Kinking of GaP Nanowires Grown in an In Situ (S)TEM Gas Cell Holder

Nanowires are a promising structure to create new defect‐free heterostructures and optoelectronic devices. GaP nanowires grown via the VLS mechanism using tertiary‐butyl phosphine (TBP) and trimethylgallium (TMGa) as precursors in an in situ closed gas cell heating holder are shown. This holder is a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 10; no. 17
Main Authors Krug, David, Widemann, Maximilian, Gruber, Felix, Ahmed, Shamail, Demuth, Thomas, Beyer, Andreas, Volz, Kerstin
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.06.2023
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanowires are a promising structure to create new defect‐free heterostructures and optoelectronic devices. GaP nanowires grown via the VLS mechanism using tertiary‐butyl phosphine (TBP) and trimethylgallium (TMGa) as precursors in an in situ closed gas cell heating holder are shown. This holder is a model system to investigate the processes in metal‐organic vapour phase epitaxy (MOVPE). GaP nanowires change their growth direction after random distances by producing kinks. Statistics of these kink angles show dominant values of around 70.5°, 109.5°, and 123.7°. A custom holder tip capable of holding a single heating chip is used to perform scanning precession electron diffraction (SPED) measurements on the nanowire kinks. The results show that the predominant kink angles result from micro twins of first and second order. Understanding the defect formation and resulting geometry changes in GaP nanowires can lead to increased control over their shape during growth and mark a huge step toward applicable nanowire devices. GaP nanowires change their growth direction after random distances by producing kinks (red arrows). Statistics of these kink angles show dominant values of around 70.5°, 109.5°, and 123.7°. The origin of these kinks is investigated by scanning precession electron diffraction. The results show that the predominant kink angles result from micro twins of first and second order.
AbstractList Abstract Nanowires are a promising structure to create new defect‐free heterostructures and optoelectronic devices. GaP nanowires grown via the VLS mechanism using tertiary‐butyl phosphine (TBP) and trimethylgallium (TMGa) as precursors in an in situ closed gas cell heating holder are shown. This holder is a model system to investigate the processes in metal‐organic vapour phase epitaxy (MOVPE). GaP nanowires change their growth direction after random distances by producing kinks. Statistics of these kink angles show dominant values of around 70.5°, 109.5°, and 123.7°. A custom holder tip capable of holding a single heating chip is used to perform scanning precession electron diffraction (SPED) measurements on the nanowire kinks. The results show that the predominant kink angles result from micro twins of first and second order. Understanding the defect formation and resulting geometry changes in GaP nanowires can lead to increased control over their shape during growth and mark a huge step toward applicable nanowire devices.
Nanowires are a promising structure to create new defect‐free heterostructures and optoelectronic devices. GaP nanowires grown via the VLS mechanism using tertiary‐butyl phosphine (TBP) and trimethylgallium (TMGa) as precursors in an in situ closed gas cell heating holder are shown. This holder is a model system to investigate the processes in metal‐organic vapour phase epitaxy (MOVPE). GaP nanowires change their growth direction after random distances by producing kinks. Statistics of these kink angles show dominant values of around 70.5°, 109.5°, and 123.7°. A custom holder tip capable of holding a single heating chip is used to perform scanning precession electron diffraction (SPED) measurements on the nanowire kinks. The results show that the predominant kink angles result from micro twins of first and second order. Understanding the defect formation and resulting geometry changes in GaP nanowires can lead to increased control over their shape during growth and mark a huge step toward applicable nanowire devices.
Nanowires are a promising structure to create new defect‐free heterostructures and optoelectronic devices. GaP nanowires grown via the VLS mechanism using tertiary‐butyl phosphine (TBP) and trimethylgallium (TMGa) as precursors in an in situ closed gas cell heating holder are shown. This holder is a model system to investigate the processes in metal‐organic vapour phase epitaxy (MOVPE). GaP nanowires change their growth direction after random distances by producing kinks. Statistics of these kink angles show dominant values of around 70.5°, 109.5°, and 123.7°. A custom holder tip capable of holding a single heating chip is used to perform scanning precession electron diffraction (SPED) measurements on the nanowire kinks. The results show that the predominant kink angles result from micro twins of first and second order. Understanding the defect formation and resulting geometry changes in GaP nanowires can lead to increased control over their shape during growth and mark a huge step toward applicable nanowire devices. GaP nanowires change their growth direction after random distances by producing kinks (red arrows). Statistics of these kink angles show dominant values of around 70.5°, 109.5°, and 123.7°. The origin of these kinks is investigated by scanning precession electron diffraction. The results show that the predominant kink angles result from micro twins of first and second order.
Abstract Nanowires are a promising structure to create new defect‐free heterostructures and optoelectronic devices. GaP nanowires grown via the VLS mechanism using tertiary‐butyl phosphine (TBP) and trimethylgallium (TMGa) as precursors in an in situ closed gas cell heating holder are shown. This holder is a model system to investigate the processes in metal‐organic vapour phase epitaxy (MOVPE). GaP nanowires change their growth direction after random distances by producing kinks. Statistics of these kink angles show dominant values of around 70.5°, 109.5°, and 123.7°. A custom holder tip capable of holding a single heating chip is used to perform scanning precession electron diffraction (SPED) measurements on the nanowire kinks. The results show that the predominant kink angles result from micro twins of first and second order. Understanding the defect formation and resulting geometry changes in GaP nanowires can lead to increased control over their shape during growth and mark a huge step toward applicable nanowire devices.
Author Gruber, Felix
Widemann, Maximilian
Ahmed, Shamail
Krug, David
Beyer, Andreas
Volz, Kerstin
Demuth, Thomas
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0002-6007-7304
  surname: Krug
  fullname: Krug, David
  email: david.krug@physik.uni-marburg.de
  organization: Philipps‐Universität Marburg
– sequence: 2
  givenname: Maximilian
  surname: Widemann
  fullname: Widemann, Maximilian
  organization: Philipps‐Universität Marburg
– sequence: 3
  givenname: Felix
  surname: Gruber
  fullname: Gruber, Felix
  organization: Philipps‐Universität Marburg
– sequence: 4
  givenname: Shamail
  surname: Ahmed
  fullname: Ahmed, Shamail
  organization: Philipps‐Universität Marburg
– sequence: 5
  givenname: Thomas
  surname: Demuth
  fullname: Demuth, Thomas
  organization: Philipps‐Universität Marburg
– sequence: 6
  givenname: Andreas
  surname: Beyer
  fullname: Beyer, Andreas
  organization: Philipps‐Universität Marburg
– sequence: 7
  givenname: Kerstin
  surname: Volz
  fullname: Volz, Kerstin
  organization: Philipps‐Universität Marburg
BookMark eNqFUE1LQzEQDKJg_bh6DnjRQ-smeWneO0qtbfET1HPIZ0l9JprXUvrvjVbEm8vCLsvM7DAHaDem6BA6ITAgAPRC2bcwoEBLcxA7qEdJM-wLxmH3z76PjrtuAQCEUEJr1kOjmxBfQ5zj5PFEPeJ7FdM6ZNfhSU7riEPEKuJZxE9hucJnT-fP47sC7PDItS2epta6fIT2vGo7d_wzD9HL9fh5NO3fPkxmo8vbvqmIgL6tWaUbq5UF4gWxpZipGs29M0ZxbTkHTYx1lNLi1ftacxgCZaV0BYwdotlW1ya1kO85vKm8kUkF-X1IeS5VXgbTOglamWHjjLeVripuaiGI09Y2xBFhiS9ap1ut95w-Vq5bykVa5VjsS1rTIVQ15aKgBluUyanrsvO_XwnIr9zlV-7yN_dCYFvCOrRu8w9aXl7dzQQA-wRCyIRF
CitedBy_id crossref_primary_10_3390_cryst13101459
crossref_primary_10_1021_acsnano_3c07980
crossref_primary_10_12677_app_2024_145036
Cites_doi 10.1038/nphoton.2009.184
10.1088/0034-4885/73/11/114501
10.1021/nn300966j
10.1021/nl203213d
10.1002/smll.201501909
10.1186/1556-276X-9-211
10.1126/science.1192033
10.1166/jnn.2010.2157
10.1017/S1431927618003422
10.1214/aos/1176348768
10.1016/j.micron.2012.03.003
10.1515/zpch-1900-3431
10.1038/nature17148
10.1021/jp0672205
10.1017/S1431927617012351
10.1021/nl902013g
10.1021/cm300570n
10.1134/S1063783410070309
10.1038/nmat1688
10.1063/1.2089157
10.1021/nl8011006
10.1524/zkri.2013.1565
10.1002/adma.201904359
10.1524/zkri.2010.1205
10.1002/pssr.201307109
10.1111/jmi.12065
10.1007/s11051-019-4577-3
10.1038/nnano.2009.304
10.1039/C5CE00773A
10.1017/S1431927612001249
10.1021/acsomega.8b00063
10.1007/s13280-012-0266-5
10.1063/1.1363692
10.1063/1.1753975
10.1038/nmat1677
10.1016/j.jcrysgro.2010.10.036
ContentType Journal Article
Copyright 2023 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
L6V
L7M
M7S
P5Z
P62
PDBOC
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1002/admi.202202507
DatabaseName Wiley-Blackwell Open Access Collection
Wiley-Blackwell Backfiles (Open access)
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
Advanced Technologies & Aerospace Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
DatabaseTitleList
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID oai_doaj_org_article_0bac69ecfd4b445c8771ebdd91e17d1f
10_1002_admi_202202507
ADMI700
Genre article
GrantInformation_xml – fundername: Structure and Dynamics of Internal Interfaces
  funderid: 223848855
– fundername: German Research Foundation
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFKRA
AIACR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ARCSS
AVUZU
AZVAB
BENPR
BGLVJ
BMXJE
BRXPI
CCPQU
DCZOG
DPXWK
EBS
G-S
GODZA
GROUPED_DOAJ
HCIFZ
KB.
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7S
MEWTI
MY~
M~E
O9-
P2W
PDBOC
PTHSS
R.K
ROL
WBKPD
WIN
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
AIURR
BFHJK
CITATION
EJD
SUPJJ
7SR
7U5
8BQ
8FD
8FE
8FG
D1I
DWQXO
JG9
L6V
L7M
P62
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4170-d834b9dbad01f71dddd3c49b5fecca5bd550b1cde222350ff8b506023333b4033
IEDL.DBID DOA
ISSN 2196-7350
IngestDate Thu Sep 05 15:32:37 EDT 2024
Thu Oct 10 22:21:31 EDT 2024
Thu Sep 12 17:39:40 EDT 2024
Sat Aug 24 01:20:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4170-d834b9dbad01f71dddd3c49b5fecca5bd550b1cde222350ff8b506023333b4033
ORCID 0000-0002-6007-7304
OpenAccessLink https://doaj.org/article/0bac69ecfd4b445c8771ebdd91e17d1f
PQID 2826048257
PQPubID 2034582
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_0bac69ecfd4b445c8771ebdd91e17d1f
proquest_journals_2826048257
crossref_primary_10_1002_admi_202202507
wiley_primary_10_1002_admi_202202507_ADMI700
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2010; 10
1954; 83
2015; 17
2010; 329
2011; 315
2010; 225
2015; 11
1964; 4
2013; 228
2017; 23
2006; 5
2005; 87
2008; 8
2012; 18
2020; 32
2013; 7
1900; 34U
2012; 12
2018; 24
2018; 3
2019; 21
2007; 111
2016; 531
2009; 9
2009; 4
2013; 252
2009; 3
2014; 9
2012; 6
1992; 20
2012; 24
2001; 78
2012; 43
2010; 52
2010; 73
2012; 41
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Billig E. (e_1_2_8_37_1) 1954; 83
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 9
  start-page: 3826
  year: 2009
  publication-title: Nano Lett.
– volume: 252
  start-page: 23
  year: 2013
  publication-title: J. Microsc.
– volume: 12
  start-page: 151
  year: 2012
  publication-title: Nano Lett.
– volume: 10
  start-page: 1430
  year: 2010
  publication-title: J. Nanosci. Nanotechnol.
– volume: 9
  start-page: 211
  year: 2014
  publication-title: Nanoscale Res. Lett.
– volume: 3
  start-page: 3129
  year: 2018
  publication-title: ACS Omega
– volume: 17
  start-page: 6286
  year: 2015
  publication-title: CrystEngComm
– volume: 225
  start-page: 103
  year: 2010
  publication-title: Z. Kristallogr.
– volume: 4
  start-page: 89
  year: 1964
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 751
  year: 2017
  publication-title: Microsc. Microanal.
– volume: 329
  start-page: 830
  year: 2010
  publication-title: Science (New York, N.Y.)
– volume: 6
  start-page: 3624
  year: 2012
  publication-title: ACS Nano
– volume: 4
  start-page: 824
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 52
  start-page: 1531
  year: 2010
  publication-title: Phys. Solid State
– volume: 11
  start-page: 5402
  year: 2015
  publication-title: Small
– volume: 24
  start-page: 1975
  year: 2012
  publication-title: Chem. Mater.
– volume: 5
  start-page: 521
  year: 2006
  publication-title: Nat. Mater.
– volume: 34U
  start-page: 495
  year: 1900
  publication-title: Z. Phys. Chem.
– volume: 18
  start-page: 656
  year: 2012
  publication-title: Microsc. Microanal.
– volume: 73
  year: 2010
  publication-title: Rep. Prog. Phys.
– volume: 5
  start-page: 574
  year: 2006
  publication-title: Nat. Mater.
– volume: 111
  start-page: 2929
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 228
  start-page: 43
  year: 2013
  publication-title: Z. Kristallogr. Cryst. Mater.
– volume: 8
  start-page: 2310
  year: 2008
  publication-title: Nano Lett.
– volume: 43
  start-page: 910
  year: 2012
  publication-title: Micron (Oxford, England 1993)
– volume: 21
  start-page: 134
  year: 2019
  publication-title: J. Nanopart. Res.
– volume: 83
  start-page: 53
  year: 1954
  publication-title: J. Inst. Met.
– volume: 41
  start-page: 119
  year: 2012
  publication-title: AMBIO
– volume: 78
  start-page: 2214
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 569
  year: 2009
  publication-title: Nat. Photonics
– volume: 7
  start-page: 815
  year: 2013
  publication-title: Phys. Status Solidi RRL
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 24
  start-page: 586
  year: 2018
  publication-title: Microsc. Microanal.
– volume: 531
  start-page: 317
  year: 2016
  publication-title: Nature
– volume: 20
  start-page: 1236
  year: 1992
  publication-title: Ann. Statist.
– volume: 87
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 315
  start-page: 37
  year: 2011
  publication-title: J. Cryst. Growth
– ident: e_1_2_8_5_1
  doi: 10.1038/nphoton.2009.184
– ident: e_1_2_8_11_1
  doi: 10.1088/0034-4885/73/11/114501
– ident: e_1_2_8_21_1
  doi: 10.1021/nn300966j
– ident: e_1_2_8_22_1
  doi: 10.1021/nl203213d
– ident: e_1_2_8_4_1
  doi: 10.1002/smll.201501909
– ident: e_1_2_8_20_1
  doi: 10.1186/1556-276X-9-211
– ident: e_1_2_8_12_1
  doi: 10.1126/science.1192033
– ident: e_1_2_8_2_1
  doi: 10.1166/jnn.2010.2157
– ident: e_1_2_8_26_1
  doi: 10.1017/S1431927618003422
– ident: e_1_2_8_36_1
  doi: 10.1214/aos/1176348768
– ident: e_1_2_8_24_1
  doi: 10.1016/j.micron.2012.03.003
– ident: e_1_2_8_35_1
  doi: 10.1515/zpch-1900-3431
– ident: e_1_2_8_38_1
  doi: 10.1038/nature17148
– ident: e_1_2_8_19_1
  doi: 10.1021/jp0672205
– ident: e_1_2_8_10_1
  doi: 10.1017/S1431927617012351
– ident: e_1_2_8_14_1
  doi: 10.1021/nl902013g
– ident: e_1_2_8_6_1
  doi: 10.1021/cm300570n
– ident: e_1_2_8_30_1
  doi: 10.1134/S1063783410070309
– ident: e_1_2_8_28_1
– ident: e_1_2_8_17_1
  doi: 10.1038/nmat1688
– volume: 83
  start-page: 53
  year: 1954
  ident: e_1_2_8_37_1
  publication-title: J. Inst. Met.
  contributor:
    fullname: Billig E.
– ident: e_1_2_8_3_1
  doi: 10.1063/1.2089157
– ident: e_1_2_8_15_1
  doi: 10.1021/nl8011006
– ident: e_1_2_8_33_1
  doi: 10.1524/zkri.2013.1565
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201904359
– ident: e_1_2_8_31_1
  doi: 10.1524/zkri.2010.1205
– ident: e_1_2_8_7_1
  doi: 10.1002/pssr.201307109
– ident: e_1_2_8_32_1
  doi: 10.1111/jmi.12065
– ident: e_1_2_8_25_1
  doi: 10.1007/s11051-019-4577-3
– ident: e_1_2_8_13_1
  doi: 10.1038/nnano.2009.304
– ident: e_1_2_8_16_1
  doi: 10.1039/C5CE00773A
– ident: e_1_2_8_9_1
  doi: 10.1017/S1431927612001249
– ident: e_1_2_8_23_1
  doi: 10.1021/acsomega.8b00063
– ident: e_1_2_8_1_1
  doi: 10.1007/s13280-012-0266-5
– ident: e_1_2_8_29_1
  doi: 10.1063/1.1363692
– ident: e_1_2_8_27_1
  doi: 10.1063/1.1753975
– ident: e_1_2_8_18_1
  doi: 10.1038/nmat1677
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jcrysgro.2010.10.036
SSID ssj0001121283
Score 2.3355641
Snippet Nanowires are a promising structure to create new defect‐free heterostructures and optoelectronic devices. GaP nanowires grown via the VLS mechanism using...
Abstract Nanowires are a promising structure to create new defect‐free heterostructures and optoelectronic devices. GaP nanowires grown via the VLS mechanism...
Abstract Nanowires are a promising structure to create new defect‐free heterostructures and optoelectronic devices. GaP nanowires grown via the VLS mechanism...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms Angles (geometry)
Defects
Electron diffraction
Epitaxial growth
Gallium phosphides
Heating
Heterostructures
Kinking
Nanowires
Optoelectronic devices
Phosphines
semiconductors
transmission electron microscope
twins
Vapor phase epitaxy
Vapor phases
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dSxwxEA-tUuhLabWlp7bkQagFF5PdZLP7VPR6eracSFXwLexkEjnQXeue_7-Z3T0_Xto8hrCEmdn5yvD7Mbat0ShtnE7QSZUowDwpY6BNUGQeTHASAvU7Zif59EL9utSXQ8OtHcYqlz6xc9TYOOqR78XSII_WFi3sx-3fhFij6HV1oNB4zVZTqeiZdvVgcnL656nLIqNrLrIlWqNI9yq8mceyME0p-JsX0agD7X-RaT7PV7uAc_ievRsyRb7fq_YDe-XrNfamm9h07Tob_-5ZD3gT-FF1yqObbAh3uOVHVFnzec2rmh_X_Gy-uOc7Z9_PJ7N4sOVjf33Npw2xc39kF4eT8_E0GRgREqeIIQaLTEGJUKGQwUiMK3OqBB1IExow1hsgHXqK-lqEUAABCKZZXKBEln1iK3VT-8-MO-FShFi8-KJQ4HXpMSYzlfEp5IV01Yh9W0rG3vbAF7aHOE4tydA-ynDEDkhwj6cIsLrbaO6u7GD_VkDl8tK7gAqU0q4wRnpALKWXBmUYsa2l2O3wF7X2Secjttup4j9Xsfs_Z8dGiI1_f22TvSXW-H7ia4utLO7u_ZeYWyzg62BAD2uayuo
  priority: 102
  providerName: ProQuest
– databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-ELyIT1xf5CCoYDFpk6Y96vpYlRVBBW-hk0lkYW3Frv_fpN1d3ZOYYxhKmMnMfDOk3xByKFEJqYyM0HARCcA0yn2ijZAlFpQzHFzod_Qf0t6LuHuVr7_-4m_5IaYNt-AZTbwODl5AffZDGlrg-8DXd3EcsriaJ4se22ThXsfi8afLwn1obrg4vWemkUokmzA3svhs9hMzmakh8J9Bnb-xa5N8rlfJyhg10vPWzGtkzpbrZKl5vWnqDdK9bycg0MrRm-KR-pBZBQ7imt6EKpsOSlqU9LakT4PRFz1-Onm-6nvBmnbtcEh7VZjUvUlerq-eu71oPB0hMiJMi8EsEZAjFMi4Uxz9SozIQbpgFQnoaw_gBm1AAJI5l0EgE4wTv0CwJNkiC2VV2m1CDTMxgi9kbJYJsDK36IFNoWwMacZN0SFHE83oj5YEQ7d0x7EOOtRTHXbIRVDcVCqQVzcb1eebHvuCZlCYNLfGoQAhpMmU4hYQc265Qu46ZG-idj32qFr70jD10cZHmA45bUzxx1H0-WX_VjG28z_xXbIcJsq3r8H2yMLo88vue9wxgoPman0DBhvNjA
  priority: 102
  providerName: Wiley-Blackwell
Title Kinking of GaP Nanowires Grown in an In Situ (S)TEM Gas Cell Holder
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202202507
https://www.proquest.com/docview/2826048257
https://doaj.org/article/0bac69ecfd4b445c8771ebdd91e17d1f
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEB0al0AuJW0T4tY1OhSaQpZIu9Jq95i4_kiDg8kH5CZ2NBIYknWonf8fadcOzimX6rCHRYfhze7MPCHeA_ipSEulrUrICplIpDwpQ6NNiGcOtbcCfTzvmF7lkzv5917db1l9xTthrTxwC9wpx8rmpbOeJEqpbKG1cEhUCic0Cd9UX6G2yFRzuiJCSS6yjUojT08repwHOpimsenrN12oEet_M2Fuz6lNoxntw6f1hMjO2sg-wwdXf4Hd5qamXX6FwWXrdsAWno2rGQvlcRH1hpdsHBk1m9esqtlFzW7mq2d2fPP7djgNG5ds4B4e2GQRXbkP4G40vB1MkrUTQmJldIahIpNYElbEhdeCwsqsLFH5mAGFFHgGCksudnvFvS8wCgemWVgoeZYdQqde1O4ImOU2JQykxRWFRKdKR2GIqbRLMS-Erbrwa4OMeWoFL0wrbZyaiKF5xbAL5xG4111RqLp5EdJn1ukz76WvC70N7Gb99yxNoIF5qCyhmnThpEnFO6GYsz_TC835t_8R0nfYi57y7X2wHnRW_57djzB5rLAPO6mchWcxGvfh4_nwanbdbz68F4lI1vk
link.rule.ids 315,786,790,870,2115,11589,12792,21416,27955,27956,33406,33777,43633,43838,46085,46509,50847,50956
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB7RRVW5VPSlLgXqAxIgNcJO7Dg5VbBd2C3sCsEicbNij12tBAmQ5f_XTrI8Lq2PlhVFM-N5efR9ADsCJRfSiAgN4xHXmEa5D7QR0sRq6QzTLvQ7JtN0dMV_X4vrruFWd2OVS5_YOGqsTOiRH_jSIPXW5i3s5919FFijwutqR6HxBlYD5GbWg9Wj4fT84rnLwrxrzpIlWiONDwq8nfuyMI5D8JevolED2v8q03yZrzYB53gd3neZIjlsVfsBVmz5Ed42E5um_gSD05b1gFSOnBTnxLvJKuAO1-QkVNZkXpKiJOOSXM4Xj2Tvcn82nPiDNRnYmxsyqgI792e4Oh7OBqOoY0SIDA8MMZglXOeoC6TMSYZ-JYbnWrigCaHR1xuaGbQh6gvqXKYDgGCc-KU5TZIv0Cur0n4FYqiJUfvixWYZ11bkFn0yU0gb6zRjpujD7lIy6q4FvlAtxHGsggzVkwz7cBQE93QqAFY3G9XDH9XZv6K6MGlujUOuORcmk5JZjZgzyyQy14fNpdhVd4tq9azzPvxoVPGfX1GHvyZjSenGv7_2Hd6NZpMzdTaenn6DtcAg305_bUJv8fBot3yesdDbnTH9BSqqzeA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED5tTJt4QdvYtALb_DAJJi3CTuw4eWSF0g6KKgESb1bOZ0-VIEG0_H_spC30aZofrVNk3eXuvjvZ3wH8UKSl0lYlZIVMJFKelCHRJsQzh9pbgT72O8YX-fBa_rlRNy9e8Xf8EKuGW_SMNl5HB78nf_hMGlrR3TTUd2kas7h-DW9kHuBD5HaWk-cuiwihueXiDJ6ZJzpTfMncyNPD9U-sZaaWwH8Ndb7Erm3yGbyHrQVqZEedmT_AK1d_hLft7U0724b-WTcBgTWenVYTFkJmEzmIZ-w0VtlsWrOqZqOaXU7nj-zg8ufVyTgIzljf3d6yYRMndX-C68HJVX-YLKYjJFbGaTFUZBJLwoq48FpQWJmVJSofraKQQu2BwpKLCEBx7wuMZIJpFhZKnmWfYaNuavcFmOU2JQyFjCsKiU6VjgKwqbRLMS-ErXqwv9SMue9IMExHd5yaqEOz0mEPfkfFraQieXW70Tz8NQtfMBwrm5fOepIopbKF1sIhUSmc0CR8D_aWajcLj5qZUBrmIdqECNODX60p_nEUc3Q8HmnOd_5P_Du8mxwPzPno4mwXNuNw-e5i2B5szB8e3dcAQeb4rf3LngD9uNAd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinking+of+GaP+Nanowires+Grown+in+an+In+Situ+%28S%29TEM+Gas+Cell+Holder&rft.jtitle=Advanced+materials+interfaces&rft.au=David+Krug&rft.au=Maximilian+Widemann&rft.au=Felix+Gruber&rft.au=Shamail+Ahmed&rft.date=2023-06-01&rft.pub=Wiley-VCH&rft.eissn=2196-7350&rft.volume=10&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202202507&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0bac69ecfd4b445c8771ebdd91e17d1f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon