Comparison of four indirect (data mining) approaches to derive within-subject biological variation

Within-subject biological variation ( ) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference intervals and setting analytical performance specifications. Four indirect (data mining) approaches in determination of were directly compared. Pai...

Full description

Saved in:
Bibliographic Details
Published inClinical chemistry and laboratory medicine Vol. 60; no. 4; pp. 636 - 644
Main Authors Tan, Rui Zhen, Markus, Corey, Vasikaran, Samuel, Loh, Tze Ping
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 28.03.2022
Walter De Gruyter & Company
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Within-subject biological variation ( ) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference intervals and setting analytical performance specifications. Four indirect (data mining) approaches in determination of were directly compared. Paired serial laboratory results for 5,000 patients was simulated using four parameters, the percentage difference in the means between the pathological and non-pathological populations, the within-subject coefficient of variation for non-pathological values, the fraction of pathological values, and the relative increase in of the pathological distribution. These parameters resulted in a total of 128 permutations. Performance of the Expected Mean Squares method (EMS), the median method, a result ratio method with Tukey's outlier exclusion method and a modified result ratio method with Tukey's outlier exclusion were compared. Within the 128 permutations examined in this study, the EMS method performed the best with 101/128 permutations falling within ±0.20 fractional error of the 'true' simulated , followed by the result ratio method with Tukey's exclusion method for 78/128 permutations. The median method grossly under-estimated the . The modified result ratio with Tukey's rule performed best overall with 114/128 permutations within allowable error. This simulation study demonstrates that with careful selection of the statistical approach the influence of outliers from pathological populations can be minimised, and it is possible to recover values close to the 'true' underlying non-pathological population. This finding provides further evidence for use of routine laboratory databases in derivation of biological variation components.
AbstractList Within-subject biological variation (CVi ) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference intervals and setting analytical performance specifications. Four indirect (data mining) approaches in determination of CVi were directly compared.OBJECTIVESWithin-subject biological variation (CVi ) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference intervals and setting analytical performance specifications. Four indirect (data mining) approaches in determination of CVi were directly compared.Paired serial laboratory results for 5,000 patients was simulated using four parameters, d the percentage difference in the means between the pathological and non-pathological populations, CVi the within-subject coefficient of variation for non-pathological values, f the fraction of pathological values, and e the relative increase in CVi of the pathological distribution. These parameters resulted in a total of 128 permutations. Performance of the Expected Mean Squares method (EMS), the median method, a result ratio method with Tukey's outlier exclusion method and a modified result ratio method with Tukey's outlier exclusion were compared.METHODSPaired serial laboratory results for 5,000 patients was simulated using four parameters, d the percentage difference in the means between the pathological and non-pathological populations, CVi the within-subject coefficient of variation for non-pathological values, f the fraction of pathological values, and e the relative increase in CVi of the pathological distribution. These parameters resulted in a total of 128 permutations. Performance of the Expected Mean Squares method (EMS), the median method, a result ratio method with Tukey's outlier exclusion method and a modified result ratio method with Tukey's outlier exclusion were compared.Within the 128 permutations examined in this study, the EMS method performed the best with 101/128 permutations falling within ±0.20 fractional error of the 'true' simulated CVi , followed by the result ratio method with Tukey's exclusion method for 78/128 permutations. The median method grossly under-estimated the CVi . The modified result ratio with Tukey's rule performed best overall with 114/128 permutations within allowable error.RESULTSWithin the 128 permutations examined in this study, the EMS method performed the best with 101/128 permutations falling within ±0.20 fractional error of the 'true' simulated CVi , followed by the result ratio method with Tukey's exclusion method for 78/128 permutations. The median method grossly under-estimated the CVi . The modified result ratio with Tukey's rule performed best overall with 114/128 permutations within allowable error.This simulation study demonstrates that with careful selection of the statistical approach the influence of outliers from pathological populations can be minimised, and it is possible to recover CVi values close to the 'true' underlying non-pathological population. This finding provides further evidence for use of routine laboratory databases in derivation of biological variation components.CONCLUSIONSThis simulation study demonstrates that with careful selection of the statistical approach the influence of outliers from pathological populations can be minimised, and it is possible to recover CVi values close to the 'true' underlying non-pathological population. This finding provides further evidence for use of routine laboratory databases in derivation of biological variation components.
Within-subject biological variation ( ) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference intervals and setting analytical performance specifications. Four indirect (data mining) approaches in determination of were directly compared. Paired serial laboratory results for 5,000 patients was simulated using four parameters, the percentage difference in the means between the pathological and non-pathological populations, the within-subject coefficient of variation for non-pathological values, the fraction of pathological values, and the relative increase in of the pathological distribution. These parameters resulted in a total of 128 permutations. Performance of the Expected Mean Squares method (EMS), the median method, a result ratio method with Tukey's outlier exclusion method and a modified result ratio method with Tukey's outlier exclusion were compared. Within the 128 permutations examined in this study, the EMS method performed the best with 101/128 permutations falling within ±0.20 fractional error of the 'true' simulated , followed by the result ratio method with Tukey's exclusion method for 78/128 permutations. The median method grossly under-estimated the . The modified result ratio with Tukey's rule performed best overall with 114/128 permutations within allowable error. This simulation study demonstrates that with careful selection of the statistical approach the influence of outliers from pathological populations can be minimised, and it is possible to recover values close to the 'true' underlying non-pathological population. This finding provides further evidence for use of routine laboratory databases in derivation of biological variation components.
Within-subject biological variation (CVi) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference intervals and setting analytical performance specifications. Four indirect (data mining) approaches in determination of CVi were directly compared.Paired serial laboratory results for 5,000 patients was simulated using four parameters, d the percentage difference in the means between the pathological and non-pathological populations, CVi the within-subject coefficient of variation for non-pathological values, f the fraction of pathological values, and e the relative increase in CVi of the pathological distribution. These parameters resulted in a total of 128 permutations. Performance of the Expected Mean Squares method (EMS), the median method, a result ratio method with Tukey’s outlier exclusion method and a modified result ratio method with Tukey’s outlier exclusion were compared.Within the 128 permutations examined in this study, the EMS method performed the best with 101/128 permutations falling within ±0.20 fractional error of the ‘true’ simulated CVi, followed by the result ratio method with Tukey’s exclusion method for 78/128 permutations. The median method grossly under-estimated the CVi. The modified result ratio with Tukey’s rule performed best overall with 114/128 permutations within allowable error.This simulation study demonstrates that with careful selection of the statistical approach the influence of outliers from pathological populations can be minimised, and it is possible to recover CVi values close to the ‘true’ underlying non-pathological population. This finding provides further evidence for use of routine laboratory databases in derivation of biological variation components.
Author Markus, Corey
Loh, Tze Ping
Tan, Rui Zhen
Vasikaran, Samuel
Author_xml – sequence: 1
  givenname: Rui Zhen
  surname: Tan
  fullname: Tan, Rui Zhen
  email: RuiZhen.Tan@singaporetech.edu.sg
  organization: Engineering Cluster, Singapore Institute of Technology, Singapore, Singapore
– sequence: 2
  givenname: Corey
  orcidid: 0000-0002-5594-9737
  surname: Markus
  fullname: Markus, Corey
  email: corey.markus@flinders.edu.au
  organization: Flinders University International Centre for Point-of-Care Testing, Flinders Health and Medical Research Institute, Flinders University, Rundle Mall, South Australia, Australia
– sequence: 3
  givenname: Samuel
  surname: Vasikaran
  fullname: Vasikaran, Samuel
  email: Samuel.Vasikaran@health.wa.gov.au
  organization: Department of Clinical Biochemistry, PathWest-Royal Perth Hospital, Perth, Western Australia, Australia
– sequence: 4
  givenname: Tze Ping
  surname: Loh
  fullname: Loh, Tze Ping
  email: tploh@hotmail.com
  organization: Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35107229$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1rFTEYhYNU7IduXUrATV1MzcebmQTclItaoeBG10MmydzmMpNck0xL_72Z3qpQ6ipn8ZzDyXtO0VGIwSH0lpILKqj4aMw0N4ww2hAA9gKdUOBdA5zTowcNTdsyeoxOc94RQoWA7hU65oKSjjF1goZNnPc6-RwDjiMe45KwD9YnZwo-t7poPPvgw_YD1vt9itrcuIxLxNYlf-vwnS83PjR5GXarY_Bxiltv9IRva6ouPobX6OWop-zePL5n6OeXzz82V83196_fNpfXjQHalmYUtRBxWgkK1ihpwXZGKMul05opCUpLLoahE-Cs4YMCWrVhXI3SGgf8DJ0fcmvNX4vLpZ99Nm6adHBxyT1rGSiQgsiKvn-C7urHQ21XKS462Um2Br57pJZhdrbfJz_rdN__uV4FLg6ASTHn5Ma_CCX9Ok-_ztOv8_TrPNUATwzGl4cjlaT99H_bp4PtTk_FJeu2abmv4l_r540tgZa3_Df-1qfS
CitedBy_id crossref_primary_10_3343_alm_2023_43_5_408
crossref_primary_10_1016_j_pathol_2024_10_009
crossref_primary_10_1515_cclm_2024_1386
crossref_primary_10_1093_clinchem_hvae166
crossref_primary_10_1007_s40808_022_01509_0
crossref_primary_10_1515_cclm_2022_0086
crossref_primary_10_1515_cclm_2021_0863
Cites_doi 10.1136/jclinpath-2015-202916
10.1373/clinchem.2017.281808
10.1093/clinchem/hvaa054
10.3109/10408368909106595
10.1373/clinchem.2017.275115
10.1373/clinchem.2018.290841
10.1373/clinchem.2012.187781
10.1093/biomet/56.3.635
10.1515/cclm-2020-1885
10.1016/j.cca.2020.06.038
10.1016/j.cca.2018.07.043
10.1373/clinchem.2019.304618
10.1016/j.pathol.2018.12.418
10.1309/AJCPB7Q3AHYLJTPK
10.1007/s00198-020-05362-8
10.1373/clinchem.2018.288415
10.21037/atm-19-4498
10.1515/cclm-2018-0073
10.1515/cclm-2020-1490
10.1515/cclm-2019-1182
10.1309/AJCPHZLQAEYH94HI
ContentType Journal Article
Copyright 2022 Walter de Gruyter GmbH, Berlin/Boston.
2022 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2022 Walter de Gruyter GmbH, Berlin/Boston.
– notice: 2022 Walter de Gruyter GmbH, Berlin/Boston
CorporateAuthor APFCB Harmonization of Reference Intervals Working Group
CorporateAuthor_xml – name: APFCB Harmonization of Reference Intervals Working Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T7
7TK
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1515/cclm-2021-0442
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
EISSN 1437-4331
EndPage 644
ExternalDocumentID 35107229
10_1515_cclm_2021_0442
10_1515_cclm_2021_0442604636
Genre Journal Article
GroupedDBID ---
0R~
0~D
29B
354
36B
4.4
53G
5GY
5RE
AAAEU
AABBZ
AAFPC
AAGVJ
AAILP
AALGR
AAOQK
AAOWA
AAPJK
AAQCX
AARRE
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABDRH
ABFKT
ABFQV
ABIQR
ABJNI
ABLJU
ABMIY
ABPLS
ABRDF
ABUVI
ABWLS
ABXMZ
ABYBW
ACDEB
ACEFL
ACGFS
ACIWK
ACPMA
ACPRK
ACUND
ACYCL
ACZBO
ADDWE
ADEQT
ADGQD
ADGYE
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEJTT
AENEX
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFBQV
AFCXV
AFGDO
AFQUK
AFRAH
AFYRI
AGBEV
AHOVO
AHVWV
AHXUK
AIERV
AIWOI
AJATJ
AJHHK
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ALYBR
ASYPN
BAKPI
BBCWN
BCIFA
CGQUA
CS3
DU5
EBS
EMOBN
F5P
HZ~
IY9
KDIRW
N9A
O9-
OBC
OBS
OEB
OES
OHH
P2P
PQQKQ
QD8
RDG
SA.
SLJYH
TEORI
UK5
WTRAM
AAYXX
CITATION
ABVMU
CGR
CUY
CVF
DBYYV
ECM
EIF
NPM
7QO
7T7
7TK
7U7
8FD
ADNPR
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c416t-f52290ea9514dc98d4d7c59d38eaa29849a835bb754edc3b941b75c239f8dce43
ISSN 1434-6621
1437-4331
IngestDate Thu Jul 10 19:33:48 EDT 2025
Sat Aug 23 13:09:27 EDT 2025
Wed Feb 19 02:27:19 EST 2025
Tue Jul 01 02:49:38 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Thu Jul 10 10:34:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords outlier
indirect approach
biological variation
data mining
Language English
License 2022 Walter de Gruyter GmbH, Berlin/Boston.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c416t-f52290ea9514dc98d4d7c59d38eaa29849a835bb754edc3b941b75c239f8dce43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5594-9737
OpenAccessLink https://www.degruyter.com/document/doi/10.1515/cclm-2021-0442/pdf
PMID 35107229
PQID 2635787824
PQPubID 105421
PageCount 09
ParticipantIDs proquest_miscellaneous_2624948508
proquest_journals_2635787824
pubmed_primary_35107229
crossref_primary_10_1515_cclm_2021_0442
crossref_citationtrail_10_1515_cclm_2021_0442
walterdegruyter_journals_10_1515_cclm_2021_0442604636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-28
PublicationDateYYYYMMDD 2022-03-28
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-28
  day: 28
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Clinical chemistry and laboratory medicine
PublicationTitleAlternate Clin Chem Lab Med
PublicationYear 2022
Publisher De Gruyter
Walter De Gruyter & Company
Publisher_xml – name: De Gruyter
– name: Walter De Gruyter & Company
References 2022033122424023813_j_cclm-2021-0442_ref_010
2022033122424023813_j_cclm-2021-0442_ref_021
2022033122424023813_j_cclm-2021-0442_ref_011
2022033122424023813_j_cclm-2021-0442_ref_020
2022033122424023813_j_cclm-2021-0442_ref_007
2022033122424023813_j_cclm-2021-0442_ref_018
2022033122424023813_j_cclm-2021-0442_ref_008
2022033122424023813_j_cclm-2021-0442_ref_019
2022033122424023813_j_cclm-2021-0442_ref_005
2022033122424023813_j_cclm-2021-0442_ref_016
2022033122424023813_j_cclm-2021-0442_ref_006
2022033122424023813_j_cclm-2021-0442_ref_017
2022033122424023813_j_cclm-2021-0442_ref_003
2022033122424023813_j_cclm-2021-0442_ref_014
2022033122424023813_j_cclm-2021-0442_ref_004
2022033122424023813_j_cclm-2021-0442_ref_015
2022033122424023813_j_cclm-2021-0442_ref_001
2022033122424023813_j_cclm-2021-0442_ref_012
2022033122424023813_j_cclm-2021-0442_ref_002
2022033122424023813_j_cclm-2021-0442_ref_013
2022033122424023813_j_cclm-2021-0442_ref_009
References_xml – ident: 2022033122424023813_j_cclm-2021-0442_ref_016
  doi: 10.1136/jclinpath-2015-202916
– ident: 2022033122424023813_j_cclm-2021-0442_ref_002
  doi: 10.1373/clinchem.2017.281808
– ident: 2022033122424023813_j_cclm-2021-0442_ref_010
  doi: 10.1093/clinchem/hvaa054
– ident: 2022033122424023813_j_cclm-2021-0442_ref_001
  doi: 10.3109/10408368909106595
– ident: 2022033122424023813_j_cclm-2021-0442_ref_004
  doi: 10.1373/clinchem.2017.275115
– ident: 2022033122424023813_j_cclm-2021-0442_ref_019
  doi: 10.1373/clinchem.2018.290841
– ident: 2022033122424023813_j_cclm-2021-0442_ref_020
  doi: 10.1373/clinchem.2012.187781
– ident: 2022033122424023813_j_cclm-2021-0442_ref_021
  doi: 10.1093/biomet/56.3.635
– ident: 2022033122424023813_j_cclm-2021-0442_ref_013
  doi: 10.1515/cclm-2020-1885
– ident: 2022033122424023813_j_cclm-2021-0442_ref_009
  doi: 10.1016/j.cca.2020.06.038
– ident: 2022033122424023813_j_cclm-2021-0442_ref_011
  doi: 10.1016/j.cca.2018.07.043
– ident: 2022033122424023813_j_cclm-2021-0442_ref_005
  doi: 10.1373/clinchem.2019.304618
– ident: 2022033122424023813_j_cclm-2021-0442_ref_018
  doi: 10.1016/j.pathol.2018.12.418
– ident: 2022033122424023813_j_cclm-2021-0442_ref_017
  doi: 10.1309/AJCPB7Q3AHYLJTPK
– ident: 2022033122424023813_j_cclm-2021-0442_ref_007
  doi: 10.1007/s00198-020-05362-8
– ident: 2022033122424023813_j_cclm-2021-0442_ref_003
  doi: 10.1373/clinchem.2018.288415
– ident: 2022033122424023813_j_cclm-2021-0442_ref_008
  doi: 10.21037/atm-19-4498
– ident: 2022033122424023813_j_cclm-2021-0442_ref_014
  doi: 10.1515/cclm-2018-0073
– ident: 2022033122424023813_j_cclm-2021-0442_ref_012
  doi: 10.1515/cclm-2020-1490
– ident: 2022033122424023813_j_cclm-2021-0442_ref_006
  doi: 10.1515/cclm-2019-1182
– ident: 2022033122424023813_j_cclm-2021-0442_ref_015
  doi: 10.1309/AJCPHZLQAEYH94HI
SSID ssj0015547
Score 2.3760343
Snippet Within-subject biological variation ( ) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference...
Within-subject biological variation (CVi) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference...
Within-subject biological variation (CVi ) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference...
SourceID proquest
pubmed
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 636
SubjectTerms Biological variation
Coefficient of variation
Computer Simulation
Data Mining
Humans
indirect approach
Laboratories
Mathematical analysis
Median (statistics)
outlier
Outliers (statistics)
Parameters
Permutations
Populations
Reference Values
Research Design
Simulation
Variation
Title Comparison of four indirect (data mining) approaches to derive within-subject biological variation
URI https://www.degruyter.com/doi/10.1515/cclm-2021-0442
https://www.ncbi.nlm.nih.gov/pubmed/35107229
https://www.proquest.com/docview/2635787824
https://www.proquest.com/docview/2624948508
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ3F5mGDcCgMZCQlQldEkTps8jqpjQt3gIZ0qXqL4EqhYG9QmQ-zXc05sJ-1WpMFLFLlubOX7Yh_7-HyHkNeizwV3ZeRIJhSKaocODyLPka6LcjdZGHGMRj457R9P2KdpMG21yvXokoIfiMutcSX_gyqUAa4YJfsPyNYPhQK4B3zhCgjD9UYYD9eTCHYz-EsXXdA4iKHliKc_u_MqAwQu_q18uBZ1kNDBC1Xtw84WzqrkuCHT1ZpMFXAX8OQGNitmYAMphU0UV3kfDJXQX3_VWR8bR1M563793sSdYYxQqeUN8qWq9_XP0tXsR7o0u7LpvFT1CZBxXu0AxZeq-8XOt2a7Ala6Pd-Gf-sRlvmDJkxLbSkzw7JOM2Dox9bG2L5WTLk29geVTIYQ53Mgiec6PaZ1uzZFtk8_J0eT8TiJR9P4FtnxYHXhtcnO4ccPo7Pa_QQ2VpWVx_bLqH1CC-83n79pzVxbotwju7-qUw9SfVuWvwvrZa-Ml_g-2TWrDnqoKfSAtNRij9wZWgz3yO0TA9tDwhtW0TyjyCpqWUXfIqeo5tQ72jCKFjnVjKKbjKINo2jNqEdkcjSKh8eOycThCDDYCycLMC2ASsEcZ1JEoWRyIIJI-qFKUy8KWZSCJc_5IGBKCp9HzIV74flRFkqhmP-YtBf5Qj1FjQDfh3HBdQUbsGCQRSFnGVfSC7kX9lnaIY59o4kwMvWYLeU8weUqIJAgAgkikCACHfKmrv9TC7T8tea-BSgxH_EqQS0mmLNCj3XIq_pnePnoN0sXKi-xjleJKPXCDnmiga2b8mFOAwZFHRJcQbppY3t3-pVW37MbtPqc3G2-pH3SLpalegGmcMFfGuL-AbCBuAE
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVqJwKFBegQJGQgIO7jaOk9jHsmpZoNtTi3qL4kcAsbtB3aQIfj0zeVFauMAtUvwcf7bHHs83AM9tYqwJneZOWk-k2oqbWAvuwpDobgqlDXkjzw6T6bF8dxKfnPOFoWeVzn88rb9XLUPq2JW2pouygWsAd-CxtfMFDrDAo7CUYvypWsyvwpqSeF4Zwdrum9d7HwZbAm6YTYgVGUmeJCLsqBsvF_P71nRJ37wBG98aE_bQvnM70f5NsH0f2gcoX7brymzbHxfoHf-vk7dgo1NU2W6LrNtwxS83YX3Sx4fbhGuzzix_B8xkiGbIyoIVmJeRLZxWU_aSHqGyRROI4hXrOcz9ilUlc4j_M8_oMvjzkq9qQ7dCrCWGIvSwMyy1wc5dON7fO5pMeRe8gVvU8SpexMQk73PU4KSzWjnpUhtrFymf50IrqXNU_oxJY-mdjYyWIX5bEelCOetldA9Gy3LpH5BbeRQhlMLQylTGaaGVkYXxTigjVCLzAHg_bpntmM0pwMY8oxMOSjIjSWYkyYwkGcCLIf3XltPjrym3ehhk3dxeZUTfg8ucEjKAZ8NvFD6ZWvKlL2tKIxrenR0VwP0WPkNVES6DKQongPgCnn7V8efmJA2928N_zPcU1qdHs4Ps4O3h-0dwXZAfx07EhdqCUXVa-8eoXVXmSTd9fgKdZyD3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVipwKFCgDRQwEhJwcLdxnMQ-lqVLebTiQBG3KH4EIdqk6iZF7a9nJi-ghQvcIsXP8Wd77Bl_A_DUJsaa0GnupPVEqq24ibXgLgyJ7qZQ2tBr5L39ZPdAvv0cD96Ei96t0vkvJ81Z3TGkTl1lG7ooG7kGcAeeWnt4hAMs8CgspZgeu-IqLCmJZ5kJLG2_frnzaTQl4H7ZRliRkeRJIsKeufFyKb_vTJfUzRuw8r21YI_N-2Ujmt8EM3Sh8z_5ttnUZtOeX2B3_K8-3oKVXk1l2x2ubsMVX67CtdkQHW4Vlvd6o_wdMLMxliGrClZgXkaWcFpL2XNyQWVHbRiKF2xgMPcLVlfMIfpPPaOr4K8lXzSG7oRYRwtF2GGnWGqLnLtwMN_5ONvlfegGblHDq3kRE4-8z1F_k85q5aRLbaxdpHyeC62kzlH1MyaNpXc2MlqG-G1FpAvlrJfRPZiUVenX6VF5FCGQwtDKVMZpoZWRhfFOKCNUIvMA-DBsme15zSm8xmFG5xsUZEaCzEiQGQkygGdj-uOO0eOvKTcGFGT9zF5kRN6Di5wSMoAn428UPhla8tJXDaURLevOlgpgrUPPWFWEi2CKwgkgvgCnn3X8uTlJS-52_x_zPYblD6_m2fs3--8ewHVBjzi2Ii7UBkzqk8Y_RNWqNo_6yfMDHCkfng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+four+indirect+%28data+mining%29+approaches+to+derive+within-subject+biological+variation&rft.jtitle=Clinical+chemistry+and+laboratory+medicine&rft.au=Tan%2C+Rui+Zhen&rft.au=Markus%2C+Corey&rft.au=Vasikaran%2C+Samuel&rft.au=Loh%2C+Tze+Ping&rft.date=2022-03-28&rft.issn=1437-4331&rft.eissn=1437-4331&rft.volume=60&rft.issue=4&rft.spage=636&rft_id=info:doi/10.1515%2Fcclm-2021-0442&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6621&client=summon