B
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
OTOTI
DOI 10.1002/adma.202103095
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1821051
10_1002_adma_202103095
ADMA202103095
Genre article
GrantInformation_xml – fundername: Office of Energy Efficiency and Renewable Energy
– fundername: Vehicle Technologies Office
  funderid: DE‐AC05‐76RLO1830
– fundername: U.S. Department of Energy
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
OTOTI
ID FETCH-LOGICAL-c4175-adf9a379ec439deaa837f557a42c7d1f34b4b59eae0758d0644cc0916de916883
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Sun Jul 13 03:03:14 EDT 2025
Thu Jul 10 18:56:34 EDT 2025
Sun Jul 13 04:05:26 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
Tue Jul 01 02:33:06 EDT 2025
Wed Jan 22 16:29:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4175-adf9a379ec439deaa837f557a42c7d1f34b4b59eae0758d0644cc0916de916883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0001-7343-4609
0000-0001-6793-0817
0000000167930817
0000000173434609
OpenAccessLink https://www.osti.gov/biblio/1821051
PQID 2579073625
PQPubID 2045203
PageCount 11
ParticipantIDs osti_scitechconnect_1821051
proquest_miscellaneous_2561925228
proquest_journals_2579073625
crossref_citationtrail_10_1002_adma_202103095
crossref_primary_10_1002_adma_202103095
wiley_primary_10_1002_adma_202103095_ADMA202103095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2017; 7
2019; 9
2017; 1
2013; 3
2013; 25
2015; 18
2020; 20
2019; 53
2019; 31
2019; 56
2020; 59
2019; 245
2020; 13
2020; 78
1999; 2
2008; 3
2020; 11
2015; 8
2011; 6
2012; 12
2016; 11
2017; 31
2018; 9
2018; 3
2014; 5
2016; 1
2014; 4
2006; 88
2007; 154
2019; 48
2010; 157
1996; 62
2018; 30
2014; 9
2008; 451
2014; 31
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 56
  start-page: 875
  year: 2019
  publication-title: Nano Energy
– volume: 31
  start-page: 113
  year: 2017
  publication-title: Nano Energy
– volume: 62
  start-page: 33
  year: 1996
  publication-title: Appl. Phys. A
– volume: 25
  start-page: 4966
  year: 2013
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4105
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1474
  year: 2020
  publication-title: Nat. Commun.
– volume: 31
  start-page: 317
  year: 2014
  publication-title: Part. Part. Syst. Charact.
– volume: 48
  start-page: 285
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 372
  year: 2011
  publication-title: Nanoscale Res. Lett.
– volume: 4
  start-page: 3863
  year: 2014
  publication-title: Sci. Rep.
– volume: 9
  start-page: 187
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 20
  start-page: 8435
  year: 2020
  publication-title: Nano Lett.
– volume: 8
  start-page: 2371
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 157
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 20
  start-page: 1944
  year: 2020
  publication-title: Nano Lett.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  start-page: 31
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 1691
  year: 2017
  publication-title: Mater. Chem. Front.
– volume: 12
  start-page: 1392
  year: 2012
  publication-title: Nano Lett.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 154
  start-page: A103
  year: 2007
  publication-title: J. Electrochem. Soc.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 295
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 267
  year: 2018
  publication-title: Nat. Energy
– volume: 18
  start-page: 252
  year: 2015
  publication-title: Mater. Today
– volume: 59
  start-page: 110
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 245
  start-page: 478
  year: 2019
  publication-title: Fuel
– volume: 1
  start-page: 47
  year: 2017
  publication-title: Joule
– volume: 9
  start-page: 479
  year: 2018
  publication-title: Nat. Commun.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 11
  start-page: 1031
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 88
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 2
  start-page: 547
  year: 1999
  publication-title: Electrochem. Solid‐State Lett.
– volume: 53
  start-page: 947
  year: 2019
  publication-title: Semiconductors
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 13
  start-page: 1212
  year: 2020
  publication-title: Energy Environ. Sci.
– ident: e_1_2_8_33_1
  doi: 10.1007/BF01568084
– ident: e_1_2_8_7_1
  doi: 10.1002/ppsc.201300231
– ident: e_1_2_8_11_1
  doi: 10.1149/1.3474225
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201301795
– ident: e_1_2_8_21_1
  doi: 10.1038/nenergy.2016.71
– ident: e_1_2_8_15_1
  doi: 10.1039/C6QM00302H
– ident: e_1_2_8_22_1
  doi: 10.1039/C5EE01363A
– ident: e_1_2_8_37_1
  doi: 10.1021/nl204063u
– ident: e_1_2_8_38_1
  doi: 10.1038/srep03863
– ident: e_1_2_8_40_1
  doi: 10.1016/j.nanoen.2018.11.092
– ident: e_1_2_8_14_1
  doi: 10.1002/anie.201902085
– ident: e_1_2_8_19_1
  doi: 10.1016/j.nanoen.2016.11.013
– ident: e_1_2_8_29_1
  doi: 10.1063/1.2182018
– ident: e_1_2_8_3_1
  doi: 10.1038/451652a
– ident: e_1_2_8_20_1
  doi: 10.1039/C9EE03857D
– ident: e_1_2_8_26_1
  doi: 10.1038/s41467-020-15217-9
– ident: e_1_2_8_39_1
  doi: 10.1021/acs.nanolett.9b05216
– ident: e_1_2_8_25_1
  doi: 10.1038/ncomms5105
– ident: e_1_2_8_23_1
  doi: 10.1038/nnano.2014.6
– ident: e_1_2_8_17_1
  doi: 10.1038/nnano.2016.207
– ident: e_1_2_8_8_1
  doi: 10.1038/natrevmats.2016.13
– ident: e_1_2_8_28_1
  doi: 10.1002/aenm.201803121
– ident: e_1_2_8_30_1
  doi: 10.1134/S1063782619070236
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201800561
– ident: e_1_2_8_10_1
  doi: 10.1016/j.mattod.2014.10.040
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.201700715
– ident: e_1_2_8_4_1
  doi: 10.1038/s41560-018-0107-2
– ident: e_1_2_8_24_1
  doi: 10.1038/nenergy.2016.113
– ident: e_1_2_8_6_1
  doi: 10.1038/nnano.2007.411
– ident: e_1_2_8_9_1
  doi: 10.1149/1.2402112
– ident: e_1_2_8_13_1
  doi: 10.1016/j.joule.2017.07.006
– ident: e_1_2_8_27_1
  doi: 10.1002/aenm.201200857
– ident: e_1_2_8_35_1
  doi: 10.1038/s41467-018-02824-w
– ident: e_1_2_8_2_1
  doi: 10.1149/1.1390899
– ident: e_1_2_8_32_1
  doi: 10.1186/1556-276X-6-372
– ident: e_1_2_8_36_1
  doi: 10.1002/adma.201804822
– ident: e_1_2_8_34_1
  doi: 10.1016/j.nanoen.2020.105101
– ident: e_1_2_8_1_1
  doi: 10.1021/acs.nanolett.0c04347
– ident: e_1_2_8_31_1
  doi: 10.1016/j.fuel.2019.02.040
– ident: e_1_2_8_18_1
  doi: 10.1039/C8CS00441B
SSID ssj0009606
Score 2.6776047
Snippet Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries (LIBs)....
Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high-energy lithium (Li)-ion batteries (LIBs)....
Abstract Porous silicon (Si)/carbon nanocomposites have been extensively explored as a promising anode material for high‐energy lithium (Li)‐ion batteries...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2103095
SubjectTerms anode materials
Anodes
Carbon
Charge transfer
Cycles
Electrode materials
Electrolytes
High temperature
Impregnation
Lithium
lithium‐ion batteries
Nanocomposites
pitch
Porosity
Porous silicon
Sintering (powder metallurgy)
Title A Micrometer‐Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202103095
https://www.proquest.com/docview/2579073625
https://www.proquest.com/docview/2561925228
https://www.osti.gov/biblio/1821051
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1La9tAEMeH4lN66CstVZOGLQRyUmxLq9dR5EEouJS4gdyW2YeKqbMqsQ1NTv0I_Yz9JJ2RLMUulEJ7ERZeGWk9M_ub1ex_AQ4tDVmprTB0JraUoCRRiM64MBthjCM5zjHlxcmTD-nFlXx_nVxvrOJv9SH6CTf2jCZes4OjXgwfREPRNrpBEe-TVfAqcy7YYiq6fNCPYjxvxPbiJCxSmXeqjaNouH351qg0qMm7tohzk1ubgef8KWB3y229yZfj1VIfm_vf1Bz_55mewZM1lYqyNaPn8Mj5F_B4Q6twF76VYtIU73H9zM_vP6aze2fFdDYnU_LDE7zVtRccXbgKzInS19aJ6Z0nwFw0TfWd4BkM97mdfxR1JXg7r3ruVjfi44ysR8y8oGhfU0pQrxbdb7-Eq_OzTycX4XrbhtBIgpEQbVVgnBXOEOxYh0g5cJUkGcrIZHZcxVJLnRQOHeFKbomJpDGELal1dMjz-BUMfO3daxB5lejMEGRhqmVFNIpJZPJxhQYjHn4DCLu_TZm1pjlvrTFXrRpzpLhHVd-jARz17b-2ah5_bLnHVqCIQ1hM13DVkVkqysYISMcB7HfGodY-v1AU_AoKmJRQBvCu_5q8lV_BoHfUc9SGE1Zi3jyAqLGEv9yHKk8nZX_25l8u2oMd_txWIO7DYHm7cm-JpJb6oPGWX7hHFqk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6V9AAcym-F20IXCcTJTbJe_x04WA1VSpsKkVbqbVnvrlFEaldNIkhPPAKvwqvwCDwJM3bsNkgICakHLpGcrC1nd2a-b9bjbwBeGISswGTKtdozmKD43FVWWzfsKE91RDdSAb2cPDgK-ifi7al_ugLf63dhKn2IZsONPKOM1-TgtCHdvlINVaYUDuLUKCuu6yoP7PwzZm2T1_s9XOKXnO-9Od7tu4vGAq4WCJeuMlmsvDC2GuHYWKUwS8t8P1SC69B0M0-kIvVjqywCamQQtYXWCKyBsfgRRR5e9xasUhtxkuvvvb9SrKKEoJT383w3DkRU60R2eHv5fpdwsFWgPy9x3OtMuYS6vXvwo56kqsLl085smu7oy9_0I_-rWbwPawvizZLKUx7Ais0fwt1rcoyP4EvCBmV9IpUI_fz6bTi6tIYNR2P0lry9qy7SImcUQKnQzbIkL4xlw3mOHHpSDk3njDZp7Mdqi5UVGaOOZcXYzs7YuxE6CBvlDAGtwKynmE3qaz-Gkxv56-vQyovcPgEWZX4aauSRKkhFhoRb-VxH3UxpxYlhOODWdiL1QraduoeMZSU4zSWtoGxW0IFXzfjzSrDkjyM3yewkUi3SC9ZUWKWnEhNO5NxdB7Zqa5SLsDaRGN9jxATMmR143vyMAYmeMqnc4szhGMrJkdZHDvDS9P5yHzLpDZLmaONfTtqG2_3jwaE83D862IQ79H1VcLkFrenFzD5F4jhNn5WuyuDDTVv1L7OcdME
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VICE4tPxVuC2wSCBObpL1-u_AwWqIWkqqilCpt2W9u0YRqV01iUp64hF4lL4Kr8CTMGPHboOEkJB64BLJydpydmfm-2Y9_gbgpUHICkymXKs9gwmKz11ltXXDjvJUR3QjFdDLyYODYPdIvDv2j1fgsn4XptKHaDbcyDPKeE0Ofmqy9pVoqDKlbhCnPllxXVa5b-fnmLRN3uz1cIVfcd5_-3Fn1130FXC1QLR0lcli5YWx1YjGxiqFSVrm-6ESXIemm3kiFakfW2URTyODoC20RlwNjMWPKPLwurfgtgg6MTWL6H24EqyifKBU9_N8Nw5EVMtEdnh7-X6XYLBVoDsvUdzrRLlEuv4a_KjnqCpw-bI9m6bb-uI3-cj_aRLvw-qCdrOk8pMHsGLzh3DvmhjjI_iasEFZnUgFQj-_fR-OLqxhw9EYfSVv76iztMgZhU8qc7MsyQtj2XCeI4OelEPTOaMtGvu52mBlRcaoX1kxtrMTdjhC92CjnCGcFZjzFLNJfe3HcHQjf30dWnmR2yfAosxPQ40sUgWpyJBuK5_rqJsprTjxCwfc2kykXoi2U--QsazkprmkFZTNCjrwuhl_WsmV_HHkJlmdRKJFasGayqr0VGK6iYy768BWbYxyEdQmEqN7jIiAGbMDL5qfMRzRMyaVW5w5HEMZOZL6yAFeWt5f7kMmvUHSHG38y0nP4c5hry_f7x3sb8Jd-rqqttyC1vRsZp8ia5ymz0pHZfDppo36F8bXc3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Micrometer-Sized+Silicon%2FCarbon+Composite+Anode+Synthesized+by+Impregnation+of+Petroleum+Pitch+in+Nanoporous+Silicon&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chae%2C+Sujong&rft.au=Xu%2C+Yaobin&rft.au=Yi%2C+Ran&rft.au=Lim%2C+Hyung-Seok&rft.date=2021-10-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=40&rft.spage=e2103095&rft_id=info:doi/10.1002%2Fadma.202103095&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon