Integrated Soft Porosity and Electrical Properties of Conductive‐on‐Insulating Metal‐Organic Framework Nanocrystals
A one‐stone, two‐bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive‐on‐insulating MOF (cMOF‐on‐iMOF) heterostructures that allow for direct electrical control. Herein, we report the...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 35; pp. e202303903 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
28.08.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A one‐stone, two‐bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive‐on‐insulating MOF (cMOF‐on‐iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF‐on‐iMOF heterostructures using a seeded layer‐by‐layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF‐on‐iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S
CO2/H2
${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}$
from 15.4 of ZIF‐7 to 43.2–152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF‐on‐iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical “shape memory” toward acetone and CO2. This behavior was observed through the guest‐induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide‐angle X‐ray scattering measurements.
Owing to the integration of soft porosity and electrical properties, conductive‐on‐insulating metal–organic framework (cMOF‐on‐iMOF) heterostructured nanocrystals (with the semiconductive soft porous interfaces) show enhanced selective sorption toward CO2, electrical gating, and “shape memory” effects for the guest responsive iMOF core, as revealed by operando synchrotron measurements. |
---|---|
AbstractList | A one‐stone, two‐bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive‐on‐insulating MOF (cMOF‐on‐iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF‐on‐iMOF heterostructures using a seeded layer‐by‐layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF‐on‐iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, SCO2/H2${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}$from 15.4 of ZIF‐7 to 43.2–152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF‐on‐iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical “shape memory” toward acetone and CO2. This behavior was observed through the guest‐induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide‐angle X‐ray scattering measurements. A one‐stone, two‐bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive‐on‐insulating MOF (cMOF‐on‐iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF‐on‐iMOF heterostructures using a seeded layer‐by‐layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF‐on‐iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S CO2/H2 ${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}$ from 15.4 of ZIF‐7 to 43.2–152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF‐on‐iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical “shape memory” toward acetone and CO2. This behavior was observed through the guest‐induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide‐angle X‐ray scattering measurements. Owing to the integration of soft porosity and electrical properties, conductive‐on‐insulating metal–organic framework (cMOF‐on‐iMOF) heterostructured nanocrystals (with the semiconductive soft porous interfaces) show enhanced selective sorption toward CO2, electrical gating, and “shape memory” effects for the guest responsive iMOF core, as revealed by operando synchrotron measurements. A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal-organic frameworks (MOFs) into a single material involves the design of conductive-on-insulating MOF (cMOF-on-iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF-on-iMOF heterostructures using a seeded layer-by-layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF-on-iMOF heterostructures exhibit enhanced selective sorption of CO compared to the pristine iMOF (298 K, 1 bar, S from 15.4 of ZIF-7 to 43.2-152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF-on-iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical "shape memory" toward acetone and CO . This behavior was observed through the guest-induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide-angle X-ray scattering measurements. A one‐stone, two‐bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive‐on‐insulating MOF ( c MOF‐on‐ i MOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of c MOF‐on‐ i MOF heterostructures using a seeded layer‐by‐layer method, in which the sorptive i MOF core is combined with chemiresistive c MOF shells. The resulting c MOF‐on‐ i MOF heterostructures exhibit enhanced selective sorption of CO 2 compared to the pristine i MOF (298 K, 1 bar, S from 15.4 of ZIF‐7 to 43.2–152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the i MOF core, the c MOF‐on‐ i MOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical “shape memory” toward acetone and CO 2 . This behavior was observed through the guest‐induced structural changes of the i MOF core, as revealed by the operando synchrotron grazing incidence wide‐angle X‐ray scattering measurements. A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal-organic frameworks (MOFs) into a single material involves the design of conductive-on-insulating MOF (cMOF-on-iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF-on-iMOF heterostructures using a seeded layer-by-layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF-on-iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S CO 2 / H 2 ${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}$ from 15.4 of ZIF-7 to 43.2-152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF-on-iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical "shape memory" toward acetone and CO2 . This behavior was observed through the guest-induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide-angle X-ray scattering measurements.A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal-organic frameworks (MOFs) into a single material involves the design of conductive-on-insulating MOF (cMOF-on-iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF-on-iMOF heterostructures using a seeded layer-by-layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF-on-iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S CO 2 / H 2 ${{_{{\rm CO}{_{2}}/{\rm H}{_{2}}}$ from 15.4 of ZIF-7 to 43.2-152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF-on-iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical "shape memory" toward acetone and CO2 . This behavior was observed through the guest-induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide-angle X-ray scattering measurements. |
Author | Zheng, Jiajia Kawaguchi, Shogo Tsujimoto, Masahiko Otake, Ken‐ichi Honma, Tetsuo Mohana, Shivanna Wang, Ping Gu, Yi‐Fan Kubota, Yoshiki Koganezawa, Tomoyuki Yao, Ming‐Shui Kitagawa, Susumu Ashitani, Hirotaka Bonneau, Mickaele Zheng, Lu |
Author_xml | – sequence: 1 givenname: Ming‐Shui orcidid: 0000-0003-1604-2611 surname: Yao fullname: Yao, Ming‐Shui organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Ken‐ichi orcidid: 0000-0002-7904-5003 surname: Otake fullname: Otake, Ken‐ichi email: otake.kenichi.8a@kyoto-u.ac.jp organization: Kyoto University – sequence: 3 givenname: Jiajia orcidid: 0000-0002-6040-6219 surname: Zheng fullname: Zheng, Jiajia organization: Kyoto University – sequence: 4 givenname: Masahiko orcidid: 0000-0003-4052-3378 surname: Tsujimoto fullname: Tsujimoto, Masahiko organization: Kyoto University – sequence: 5 givenname: Yi‐Fan orcidid: 0000-0001-7648-306X surname: Gu fullname: Gu, Yi‐Fan organization: Tongji University – sequence: 6 givenname: Lu surname: Zheng fullname: Zheng, Lu organization: Tongji University – sequence: 7 givenname: Ping orcidid: 0000-0002-8464-7092 surname: Wang fullname: Wang, Ping organization: Kyoto University – sequence: 8 givenname: Shivanna surname: Mohana fullname: Mohana, Shivanna organization: Kyoto University – sequence: 9 givenname: Mickaele surname: Bonneau fullname: Bonneau, Mickaele organization: Kyoto University – sequence: 10 givenname: Tomoyuki orcidid: 0000-0002-9302-5025 surname: Koganezawa fullname: Koganezawa, Tomoyuki organization: Japan Synchrotron Radiation Research Institute (JASRI) – sequence: 11 givenname: Tetsuo surname: Honma fullname: Honma, Tetsuo organization: Japan Synchrotron Radiation Research Institute (JASRI) – sequence: 12 givenname: Hirotaka surname: Ashitani fullname: Ashitani, Hirotaka organization: Osaka Prefecture University – sequence: 13 givenname: Shogo surname: Kawaguchi fullname: Kawaguchi, Shogo organization: Japan Synchrotron Radiation Research Institute (JASRI) – sequence: 14 givenname: Yoshiki surname: Kubota fullname: Kubota, Yoshiki organization: Osaka Metropolitan University – sequence: 15 givenname: Susumu orcidid: 0000-0001-6956-9543 surname: Kitagawa fullname: Kitagawa, Susumu email: kitagawa@icems.kyoto-u.ac.jp organization: Kyoto University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37211927$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC-wZYkssWGTwZcktpfVaAoj9SYBa8txTkYuGXuwnVbZ8Qg8I09SV9OCVAmx8Tmyv__o-P-P0YEPHhB6S8mCEsI-Gu9gwQjjhCvCX6Aj2jBacSH4QelrzishG3qIjlO6KbyUpH2FDrlglComjtC89hk20WTo8ZcwZHwdYkguz9j4Hq9GsDk6a0Z8HcMOYnaQcBjwMvh-stndwu-fv4Ivx9qnaTTZ-Q2-gGzGcnUVN2U9i8-i2cJdiN_xpfHBxjmV9_QavRxKgTeP9QR9O1t9XX6uzq8-rZen55WtqeAVWCM6y3hX16L8WA22F3wgHKisWd8TbrmiqmPWSlp60ze1AEUp79pmoLLhJ-jDfu4uhh8TpKy3LlkYR-MhTEkzSYUQkkpV0PfP0JswRV-2K1RTK8Xbti3Uu0dq6rbQ6110WxNn_WRqAeo9YIuVKcKgrcvFmuBzNG7UlOiH7PRDdvpPdkW2eCZ7mvxPgdoL7twI839ofXq5Xv3V3gOX-K_Y |
CitedBy_id | crossref_primary_10_1002_anie_202501821 crossref_primary_10_1038_s41467_024_53560_3 crossref_primary_10_1007_s12274_023_5961_y crossref_primary_10_1002_celc_202400525 crossref_primary_10_1002_ange_202401679 crossref_primary_10_1002_anie_202410411 crossref_primary_10_1007_s40820_024_01425_1 crossref_primary_10_1002_ange_202501821 crossref_primary_10_1039_D4TA02438A crossref_primary_10_1007_s12274_024_6699_x crossref_primary_10_1038_s41598_024_62939_7 crossref_primary_10_1002_ange_202410411 crossref_primary_10_1002_anie_202401679 crossref_primary_10_1039_D4CE00292J crossref_primary_10_1002_smll_202306956 |
Cites_doi | 10.1007/s11705-020-2013-y 10.1021/jacs.5b08362 10.1038/s41467-020-18776-z 10.1002/anie.199717251 10.1021/jacs.9b12193 10.1021/acscentsci.6b00392 10.1038/s41557-018-0170-0 10.1039/C8TA06136J 10.1039/b909993j 10.1021/jacs.5b09600 10.1126/science.aar6833 10.1016/j.matt.2019.08.022 10.1038/nmat4238 10.1038/nchem.444 10.1039/C8NR09777A 10.1016/j.chempr.2019.04.013 10.1021/acs.chemrev.8b00311 10.1002/anie.200900378 10.1016/j.ccr.2020.213479 10.1126/science.aal2456 10.1021/acs.chemrev.9b00766 10.1016/j.trechm.2019.10.007 10.1126/science.1231451 10.1002/anie.202008858 10.1002/anie.201909096 10.1021/acscentsci.9b00497 10.1038/s41586-018-0820-9 10.1126/science.aat0586 10.1002/anie.201901707 10.1021/acsami.1c24335 10.1126/science.1116275 10.1038/nature17430 10.1021/acs.chemrev.0c00033 10.1002/anie.201907772 10.1039/C4CC06491G 10.1002/anie.201001063 10.1126/science.aax8666 10.1038/s41467-019-08939-y 10.1126/science.aam7232 10.1002/anie.202004535 10.1038/s41563-019-0598-7 10.1021/acs.jpcc.8b11630 10.1002/jrs.866 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202303903 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 37211927 10_1002_anie_202303903 ANIE202303903 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: the Japan Society of the Promotion of Science (S) funderid: JP18H05262; JP22H05005 – fundername: the Japan Society of the Promotion of Science (C) funderid: JP22K05128 – fundername: the Japan Society of the Promotion of Science (S) grantid: JP22H05005 – fundername: the Japan Society of the Promotion of Science (C) grantid: JP22K05128 – fundername: the Japan Society of the Promotion of Science (S) grantid: JP18H05262 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4173-eca7bc23b4471009fcd73f03e1842dd03c3919b2cc813c3ad547e9113b65f1853 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 15:16:15 EDT 2025 Sun Jul 13 04:43:44 EDT 2025 Wed Feb 19 02:23:19 EST 2025 Tue Jul 01 01:47:12 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Wed Jan 22 16:17:04 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | Conductivity Operando Metal-Organic Frameworks Shape Memory Soft Porosity |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4173-eca7bc23b4471009fcd73f03e1842dd03c3919b2cc813c3ad547e9113b65f1853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4052-3378 0000-0002-6040-6219 0000-0002-7904-5003 0000-0001-6956-9543 0000-0003-1604-2611 0000-0002-8464-7092 0000-0001-7648-306X 0000-0002-9302-5025 |
OpenAccessLink | http://hdl.handle.net/2433/285080 |
PMID | 37211927 |
PQID | 2854993666 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2817778189 proquest_journals_2854993666 pubmed_primary_37211927 crossref_citationtrail_10_1002_anie_202303903 crossref_primary_10_1002_anie_202303903 wiley_primary_10_1002_anie_202303903_ANIE202303903 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 28, 2023 |
PublicationDateYYYYMMDD | 2023-08-28 |
PublicationDate_xml | – month: 08 year: 2023 text: August 28, 2023 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 362 2015; 14 2017; 3 2019; 5 2020; 120 2020; 142 2019; 11 2019; 1 2019; 10 2019; 58 2021; 426 2002; 33 2009 2019; 366 2020; 59 2019; 565 2020; 11 2017; 356 2019; 123 2017; 358 2009; 48 2020; 19 2019; 363 2018; 6 2021; 15 2010; 49 2020; 2 2015; 137 2013; 339 1997; 36 2022; 14 2005; 309 2019; 119 2016; 532 2009; 1 2014; 50 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_1 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_35_2 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_2 e_1_2_7_42_1 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_32_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_2 e_1_2_7_36_2 e_1_2_7_38_1 |
References_xml | – volume: 59 start-page: 15325 year: 2020 end-page: 15341 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 21295 year: 2018 end-page: 21303 publication-title: J. Mater. Chem. A – volume: 2 start-page: 199 year: 2020 end-page: 213 publication-title: Trends Chem. – volume: 58 start-page: 6886 year: 2019 end-page: 6890 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 801 year: 2019 end-page: 824 publication-title: Matter – volume: 14 start-page: 512 year: 2015 end-page: 516 publication-title: Nat. Mater. – volume: 119 start-page: 478 year: 2019 end-page: 598 publication-title: Chem. Rev. – volume: 36 start-page: 1725 year: 1997 end-page: 1727 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 11 start-page: 4971 year: 2020 publication-title: Nat. Commun. – start-page: 5097 year: 2009 end-page: 5099 publication-title: Chem. Commun. – volume: 137 start-page: 13780 year: 2015 end-page: 13783 publication-title: J. Am. Chem. Soc. – volume: 309 start-page: 2040 year: 2005 end-page: 2042 publication-title: Science – volume: 120 start-page: 8581 year: 2020 end-page: 8640 publication-title: Chem. Rev. – volume: 15 start-page: 505 year: 2021 end-page: 517 publication-title: Front. Chem. Sci. Eng. – volume: 33 start-page: 359 year: 2002 end-page: 380 publication-title: J. Raman Spectrosc. – volume: 120 start-page: 8536 year: 2020 end-page: 8580 publication-title: Chem. Rev. – volume: 11 start-page: 2121 year: 2019 end-page: 2125 publication-title: Nanoscale – volume: 59 start-page: 18078 year: 2020 end-page: 18086 publication-title: Angew. Chem. Int. Ed. – volume: 137 start-page: 13603 year: 2015 end-page: 13611 publication-title: J. Am. Chem. Soc. – volume: 123 start-page: 10333 year: 2019 end-page: 10338 publication-title: J. Phys. Chem. C – volume: 14 start-page: 13904 year: 2022 end-page: 13913 publication-title: ACS Appl. Mater. Interfaces – volume: 366 start-page: 241 year: 2019 end-page: 246 publication-title: Science – volume: 358 start-page: 347 year: 2017 end-page: 351 publication-title: Science – volume: 49 start-page: 5327 year: 2010 end-page: 5330 publication-title: Angew. Chem. Int. Ed. – volume: 532 start-page: 348 year: 2016 end-page: 352 publication-title: Nature – volume: 356 start-page: 1193 year: 2017 end-page: 1196 publication-title: Science – volume: 142 start-page: 3042 year: 2020 end-page: 3049 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 552 year: 2020 end-page: 558 publication-title: Nat. Mater. – volume: 426 year: 2021 publication-title: Coord. Chem. Rev. – volume: 11 start-page: 109 year: 2019 end-page: 116 publication-title: Nat. Chem. – volume: 10 start-page: 999 year: 2019 publication-title: Nat. Commun. – volume: 5 start-page: 1938 year: 2019 end-page: 1963 publication-title: Chem – volume: 5 start-page: 1440 year: 2019 end-page: 1448 publication-title: ACS Cent. Sci. – volume: 58 start-page: 14915 year: 2019 end-page: 14919 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 695 year: 2009 end-page: 704 publication-title: Nat. Chem. – volume: 48 start-page: 5038 year: 2009 end-page: 5041 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 394 year: 2017 end-page: 398 publication-title: ACS Cent. Sci. – volume: 339 start-page: 193 year: 2013 end-page: 196 publication-title: Science – volume: 565 start-page: 213 year: 2019 end-page: 217 publication-title: Nature – volume: 50 start-page: 13258 year: 2014 end-page: 13260 publication-title: Chem. Commun. – volume: 363 start-page: 387 year: 2019 end-page: 391 publication-title: Science – volume: 362 start-page: 443 year: 2018 end-page: 446 publication-title: Science – volume: 59 start-page: 172 year: 2020 end-page: 176 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_7_34_1 – ident: e_1_2_7_51_2 doi: 10.1007/s11705-020-2013-y – ident: e_1_2_7_45_2 doi: 10.1021/jacs.5b08362 – ident: e_1_2_7_27_2 doi: 10.1038/s41467-020-18776-z – ident: e_1_2_7_4_2 doi: 10.1002/anie.199717251 – ident: e_1_2_7_30_1 doi: 10.1021/jacs.9b12193 – ident: e_1_2_7_11_1 – ident: e_1_2_7_12_2 doi: 10.1021/acscentsci.6b00392 – ident: e_1_2_7_41_1 doi: 10.1038/s41557-018-0170-0 – ident: e_1_2_7_32_2 doi: 10.1039/C8TA06136J – ident: e_1_2_7_35_2 doi: 10.1039/b909993j – ident: e_1_2_7_39_1 doi: 10.1021/jacs.5b09600 – ident: e_1_2_7_18_2 doi: 10.1126/science.aar6833 – ident: e_1_2_7_16_1 – ident: e_1_2_7_36_2 doi: 10.1016/j.matt.2019.08.022 – ident: e_1_2_7_7_2 doi: 10.1038/nmat4238 – ident: e_1_2_7_10_1 doi: 10.1038/nchem.444 – ident: e_1_2_7_46_1 – ident: e_1_2_7_33_2 doi: 10.1039/C8NR09777A – ident: e_1_2_7_43_1 – ident: e_1_2_7_49_1 – ident: e_1_2_7_48_2 doi: 10.1016/j.chempr.2019.04.013 – ident: e_1_2_7_20_2 doi: 10.1021/acs.chemrev.8b00311 – ident: e_1_2_7_37_1 doi: 10.1002/anie.200900378 – ident: e_1_2_7_47_2 doi: 10.1016/j.ccr.2020.213479 – ident: e_1_2_7_22_1 doi: 10.1126/science.aal2456 – ident: e_1_2_7_21_2 doi: 10.1021/acs.chemrev.9b00766 – ident: e_1_2_7_17_2 doi: 10.1016/j.trechm.2019.10.007 – ident: e_1_2_7_40_1 doi: 10.1126/science.1231451 – ident: e_1_2_7_28_2 doi: 10.1002/anie.202008858 – ident: e_1_2_7_50_2 doi: 10.1002/anie.201909096 – ident: e_1_2_7_14_2 doi: 10.1021/acscentsci.9b00497 – ident: e_1_2_7_3_2 doi: 10.1038/s41586-018-0820-9 – ident: e_1_2_7_1_1 – ident: e_1_2_7_19_2 doi: 10.1126/science.aat0586 – ident: e_1_2_7_25_2 doi: 10.1002/anie.201901707 – ident: e_1_2_7_15_2 doi: 10.1021/acsami.1c24335 – ident: e_1_2_7_2_2 doi: 10.1126/science.1116275 – ident: e_1_2_7_6_2 doi: 10.1038/nature17430 – ident: e_1_2_7_9_2 doi: 10.1021/acs.chemrev.0c00033 – ident: e_1_2_7_26_2 doi: 10.1002/anie.201907772 – ident: e_1_2_7_38_1 doi: 10.1039/C4CC06491G – ident: e_1_2_7_42_1 doi: 10.1002/anie.201001063 – ident: e_1_2_7_5_2 doi: 10.1126/science.aax8666 – ident: e_1_2_7_44_2 doi: 10.1038/s41467-019-08939-y – ident: e_1_2_7_8_2 doi: 10.1126/science.aam7232 – ident: e_1_2_7_24_2 doi: 10.1002/anie.202004535 – ident: e_1_2_7_29_2 doi: 10.1038/s41563-019-0598-7 – ident: e_1_2_7_13_2 doi: 10.1021/acs.jpcc.8b11630 – ident: e_1_2_7_23_1 – ident: e_1_2_7_52_1 doi: 10.1002/jrs.866 – ident: e_1_2_7_31_1 |
SSID | ssj0028806 |
Score | 2.5097234 |
Snippet | A one‐stone, two‐bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material... A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal-organic frameworks (MOFs) into a single material... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202303903 |
SubjectTerms | Carbon dioxide Conductivity Electrical properties Flexible structures Heterostructures Hybridization Metal-organic frameworks Nanocrystals Operando Porosity Shape Memory Soft Porosity Synchrotrons |
Title | Integrated Soft Porosity and Electrical Properties of Conductive‐on‐Insulating Metal‐Organic Framework Nanocrystals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202303903 https://www.ncbi.nlm.nih.gov/pubmed/37211927 https://www.proquest.com/docview/2854993666 https://www.proquest.com/docview/2817778189 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H_VFBMFT1-axm_Yoyy6uoIi6sLfSpOlFaaW7e1hP_gR_o7_Emb50FRH0UtI2pWkymXyTznxDyIlSCQY4MtcqLV1pfOlGsVekBGRMJaztWwwUvrruXAzl5ag9-hTFX_JDNBtuODMKfY0TPNLjsw_SUIzAbmHybw_MdqT7RIctREW3DX8UB-Esw4uEcDELfc3a6PGz-cfnV6VvUHMeuRZLT3-VRHWjS4-Th9Z0olvm-Quf43--ao2sVLiUnpeCtE4WbLpBlrp1OrhNMhvUxBIxvQPdTW-yHB2-ZjRKY9orsunggNMb3N7PkaeVZgntZikyyoJOfXt5zVI4DND7PUJva3plAfrDpTIg1NB-7SlGQelnJp8BdH0cb5Fhv3ffvXCrvA2ukUwJ15pIacOFlhK5g4LExEoknrBgTfI49oQRAQs0N8ZnUI7itlQWlK7QnXaC-GGbLKZZancJBfstDvzEM4ArJTcy0JIzLazg2teaBw5x63ELTUVqjrk1HsOSjpmH2KFh06EOOW3qP5V0Hj_WPKjFIKym9TjEcFMAdGDyOeS4uQ0DgX9ZotRmU6zDlFKAg6BxO6X4NK8SaG8HXDmEF0LwSxvC8-tBrznb-8tD-2QZy7gLzv0DsjjJp_YQYNREHxVT5R0VlBak |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB5RONALBQptSoBFQurJwfsT1j5GIVFCSYQoSL1Z3vX6UmRXITmEE4_AM_IkzNixq1ChSnCx7PVaXu_Ozn6znvkG4FjrlAIcuee0UZ6ygfLixC9SAnKuU94OHAUKj8angxt1_qtdeRNSLEzJD1FvuNHMKPQ1TXDakD75yxpKIdgtyv7to90uP8AapfUm-vyzq5pBSqB4lgFGUnqUh77ibfTFyfLzy-vSP2BzGbsWi0__E5iq2aXPye_WbGpa9v4Fo-O7vmsTNhbQlHVKWdqCFZdtw3q3ygj3GebDilsiYT9RfbPLfEI-X3MWZwnrFQl1aMzZJe3wT4iqleUp6-YZkcqiWn16eMwzPAzJAT4mh2s2coj-saiMCbWsXzmLMdT7uZ3MEb3e3u3ATb933R14i9QNnlVcS8_ZWBsrpFGK6IPC1CZapr50aFCKJPGllSEPjbA24HgeJ22lHepdaU7bKUGIXVjN8sx9BYYmXBIGqW8RWiphVWiU4EY6KUxgjAgb4FUDF9kFrzml17iNSkZmEVGHRnWHNuB7Xf9Pyejxas1mJQfRYmbfRRRxipgOrb4GHNW3cSDoR0ucuXxGdbjWGqEQNu5LKT_1qySZ3KHQDRCFFPynDVFnPOzVV9_e8tAhrA-uRxfRxXD8Yw8-UjltiougCavTycztI6qamoNi3jwDcFwawA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB61VKK9QHm0pFC6SJV6cvA-krWPKCQiFKIIisTN8j58KbJRSA7hxE_ob-wv6YwdG1JUVWovlr1ey-vd2dlv1jPfAHzWOqMARx54bVSgbKSC1IVlSkDOdcY7kadA4fNR9-RKnV53rp9E8Vf8EM2GG82MUl_TBL912eEjaShFYLcp-XeIZrt8Ca9UN4wpecPxRUMgJVA6q_giKQNKQ1_TNobicPn55WXpGdZchq7l2jNYh7RudeVy8r09m5q2vf-N0PF_PustrC2AKTuqJGkDXvh8E1736nxwWzAf1swSjl2i8mbjYkIeX3OW5o71y3Q6NOJsTPv7EyJqZUXGekVOlLKoVH8-_ChyPAzJ_T0ld2t27hH7Y1EVEWrZoHYVY6j1CzuZI3a9uduGq0H_W-8kWCRuCKziWgbeptpYIY1SRB4UZ9ZpmYXSozkpnAullTGPjbA24nieuo7SHrWuNN1ORgDiHazkRe53gKEB5-IoCy0CSyWsio0S3EgvhYmMEXELgnrcErtgNafkGjdJxccsEurQpOnQFnxp6t9WfB5_rLlXi0GymNd3CcWbIqJDm68FB81tHAj6zZLmvphRHa61RiCEjXtfiU_zKkkGdyx0C0QpBH9pQ3I0Gvabqw__8tAnWB0fD5Kz4ejrLryhYtoRF9EerEwnM_8RIdXU7Jez5hcMwxlv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Soft+Porosity+and+Electrical+Properties+of+Conductive%E2%80%90on%E2%80%90Insulating+Metal%E2%80%90Organic+Framework+Nanocrystals&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yao%2C+Ming%E2%80%90Shui&rft.au=Otake%2C+Ken%E2%80%90ichi&rft.au=Zheng%2C+Jiajia&rft.au=Tsujimoto%2C+Masahiko&rft.date=2023-08-28&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=62&rft.issue=35&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanie.202303903&rft.externalDBID=10.1002%252Fanie.202303903&rft.externalDocID=ANIE202303903 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |