Comparison of four indirect (data mining) approaches to derive within-subject biological variation
Within-subject biological variation ( ) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference intervals and setting analytical performance specifications. Four indirect (data mining) approaches in determination of were directly compared. Pai...
Saved in:
Published in | Clinical chemistry and laboratory medicine Vol. 60; no. 4; pp. 636 - 644 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
28.03.2022
Walter De Gruyter & Company |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Within-subject biological variation (
) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference intervals and setting analytical performance specifications. Four indirect (data mining) approaches in determination of
were directly compared.
Paired serial laboratory results for 5,000 patients was simulated using four parameters,
the percentage difference in the means between the pathological and non-pathological populations,
the within-subject coefficient of variation for non-pathological values,
the fraction of pathological values, and
the relative increase in
of the pathological distribution. These parameters resulted in a total of 128 permutations. Performance of the Expected Mean Squares method (EMS), the median method, a result ratio method with Tukey's outlier exclusion method and a modified result ratio method with Tukey's outlier exclusion were compared.
Within the 128 permutations examined in this study, the EMS method performed the best with 101/128 permutations falling within ±0.20 fractional error of the 'true' simulated
, followed by the result ratio method with Tukey's exclusion method for 78/128 permutations. The median method grossly under-estimated the
. The modified result ratio with Tukey's rule performed best overall with 114/128 permutations within allowable error.
This simulation study demonstrates that with careful selection of the statistical approach the influence of outliers from pathological populations can be minimised, and it is possible to recover
values close to the 'true' underlying non-pathological population. This finding provides further evidence for use of routine laboratory databases in derivation of biological variation components. |
---|---|
AbstractList | Within-subject biological variation (CVi ) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference intervals and setting analytical performance specifications. Four indirect (data mining) approaches in determination of CVi were directly compared.OBJECTIVESWithin-subject biological variation (CVi ) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference intervals and setting analytical performance specifications. Four indirect (data mining) approaches in determination of CVi were directly compared.Paired serial laboratory results for 5,000 patients was simulated using four parameters, d the percentage difference in the means between the pathological and non-pathological populations, CVi the within-subject coefficient of variation for non-pathological values, f the fraction of pathological values, and e the relative increase in CVi of the pathological distribution. These parameters resulted in a total of 128 permutations. Performance of the Expected Mean Squares method (EMS), the median method, a result ratio method with Tukey's outlier exclusion method and a modified result ratio method with Tukey's outlier exclusion were compared.METHODSPaired serial laboratory results for 5,000 patients was simulated using four parameters, d the percentage difference in the means between the pathological and non-pathological populations, CVi the within-subject coefficient of variation for non-pathological values, f the fraction of pathological values, and e the relative increase in CVi of the pathological distribution. These parameters resulted in a total of 128 permutations. Performance of the Expected Mean Squares method (EMS), the median method, a result ratio method with Tukey's outlier exclusion method and a modified result ratio method with Tukey's outlier exclusion were compared.Within the 128 permutations examined in this study, the EMS method performed the best with 101/128 permutations falling within ±0.20 fractional error of the 'true' simulated CVi , followed by the result ratio method with Tukey's exclusion method for 78/128 permutations. The median method grossly under-estimated the CVi . The modified result ratio with Tukey's rule performed best overall with 114/128 permutations within allowable error.RESULTSWithin the 128 permutations examined in this study, the EMS method performed the best with 101/128 permutations falling within ±0.20 fractional error of the 'true' simulated CVi , followed by the result ratio method with Tukey's exclusion method for 78/128 permutations. The median method grossly under-estimated the CVi . The modified result ratio with Tukey's rule performed best overall with 114/128 permutations within allowable error.This simulation study demonstrates that with careful selection of the statistical approach the influence of outliers from pathological populations can be minimised, and it is possible to recover CVi values close to the 'true' underlying non-pathological population. This finding provides further evidence for use of routine laboratory databases in derivation of biological variation components.CONCLUSIONSThis simulation study demonstrates that with careful selection of the statistical approach the influence of outliers from pathological populations can be minimised, and it is possible to recover CVi values close to the 'true' underlying non-pathological population. This finding provides further evidence for use of routine laboratory databases in derivation of biological variation components. Within-subject biological variation ( ) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference intervals and setting analytical performance specifications. Four indirect (data mining) approaches in determination of were directly compared. Paired serial laboratory results for 5,000 patients was simulated using four parameters, the percentage difference in the means between the pathological and non-pathological populations, the within-subject coefficient of variation for non-pathological values, the fraction of pathological values, and the relative increase in of the pathological distribution. These parameters resulted in a total of 128 permutations. Performance of the Expected Mean Squares method (EMS), the median method, a result ratio method with Tukey's outlier exclusion method and a modified result ratio method with Tukey's outlier exclusion were compared. Within the 128 permutations examined in this study, the EMS method performed the best with 101/128 permutations falling within ±0.20 fractional error of the 'true' simulated , followed by the result ratio method with Tukey's exclusion method for 78/128 permutations. The median method grossly under-estimated the . The modified result ratio with Tukey's rule performed best overall with 114/128 permutations within allowable error. This simulation study demonstrates that with careful selection of the statistical approach the influence of outliers from pathological populations can be minimised, and it is possible to recover values close to the 'true' underlying non-pathological population. This finding provides further evidence for use of routine laboratory databases in derivation of biological variation components. Within-subject biological variation (CVi) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference intervals and setting analytical performance specifications. Four indirect (data mining) approaches in determination of CVi were directly compared.Paired serial laboratory results for 5,000 patients was simulated using four parameters, d the percentage difference in the means between the pathological and non-pathological populations, CVi the within-subject coefficient of variation for non-pathological values, f the fraction of pathological values, and e the relative increase in CVi of the pathological distribution. These parameters resulted in a total of 128 permutations. Performance of the Expected Mean Squares method (EMS), the median method, a result ratio method with Tukey’s outlier exclusion method and a modified result ratio method with Tukey’s outlier exclusion were compared.Within the 128 permutations examined in this study, the EMS method performed the best with 101/128 permutations falling within ±0.20 fractional error of the ‘true’ simulated CVi, followed by the result ratio method with Tukey’s exclusion method for 78/128 permutations. The median method grossly under-estimated the CVi. The modified result ratio with Tukey’s rule performed best overall with 114/128 permutations within allowable error.This simulation study demonstrates that with careful selection of the statistical approach the influence of outliers from pathological populations can be minimised, and it is possible to recover CVi values close to the ‘true’ underlying non-pathological population. This finding provides further evidence for use of routine laboratory databases in derivation of biological variation components. |
Author | Markus, Corey Loh, Tze Ping Tan, Rui Zhen Vasikaran, Samuel |
Author_xml | – sequence: 1 givenname: Rui Zhen surname: Tan fullname: Tan, Rui Zhen email: RuiZhen.Tan@singaporetech.edu.sg organization: Engineering Cluster, Singapore Institute of Technology, Singapore, Singapore – sequence: 2 givenname: Corey orcidid: 0000-0002-5594-9737 surname: Markus fullname: Markus, Corey email: corey.markus@flinders.edu.au organization: Flinders University International Centre for Point-of-Care Testing, Flinders Health and Medical Research Institute, Flinders University, Rundle Mall, South Australia, Australia – sequence: 3 givenname: Samuel surname: Vasikaran fullname: Vasikaran, Samuel email: Samuel.Vasikaran@health.wa.gov.au organization: Department of Clinical Biochemistry, PathWest-Royal Perth Hospital, Perth, Western Australia, Australia – sequence: 4 givenname: Tze Ping surname: Loh fullname: Loh, Tze Ping email: tploh@hotmail.com organization: Department of Laboratory Medicine, National University Hospital, Singapore, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35107229$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1rFTEYhYNU7IduXUrATV1MzcebmQTclItaoeBG10MmydzmMpNck0xL_72Z3qpQ6ipn8ZzDyXtO0VGIwSH0lpILKqj4aMw0N4ww2hAA9gKdUOBdA5zTowcNTdsyeoxOc94RQoWA7hU65oKSjjF1goZNnPc6-RwDjiMe45KwD9YnZwo-t7poPPvgw_YD1vt9itrcuIxLxNYlf-vwnS83PjR5GXarY_Bxiltv9IRva6ouPobX6OWop-zePL5n6OeXzz82V83196_fNpfXjQHalmYUtRBxWgkK1ihpwXZGKMul05opCUpLLoahE-Cs4YMCWrVhXI3SGgf8DJ0fcmvNX4vLpZ99Nm6adHBxyT1rGSiQgsiKvn-C7urHQ21XKS462Um2Br57pJZhdrbfJz_rdN__uV4FLg6ASTHn5Ma_CCX9Ok-_ztOv8_TrPNUATwzGl4cjlaT99H_bp4PtTk_FJeu2abmv4l_r540tgZa3_Df-1qfS |
CitedBy_id | crossref_primary_10_3343_alm_2023_43_5_408 crossref_primary_10_1016_j_pathol_2024_10_009 crossref_primary_10_1515_cclm_2024_1386 crossref_primary_10_1093_clinchem_hvae166 crossref_primary_10_1007_s40808_022_01509_0 crossref_primary_10_1515_cclm_2022_0086 crossref_primary_10_1515_cclm_2021_0863 |
Cites_doi | 10.1136/jclinpath-2015-202916 10.1373/clinchem.2017.281808 10.1093/clinchem/hvaa054 10.3109/10408368909106595 10.1373/clinchem.2017.275115 10.1373/clinchem.2018.290841 10.1373/clinchem.2012.187781 10.1093/biomet/56.3.635 10.1515/cclm-2020-1885 10.1016/j.cca.2020.06.038 10.1016/j.cca.2018.07.043 10.1373/clinchem.2019.304618 10.1016/j.pathol.2018.12.418 10.1309/AJCPB7Q3AHYLJTPK 10.1007/s00198-020-05362-8 10.1373/clinchem.2018.288415 10.21037/atm-19-4498 10.1515/cclm-2018-0073 10.1515/cclm-2020-1490 10.1515/cclm-2019-1182 10.1309/AJCPHZLQAEYH94HI |
ContentType | Journal Article |
Copyright | 2022 Walter de Gruyter GmbH, Berlin/Boston. 2022 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2022 Walter de Gruyter GmbH, Berlin/Boston. – notice: 2022 Walter de Gruyter GmbH, Berlin/Boston |
CorporateAuthor | APFCB Harmonization of Reference Intervals Working Group |
CorporateAuthor_xml | – name: APFCB Harmonization of Reference Intervals Working Group |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T7 7TK 7U7 8FD C1K FR3 P64 7X8 |
DOI | 10.1515/cclm-2021-0442 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry |
EISSN | 1437-4331 |
EndPage | 644 |
ExternalDocumentID | 35107229 10_1515_cclm_2021_0442 10_1515_cclm_2021_0442604636 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 0~D 29B 354 36B 4.4 53G 5GY 5RE AAAEU AABBZ AAFPC AAGVJ AAILP AALGR AAOQK AAOWA AAPJK AAQCX AARRE AASQH AAWFC AAXCG ABAOT ABAQN ABDRH ABFKT ABFQV ABIQR ABJNI ABLJU ABMIY ABPLS ABRDF ABUVI ABWLS ABXMZ ABYBW ACDEB ACEFL ACGFS ACIWK ACPMA ACPRK ACUND ACYCL ACZBO ADDWE ADEQT ADGQD ADGYE ADOZN AECWL AEDGQ AEGVQ AEICA AEJTT AENEX AEQDQ AERZL AEXIE AFBAA AFBDD AFBQV AFCXV AFGDO AFQUK AFRAH AFYRI AGBEV AHOVO AHVWV AHXUK AIERV AIWOI AJATJ AJHHK AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF ALYBR ASYPN BAKPI BBCWN BCIFA CGQUA CS3 DU5 EBS EMOBN F5P HZ~ IY9 KDIRW N9A O9- OBC OBS OEB OES OHH P2P PQQKQ QD8 RDG SA. SLJYH TEORI UK5 WTRAM AAYXX CITATION ABVMU CGR CUY CVF DBYYV ECM EIF NPM 7QO 7T7 7TK 7U7 8FD ADNPR C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c416t-f52290ea9514dc98d4d7c59d38eaa29849a835bb754edc3b941b75c239f8dce43 |
ISSN | 1434-6621 1437-4331 |
IngestDate | Thu Jul 10 19:33:48 EDT 2025 Sat Aug 23 13:09:27 EDT 2025 Wed Feb 19 02:27:19 EST 2025 Tue Jul 01 02:49:38 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Thu Jul 10 10:34:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | outlier indirect approach biological variation data mining |
Language | English |
License | 2022 Walter de Gruyter GmbH, Berlin/Boston. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c416t-f52290ea9514dc98d4d7c59d38eaa29849a835bb754edc3b941b75c239f8dce43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5594-9737 |
OpenAccessLink | https://www.degruyter.com/document/doi/10.1515/cclm-2021-0442/pdf |
PMID | 35107229 |
PQID | 2635787824 |
PQPubID | 105421 |
PageCount | 09 |
ParticipantIDs | proquest_miscellaneous_2624948508 proquest_journals_2635787824 pubmed_primary_35107229 crossref_primary_10_1515_cclm_2021_0442 crossref_citationtrail_10_1515_cclm_2021_0442 walterdegruyter_journals_10_1515_cclm_2021_0442604636 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-28 |
PublicationDateYYYYMMDD | 2022-03-28 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Clinical chemistry and laboratory medicine |
PublicationTitleAlternate | Clin Chem Lab Med |
PublicationYear | 2022 |
Publisher | De Gruyter Walter De Gruyter & Company |
Publisher_xml | – name: De Gruyter – name: Walter De Gruyter & Company |
References | 2022033122424023813_j_cclm-2021-0442_ref_010 2022033122424023813_j_cclm-2021-0442_ref_021 2022033122424023813_j_cclm-2021-0442_ref_011 2022033122424023813_j_cclm-2021-0442_ref_020 2022033122424023813_j_cclm-2021-0442_ref_007 2022033122424023813_j_cclm-2021-0442_ref_018 2022033122424023813_j_cclm-2021-0442_ref_008 2022033122424023813_j_cclm-2021-0442_ref_019 2022033122424023813_j_cclm-2021-0442_ref_005 2022033122424023813_j_cclm-2021-0442_ref_016 2022033122424023813_j_cclm-2021-0442_ref_006 2022033122424023813_j_cclm-2021-0442_ref_017 2022033122424023813_j_cclm-2021-0442_ref_003 2022033122424023813_j_cclm-2021-0442_ref_014 2022033122424023813_j_cclm-2021-0442_ref_004 2022033122424023813_j_cclm-2021-0442_ref_015 2022033122424023813_j_cclm-2021-0442_ref_001 2022033122424023813_j_cclm-2021-0442_ref_012 2022033122424023813_j_cclm-2021-0442_ref_002 2022033122424023813_j_cclm-2021-0442_ref_013 2022033122424023813_j_cclm-2021-0442_ref_009 |
References_xml | – ident: 2022033122424023813_j_cclm-2021-0442_ref_016 doi: 10.1136/jclinpath-2015-202916 – ident: 2022033122424023813_j_cclm-2021-0442_ref_002 doi: 10.1373/clinchem.2017.281808 – ident: 2022033122424023813_j_cclm-2021-0442_ref_010 doi: 10.1093/clinchem/hvaa054 – ident: 2022033122424023813_j_cclm-2021-0442_ref_001 doi: 10.3109/10408368909106595 – ident: 2022033122424023813_j_cclm-2021-0442_ref_004 doi: 10.1373/clinchem.2017.275115 – ident: 2022033122424023813_j_cclm-2021-0442_ref_019 doi: 10.1373/clinchem.2018.290841 – ident: 2022033122424023813_j_cclm-2021-0442_ref_020 doi: 10.1373/clinchem.2012.187781 – ident: 2022033122424023813_j_cclm-2021-0442_ref_021 doi: 10.1093/biomet/56.3.635 – ident: 2022033122424023813_j_cclm-2021-0442_ref_013 doi: 10.1515/cclm-2020-1885 – ident: 2022033122424023813_j_cclm-2021-0442_ref_009 doi: 10.1016/j.cca.2020.06.038 – ident: 2022033122424023813_j_cclm-2021-0442_ref_011 doi: 10.1016/j.cca.2018.07.043 – ident: 2022033122424023813_j_cclm-2021-0442_ref_005 doi: 10.1373/clinchem.2019.304618 – ident: 2022033122424023813_j_cclm-2021-0442_ref_018 doi: 10.1016/j.pathol.2018.12.418 – ident: 2022033122424023813_j_cclm-2021-0442_ref_017 doi: 10.1309/AJCPB7Q3AHYLJTPK – ident: 2022033122424023813_j_cclm-2021-0442_ref_007 doi: 10.1007/s00198-020-05362-8 – ident: 2022033122424023813_j_cclm-2021-0442_ref_003 doi: 10.1373/clinchem.2018.288415 – ident: 2022033122424023813_j_cclm-2021-0442_ref_008 doi: 10.21037/atm-19-4498 – ident: 2022033122424023813_j_cclm-2021-0442_ref_014 doi: 10.1515/cclm-2018-0073 – ident: 2022033122424023813_j_cclm-2021-0442_ref_012 doi: 10.1515/cclm-2020-1490 – ident: 2022033122424023813_j_cclm-2021-0442_ref_006 doi: 10.1515/cclm-2019-1182 – ident: 2022033122424023813_j_cclm-2021-0442_ref_015 doi: 10.1309/AJCPHZLQAEYH94HI |
SSID | ssj0015547 |
Score | 2.3760343 |
Snippet | Within-subject biological variation (
) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference... Within-subject biological variation (CVi) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference... Within-subject biological variation (CVi ) is a fundamental aspect of laboratory medicine, from interpretation of serial results, partitioning of reference... |
SourceID | proquest pubmed crossref walterdegruyter |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 636 |
SubjectTerms | Biological variation Coefficient of variation Computer Simulation Data Mining Humans indirect approach Laboratories Mathematical analysis Median (statistics) outlier Outliers (statistics) Parameters Permutations Populations Reference Values Research Design Simulation Variation |
Title | Comparison of four indirect (data mining) approaches to derive within-subject biological variation |
URI | https://www.degruyter.com/doi/10.1515/cclm-2021-0442 https://www.ncbi.nlm.nih.gov/pubmed/35107229 https://www.proquest.com/docview/2635787824 https://www.proquest.com/docview/2624948508 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ3F5mGDcCgMZCQlQldEkTps8jqpjQt3gIZ0qXqL4EqhYG9QmQ-zXc05sJ-1WpMFLFLlubOX7Yh_7-HyHkNeizwV3ZeRIJhSKaocODyLPka6LcjdZGHGMRj457R9P2KdpMG21yvXokoIfiMutcSX_gyqUAa4YJfsPyNYPhQK4B3zhCgjD9UYYD9eTCHYz-EsXXdA4iKHliKc_u_MqAwQu_q18uBZ1kNDBC1Xtw84WzqrkuCHT1ZpMFXAX8OQGNitmYAMphU0UV3kfDJXQX3_VWR8bR1M563793sSdYYxQqeUN8qWq9_XP0tXsR7o0u7LpvFT1CZBxXu0AxZeq-8XOt2a7Ala6Pd-Gf-sRlvmDJkxLbSkzw7JOM2Dox9bG2L5WTLk29geVTIYQ53Mgiec6PaZ1uzZFtk8_J0eT8TiJR9P4FtnxYHXhtcnO4ccPo7Pa_QQ2VpWVx_bLqH1CC-83n79pzVxbotwju7-qUw9SfVuWvwvrZa-Ml_g-2TWrDnqoKfSAtNRij9wZWgz3yO0TA9tDwhtW0TyjyCpqWUXfIqeo5tQ72jCKFjnVjKKbjKINo2jNqEdkcjSKh8eOycThCDDYCycLMC2ASsEcZ1JEoWRyIIJI-qFKUy8KWZSCJc_5IGBKCp9HzIV74flRFkqhmP-YtBf5Qj1FjQDfh3HBdQUbsGCQRSFnGVfSC7kX9lnaIY59o4kwMvWYLeU8weUqIJAgAgkikCACHfKmrv9TC7T8tea-BSgxH_EqQS0mmLNCj3XIq_pnePnoN0sXKi-xjleJKPXCDnmiga2b8mFOAwZFHRJcQbppY3t3-pVW37MbtPqc3G2-pH3SLpalegGmcMFfGuL-AbCBuAE |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVqJwKFBegQJGQgIO7jaOk9jHsmpZoNtTi3qL4kcAsbtB3aQIfj0zeVFauMAtUvwcf7bHHs83AM9tYqwJneZOWk-k2oqbWAvuwpDobgqlDXkjzw6T6bF8dxKfnPOFoWeVzn88rb9XLUPq2JW2pouygWsAd-CxtfMFDrDAo7CUYvypWsyvwpqSeF4Zwdrum9d7HwZbAm6YTYgVGUmeJCLsqBsvF_P71nRJ37wBG98aE_bQvnM70f5NsH0f2gcoX7brymzbHxfoHf-vk7dgo1NU2W6LrNtwxS83YX3Sx4fbhGuzzix_B8xkiGbIyoIVmJeRLZxWU_aSHqGyRROI4hXrOcz9ilUlc4j_M8_oMvjzkq9qQ7dCrCWGIvSwMyy1wc5dON7fO5pMeRe8gVvU8SpexMQk73PU4KSzWjnpUhtrFymf50IrqXNU_oxJY-mdjYyWIX5bEelCOetldA9Gy3LpH5BbeRQhlMLQylTGaaGVkYXxTigjVCLzAHg_bpntmM0pwMY8oxMOSjIjSWYkyYwkGcCLIf3XltPjrym3ehhk3dxeZUTfg8ucEjKAZ8NvFD6ZWvKlL2tKIxrenR0VwP0WPkNVES6DKQongPgCnn7V8efmJA2928N_zPcU1qdHs4Ps4O3h-0dwXZAfx07EhdqCUXVa-8eoXVXmSTd9fgKdZyD3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVipwKFCgDRQwEhJwcLdxnMQ-lqVLebTiQBG3KH4EIdqk6iZF7a9nJi-ghQvcIsXP8Wd77Bl_A_DUJsaa0GnupPVEqq24ibXgLgyJ7qZQ2tBr5L39ZPdAvv0cD96Ei96t0vkvJ81Z3TGkTl1lG7ooG7kGcAeeWnt4hAMs8CgspZgeu-IqLCmJZ5kJLG2_frnzaTQl4H7ZRliRkeRJIsKeufFyKb_vTJfUzRuw8r21YI_N-2Ujmt8EM3Sh8z_5ttnUZtOeX2B3_K8-3oKVXk1l2x2ubsMVX67CtdkQHW4Vlvd6o_wdMLMxliGrClZgXkaWcFpL2XNyQWVHbRiKF2xgMPcLVlfMIfpPPaOr4K8lXzSG7oRYRwtF2GGnWGqLnLtwMN_5ONvlfegGblHDq3kRE4-8z1F_k85q5aRLbaxdpHyeC62kzlH1MyaNpXc2MlqG-G1FpAvlrJfRPZiUVenX6VF5FCGQwtDKVMZpoZWRhfFOKCNUIvMA-DBsme15zSm8xmFG5xsUZEaCzEiQGQkygGdj-uOO0eOvKTcGFGT9zF5kRN6Di5wSMoAn428UPhla8tJXDaURLevOlgpgrUPPWFWEi2CKwgkgvgCnn3X8uTlJS-52_x_zPYblD6_m2fs3--8ewHVBjzi2Ii7UBkzqk8Y_RNWqNo_6yfMDHCkfng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+four+indirect+%28data+mining%29+approaches+to+derive+within-subject+biological+variation&rft.jtitle=Clinical+chemistry+and+laboratory+medicine&rft.au=Tan%2C+Rui+Zhen&rft.au=Markus%2C+Corey&rft.au=Vasikaran%2C+Samuel&rft.au=Loh%2C+Tze+Ping&rft.date=2022-03-28&rft.issn=1437-4331&rft.eissn=1437-4331&rft.volume=60&rft.issue=4&rft.spage=636&rft_id=info:doi/10.1515%2Fcclm-2021-0442&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6621&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6621&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6621&client=summon |