Administration of Lactobacillus reuteri Combined with Clostridium butyricum Attenuates Cisplatin-Induced Renal Damage by Gut Microbiota Reconstitution, Increasing Butyric Acid Production, and Suppressing Renal Inflammation

Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota...

Full description

Saved in:
Bibliographic Details
Published inNutrients Vol. 13; no. 8; p. 2792
Main Authors Hsiao, Yu-Ping, Chen, Hsiao-Ling, Tsai, Jen-Ning, Lin, Meei-Yn, Liao, Jiunn-Wang, Wei, Meng-Syuan, Ko, Jiunn-Liang, Ou, Chu-Chyn
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 15.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium, Ruminococcaceae, Ruminiclostridium_9, and Oscillibacter. Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut–kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier.
AbstractList Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium, Ruminococcaceae, Ruminiclostridium_9, and Oscillibacter. Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut-kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier.Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium, Ruminococcaceae, Ruminiclostridium_9, and Oscillibacter. Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut-kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier.
Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium , Ruminococcaceae , Ruminiclostridium_9 , and Oscillibacter . Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut–kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier.
Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium, Ruminococcaceae, Ruminiclostridium_9, and Oscillibacter. Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut–kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier.
Author Hsiao, Yu-Ping
Wei, Meng-Syuan
Tsai, Jen-Ning
Liao, Jiunn-Wang
Ko, Jiunn-Liang
Chen, Hsiao-Ling
Lin, Meei-Yn
Ou, Chu-Chyn
AuthorAffiliation 1 Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; missyuping@gmail.com
6 Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; mylin@dragon.nchu.edu.tw (M.-Y.L.); priscillawie@gmail.com (M.-S.W.)
7 Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan; jwliao@dragon.nchu.edu.tw
10 Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
2 Department of Dermatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
9 Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
3 Department of Food, Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan; hlchen908@asia.edu.tw
5 Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
8 Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
4 Department of
AuthorAffiliation_xml – name: 1 Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; missyuping@gmail.com
– name: 3 Department of Food, Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan; hlchen908@asia.edu.tw
– name: 7 Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan; jwliao@dragon.nchu.edu.tw
– name: 8 Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
– name: 6 Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; mylin@dragon.nchu.edu.tw (M.-Y.L.); priscillawie@gmail.com (M.-S.W.)
– name: 4 Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; jeningts@csmu.edu.tw
– name: 2 Department of Dermatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
– name: 5 Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
– name: 9 Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
– name: 10 Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
Author_xml – sequence: 1
  givenname: Yu-Ping
  surname: Hsiao
  fullname: Hsiao, Yu-Ping
– sequence: 2
  givenname: Hsiao-Ling
  surname: Chen
  fullname: Chen, Hsiao-Ling
– sequence: 3
  givenname: Jen-Ning
  orcidid: 0000-0001-7221-2334
  surname: Tsai
  fullname: Tsai, Jen-Ning
– sequence: 4
  givenname: Meei-Yn
  surname: Lin
  fullname: Lin, Meei-Yn
– sequence: 5
  givenname: Jiunn-Wang
  orcidid: 0000-0001-7374-1203
  surname: Liao
  fullname: Liao, Jiunn-Wang
– sequence: 6
  givenname: Meng-Syuan
  surname: Wei
  fullname: Wei, Meng-Syuan
– sequence: 7
  givenname: Jiunn-Liang
  orcidid: 0000-0001-6855-9239
  surname: Ko
  fullname: Ko, Jiunn-Liang
– sequence: 8
  givenname: Chu-Chyn
  surname: Ou
  fullname: Ou, Chu-Chyn
BookMark eNqFks2KFDEQxxtZcdd1Lz5BwIuIo-kkne6-COOo68CIonsP6XQyW0s6GfOhzMv6LGamV9RFsC4pqF_96yP1sDpx3umqelzjF5T2-KXLNcUdaXtyrzojuCULzhk9-cM_rS5ivMEHa3HL6YPqlLJifUPOqh_LcQIHMQWZwDvkDdpIlfwgFVibIwo6Jx0Arfw0gNMj-g7pGq2sLykwQp7QkNM-gCreMiXtskw6ohXEnS2SbrF2Y1Yl77N20qI3cpJbjYY9uswJfQAV_AA-yRJW3sUEKR_6eI7WTgUtI7gtej0XQEsFI_oUfNGbGelG9CXvdkHHIziXWDtj5TQd53lU3TfSRn1x-55XV-_eXq3eLzYfL9er5WahWM3TQrOO9e1gDGtw30pKjOa8I7zWtGHcmIbW7dDLEtGtMrRmA5Uj7tXYmQ7XDT2vXs2yuzxMelTalX1asQswybAXXoL4O-LgWmz9N9ExTAhlReDprUDwX7OOSUwQlbZWOu1zFIRT3vK67cj_0YZzTLqa84I-uYPe-BzKjo5Uw7q663Gh8EyVv4gxaCMUpOP2SqtgRY3F4dLE70srKc_upPwa9R_wT0m32kI
CitedBy_id crossref_primary_10_3389_fphar_2024_1358626
crossref_primary_10_3390_ani12192719
crossref_primary_10_3389_fphar_2025_1518481
crossref_primary_10_1155_2022_6965174
crossref_primary_10_3389_fimmu_2023_1190592
crossref_primary_10_1080_1040841X_2023_2233605
crossref_primary_10_3390_agriculture12101607
crossref_primary_10_1155_2022_4023006
crossref_primary_10_1016_j_fbio_2023_102958
crossref_primary_10_3389_fimmu_2023_1220165
crossref_primary_10_3389_fonc_2022_999667
crossref_primary_10_1080_19490976_2025_2451088
crossref_primary_10_1111_1759_7714_15177
crossref_primary_10_12938_bmfh_2021_046
crossref_primary_10_3803_EnM_2021_1336
crossref_primary_10_1016_j_cotox_2023_100423
crossref_primary_10_1053_j_gastro_2022_10_018
crossref_primary_10_1007_s12602_023_10134_x
crossref_primary_10_3389_fcimb_2024_1484371
crossref_primary_10_1021_acs_jafc_2c02372
crossref_primary_10_1016_j_canlet_2024_217096
crossref_primary_10_1007_s00018_024_05532_5
crossref_primary_10_1159_000526265
crossref_primary_10_22399_ijcesen_389
crossref_primary_10_1093_jambio_lxac035
crossref_primary_10_1631_jzus_B2300777
crossref_primary_10_3390_oxygen2030022
crossref_primary_10_1016_j_medmic_2024_100099
crossref_primary_10_1016_j_phrs_2022_106129
crossref_primary_10_1039_D5FO00162E
crossref_primary_10_1080_21645515_2024_2430087
crossref_primary_10_3389_fimmu_2022_923754
crossref_primary_10_3390_microorganisms11092246
crossref_primary_10_1007_s12672_024_01704_8
crossref_primary_10_3389_fimmu_2024_1279680
crossref_primary_10_1016_j_fbio_2023_103394
crossref_primary_10_1016_j_nutos_2024_11_002
crossref_primary_10_3390_foods13091375
crossref_primary_10_1016_j_jtemb_2023_127188
crossref_primary_10_3390_ph17040490
crossref_primary_10_1007_s10557_024_07649_y
crossref_primary_10_1016_j_kint_2023_03_024
crossref_primary_10_1016_j_jbiosc_2023_01_001
crossref_primary_10_1128_msystems_01323_23
crossref_primary_10_3389_fmicb_2022_974337
crossref_primary_10_1016_j_xcrm_2024_101678
crossref_primary_10_1080_10408398_2022_2076064
crossref_primary_10_1111_bph_16219
crossref_primary_10_1007_s00467_023_05931_z
crossref_primary_10_1021_acschemneuro_4c00267
crossref_primary_10_3389_fmicb_2022_925929
crossref_primary_10_1080_15376516_2023_2195488
crossref_primary_10_3390_biom12081078
crossref_primary_10_1186_s40360_023_00692_9
crossref_primary_10_3389_fmicb_2024_1307729
crossref_primary_10_1016_j_biopha_2024_117689
crossref_primary_10_1016_j_ejphar_2024_176425
crossref_primary_10_3389_fphar_2022_1032208
crossref_primary_10_1093_ndt_gfae196
crossref_primary_10_1186_s12906_023_04068_8
crossref_primary_10_3389_fmicb_2024_1349367
crossref_primary_10_1016_j_foodres_2024_115597
Cites_doi 10.1016/j.biopha.2017.06.085
10.1093/femsle/fnz153
10.1016/j.jff.2018.04.037
10.1111/nmo.13803
10.1371/journal.pone.0063388
10.1016/j.jfda.2019.10.001
10.1007/s13311-017-0601-4
10.1016/j.fct.2012.08.010
10.1039/C7FO01383C
10.1016/j.biopha.2019.109310
10.1007/s10620-013-2879-3
10.1080/01926230252824761
10.3389/fmicb.2018.01652
10.1016/j.isci.2019.100772
10.1016/j.chom.2017.11.004
10.1016/j.bbrc.2019.06.053
10.1111/apt.13302
10.1093/ndt/gfr807
10.1038/s41598-017-01387-y
10.1007/s00280-017-3364-z
10.18632/oncotarget.20536
10.1016/j.micpath.2016.11.002
10.3390/ijms21061986
10.1016/j.etp.2011.05.004
10.1093/ndt/gfy238
10.1039/C9FO00417C
10.1016/S1499-3872(17)60019-5
10.1007/s00784-019-03065-x
10.7150/ijbs.37421
10.1016/j.micpath.2019.103754
10.1046/j.1442-200X.2003.01671.x
10.1046/j.1523-1755.2001.00013.x
10.1002/jat.1484
10.1016/j.chom.2013.05.013
10.1111/cmi.12301
10.1016/j.jhep.2015.09.022
10.1371/journal.pone.0046399
10.3892/ijo.2013.1790
10.1097/SHK.0000000000000925
10.1093/jmicro/dfp049
10.1159/000469715
10.1152/ajprenal.00512.2015
10.1016/j.cbi.2019.05.040
10.1002/ijc.28702
10.3389/fcimb.2019.00225
10.3389/fmicb.2018.01264
10.3389/fmicb.2018.01967
10.1016/j.jff.2018.08.023
10.3390/nu9060555
10.1016/j.jdiacomp.2017.08.009
10.1093/ndt/gfv353
10.1002/JLB.5HI1117-446RR
10.1371/journal.pone.0231865
10.1021/acs.jafc.0c04253
10.1159/000360010
10.1177/1758835918821021
10.1016/j.nut.2016.05.003
10.1016/j.freeradbiomed.2004.08.018
10.1016/j.nut.2010.05.012
10.1016/j.canlet.2019.11.019
10.1021/jf201185v
10.3390/antiox8080322
10.1053/ajkd.2003.50104
10.1016/j.anaerobe.2018.07.012
10.3389/fmicb.2018.00757
10.1038/ki.2015.255
10.1136/gutjnl-2013-304833
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7TS
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
7S9
L.6
5PM
DOI 10.3390/nu13082792
DatabaseName CrossRef
ProQuest Central (Corporate)
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
AGRICOLA
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2072-6643
ExternalDocumentID PMC8402234
10_3390_nu13082792
GeographicLocations Minneapolis Minnesota
United Kingdom--UK
United States--US
Taiwan
GeographicLocations_xml – name: Taiwan
– name: United Kingdom--UK
– name: Minneapolis Minnesota
– name: United States--US
GroupedDBID ---
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAWTL
AAYXX
ABUWG
ACIWK
ACPRK
AENEX
AFKRA
AFRAH
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
APEBS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EBD
ECGQY
EIHBH
ESTFP
EYRJQ
F5P
FYUFA
GX1
HMCUK
HYE
IAO
ITC
KQ8
LK8
M1P
M48
MODMG
M~E
OK1
P2P
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
UKHRP
3V.
7TS
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PUEGO
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c416t-e48497bff45097a32fe668261e3546ff5317b9a7a3e7cf314b3ad09cd8f80153
IEDL.DBID M48
ISSN 2072-6643
IngestDate Thu Aug 21 18:17:34 EDT 2025
Fri Jul 11 08:49:37 EDT 2025
Thu Jul 10 19:17:09 EDT 2025
Sat Aug 23 14:12:16 EDT 2025
Tue Jul 01 00:50:02 EDT 2025
Thu Apr 24 22:50:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-e48497bff45097a32fe668261e3546ff5317b9a7a3e7cf314b3ad09cd8f80153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-7221-2334
0000-0001-6855-9239
0000-0001-7374-1203
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/nu13082792
PMID 34444952
PQID 2565481890
PQPubID 2032353
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402234
proquest_miscellaneous_2636761782
proquest_miscellaneous_2566028166
proquest_journals_2565481890
crossref_citationtrail_10_3390_nu13082792
crossref_primary_10_3390_nu13082792
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210815
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 8
  year: 2021
  text: 20210815
  day: 15
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Nutrients
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liu (ref_31) 2016; 64
Kuo (ref_24) 2011; 59
Yoshifuji (ref_66) 2016; 31
Hagihara (ref_16) 2020; 23
Ansari (ref_2) 2017; 93
ref_10
Seki (ref_48) 2003; 45
Seo (ref_49) 2013; 58
Yen (ref_65) 2011; 27
Angelakis (ref_1) 2017; 106
Li (ref_29) 2019; 10
Schroeder (ref_47) 2018; 23
Takayama (ref_54) 2003; 41
Shen (ref_52) 2017; 16
ref_15
Payne (ref_40) 2018; 103
Wu (ref_61) 2020; 16
Lee (ref_27) 2020; 28
Wong (ref_59) 2020; 32
Ye (ref_64) 2018; 9
Shackelford (ref_50) 2002; 30
Arivarasu (ref_3) 2013; 65
ref_22
Xu (ref_62) 2017; 7
Cui (ref_7) 2017; 8
Jiang (ref_21) 2019; 137
Marietta (ref_35) 2018; 15
Tang (ref_55) 2017; 33
Liu (ref_32) 2010; 59
Chen (ref_6) 2018; 9
Lee (ref_26) 2020; 45
Grusovin (ref_14) 2020; 24
Koppe (ref_23) 2015; 88
Dicksved (ref_9) 2012; 7
Chen (ref_5) 2019; 308
Wen (ref_57) 2004; 37
Zhao (ref_68) 2017; 8
Mu (ref_37) 2018; 9
Ren (ref_44) 2018; 49
Sharp (ref_51) 2016; 310
Zhai (ref_67) 2019; 366
Machiels (ref_34) 2014; 63
Li (ref_28) 2016; 113
Pianta (ref_41) 2017; 42
Wu (ref_60) 2019; 11
Machado (ref_33) 2012; 27
Schnackenberg (ref_46) 2012; 50
Hagihara (ref_17) 2018; 54
Hayashi (ref_18) 2013; 13
Huang (ref_19) 2020; 68
Gonzalez (ref_13) 2019; 34
Li (ref_30) 2020; 121
Forsgard (ref_12) 2017; 80
Hwang (ref_20) 2017; 31
Tian (ref_56) 2019; 516
Montassier (ref_36) 2015; 42
Pan (ref_39) 2018; 46
Wong (ref_58) 2014; 39
Chen (ref_4) 2020; 469
ref_43
Shinnoh (ref_53) 2013; 42
ref_42
Yang (ref_63) 2001; 60
Oka (ref_38) 2018; 9
Lakritz (ref_25) 2014; 135
Rescigno (ref_45) 2014; 16
Espandiari (ref_11) 2010; 30
Zhou (ref_69) 2019; 9
Denk (ref_8) 2018; 49
References_xml – volume: 93
  start-page: 646
  year: 2017
  ident: ref_2
  article-title: Sinapic acid modulates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.06.085
– volume: 366
  start-page: fnz153
  year: 2019
  ident: ref_67
  article-title: Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1093/femsle/fnz153
– volume: 46
  start-page: 1
  year: 2018
  ident: ref_39
  article-title: Synergistic effect of black tea polyphenol, theaflavin-3,3’-digallate with cisplatin against cisplatin resistant human ovarian cancer cells
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2018.04.037
– volume: 32
  start-page: e13803
  year: 2020
  ident: ref_59
  article-title: D-methionine improves cisplatin-induced anorexia and dyspepsia syndrome by attenuating intestinal tryptophan hydroxylase 1 activity and increasing plasma leptin concentration
  publication-title: Neurogastroenterol. Motil.
  doi: 10.1111/nmo.13803
– ident: ref_10
  doi: 10.1371/journal.pone.0063388
– volume: 28
  start-page: 103
  year: 2020
  ident: ref_27
  article-title: Alleviating chronic kidney disease progression through modulating the critical genus of gut microbiota in a cisplatin-induced Lanyu pig model
  publication-title: J. Food Drug Anal.
  doi: 10.1016/j.jfda.2019.10.001
– volume: 15
  start-page: 23
  year: 2018
  ident: ref_35
  article-title: Microbiome, Immunomodulation, and the Neuronal System
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-017-0601-4
– volume: 50
  start-page: 3978
  year: 2012
  ident: ref_46
  article-title: Metabolomics evaluation of hydroxyproline as a potential marker of melamine and cyanuric acid nephrotoxicity in male and female Fischer F344 rats
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2012.08.010
– volume: 8
  start-page: 4644
  year: 2017
  ident: ref_68
  article-title: A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota
  publication-title: Food Funct.
  doi: 10.1039/C7FO01383C
– volume: 121
  start-page: 109310
  year: 2020
  ident: ref_30
  article-title: Human umbilical cord blood mononuclear cells protect against renal tubulointerstitial fibrosis in cisplatin-treated rats
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2019.109310
– volume: 58
  start-page: 3534
  year: 2013
  ident: ref_49
  article-title: Clostridium butyricum MIYAIRI 588 improves high-fat diet-induced non-alcoholic fatty liver disease in rats
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-013-2879-3
– volume: 30
  start-page: 93
  year: 2002
  ident: ref_50
  article-title: Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies
  publication-title: Toxicol. Pathol.
  doi: 10.1080/01926230252824761
– volume: 9
  start-page: 1652
  year: 2018
  ident: ref_6
  article-title: Effects of Intravenous Infusion with Sodium Butyrate on Colonic Microbiota, Intestinal Development- and Mucosal Immune-Related Gene Expression in Normal Growing Pigs
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01652
– volume: 23
  start-page: 100772
  year: 2020
  ident: ref_16
  article-title: Clostridium butyricum Modulates the Microbiome to Protect Intestinal Barrier Function in Mice with Antibiotic-Induced Dysbiosis
  publication-title: iScience
  doi: 10.1016/j.isci.2019.100772
– volume: 23
  start-page: 27
  year: 2018
  ident: ref_47
  article-title: Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.11.004
– volume: 516
  start-page: 430
  year: 2019
  ident: ref_56
  article-title: Clostridium butyricum miyairi 588 has preventive effects on chronic social defeat stress-induced depressive-like behaviour and modulates microglial activation in mice
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.06.053
– volume: 42
  start-page: 515
  year: 2015
  ident: ref_36
  article-title: Chemotherapy-driven dysbiosis in the intestinal microbiome
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1111/apt.13302
– volume: 27
  start-page: 3136
  year: 2012
  ident: ref_33
  article-title: Sodium butyrate decreases the activation of NF-kappaB reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy
  publication-title: Nephrol. Dial. Transplant
  doi: 10.1093/ndt/gfr807
– volume: 7
  start-page: 1445
  year: 2017
  ident: ref_62
  article-title: Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01387-y
– volume: 80
  start-page: 317
  year: 2017
  ident: ref_12
  article-title: Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male Sprague-Dawley rats
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-017-3364-z
– volume: 8
  start-page: 77489
  year: 2017
  ident: ref_7
  article-title: Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20536
– volume: 106
  start-page: 162
  year: 2017
  ident: ref_1
  article-title: Weight gain by gut microbiota manipulation in productive animals
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2016.11.002
– ident: ref_15
  doi: 10.3390/ijms21061986
– volume: 65
  start-page: 21
  year: 2013
  ident: ref_3
  article-title: Oral administration of caffeic acid ameliorates the effect of cisplatin on brush border membrane enzymes and antioxidant system in rat intestine
  publication-title: Exp. Toxicol. Pathol.
  doi: 10.1016/j.etp.2011.05.004
– volume: 34
  start-page: 783
  year: 2019
  ident: ref_13
  article-title: Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression
  publication-title: Nephrol. Dial. Transplant
  doi: 10.1093/ndt/gfy238
– volume: 10
  start-page: 4705
  year: 2019
  ident: ref_29
  article-title: Lactobacillus reuteri improves gut barrier function and affects diurnal variation of the gut microbiota in mice fed a high-fat diet
  publication-title: Food Funct.
  doi: 10.1039/C9FO00417C
– volume: 16
  start-page: 375
  year: 2017
  ident: ref_52
  article-title: Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease
  publication-title: Hepatobiliary Pancreat. Dis. Int.
  doi: 10.1016/S1499-3872(17)60019-5
– volume: 24
  start-page: 2015
  year: 2020
  ident: ref_14
  article-title: Clinical efficacy of Lactobacillus reuteri-containing lozenges in the supportive therapy of generalized periodontitis stage III and IV, grade C: 1-year results of a double-blind randomized placebo-controlled pilot study
  publication-title: Clin. Oral. Investig.
  doi: 10.1007/s00784-019-03065-x
– volume: 16
  start-page: 420
  year: 2020
  ident: ref_61
  article-title: Gut Microbiota as Diagnostic Tools for Mirroring Disease Progression and Circulating Nephrotoxin Levels in Chronic Kidney Disease: Discovery and Validation Study
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.37421
– volume: 137
  start-page: 103754
  year: 2019
  ident: ref_21
  article-title: Lactobacillus reuteri protects mice against Salmonella typhimurium challenge by activating macrophages to produce nitric oxide
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2019.103754
– volume: 45
  start-page: 86
  year: 2003
  ident: ref_48
  article-title: Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI
  publication-title: Pediatr. Int.
  doi: 10.1046/j.1442-200X.2003.01671.x
– volume: 60
  start-page: 1765
  year: 2001
  ident: ref_63
  article-title: Caspase-3 and apoptosis in experimental chronic renal scarring
  publication-title: Kidney Int.
  doi: 10.1046/j.1523-1755.2001.00013.x
– volume: 30
  start-page: 172
  year: 2010
  ident: ref_11
  article-title: Age-related differences in susceptibility to cisplatin-induced renal toxicity
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.1484
– volume: 13
  start-page: 711
  year: 2013
  ident: ref_18
  article-title: A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.05.013
– volume: 16
  start-page: 1004
  year: 2014
  ident: ref_45
  article-title: Intestinal microbiota and its effects on the immune system
  publication-title: Cell Microbiol.
  doi: 10.1111/cmi.12301
– volume: 64
  start-page: 641
  year: 2016
  ident: ref_31
  article-title: Functional analysis of the relationship between intestinal microbiota and the expression of hepatic genes and pathways during the course of liver regeneration
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2015.09.022
– volume: 7
  start-page: e46399
  year: 2012
  ident: ref_9
  article-title: Lactobacillus reuteri maintains a functional mucosal barrier during DSS treatment despite mucus layer dysfunction
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0046399
– volume: 42
  start-page: 903
  year: 2013
  ident: ref_53
  article-title: Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2013.1790
– volume: 49
  start-page: 154
  year: 2018
  ident: ref_8
  article-title: Role of Hemorrhagic Shock in Experimental Polytrauma
  publication-title: Shock
  doi: 10.1097/SHK.0000000000000925
– volume: 59
  start-page: 127
  year: 2010
  ident: ref_32
  article-title: Dimethylthiourea pretreatment inhibits endotoxin-induced compound exocytosis in goblet cells and plasma leakage of rat small intestine
  publication-title: J. Electron. Microsc.
  doi: 10.1093/jmicro/dfp049
– volume: 42
  start-page: 62
  year: 2017
  ident: ref_41
  article-title: Dexamethasone Modifies Cystatin C-Based Diagnosis of Acute Kidney Injury During Cisplatin-Based Chemotherapy
  publication-title: Kidney Blood Press. Res.
  doi: 10.1159/000469715
– volume: 310
  start-page: F560
  year: 2016
  ident: ref_51
  article-title: Repeated administration of low-dose cisplatin in mice induces fibrosis
  publication-title: Am. J. Physiol. Renal. Physiol.
  doi: 10.1152/ajprenal.00512.2015
– volume: 308
  start-page: 269
  year: 2019
  ident: ref_5
  article-title: Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2019.05.040
– volume: 135
  start-page: 529
  year: 2014
  ident: ref_25
  article-title: Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.28702
– volume: 9
  start-page: 225
  year: 2019
  ident: ref_69
  article-title: Cepharanthine Hydrochloride Improves Cisplatin Chemotherapy and Enhances Immunity by Regulating Intestinal Microbes in Mice
  publication-title: Front. Cell Infect. Microbiol.
  doi: 10.3389/fcimb.2019.00225
– volume: 9
  start-page: 1264
  year: 2018
  ident: ref_38
  article-title: Establishment of an Endogenous Clostridium difficile Rat Infection Model and Evaluation of the Effects of Clostridium butyricum MIYAIRI 588 Probiotic Strain
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01264
– volume: 9
  start-page: 1967
  year: 2018
  ident: ref_64
  article-title: Butyrate Protects Mice Against Methionine-Choline-Deficient Diet-Induced Non-alcoholic Steatohepatitis by Improving Gut Barrier Function, Attenuating Inflammation and Reducing Endotoxin Levels
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01967
– volume: 49
  start-page: 371
  year: 2018
  ident: ref_44
  article-title: Polysaccharide extracted from Enteromorpha ameliorates Cisplastininduced small intestine injury in mice
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2018.08.023
– ident: ref_42
  doi: 10.3390/nu9060555
– volume: 31
  start-page: 1704
  year: 2017
  ident: ref_20
  article-title: Tissue expression of tubular injury markers is associated with renal function decline in diabetic nephropathy
  publication-title: J. Diabetes Complicat.
  doi: 10.1016/j.jdiacomp.2017.08.009
– volume: 31
  start-page: 401
  year: 2016
  ident: ref_66
  article-title: Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats
  publication-title: Nephrol. Dial. Transplant
  doi: 10.1093/ndt/gfv353
– volume: 103
  start-page: 799
  year: 2018
  ident: ref_40
  article-title: Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/JLB.5HI1117-446RR
– ident: ref_43
  doi: 10.1371/journal.pone.0231865
– volume: 68
  start-page: 11128
  year: 2020
  ident: ref_19
  article-title: Ascorbic Acid Derivative 2-O-beta-d-Glucopyranosyl-l-Ascorbic Acid from the Fruit of Lycium barbarum Modulates Microbiota in the Small Intestine and Colon and Exerts an Immunomodulatory Effect on Cyclophosphamide-Treated BALB/c Mice
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/acs.jafc.0c04253
– volume: 39
  start-page: 230
  year: 2014
  ident: ref_58
  article-title: Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD
  publication-title: Am. J. Nephrol.
  doi: 10.1159/000360010
– volume: 11
  start-page: 1758835918821021
  year: 2019
  ident: ref_60
  article-title: D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation
  publication-title: Ther. Adv. Med. Oncol.
  doi: 10.1177/1758835918821021
– volume: 33
  start-page: 96
  year: 2017
  ident: ref_55
  article-title: Administration of probiotic mixture DM#1 ameliorated 5-fluorouracil-induced intestinal mucositis and dysbiosis in rats
  publication-title: Nutrition
  doi: 10.1016/j.nut.2016.05.003
– volume: 37
  start-page: 1821
  year: 2004
  ident: ref_57
  article-title: Oxidative damage during chagasic cardiomyopathy development: Role of mitochondrial oxidant release and inefficient antioxidant defense
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2004.08.018
– volume: 27
  start-page: 445
  year: 2011
  ident: ref_65
  article-title: Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people--a placebo-controlled, diet-controlled trial
  publication-title: Nutrition
  doi: 10.1016/j.nut.2010.05.012
– volume: 469
  start-page: 456
  year: 2020
  ident: ref_4
  article-title: Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.11.019
– volume: 113
  start-page: E1306
  year: 2016
  ident: ref_28
  article-title: Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 59
  start-page: 7717
  year: 2011
  ident: ref_24
  article-title: Effect of garlic oil on neutrophil infiltration in the small intestine of endotoxin-injected rats and its association with levels of soluble and cellular adhesion molecules
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf201185v
– ident: ref_22
  doi: 10.3390/antiox8080322
– volume: 41
  start-page: S142
  year: 2003
  ident: ref_54
  article-title: Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis
  publication-title: Am. J. Kidney Dis.
  doi: 10.1053/ajkd.2003.50104
– volume: 54
  start-page: 8
  year: 2018
  ident: ref_17
  article-title: The impact of Clostridium butyricum MIYAIRI 588 on the murine gut microbiome and colonic tissue
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2018.07.012
– volume: 45
  start-page: 1130
  year: 2020
  ident: ref_26
  article-title: Lactobacillus salivarius BP121 prevents cisplatininduced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and pcresol sulfate via alleviating dysbiosis
  publication-title: Int. J. Mol. Med.
– volume: 9
  start-page: 757
  year: 2018
  ident: ref_37
  article-title: Role of Lactobacillus reuteri in Human Health and Diseases
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00757
– volume: 88
  start-page: 958
  year: 2015
  ident: ref_23
  article-title: Probiotics and chronic kidney disease
  publication-title: Kidney Int.
  doi: 10.1038/ki.2015.255
– volume: 63
  start-page: 1275
  year: 2014
  ident: ref_34
  article-title: A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis
  publication-title: Gut
  doi: 10.1136/gutjnl-2013-304833
SSID ssj0000070763
Score 2.5172987
Snippet Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus...
Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2792
SubjectTerms apoptosis
Bifidobacterium
blood
butyric acid
Cancer therapies
Chemotherapy
cisplatin
Clostridium butyricum
collagen
dysbiosis
endotoxins
Enterobacteriaceae
epithelium
Feces
fibronectins
fibrosis
Gut microbiota
Inflammation
intestinal microorganisms
intestines
Lactobacillus reuteri
microbiome
Microbiota
Mucositis
nephrotoxicity
oxidative stress
Probiotics
protective effect
Proteins
renoprotective effect
Ruminococcaceae
sulfates
Tumors
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9NAEF70fPFF1FOsnjKiCILhmu5mt3mSWj1PURE5oW9hsz8w0G561-Sh_-z9Lc5s0taA3EOfdkoWdmbn-yaTbxh7jai4HOvUJEamMhHOZInmMk-0d8oJ_Fkbuy1-yPPf4usiW_QFt03fVrm7E-NFbWtDNfJTTM0IrtNpPn6_vkxoahS9Xe1HaNxmd0i6jLxaLdS-xhK1bCTvVEk5svvT0Kakz6LyyTAPHcDlsDXyn1xzdp_d60EizLpTfcBuufCQHc8CEuTVFt5AbNuM9fBjdj2Uv4XawzeaoVNqUy2X7QauHE1tqAAjH1mws0ClV5gva5rYYat2BWXbbKkOuIJZgxC6JfgJ82qzpj65kNB0D4P_--VoUx_1Cq8gKLfwuW3ge9UJOTUaiMj2nQe4j3eANw81vGNqhA_dA2BmKgs_O43ZaKODBZorGptx0bB7xJfg0U-7byofsYuzTxfz86Qf2pAYxHZN4sRU5Kr0XiAUUZpPvJMSOUzqeCak9xjzqsw1rjhlPE9FybUd58ZOPSbLjD9mR6EO7gkDIy2StczS58PIAhHJOm_G3DiZowv56Yi93Z1gYXpBc5qrsSyQ2NBpF4fTHrFXe9t1J-PxX6uTnSMUfShvioPjjdjL_TIGIb1Z0cHVbbSRCNRSKW-wkSSOlyIiGzE1cLL9jkjqe7gSqj9R8htpOOI48fTmDT5jdyfUckOKvdkJO2quWvccMVNTvoiB8RdpbiB8
  priority: 102
  providerName: ProQuest
Title Administration of Lactobacillus reuteri Combined with Clostridium butyricum Attenuates Cisplatin-Induced Renal Damage by Gut Microbiota Reconstitution, Increasing Butyric Acid Production, and Suppressing Renal Inflammation
URI https://www.proquest.com/docview/2565481890
https://www.proquest.com/docview/2566028166
https://www.proquest.com/docview/2636761782
https://pubmed.ncbi.nlm.nih.gov/PMC8402234
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5qC9IXUat4Wo8RRRCMXi6b3cuDyPXsD8WWUlq4t7DZHzSQ26t3CXj_rH-LM0nuaqT4YOAews6S5XZ29vs2k28Ye4OoOBuoUAdahCLgVseBikQSKGel5fgzps62OBMnV_zbNJ5usXX9zvYPXN5J7aie1NWi-PDzx-ozLvhPxDiRsn_0VUiiKzLBULyDO5KkSganLcxvYLBEuh416qR_ddll9yOOVxIPu1vTLd7sZkv-sf0cPWQPWtwI42aiH7Et6x-zvbFHzjxbwVuoMznrI_I99quriAtzB9-prE6mdF4U1RIWlgo55IDBAImxNUCnsTAp5lTEw-TVDLKqXNHR4AzGJaLqihApTPLlDaXO-YAKfmjsd2FpUF_UDKMSZCs4rko4zRttp1IBcds2GQHH8R4wGFEOPO6WcNA8AMY6N3DeyM7WNsoboFKjdX4uGjaP-Oodum7zmeUTdnl0eDk5Cdo6DoFGuFcGlo94IjPnOKITqaKhs0IgrQltFHPhHIYBmSUKW6zULgp5FikzSLQZOdw_4-gp2_Zzb58x0MIgf4sNfVGMxBDBrXV6EGkrEvQqN-qxd-sZTHWrcU6lNooUuQ5NfHo78T32emN70yh73Gm1v3aEdO2cKcJEJHrhKBn02KtNM65LetmivJ1XtY1A7BYK8Q8bQXp5IYK0HpMdJ9uMiNS_uy0-v65VwJGZI7Tjz_-75wu2O6QEHdL3jffZdrmo7EtEWGXWZ_fkVPbZzsHh2fkF3h1Pw369pH4DBT0zCA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5QAXRCmIlBYG8ZCQsOrnOj4gFFJKQtMKoSDlZq33ISwldmhsofwo_hK_hZm1nRAJ9daDTzuWV5rZmW_Gs98w9gpRceYKTzqSe9wJtYwcEfDEEUbHOsRHKdttccVH38Mvs2i2x353d2GorbLzidZRq1JSjfwUQzOCa6-fuB-WPx2aGkV_V7sRGo1ZXOj1L0zZVu_HZ6jf175__mk6HDntVAFHIvioHB32wyTOjAkxVsYi8I3mHEG2p4Mo5MagUcZZInBFx9IEXpgFQrmJVH2D3pyGRKDHv4Nx16VcL57Fm5KOpc7hQUOCGgSJe1rUHtHBxIm_G_a2WHa3E_Of0Hb-gN1vMSkMGiM6YHu6eMgOBwXm44s1vAHbJWrL74fszy7bLpQGJjSyJxMyn8_rFVxrGhKRAzoaTLq1Aqr0wnBe0oAQldcLyOpqTWXHBQwqROw1oV0Y5qslteUVDg0TkfjeN02bOhML9HiQreFzXcFl3vBGVQIob24bHXAf7wAdHfXXYySGj80HYCBzBV8bSlsrIwoFNMbU9v6iYPOJcWHwWDRXOB-x6W1o8zHbL8pCP2EgucLcMFJ0WxmTTgTO2kg3kJonaLGm32NvOw2msuVPpzEe8xTzKNJ2utV2j73cyC4b1pD_Sh13hpC2nmOVbu28x15slvHM048cUeiytjIccaHH-Q0ynLj4PASAPRbvGNlmR8QsvrtS5D8swzhm_Qgbw6ObN_ic3R1NLyfpZHx18ZTd86nbh8iCo2O2X13X-gThWpU9s4cEWHrLh_IvuDpcGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6CA6WX0jYtdZq2U_qAQkWs10o6lOLYceMmNSakkJtY7YMKbMmNJYp_Wv9Mf0tn9LArKLnloNOO0MDOznwzmv2GsbeIipOBsKUluc0tT0vfEi6PLGF0oD18lKq6LWb87Lv39dq_3mO_27sw1FbZ-sTKUatcUo38GEMzgms7jAbHpmmLmI8nn1c_LZogRX9a23EatYmc680vTN_Wn6Zj3Ot3jjM5vRqdWc2EAUsiECks7YVeFCTGeBg3A-E6RnOOgNvWru9xY9BAgyQSuKIDaVzbS1yhBpFUoUHPTgMj0PvvB5QU9dj-yelsfrkt8FREOtytKVFdF_XOSpvIYYLI6QbBHbLt9mX-E-gmD9mDBqHCsDapR2xPZ4_ZwTDD7Hy5gfdQ9YxWxfgD9qfLvQu5gQsa4JMImS4W5RpuNI2MSAHdDqbgWgHVfWG0yGlciErLJSRlsaEi5BKGBeL3krAvjNL1ipr0MotGi0h871KTUmOxRP8HyQa-lAV8S2sWqUIAZdFN2wPq8RHQ7VG3PcZlOKk_AEOZKpjXBLeVjMgU0FDTqhMYBetPTDODh6S-0PmEXd3Ffj5lvSzP9DMGkivMFH1Fd5cxBUUYrY0cuFLzCO3XhH32od3BWDZs6jTUYxFjVkW7He92u8_ebGVXNYfIf6WOWkOIGz-yjndW32evt8voAei3jsh0XlYyHFGizfktMpyY-WyEg30WdIxsqxHxjHdXsvRHxTceegj0XO_wdgVfsXt4IOOL6ez8ObvvUOsPMQf7R6xX3JT6BWK3InnZnBJg8R2fy79JAGG2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Administration+of+Lactobacillus+reuteri+Combined+with+Clostridium+butyricum+Attenuates+Cisplatin-Induced+Renal+Damage+by+Gut+Microbiota+Reconstitution%2C+Increasing+Butyric+Acid+Production%2C+and+Suppressing+Renal+Inflammation&rft.jtitle=Nutrients&rft.au=Hsiao%2C+Yu-Ping&rft.au=Chen%2C+Hsiao-Ling&rft.au=Tsai%2C+Jen-Ning&rft.au=Lin%2C+Meei-Yn&rft.date=2021-08-15&rft.pub=MDPI&rft.eissn=2072-6643&rft.volume=13&rft.issue=8&rft_id=info:doi/10.3390%2Fnu13082792&rft_id=info%3Apmid%2F34444952&rft.externalDocID=PMC8402234
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6643&client=summon