Integrated Soft Porosity and Electrical Properties of Conductive‐on‐Insulating Metal‐Organic Framework Nanocrystals

A one‐stone, two‐bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive‐on‐insulating MOF (cMOF‐on‐iMOF) heterostructures that allow for direct electrical control. Herein, we report the...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 35; pp. e202303903 - n/a
Main Authors Yao, Ming‐Shui, Otake, Ken‐ichi, Zheng, Jiajia, Tsujimoto, Masahiko, Gu, Yi‐Fan, Zheng, Lu, Wang, Ping, Mohana, Shivanna, Bonneau, Mickaele, Koganezawa, Tomoyuki, Honma, Tetsuo, Ashitani, Hirotaka, Kawaguchi, Shogo, Kubota, Yoshiki, Kitagawa, Susumu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 28.08.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A one‐stone, two‐bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive‐on‐insulating MOF (cMOF‐on‐iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF‐on‐iMOF heterostructures using a seeded layer‐by‐layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF‐on‐iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S CO2/H2 ${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}$ from 15.4 of ZIF‐7 to 43.2–152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF‐on‐iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical “shape memory” toward acetone and CO2. This behavior was observed through the guest‐induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide‐angle X‐ray scattering measurements. Owing to the integration of soft porosity and electrical properties, conductive‐on‐insulating metal–organic framework (cMOF‐on‐iMOF) heterostructured nanocrystals (with the semiconductive soft porous interfaces) show enhanced selective sorption toward CO2, electrical gating, and “shape memory” effects for the guest responsive iMOF core, as revealed by operando synchrotron measurements.
AbstractList A one‐stone, two‐bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive‐on‐insulating MOF (cMOF‐on‐iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF‐on‐iMOF heterostructures using a seeded layer‐by‐layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF‐on‐iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, SCO2/H2${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}$from 15.4 of ZIF‐7 to 43.2–152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF‐on‐iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical “shape memory” toward acetone and CO2. This behavior was observed through the guest‐induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide‐angle X‐ray scattering measurements.
A one‐stone, two‐bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive‐on‐insulating MOF (cMOF‐on‐iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF‐on‐iMOF heterostructures using a seeded layer‐by‐layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF‐on‐iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S CO2/H2 ${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}$ from 15.4 of ZIF‐7 to 43.2–152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF‐on‐iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical “shape memory” toward acetone and CO2. This behavior was observed through the guest‐induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide‐angle X‐ray scattering measurements. Owing to the integration of soft porosity and electrical properties, conductive‐on‐insulating metal–organic framework (cMOF‐on‐iMOF) heterostructured nanocrystals (with the semiconductive soft porous interfaces) show enhanced selective sorption toward CO2, electrical gating, and “shape memory” effects for the guest responsive iMOF core, as revealed by operando synchrotron measurements.
A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal-organic frameworks (MOFs) into a single material involves the design of conductive-on-insulating MOF (cMOF-on-iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF-on-iMOF heterostructures using a seeded layer-by-layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF-on-iMOF heterostructures exhibit enhanced selective sorption of CO compared to the pristine iMOF (298 K, 1 bar, S from 15.4 of ZIF-7 to 43.2-152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF-on-iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical "shape memory" toward acetone and CO . This behavior was observed through the guest-induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide-angle X-ray scattering measurements.
A one‐stone, two‐bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive‐on‐insulating MOF ( c MOF‐on‐ i MOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of c MOF‐on‐ i MOF heterostructures using a seeded layer‐by‐layer method, in which the sorptive i MOF core is combined with chemiresistive c MOF shells. The resulting c MOF‐on‐ i MOF heterostructures exhibit enhanced selective sorption of CO 2 compared to the pristine i MOF (298 K, 1 bar, S from 15.4 of ZIF‐7 to 43.2–152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the i MOF core, the c MOF‐on‐ i MOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical “shape memory” toward acetone and CO 2 . This behavior was observed through the guest‐induced structural changes of the i MOF core, as revealed by the operando synchrotron grazing incidence wide‐angle X‐ray scattering measurements.
A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal-organic frameworks (MOFs) into a single material involves the design of conductive-on-insulating MOF (cMOF-on-iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF-on-iMOF heterostructures using a seeded layer-by-layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF-on-iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S CO 2 / H 2 ${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}$ from 15.4 of ZIF-7 to 43.2-152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF-on-iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical "shape memory" toward acetone and CO2 . This behavior was observed through the guest-induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide-angle X-ray scattering measurements.A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal-organic frameworks (MOFs) into a single material involves the design of conductive-on-insulating MOF (cMOF-on-iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF-on-iMOF heterostructures using a seeded layer-by-layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF-on-iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S CO 2 / H 2 ${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}$ from 15.4 of ZIF-7 to 43.2-152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF-on-iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical "shape memory" toward acetone and CO2 . This behavior was observed through the guest-induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide-angle X-ray scattering measurements.
Author Zheng, Jiajia
Kawaguchi, Shogo
Tsujimoto, Masahiko
Otake, Ken‐ichi
Honma, Tetsuo
Mohana, Shivanna
Wang, Ping
Gu, Yi‐Fan
Kubota, Yoshiki
Koganezawa, Tomoyuki
Yao, Ming‐Shui
Kitagawa, Susumu
Ashitani, Hirotaka
Bonneau, Mickaele
Zheng, Lu
Author_xml – sequence: 1
  givenname: Ming‐Shui
  orcidid: 0000-0003-1604-2611
  surname: Yao
  fullname: Yao, Ming‐Shui
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Ken‐ichi
  orcidid: 0000-0002-7904-5003
  surname: Otake
  fullname: Otake, Ken‐ichi
  email: otake.kenichi.8a@kyoto-u.ac.jp
  organization: Kyoto University
– sequence: 3
  givenname: Jiajia
  orcidid: 0000-0002-6040-6219
  surname: Zheng
  fullname: Zheng, Jiajia
  organization: Kyoto University
– sequence: 4
  givenname: Masahiko
  orcidid: 0000-0003-4052-3378
  surname: Tsujimoto
  fullname: Tsujimoto, Masahiko
  organization: Kyoto University
– sequence: 5
  givenname: Yi‐Fan
  orcidid: 0000-0001-7648-306X
  surname: Gu
  fullname: Gu, Yi‐Fan
  organization: Tongji University
– sequence: 6
  givenname: Lu
  surname: Zheng
  fullname: Zheng, Lu
  organization: Tongji University
– sequence: 7
  givenname: Ping
  orcidid: 0000-0002-8464-7092
  surname: Wang
  fullname: Wang, Ping
  organization: Kyoto University
– sequence: 8
  givenname: Shivanna
  surname: Mohana
  fullname: Mohana, Shivanna
  organization: Kyoto University
– sequence: 9
  givenname: Mickaele
  surname: Bonneau
  fullname: Bonneau, Mickaele
  organization: Kyoto University
– sequence: 10
  givenname: Tomoyuki
  orcidid: 0000-0002-9302-5025
  surname: Koganezawa
  fullname: Koganezawa, Tomoyuki
  organization: Japan Synchrotron Radiation Research Institute (JASRI)
– sequence: 11
  givenname: Tetsuo
  surname: Honma
  fullname: Honma, Tetsuo
  organization: Japan Synchrotron Radiation Research Institute (JASRI)
– sequence: 12
  givenname: Hirotaka
  surname: Ashitani
  fullname: Ashitani, Hirotaka
  organization: Osaka Prefecture University
– sequence: 13
  givenname: Shogo
  surname: Kawaguchi
  fullname: Kawaguchi, Shogo
  organization: Japan Synchrotron Radiation Research Institute (JASRI)
– sequence: 14
  givenname: Yoshiki
  surname: Kubota
  fullname: Kubota, Yoshiki
  organization: Osaka Metropolitan University
– sequence: 15
  givenname: Susumu
  orcidid: 0000-0001-6956-9543
  surname: Kitagawa
  fullname: Kitagawa, Susumu
  email: kitagawa@icems.kyoto-u.ac.jp
  organization: Kyoto University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37211927$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkssWGTwZcktpfVaAoj9SYBa8txTkYuGXuwnVbZ8Qg8I09SV9OCVAmx8Tmyv__o-P-P0YEPHhB6S8mCEsI-Gu9gwQjjhCvCX6Aj2jBacSH4QelrzishG3qIjlO6KbyUpH2FDrlglComjtC89hk20WTo8ZcwZHwdYkguz9j4Hq9GsDk6a0Z8HcMOYnaQcBjwMvh-stndwu-fv4Ivx9qnaTTZ-Q2-gGzGcnUVN2U9i8-i2cJdiN_xpfHBxjmV9_QavRxKgTeP9QR9O1t9XX6uzq8-rZen55WtqeAVWCM6y3hX16L8WA22F3wgHKisWd8TbrmiqmPWSlp60ze1AEUp79pmoLLhJ-jDfu4uhh8TpKy3LlkYR-MhTEkzSYUQkkpV0PfP0JswRV-2K1RTK8Xbti3Uu0dq6rbQ6110WxNn_WRqAeo9YIuVKcKgrcvFmuBzNG7UlOiH7PRDdvpPdkW2eCZ7mvxPgdoL7twI839ofXq5Xv3V3gOX-K_Y
CitedBy_id crossref_primary_10_1002_anie_202501821
crossref_primary_10_1038_s41467_024_53560_3
crossref_primary_10_1007_s12274_023_5961_y
crossref_primary_10_1002_celc_202400525
crossref_primary_10_1002_ange_202401679
crossref_primary_10_1002_anie_202410411
crossref_primary_10_1007_s40820_024_01425_1
crossref_primary_10_1002_ange_202501821
crossref_primary_10_1039_D4TA02438A
crossref_primary_10_1007_s12274_024_6699_x
crossref_primary_10_1038_s41598_024_62939_7
crossref_primary_10_1002_ange_202410411
crossref_primary_10_1002_anie_202401679
crossref_primary_10_1039_D4CE00292J
crossref_primary_10_1002_smll_202306956
Cites_doi 10.1007/s11705-020-2013-y
10.1021/jacs.5b08362
10.1038/s41467-020-18776-z
10.1002/anie.199717251
10.1021/jacs.9b12193
10.1021/acscentsci.6b00392
10.1038/s41557-018-0170-0
10.1039/C8TA06136J
10.1039/b909993j
10.1021/jacs.5b09600
10.1126/science.aar6833
10.1016/j.matt.2019.08.022
10.1038/nmat4238
10.1038/nchem.444
10.1039/C8NR09777A
10.1016/j.chempr.2019.04.013
10.1021/acs.chemrev.8b00311
10.1002/anie.200900378
10.1016/j.ccr.2020.213479
10.1126/science.aal2456
10.1021/acs.chemrev.9b00766
10.1016/j.trechm.2019.10.007
10.1126/science.1231451
10.1002/anie.202008858
10.1002/anie.201909096
10.1021/acscentsci.9b00497
10.1038/s41586-018-0820-9
10.1126/science.aat0586
10.1002/anie.201901707
10.1021/acsami.1c24335
10.1126/science.1116275
10.1038/nature17430
10.1021/acs.chemrev.0c00033
10.1002/anie.201907772
10.1039/C4CC06491G
10.1002/anie.201001063
10.1126/science.aax8666
10.1038/s41467-019-08939-y
10.1126/science.aam7232
10.1002/anie.202004535
10.1038/s41563-019-0598-7
10.1021/acs.jpcc.8b11630
10.1002/jrs.866
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202303903
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 37211927
10_1002_anie_202303903
ANIE202303903
Genre article
Journal Article
GrantInformation_xml – fundername: the Japan Society of the Promotion of Science (S)
  funderid: JP18H05262; JP22H05005
– fundername: the Japan Society of the Promotion of Science (C)
  funderid: JP22K05128
– fundername: the Japan Society of the Promotion of Science (S)
  grantid: JP22H05005
– fundername: the Japan Society of the Promotion of Science (C)
  grantid: JP22K05128
– fundername: the Japan Society of the Promotion of Science (S)
  grantid: JP18H05262
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4173-eca7bc23b4471009fcd73f03e1842dd03c3919b2cc813c3ad547e9113b65f1853
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 15:16:15 EDT 2025
Sun Jul 13 04:43:44 EDT 2025
Wed Feb 19 02:23:19 EST 2025
Tue Jul 01 01:47:12 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Wed Jan 22 16:17:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords Conductivity
Operando
Metal-Organic Frameworks
Shape Memory
Soft Porosity
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4173-eca7bc23b4471009fcd73f03e1842dd03c3919b2cc813c3ad547e9113b65f1853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4052-3378
0000-0002-6040-6219
0000-0002-7904-5003
0000-0001-6956-9543
0000-0003-1604-2611
0000-0002-8464-7092
0000-0001-7648-306X
0000-0002-9302-5025
OpenAccessLink http://hdl.handle.net/2433/285080
PMID 37211927
PQID 2854993666
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2817778189
proquest_journals_2854993666
pubmed_primary_37211927
crossref_citationtrail_10_1002_anie_202303903
crossref_primary_10_1002_anie_202303903
wiley_primary_10_1002_anie_202303903_ANIE202303903
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 28, 2023
PublicationDateYYYYMMDD 2023-08-28
PublicationDate_xml – month: 08
  year: 2023
  text: August 28, 2023
  day: 28
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 362
2015; 14
2017; 3
2019; 5
2020; 120
2020; 142
2019; 11
2019; 1
2019; 10
2019; 58
2021; 426
2002; 33
2009
2019; 366
2020; 59
2019; 565
2020; 11
2017; 356
2019; 123
2017; 358
2009; 48
2020; 19
2019; 363
2018; 6
2021; 15
2010; 49
2020; 2
2015; 137
2013; 339
1997; 36
2022; 14
2005; 309
2019; 119
2016; 532
2009; 1
2014; 50
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_1
e_1_2_7_28_2
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_35_2
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_2
e_1_2_7_42_1
e_1_2_7_12_2
e_1_2_7_44_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_2
e_1_2_7_36_2
e_1_2_7_38_1
References_xml – volume: 59
  start-page: 15325
  year: 2020
  end-page: 15341
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 21295
  year: 2018
  end-page: 21303
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 199
  year: 2020
  end-page: 213
  publication-title: Trends Chem.
– volume: 58
  start-page: 6886
  year: 2019
  end-page: 6890
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 801
  year: 2019
  end-page: 824
  publication-title: Matter
– volume: 14
  start-page: 512
  year: 2015
  end-page: 516
  publication-title: Nat. Mater.
– volume: 119
  start-page: 478
  year: 2019
  end-page: 598
  publication-title: Chem. Rev.
– volume: 36
  start-page: 1725
  year: 1997
  end-page: 1727
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 11
  start-page: 4971
  year: 2020
  publication-title: Nat. Commun.
– start-page: 5097
  year: 2009
  end-page: 5099
  publication-title: Chem. Commun.
– volume: 137
  start-page: 13780
  year: 2015
  end-page: 13783
  publication-title: J. Am. Chem. Soc.
– volume: 309
  start-page: 2040
  year: 2005
  end-page: 2042
  publication-title: Science
– volume: 120
  start-page: 8581
  year: 2020
  end-page: 8640
  publication-title: Chem. Rev.
– volume: 15
  start-page: 505
  year: 2021
  end-page: 517
  publication-title: Front. Chem. Sci. Eng.
– volume: 33
  start-page: 359
  year: 2002
  end-page: 380
  publication-title: J. Raman Spectrosc.
– volume: 120
  start-page: 8536
  year: 2020
  end-page: 8580
  publication-title: Chem. Rev.
– volume: 11
  start-page: 2121
  year: 2019
  end-page: 2125
  publication-title: Nanoscale
– volume: 59
  start-page: 18078
  year: 2020
  end-page: 18086
  publication-title: Angew. Chem. Int. Ed.
– volume: 137
  start-page: 13603
  year: 2015
  end-page: 13611
  publication-title: J. Am. Chem. Soc.
– volume: 123
  start-page: 10333
  year: 2019
  end-page: 10338
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 13904
  year: 2022
  end-page: 13913
  publication-title: ACS Appl. Mater. Interfaces
– volume: 366
  start-page: 241
  year: 2019
  end-page: 246
  publication-title: Science
– volume: 358
  start-page: 347
  year: 2017
  end-page: 351
  publication-title: Science
– volume: 49
  start-page: 5327
  year: 2010
  end-page: 5330
  publication-title: Angew. Chem. Int. Ed.
– volume: 532
  start-page: 348
  year: 2016
  end-page: 352
  publication-title: Nature
– volume: 356
  start-page: 1193
  year: 2017
  end-page: 1196
  publication-title: Science
– volume: 142
  start-page: 3042
  year: 2020
  end-page: 3049
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 552
  year: 2020
  end-page: 558
  publication-title: Nat. Mater.
– volume: 426
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 11
  start-page: 109
  year: 2019
  end-page: 116
  publication-title: Nat. Chem.
– volume: 10
  start-page: 999
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1938
  year: 2019
  end-page: 1963
  publication-title: Chem
– volume: 5
  start-page: 1440
  year: 2019
  end-page: 1448
  publication-title: ACS Cent. Sci.
– volume: 58
  start-page: 14915
  year: 2019
  end-page: 14919
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 695
  year: 2009
  end-page: 704
  publication-title: Nat. Chem.
– volume: 48
  start-page: 5038
  year: 2009
  end-page: 5041
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 394
  year: 2017
  end-page: 398
  publication-title: ACS Cent. Sci.
– volume: 339
  start-page: 193
  year: 2013
  end-page: 196
  publication-title: Science
– volume: 565
  start-page: 213
  year: 2019
  end-page: 217
  publication-title: Nature
– volume: 50
  start-page: 13258
  year: 2014
  end-page: 13260
  publication-title: Chem. Commun.
– volume: 363
  start-page: 387
  year: 2019
  end-page: 391
  publication-title: Science
– volume: 362
  start-page: 443
  year: 2018
  end-page: 446
  publication-title: Science
– volume: 59
  start-page: 172
  year: 2020
  end-page: 176
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_7_34_1
– ident: e_1_2_7_51_2
  doi: 10.1007/s11705-020-2013-y
– ident: e_1_2_7_45_2
  doi: 10.1021/jacs.5b08362
– ident: e_1_2_7_27_2
  doi: 10.1038/s41467-020-18776-z
– ident: e_1_2_7_4_2
  doi: 10.1002/anie.199717251
– ident: e_1_2_7_30_1
  doi: 10.1021/jacs.9b12193
– ident: e_1_2_7_11_1
– ident: e_1_2_7_12_2
  doi: 10.1021/acscentsci.6b00392
– ident: e_1_2_7_41_1
  doi: 10.1038/s41557-018-0170-0
– ident: e_1_2_7_32_2
  doi: 10.1039/C8TA06136J
– ident: e_1_2_7_35_2
  doi: 10.1039/b909993j
– ident: e_1_2_7_39_1
  doi: 10.1021/jacs.5b09600
– ident: e_1_2_7_18_2
  doi: 10.1126/science.aar6833
– ident: e_1_2_7_16_1
– ident: e_1_2_7_36_2
  doi: 10.1016/j.matt.2019.08.022
– ident: e_1_2_7_7_2
  doi: 10.1038/nmat4238
– ident: e_1_2_7_10_1
  doi: 10.1038/nchem.444
– ident: e_1_2_7_46_1
– ident: e_1_2_7_33_2
  doi: 10.1039/C8NR09777A
– ident: e_1_2_7_43_1
– ident: e_1_2_7_49_1
– ident: e_1_2_7_48_2
  doi: 10.1016/j.chempr.2019.04.013
– ident: e_1_2_7_20_2
  doi: 10.1021/acs.chemrev.8b00311
– ident: e_1_2_7_37_1
  doi: 10.1002/anie.200900378
– ident: e_1_2_7_47_2
  doi: 10.1016/j.ccr.2020.213479
– ident: e_1_2_7_22_1
  doi: 10.1126/science.aal2456
– ident: e_1_2_7_21_2
  doi: 10.1021/acs.chemrev.9b00766
– ident: e_1_2_7_17_2
  doi: 10.1016/j.trechm.2019.10.007
– ident: e_1_2_7_40_1
  doi: 10.1126/science.1231451
– ident: e_1_2_7_28_2
  doi: 10.1002/anie.202008858
– ident: e_1_2_7_50_2
  doi: 10.1002/anie.201909096
– ident: e_1_2_7_14_2
  doi: 10.1021/acscentsci.9b00497
– ident: e_1_2_7_3_2
  doi: 10.1038/s41586-018-0820-9
– ident: e_1_2_7_1_1
– ident: e_1_2_7_19_2
  doi: 10.1126/science.aat0586
– ident: e_1_2_7_25_2
  doi: 10.1002/anie.201901707
– ident: e_1_2_7_15_2
  doi: 10.1021/acsami.1c24335
– ident: e_1_2_7_2_2
  doi: 10.1126/science.1116275
– ident: e_1_2_7_6_2
  doi: 10.1038/nature17430
– ident: e_1_2_7_9_2
  doi: 10.1021/acs.chemrev.0c00033
– ident: e_1_2_7_26_2
  doi: 10.1002/anie.201907772
– ident: e_1_2_7_38_1
  doi: 10.1039/C4CC06491G
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.201001063
– ident: e_1_2_7_5_2
  doi: 10.1126/science.aax8666
– ident: e_1_2_7_44_2
  doi: 10.1038/s41467-019-08939-y
– ident: e_1_2_7_8_2
  doi: 10.1126/science.aam7232
– ident: e_1_2_7_24_2
  doi: 10.1002/anie.202004535
– ident: e_1_2_7_29_2
  doi: 10.1038/s41563-019-0598-7
– ident: e_1_2_7_13_2
  doi: 10.1021/acs.jpcc.8b11630
– ident: e_1_2_7_23_1
– ident: e_1_2_7_52_1
  doi: 10.1002/jrs.866
– ident: e_1_2_7_31_1
SSID ssj0028806
Score 2.5097234
Snippet A one‐stone, two‐bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material...
A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal-organic frameworks (MOFs) into a single material...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202303903
SubjectTerms Carbon dioxide
Conductivity
Electrical properties
Flexible structures
Heterostructures
Hybridization
Metal-organic frameworks
Nanocrystals
Operando
Porosity
Shape Memory
Soft Porosity
Synchrotrons
Title Integrated Soft Porosity and Electrical Properties of Conductive‐on‐Insulating Metal‐Organic Framework Nanocrystals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202303903
https://www.ncbi.nlm.nih.gov/pubmed/37211927
https://www.proquest.com/docview/2854993666
https://www.proquest.com/docview/2817778189
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H_VFBMFT1-axm_Yoyy6uoIi6sLfSpOlFaaW7e1hP_gR_o7_Emb50FRH0UtI2pWkymXyTznxDyIlSCQY4MtcqLV1pfOlGsVekBGRMJaztWwwUvrruXAzl5ag9-hTFX_JDNBtuODMKfY0TPNLjsw_SUIzAbmHybw_MdqT7RIctREW3DX8UB-Esw4uEcDELfc3a6PGz-cfnV6VvUHMeuRZLT3-VRHWjS4-Th9Z0olvm-Quf43--ao2sVLiUnpeCtE4WbLpBlrp1OrhNMhvUxBIxvQPdTW-yHB2-ZjRKY9orsunggNMb3N7PkaeVZgntZikyyoJOfXt5zVI4DND7PUJva3plAfrDpTIg1NB-7SlGQelnJp8BdH0cb5Fhv3ffvXCrvA2ukUwJ15pIacOFlhK5g4LExEoknrBgTfI49oQRAQs0N8ZnUI7itlQWlK7QnXaC-GGbLKZZancJBfstDvzEM4ArJTcy0JIzLazg2teaBw5x63ELTUVqjrk1HsOSjpmH2KFh06EOOW3qP5V0Hj_WPKjFIKym9TjEcFMAdGDyOeS4uQ0DgX9ZotRmU6zDlFKAg6BxO6X4NK8SaG8HXDmEF0LwSxvC8-tBrznb-8tD-2QZy7gLzv0DsjjJp_YQYNREHxVT5R0VlBak
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB5RONALBQptSoBFQurJwfsT1j5GIVFCSYQoSL1Z3vX6UmRXITmEE4_AM_IkzNixq1ChSnCx7PVaXu_Ozn6znvkG4FjrlAIcuee0UZ6ygfLixC9SAnKuU94OHAUKj8angxt1_qtdeRNSLEzJD1FvuNHMKPQ1TXDakD75yxpKIdgtyv7to90uP8AapfUm-vyzq5pBSqB4lgFGUnqUh77ibfTFyfLzy-vSP2BzGbsWi0__E5iq2aXPye_WbGpa9v4Fo-O7vmsTNhbQlHVKWdqCFZdtw3q3ygj3GebDilsiYT9RfbPLfEI-X3MWZwnrFQl1aMzZJe3wT4iqleUp6-YZkcqiWn16eMwzPAzJAT4mh2s2coj-saiMCbWsXzmLMdT7uZ3MEb3e3u3ATb933R14i9QNnlVcS8_ZWBsrpFGK6IPC1CZapr50aFCKJPGllSEPjbA24HgeJ22lHepdaU7bKUGIXVjN8sx9BYYmXBIGqW8RWiphVWiU4EY6KUxgjAgb4FUDF9kFrzml17iNSkZmEVGHRnWHNuB7Xf9Pyejxas1mJQfRYmbfRRRxipgOrb4GHNW3cSDoR0ucuXxGdbjWGqEQNu5LKT_1qySZ3KHQDRCFFPynDVFnPOzVV9_e8tAhrA-uRxfRxXD8Yw8-UjltiougCavTycztI6qamoNi3jwDcFwawA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB61VKK9QHm0pFC6SJV6cvA-krWPKCQiFKIIisTN8j58KbJRSA7hxE_ob-wv6YwdG1JUVWovlr1ey-vd2dlv1jPfAHzWOqMARx54bVSgbKSC1IVlSkDOdcY7kadA4fNR9-RKnV53rp9E8Vf8EM2GG82MUl_TBL912eEjaShFYLcp-XeIZrt8Ca9UN4wpecPxRUMgJVA6q_giKQNKQ1_TNobicPn55WXpGdZchq7l2jNYh7RudeVy8r09m5q2vf-N0PF_PustrC2AKTuqJGkDXvh8E1736nxwWzAf1swSjl2i8mbjYkIeX3OW5o71y3Q6NOJsTPv7EyJqZUXGekVOlLKoVH8-_ChyPAzJ_T0ld2t27hH7Y1EVEWrZoHYVY6j1CzuZI3a9uduGq0H_W-8kWCRuCKziWgbeptpYIY1SRB4UZ9ZpmYXSozkpnAullTGPjbA24nieuo7SHrWuNN1ORgDiHazkRe53gKEB5-IoCy0CSyWsio0S3EgvhYmMEXELgnrcErtgNafkGjdJxccsEurQpOnQFnxp6t9WfB5_rLlXi0GymNd3CcWbIqJDm68FB81tHAj6zZLmvphRHa61RiCEjXtfiU_zKkkGdyx0C0QpBH9pQ3I0Gvabqw__8tAnWB0fD5Kz4ejrLryhYtoRF9EerEwnM_8RIdXU7Jez5hcMwxlv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Soft+Porosity+and+Electrical+Properties+of+Conductive%E2%80%90on%E2%80%90Insulating+Metal%E2%80%90Organic+Framework+Nanocrystals&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yao%2C+Ming%E2%80%90Shui&rft.au=Otake%2C+Ken%E2%80%90ichi&rft.au=Zheng%2C+Jiajia&rft.au=Tsujimoto%2C+Masahiko&rft.date=2023-08-28&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202303903&rft.externalDBID=10.1002%252Fanie.202303903&rft.externalDocID=ANIE202303903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon