Administration of Lactobacillus reuteri Combined with Clostridium butyricum Attenuates Cisplatin-Induced Renal Damage by Gut Microbiota Reconstitution, Increasing Butyric Acid Production, and Suppressing Renal Inflammation
Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota...
Saved in:
Published in | Nutrients Vol. 13; no. 8; p. 2792 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
15.08.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium, Ruminococcaceae, Ruminiclostridium_9, and Oscillibacter. Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut–kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier. |
---|---|
AbstractList | Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium, Ruminococcaceae, Ruminiclostridium_9, and Oscillibacter. Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut-kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier.Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium, Ruminococcaceae, Ruminiclostridium_9, and Oscillibacter. Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut-kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier. Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium , Ruminococcaceae , Ruminiclostridium_9 , and Oscillibacter . Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut–kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier. Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus reuteri and Clostridium butyricum (LCs) had a protective effect on cisplatin-induced nephrotoxicity through reconstruction of gut microbiota. Wistar rats were given different treatments: control, cisplatin (Cis), cisplatin + C. butyricum and L. reuteri (Cis+LCs), and C. butyricum and L. reuteri (LCs). We observed that cisplatin-treated rats supplemented with LCs exhibited significantly decreased renal inflammation (KIM-1, F4/80, and MPO), oxidative stress, fibrosis (collagen IV, fibronectin, and a-SMA), apoptosis, concentration of blood endotoxin and indoxyl sulfate, and increased fecal butyric acid production compared with those without supplementation. In addition, LCs improved the cisplatin-induced microbiome dysbiosis by maintaining a healthy gut microbiota structure and diversity; depleting Escherichia-Shigella and the Enterobacteriaceae family; and enriching probiotic Bifidobacterium, Ruminococcaceae, Ruminiclostridium_9, and Oscillibacter. Moreover, the LCs intervention alleviated the cisplatin-induced intestinal epithelial barrier impairment. This study indicated LCs probiotic serves as a mediator of the gut–kidney axis in cisplatin-induced nephrotoxicity to restore the intestinal microbiota composition, thereby suppressing uremic toxin production and enhancing butyrate production. Furthermore, the renoprotective effect of LCs is partially mediated by increasing the anti-inflammatory effects and maintaining the integrity of the intestinal barrier. |
Author | Hsiao, Yu-Ping Wei, Meng-Syuan Tsai, Jen-Ning Liao, Jiunn-Wang Ko, Jiunn-Liang Chen, Hsiao-Ling Lin, Meei-Yn Ou, Chu-Chyn |
AuthorAffiliation | 1 Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; missyuping@gmail.com 6 Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; mylin@dragon.nchu.edu.tw (M.-Y.L.); priscillawie@gmail.com (M.-S.W.) 7 Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan; jwliao@dragon.nchu.edu.tw 10 Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan 2 Department of Dermatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan 9 Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan 3 Department of Food, Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan; hlchen908@asia.edu.tw 5 Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan 8 Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan 4 Department of |
AuthorAffiliation_xml | – name: 1 Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; missyuping@gmail.com – name: 3 Department of Food, Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan; hlchen908@asia.edu.tw – name: 7 Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan; jwliao@dragon.nchu.edu.tw – name: 8 Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan – name: 6 Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; mylin@dragon.nchu.edu.tw (M.-Y.L.); priscillawie@gmail.com (M.-S.W.) – name: 4 Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; jeningts@csmu.edu.tw – name: 2 Department of Dermatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan – name: 5 Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan – name: 9 Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan – name: 10 Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan |
Author_xml | – sequence: 1 givenname: Yu-Ping surname: Hsiao fullname: Hsiao, Yu-Ping – sequence: 2 givenname: Hsiao-Ling surname: Chen fullname: Chen, Hsiao-Ling – sequence: 3 givenname: Jen-Ning orcidid: 0000-0001-7221-2334 surname: Tsai fullname: Tsai, Jen-Ning – sequence: 4 givenname: Meei-Yn surname: Lin fullname: Lin, Meei-Yn – sequence: 5 givenname: Jiunn-Wang orcidid: 0000-0001-7374-1203 surname: Liao fullname: Liao, Jiunn-Wang – sequence: 6 givenname: Meng-Syuan surname: Wei fullname: Wei, Meng-Syuan – sequence: 7 givenname: Jiunn-Liang orcidid: 0000-0001-6855-9239 surname: Ko fullname: Ko, Jiunn-Liang – sequence: 8 givenname: Chu-Chyn surname: Ou fullname: Ou, Chu-Chyn |
BookMark | eNqFks2KFDEQxxtZcdd1Lz5BwIuIo-kkne6-COOo68CIonsP6XQyW0s6GfOhzMv6LGamV9RFsC4pqF_96yP1sDpx3umqelzjF5T2-KXLNcUdaXtyrzojuCULzhk9-cM_rS5ivMEHa3HL6YPqlLJifUPOqh_LcQIHMQWZwDvkDdpIlfwgFVibIwo6Jx0Arfw0gNMj-g7pGq2sLykwQp7QkNM-gCreMiXtskw6ohXEnS2SbrF2Y1Yl77N20qI3cpJbjYY9uswJfQAV_AA-yRJW3sUEKR_6eI7WTgUtI7gtej0XQEsFI_oUfNGbGelG9CXvdkHHIziXWDtj5TQd53lU3TfSRn1x-55XV-_eXq3eLzYfL9er5WahWM3TQrOO9e1gDGtw30pKjOa8I7zWtGHcmIbW7dDLEtGtMrRmA5Uj7tXYmQ7XDT2vXs2yuzxMelTalX1asQswybAXXoL4O-LgWmz9N9ExTAhlReDprUDwX7OOSUwQlbZWOu1zFIRT3vK67cj_0YZzTLqa84I-uYPe-BzKjo5Uw7q663Gh8EyVv4gxaCMUpOP2SqtgRY3F4dLE70srKc_upPwa9R_wT0m32kI |
CitedBy_id | crossref_primary_10_3389_fphar_2024_1358626 crossref_primary_10_3390_ani12192719 crossref_primary_10_3389_fphar_2025_1518481 crossref_primary_10_1155_2022_6965174 crossref_primary_10_3389_fimmu_2023_1190592 crossref_primary_10_1080_1040841X_2023_2233605 crossref_primary_10_3390_agriculture12101607 crossref_primary_10_1155_2022_4023006 crossref_primary_10_1016_j_fbio_2023_102958 crossref_primary_10_3389_fimmu_2023_1220165 crossref_primary_10_3389_fonc_2022_999667 crossref_primary_10_1080_19490976_2025_2451088 crossref_primary_10_1111_1759_7714_15177 crossref_primary_10_12938_bmfh_2021_046 crossref_primary_10_3803_EnM_2021_1336 crossref_primary_10_1016_j_cotox_2023_100423 crossref_primary_10_1053_j_gastro_2022_10_018 crossref_primary_10_1007_s12602_023_10134_x crossref_primary_10_3389_fcimb_2024_1484371 crossref_primary_10_1021_acs_jafc_2c02372 crossref_primary_10_1016_j_canlet_2024_217096 crossref_primary_10_1007_s00018_024_05532_5 crossref_primary_10_1159_000526265 crossref_primary_10_22399_ijcesen_389 crossref_primary_10_1093_jambio_lxac035 crossref_primary_10_1631_jzus_B2300777 crossref_primary_10_3390_oxygen2030022 crossref_primary_10_1016_j_medmic_2024_100099 crossref_primary_10_1016_j_phrs_2022_106129 crossref_primary_10_1039_D5FO00162E crossref_primary_10_1080_21645515_2024_2430087 crossref_primary_10_3389_fimmu_2022_923754 crossref_primary_10_3390_microorganisms11092246 crossref_primary_10_1007_s12672_024_01704_8 crossref_primary_10_3389_fimmu_2024_1279680 crossref_primary_10_1016_j_fbio_2023_103394 crossref_primary_10_1016_j_nutos_2024_11_002 crossref_primary_10_3390_foods13091375 crossref_primary_10_1016_j_jtemb_2023_127188 crossref_primary_10_3390_ph17040490 crossref_primary_10_1007_s10557_024_07649_y crossref_primary_10_1016_j_kint_2023_03_024 crossref_primary_10_1016_j_jbiosc_2023_01_001 crossref_primary_10_1128_msystems_01323_23 crossref_primary_10_3389_fmicb_2022_974337 crossref_primary_10_1016_j_xcrm_2024_101678 crossref_primary_10_1080_10408398_2022_2076064 crossref_primary_10_1111_bph_16219 crossref_primary_10_1007_s00467_023_05931_z crossref_primary_10_1021_acschemneuro_4c00267 crossref_primary_10_3389_fmicb_2022_925929 crossref_primary_10_1080_15376516_2023_2195488 crossref_primary_10_3390_biom12081078 crossref_primary_10_1186_s40360_023_00692_9 crossref_primary_10_3389_fmicb_2024_1307729 crossref_primary_10_1016_j_biopha_2024_117689 crossref_primary_10_1016_j_ejphar_2024_176425 crossref_primary_10_3389_fphar_2022_1032208 crossref_primary_10_1093_ndt_gfae196 crossref_primary_10_1186_s12906_023_04068_8 crossref_primary_10_3389_fmicb_2024_1349367 crossref_primary_10_1016_j_foodres_2024_115597 |
Cites_doi | 10.1016/j.biopha.2017.06.085 10.1093/femsle/fnz153 10.1016/j.jff.2018.04.037 10.1111/nmo.13803 10.1371/journal.pone.0063388 10.1016/j.jfda.2019.10.001 10.1007/s13311-017-0601-4 10.1016/j.fct.2012.08.010 10.1039/C7FO01383C 10.1016/j.biopha.2019.109310 10.1007/s10620-013-2879-3 10.1080/01926230252824761 10.3389/fmicb.2018.01652 10.1016/j.isci.2019.100772 10.1016/j.chom.2017.11.004 10.1016/j.bbrc.2019.06.053 10.1111/apt.13302 10.1093/ndt/gfr807 10.1038/s41598-017-01387-y 10.1007/s00280-017-3364-z 10.18632/oncotarget.20536 10.1016/j.micpath.2016.11.002 10.3390/ijms21061986 10.1016/j.etp.2011.05.004 10.1093/ndt/gfy238 10.1039/C9FO00417C 10.1016/S1499-3872(17)60019-5 10.1007/s00784-019-03065-x 10.7150/ijbs.37421 10.1016/j.micpath.2019.103754 10.1046/j.1442-200X.2003.01671.x 10.1046/j.1523-1755.2001.00013.x 10.1002/jat.1484 10.1016/j.chom.2013.05.013 10.1111/cmi.12301 10.1016/j.jhep.2015.09.022 10.1371/journal.pone.0046399 10.3892/ijo.2013.1790 10.1097/SHK.0000000000000925 10.1093/jmicro/dfp049 10.1159/000469715 10.1152/ajprenal.00512.2015 10.1016/j.cbi.2019.05.040 10.1002/ijc.28702 10.3389/fcimb.2019.00225 10.3389/fmicb.2018.01264 10.3389/fmicb.2018.01967 10.1016/j.jff.2018.08.023 10.3390/nu9060555 10.1016/j.jdiacomp.2017.08.009 10.1093/ndt/gfv353 10.1002/JLB.5HI1117-446RR 10.1371/journal.pone.0231865 10.1021/acs.jafc.0c04253 10.1159/000360010 10.1177/1758835918821021 10.1016/j.nut.2016.05.003 10.1016/j.freeradbiomed.2004.08.018 10.1016/j.nut.2010.05.012 10.1016/j.canlet.2019.11.019 10.1021/jf201185v 10.3390/antiox8080322 10.1053/ajkd.2003.50104 10.1016/j.anaerobe.2018.07.012 10.3389/fmicb.2018.00757 10.1038/ki.2015.255 10.1136/gutjnl-2013-304833 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7TS 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 7S9 L.6 5PM |
DOI | 10.3390/nu13082792 |
DatabaseName | CrossRef ProQuest Central (Corporate) Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2072-6643 |
ExternalDocumentID | PMC8402234 10_3390_nu13082792 |
GeographicLocations | Minneapolis Minnesota United Kingdom--UK United States--US Taiwan |
GeographicLocations_xml | – name: Taiwan – name: United Kingdom--UK – name: Minneapolis Minnesota – name: United States--US |
GroupedDBID | --- 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAWTL AAYXX ABUWG ACIWK ACPRK AENEX AFKRA AFRAH AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS APEBS BENPR BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ECGQY EIHBH ESTFP EYRJQ F5P FYUFA GX1 HMCUK HYE IAO ITC KQ8 LK8 M1P M48 MODMG M~E OK1 P2P P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 UKHRP 3V. 7TS 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PUEGO 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c416t-e48497bff45097a32fe668261e3546ff5317b9a7a3e7cf314b3ad09cd8f80153 |
IEDL.DBID | M48 |
ISSN | 2072-6643 |
IngestDate | Thu Aug 21 18:17:34 EDT 2025 Fri Jul 11 08:49:37 EDT 2025 Thu Jul 10 19:17:09 EDT 2025 Sat Aug 23 14:12:16 EDT 2025 Tue Jul 01 00:50:02 EDT 2025 Thu Apr 24 22:50:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-e48497bff45097a32fe668261e3546ff5317b9a7a3e7cf314b3ad09cd8f80153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-7221-2334 0000-0001-6855-9239 0000-0001-7374-1203 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/nu13082792 |
PMID | 34444952 |
PQID | 2565481890 |
PQPubID | 2032353 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402234 proquest_miscellaneous_2636761782 proquest_miscellaneous_2566028166 proquest_journals_2565481890 crossref_citationtrail_10_3390_nu13082792 crossref_primary_10_3390_nu13082792 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210815 |
PublicationDateYYYYMMDD | 2021-08-15 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210815 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Nutrients |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Liu (ref_31) 2016; 64 Kuo (ref_24) 2011; 59 Yoshifuji (ref_66) 2016; 31 Hagihara (ref_16) 2020; 23 Ansari (ref_2) 2017; 93 ref_10 Seki (ref_48) 2003; 45 Seo (ref_49) 2013; 58 Yen (ref_65) 2011; 27 Angelakis (ref_1) 2017; 106 Li (ref_29) 2019; 10 Schroeder (ref_47) 2018; 23 Takayama (ref_54) 2003; 41 Shen (ref_52) 2017; 16 ref_15 Payne (ref_40) 2018; 103 Wu (ref_61) 2020; 16 Lee (ref_27) 2020; 28 Wong (ref_59) 2020; 32 Ye (ref_64) 2018; 9 Shackelford (ref_50) 2002; 30 Arivarasu (ref_3) 2013; 65 ref_22 Xu (ref_62) 2017; 7 Cui (ref_7) 2017; 8 Jiang (ref_21) 2019; 137 Marietta (ref_35) 2018; 15 Tang (ref_55) 2017; 33 Liu (ref_32) 2010; 59 Chen (ref_6) 2018; 9 Lee (ref_26) 2020; 45 Grusovin (ref_14) 2020; 24 Koppe (ref_23) 2015; 88 Dicksved (ref_9) 2012; 7 Chen (ref_5) 2019; 308 Wen (ref_57) 2004; 37 Zhao (ref_68) 2017; 8 Mu (ref_37) 2018; 9 Ren (ref_44) 2018; 49 Sharp (ref_51) 2016; 310 Zhai (ref_67) 2019; 366 Machiels (ref_34) 2014; 63 Li (ref_28) 2016; 113 Pianta (ref_41) 2017; 42 Wu (ref_60) 2019; 11 Machado (ref_33) 2012; 27 Schnackenberg (ref_46) 2012; 50 Hagihara (ref_17) 2018; 54 Hayashi (ref_18) 2013; 13 Huang (ref_19) 2020; 68 Gonzalez (ref_13) 2019; 34 Li (ref_30) 2020; 121 Forsgard (ref_12) 2017; 80 Hwang (ref_20) 2017; 31 Tian (ref_56) 2019; 516 Montassier (ref_36) 2015; 42 Pan (ref_39) 2018; 46 Wong (ref_58) 2014; 39 Chen (ref_4) 2020; 469 ref_43 Shinnoh (ref_53) 2013; 42 ref_42 Yang (ref_63) 2001; 60 Oka (ref_38) 2018; 9 Lakritz (ref_25) 2014; 135 Rescigno (ref_45) 2014; 16 Espandiari (ref_11) 2010; 30 Zhou (ref_69) 2019; 9 Denk (ref_8) 2018; 49 |
References_xml | – volume: 93 start-page: 646 year: 2017 ident: ref_2 article-title: Sinapic acid modulates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.06.085 – volume: 366 start-page: fnz153 year: 2019 ident: ref_67 article-title: Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice publication-title: FEMS Microbiol. Lett. doi: 10.1093/femsle/fnz153 – volume: 46 start-page: 1 year: 2018 ident: ref_39 article-title: Synergistic effect of black tea polyphenol, theaflavin-3,3’-digallate with cisplatin against cisplatin resistant human ovarian cancer cells publication-title: J. Funct. Foods doi: 10.1016/j.jff.2018.04.037 – volume: 32 start-page: e13803 year: 2020 ident: ref_59 article-title: D-methionine improves cisplatin-induced anorexia and dyspepsia syndrome by attenuating intestinal tryptophan hydroxylase 1 activity and increasing plasma leptin concentration publication-title: Neurogastroenterol. Motil. doi: 10.1111/nmo.13803 – ident: ref_10 doi: 10.1371/journal.pone.0063388 – volume: 28 start-page: 103 year: 2020 ident: ref_27 article-title: Alleviating chronic kidney disease progression through modulating the critical genus of gut microbiota in a cisplatin-induced Lanyu pig model publication-title: J. Food Drug Anal. doi: 10.1016/j.jfda.2019.10.001 – volume: 15 start-page: 23 year: 2018 ident: ref_35 article-title: Microbiome, Immunomodulation, and the Neuronal System publication-title: Neurotherapeutics doi: 10.1007/s13311-017-0601-4 – volume: 50 start-page: 3978 year: 2012 ident: ref_46 article-title: Metabolomics evaluation of hydroxyproline as a potential marker of melamine and cyanuric acid nephrotoxicity in male and female Fischer F344 rats publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2012.08.010 – volume: 8 start-page: 4644 year: 2017 ident: ref_68 article-title: A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota publication-title: Food Funct. doi: 10.1039/C7FO01383C – volume: 121 start-page: 109310 year: 2020 ident: ref_30 article-title: Human umbilical cord blood mononuclear cells protect against renal tubulointerstitial fibrosis in cisplatin-treated rats publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.109310 – volume: 58 start-page: 3534 year: 2013 ident: ref_49 article-title: Clostridium butyricum MIYAIRI 588 improves high-fat diet-induced non-alcoholic fatty liver disease in rats publication-title: Dig. Dis. Sci. doi: 10.1007/s10620-013-2879-3 – volume: 30 start-page: 93 year: 2002 ident: ref_50 article-title: Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies publication-title: Toxicol. Pathol. doi: 10.1080/01926230252824761 – volume: 9 start-page: 1652 year: 2018 ident: ref_6 article-title: Effects of Intravenous Infusion with Sodium Butyrate on Colonic Microbiota, Intestinal Development- and Mucosal Immune-Related Gene Expression in Normal Growing Pigs publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01652 – volume: 23 start-page: 100772 year: 2020 ident: ref_16 article-title: Clostridium butyricum Modulates the Microbiome to Protect Intestinal Barrier Function in Mice with Antibiotic-Induced Dysbiosis publication-title: iScience doi: 10.1016/j.isci.2019.100772 – volume: 23 start-page: 27 year: 2018 ident: ref_47 article-title: Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.11.004 – volume: 516 start-page: 430 year: 2019 ident: ref_56 article-title: Clostridium butyricum miyairi 588 has preventive effects on chronic social defeat stress-induced depressive-like behaviour and modulates microglial activation in mice publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.06.053 – volume: 42 start-page: 515 year: 2015 ident: ref_36 article-title: Chemotherapy-driven dysbiosis in the intestinal microbiome publication-title: Aliment. Pharmacol. Ther. doi: 10.1111/apt.13302 – volume: 27 start-page: 3136 year: 2012 ident: ref_33 article-title: Sodium butyrate decreases the activation of NF-kappaB reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy publication-title: Nephrol. Dial. Transplant doi: 10.1093/ndt/gfr807 – volume: 7 start-page: 1445 year: 2017 ident: ref_62 article-title: Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients publication-title: Sci. Rep. doi: 10.1038/s41598-017-01387-y – volume: 80 start-page: 317 year: 2017 ident: ref_12 article-title: Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male Sprague-Dawley rats publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-017-3364-z – volume: 8 start-page: 77489 year: 2017 ident: ref_7 article-title: Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide publication-title: Oncotarget doi: 10.18632/oncotarget.20536 – volume: 106 start-page: 162 year: 2017 ident: ref_1 article-title: Weight gain by gut microbiota manipulation in productive animals publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2016.11.002 – ident: ref_15 doi: 10.3390/ijms21061986 – volume: 65 start-page: 21 year: 2013 ident: ref_3 article-title: Oral administration of caffeic acid ameliorates the effect of cisplatin on brush border membrane enzymes and antioxidant system in rat intestine publication-title: Exp. Toxicol. Pathol. doi: 10.1016/j.etp.2011.05.004 – volume: 34 start-page: 783 year: 2019 ident: ref_13 article-title: Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression publication-title: Nephrol. Dial. Transplant doi: 10.1093/ndt/gfy238 – volume: 10 start-page: 4705 year: 2019 ident: ref_29 article-title: Lactobacillus reuteri improves gut barrier function and affects diurnal variation of the gut microbiota in mice fed a high-fat diet publication-title: Food Funct. doi: 10.1039/C9FO00417C – volume: 16 start-page: 375 year: 2017 ident: ref_52 article-title: Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease publication-title: Hepatobiliary Pancreat. Dis. Int. doi: 10.1016/S1499-3872(17)60019-5 – volume: 24 start-page: 2015 year: 2020 ident: ref_14 article-title: Clinical efficacy of Lactobacillus reuteri-containing lozenges in the supportive therapy of generalized periodontitis stage III and IV, grade C: 1-year results of a double-blind randomized placebo-controlled pilot study publication-title: Clin. Oral. Investig. doi: 10.1007/s00784-019-03065-x – volume: 16 start-page: 420 year: 2020 ident: ref_61 article-title: Gut Microbiota as Diagnostic Tools for Mirroring Disease Progression and Circulating Nephrotoxin Levels in Chronic Kidney Disease: Discovery and Validation Study publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.37421 – volume: 137 start-page: 103754 year: 2019 ident: ref_21 article-title: Lactobacillus reuteri protects mice against Salmonella typhimurium challenge by activating macrophages to produce nitric oxide publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2019.103754 – volume: 45 start-page: 86 year: 2003 ident: ref_48 article-title: Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI publication-title: Pediatr. Int. doi: 10.1046/j.1442-200X.2003.01671.x – volume: 60 start-page: 1765 year: 2001 ident: ref_63 article-title: Caspase-3 and apoptosis in experimental chronic renal scarring publication-title: Kidney Int. doi: 10.1046/j.1523-1755.2001.00013.x – volume: 30 start-page: 172 year: 2010 ident: ref_11 article-title: Age-related differences in susceptibility to cisplatin-induced renal toxicity publication-title: J. Appl. Toxicol. doi: 10.1002/jat.1484 – volume: 13 start-page: 711 year: 2013 ident: ref_18 article-title: A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.05.013 – volume: 16 start-page: 1004 year: 2014 ident: ref_45 article-title: Intestinal microbiota and its effects on the immune system publication-title: Cell Microbiol. doi: 10.1111/cmi.12301 – volume: 64 start-page: 641 year: 2016 ident: ref_31 article-title: Functional analysis of the relationship between intestinal microbiota and the expression of hepatic genes and pathways during the course of liver regeneration publication-title: J. Hepatol. doi: 10.1016/j.jhep.2015.09.022 – volume: 7 start-page: e46399 year: 2012 ident: ref_9 article-title: Lactobacillus reuteri maintains a functional mucosal barrier during DSS treatment despite mucus layer dysfunction publication-title: PLoS ONE doi: 10.1371/journal.pone.0046399 – volume: 42 start-page: 903 year: 2013 ident: ref_53 article-title: Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8 publication-title: Int. J. Oncol. doi: 10.3892/ijo.2013.1790 – volume: 49 start-page: 154 year: 2018 ident: ref_8 article-title: Role of Hemorrhagic Shock in Experimental Polytrauma publication-title: Shock doi: 10.1097/SHK.0000000000000925 – volume: 59 start-page: 127 year: 2010 ident: ref_32 article-title: Dimethylthiourea pretreatment inhibits endotoxin-induced compound exocytosis in goblet cells and plasma leakage of rat small intestine publication-title: J. Electron. Microsc. doi: 10.1093/jmicro/dfp049 – volume: 42 start-page: 62 year: 2017 ident: ref_41 article-title: Dexamethasone Modifies Cystatin C-Based Diagnosis of Acute Kidney Injury During Cisplatin-Based Chemotherapy publication-title: Kidney Blood Press. Res. doi: 10.1159/000469715 – volume: 310 start-page: F560 year: 2016 ident: ref_51 article-title: Repeated administration of low-dose cisplatin in mice induces fibrosis publication-title: Am. J. Physiol. Renal. Physiol. doi: 10.1152/ajprenal.00512.2015 – volume: 308 start-page: 269 year: 2019 ident: ref_5 article-title: Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2019.05.040 – volume: 135 start-page: 529 year: 2014 ident: ref_25 article-title: Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice publication-title: Int. J. Cancer doi: 10.1002/ijc.28702 – volume: 9 start-page: 225 year: 2019 ident: ref_69 article-title: Cepharanthine Hydrochloride Improves Cisplatin Chemotherapy and Enhances Immunity by Regulating Intestinal Microbes in Mice publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2019.00225 – volume: 9 start-page: 1264 year: 2018 ident: ref_38 article-title: Establishment of an Endogenous Clostridium difficile Rat Infection Model and Evaluation of the Effects of Clostridium butyricum MIYAIRI 588 Probiotic Strain publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01264 – volume: 9 start-page: 1967 year: 2018 ident: ref_64 article-title: Butyrate Protects Mice Against Methionine-Choline-Deficient Diet-Induced Non-alcoholic Steatohepatitis by Improving Gut Barrier Function, Attenuating Inflammation and Reducing Endotoxin Levels publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01967 – volume: 49 start-page: 371 year: 2018 ident: ref_44 article-title: Polysaccharide extracted from Enteromorpha ameliorates Cisplastininduced small intestine injury in mice publication-title: J. Funct. Foods doi: 10.1016/j.jff.2018.08.023 – ident: ref_42 doi: 10.3390/nu9060555 – volume: 31 start-page: 1704 year: 2017 ident: ref_20 article-title: Tissue expression of tubular injury markers is associated with renal function decline in diabetic nephropathy publication-title: J. Diabetes Complicat. doi: 10.1016/j.jdiacomp.2017.08.009 – volume: 31 start-page: 401 year: 2016 ident: ref_66 article-title: Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats publication-title: Nephrol. Dial. Transplant doi: 10.1093/ndt/gfv353 – volume: 103 start-page: 799 year: 2018 ident: ref_40 article-title: Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.5HI1117-446RR – ident: ref_43 doi: 10.1371/journal.pone.0231865 – volume: 68 start-page: 11128 year: 2020 ident: ref_19 article-title: Ascorbic Acid Derivative 2-O-beta-d-Glucopyranosyl-l-Ascorbic Acid from the Fruit of Lycium barbarum Modulates Microbiota in the Small Intestine and Colon and Exerts an Immunomodulatory Effect on Cyclophosphamide-Treated BALB/c Mice publication-title: J. Agric. Food. Chem. doi: 10.1021/acs.jafc.0c04253 – volume: 39 start-page: 230 year: 2014 ident: ref_58 article-title: Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD publication-title: Am. J. Nephrol. doi: 10.1159/000360010 – volume: 11 start-page: 1758835918821021 year: 2019 ident: ref_60 article-title: D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation publication-title: Ther. Adv. Med. Oncol. doi: 10.1177/1758835918821021 – volume: 33 start-page: 96 year: 2017 ident: ref_55 article-title: Administration of probiotic mixture DM#1 ameliorated 5-fluorouracil-induced intestinal mucositis and dysbiosis in rats publication-title: Nutrition doi: 10.1016/j.nut.2016.05.003 – volume: 37 start-page: 1821 year: 2004 ident: ref_57 article-title: Oxidative damage during chagasic cardiomyopathy development: Role of mitochondrial oxidant release and inefficient antioxidant defense publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2004.08.018 – volume: 27 start-page: 445 year: 2011 ident: ref_65 article-title: Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people--a placebo-controlled, diet-controlled trial publication-title: Nutrition doi: 10.1016/j.nut.2010.05.012 – volume: 469 start-page: 456 year: 2020 ident: ref_4 article-title: Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota publication-title: Cancer Lett. doi: 10.1016/j.canlet.2019.11.019 – volume: 113 start-page: E1306 year: 2016 ident: ref_28 article-title: Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 59 start-page: 7717 year: 2011 ident: ref_24 article-title: Effect of garlic oil on neutrophil infiltration in the small intestine of endotoxin-injected rats and its association with levels of soluble and cellular adhesion molecules publication-title: J. Agric. Food Chem. doi: 10.1021/jf201185v – ident: ref_22 doi: 10.3390/antiox8080322 – volume: 41 start-page: S142 year: 2003 ident: ref_54 article-title: Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis publication-title: Am. J. Kidney Dis. doi: 10.1053/ajkd.2003.50104 – volume: 54 start-page: 8 year: 2018 ident: ref_17 article-title: The impact of Clostridium butyricum MIYAIRI 588 on the murine gut microbiome and colonic tissue publication-title: Anaerobe doi: 10.1016/j.anaerobe.2018.07.012 – volume: 45 start-page: 1130 year: 2020 ident: ref_26 article-title: Lactobacillus salivarius BP121 prevents cisplatininduced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and pcresol sulfate via alleviating dysbiosis publication-title: Int. J. Mol. Med. – volume: 9 start-page: 757 year: 2018 ident: ref_37 article-title: Role of Lactobacillus reuteri in Human Health and Diseases publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00757 – volume: 88 start-page: 958 year: 2015 ident: ref_23 article-title: Probiotics and chronic kidney disease publication-title: Kidney Int. doi: 10.1038/ki.2015.255 – volume: 63 start-page: 1275 year: 2014 ident: ref_34 article-title: A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis publication-title: Gut doi: 10.1136/gutjnl-2013-304833 |
SSID | ssj0000070763 |
Score | 2.5172987 |
Snippet | Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus... Cisplatin-induced nephrotoxicity is associated with gut microbiota disturbance. The present study aimed to investigate whether supplementation of Lactobacillus... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 2792 |
SubjectTerms | apoptosis Bifidobacterium blood butyric acid Cancer therapies Chemotherapy cisplatin Clostridium butyricum collagen dysbiosis endotoxins Enterobacteriaceae epithelium Feces fibronectins fibrosis Gut microbiota Inflammation intestinal microorganisms intestines Lactobacillus reuteri microbiome Microbiota Mucositis nephrotoxicity oxidative stress Probiotics protective effect Proteins renoprotective effect Ruminococcaceae sulfates Tumors |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9NAEF70fPFF1FOsnjKiCILhmu5mt3mSWj1PURE5oW9hsz8w0G561-Sh_-z9Lc5s0taA3EOfdkoWdmbn-yaTbxh7jai4HOvUJEamMhHOZInmMk-0d8oJ_Fkbuy1-yPPf4usiW_QFt03fVrm7E-NFbWtDNfJTTM0IrtNpPn6_vkxoahS9Xe1HaNxmd0i6jLxaLdS-xhK1bCTvVEk5svvT0Kakz6LyyTAPHcDlsDXyn1xzdp_d60EizLpTfcBuufCQHc8CEuTVFt5AbNuM9fBjdj2Uv4XawzeaoVNqUy2X7QauHE1tqAAjH1mws0ClV5gva5rYYat2BWXbbKkOuIJZgxC6JfgJ82qzpj65kNB0D4P_--VoUx_1Cq8gKLfwuW3ge9UJOTUaiMj2nQe4j3eANw81vGNqhA_dA2BmKgs_O43ZaKODBZorGptx0bB7xJfg0U-7byofsYuzTxfz86Qf2pAYxHZN4sRU5Kr0XiAUUZpPvJMSOUzqeCak9xjzqsw1rjhlPE9FybUd58ZOPSbLjD9mR6EO7gkDIy2StczS58PIAhHJOm_G3DiZowv56Yi93Z1gYXpBc5qrsSyQ2NBpF4fTHrFXe9t1J-PxX6uTnSMUfShvioPjjdjL_TIGIb1Z0cHVbbSRCNRSKW-wkSSOlyIiGzE1cLL9jkjqe7gSqj9R8htpOOI48fTmDT5jdyfUckOKvdkJO2quWvccMVNTvoiB8RdpbiB8 priority: 102 providerName: ProQuest |
Title | Administration of Lactobacillus reuteri Combined with Clostridium butyricum Attenuates Cisplatin-Induced Renal Damage by Gut Microbiota Reconstitution, Increasing Butyric Acid Production, and Suppressing Renal Inflammation |
URI | https://www.proquest.com/docview/2565481890 https://www.proquest.com/docview/2566028166 https://www.proquest.com/docview/2636761782 https://pubmed.ncbi.nlm.nih.gov/PMC8402234 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5qC9IXUat4Wo8RRRCMXi6b3cuDyPXsD8WWUlq4t7DZHzSQ26t3CXj_rH-LM0nuaqT4YOAews6S5XZ29vs2k28Ye4OoOBuoUAdahCLgVseBikQSKGel5fgzps62OBMnV_zbNJ5usXX9zvYPXN5J7aie1NWi-PDzx-ozLvhPxDiRsn_0VUiiKzLBULyDO5KkSganLcxvYLBEuh416qR_ddll9yOOVxIPu1vTLd7sZkv-sf0cPWQPWtwI42aiH7Et6x-zvbFHzjxbwVuoMznrI_I99quriAtzB9-prE6mdF4U1RIWlgo55IDBAImxNUCnsTAp5lTEw-TVDLKqXNHR4AzGJaLqihApTPLlDaXO-YAKfmjsd2FpUF_UDKMSZCs4rko4zRttp1IBcds2GQHH8R4wGFEOPO6WcNA8AMY6N3DeyM7WNsoboFKjdX4uGjaP-Oodum7zmeUTdnl0eDk5Cdo6DoFGuFcGlo94IjPnOKITqaKhs0IgrQltFHPhHIYBmSUKW6zULgp5FikzSLQZOdw_4-gp2_Zzb58x0MIgf4sNfVGMxBDBrXV6EGkrEvQqN-qxd-sZTHWrcU6lNooUuQ5NfHo78T32emN70yh73Gm1v3aEdO2cKcJEJHrhKBn02KtNM65LetmivJ1XtY1A7BYK8Q8bQXp5IYK0HpMdJ9uMiNS_uy0-v65VwJGZI7Tjz_-75wu2O6QEHdL3jffZdrmo7EtEWGXWZ_fkVPbZzsHh2fkF3h1Pw369pH4DBT0zCA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5QAXRCmIlBYG8ZCQsOrnOj4gFFJKQtMKoSDlZq33ISwldmhsofwo_hK_hZm1nRAJ9daDTzuWV5rZmW_Gs98w9gpRceYKTzqSe9wJtYwcEfDEEUbHOsRHKdttccVH38Mvs2i2x353d2GorbLzidZRq1JSjfwUQzOCa6-fuB-WPx2aGkV_V7sRGo1ZXOj1L0zZVu_HZ6jf175__mk6HDntVAFHIvioHB32wyTOjAkxVsYi8I3mHEG2p4Mo5MagUcZZInBFx9IEXpgFQrmJVH2D3pyGRKDHv4Nx16VcL57Fm5KOpc7hQUOCGgSJe1rUHtHBxIm_G_a2WHa3E_Of0Hb-gN1vMSkMGiM6YHu6eMgOBwXm44s1vAHbJWrL74fszy7bLpQGJjSyJxMyn8_rFVxrGhKRAzoaTLq1Aqr0wnBe0oAQldcLyOpqTWXHBQwqROw1oV0Y5qslteUVDg0TkfjeN02bOhML9HiQreFzXcFl3vBGVQIob24bHXAf7wAdHfXXYySGj80HYCBzBV8bSlsrIwoFNMbU9v6iYPOJcWHwWDRXOB-x6W1o8zHbL8pCP2EgucLcMFJ0WxmTTgTO2kg3kJonaLGm32NvOw2msuVPpzEe8xTzKNJ2utV2j73cyC4b1pD_Sh13hpC2nmOVbu28x15slvHM048cUeiytjIccaHH-Q0ynLj4PASAPRbvGNlmR8QsvrtS5D8swzhm_Qgbw6ObN_ic3R1NLyfpZHx18ZTd86nbh8iCo2O2X13X-gThWpU9s4cEWHrLh_IvuDpcGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6CA6WX0jYtdZq2U_qAQkWs10o6lOLYceMmNSakkJtY7YMKbMmNJYp_Wv9Mf0tn9LArKLnloNOO0MDOznwzmv2GsbeIipOBsKUluc0tT0vfEi6PLGF0oD18lKq6LWb87Lv39dq_3mO_27sw1FbZ-sTKUatcUo38GEMzgms7jAbHpmmLmI8nn1c_LZogRX9a23EatYmc680vTN_Wn6Zj3Ot3jjM5vRqdWc2EAUsiECks7YVeFCTGeBg3A-E6RnOOgNvWru9xY9BAgyQSuKIDaVzbS1yhBpFUoUHPTgMj0PvvB5QU9dj-yelsfrkt8FREOtytKVFdF_XOSpvIYYLI6QbBHbLt9mX-E-gmD9mDBqHCsDapR2xPZ4_ZwTDD7Hy5gfdQ9YxWxfgD9qfLvQu5gQsa4JMImS4W5RpuNI2MSAHdDqbgWgHVfWG0yGlciErLJSRlsaEi5BKGBeL3krAvjNL1ipr0MotGi0h871KTUmOxRP8HyQa-lAV8S2sWqUIAZdFN2wPq8RHQ7VG3PcZlOKk_AEOZKpjXBLeVjMgU0FDTqhMYBetPTDODh6S-0PmEXd3Ffj5lvSzP9DMGkivMFH1Fd5cxBUUYrY0cuFLzCO3XhH32od3BWDZs6jTUYxFjVkW7He92u8_ebGVXNYfIf6WOWkOIGz-yjndW32evt8voAei3jsh0XlYyHFGizfktMpyY-WyEg30WdIxsqxHxjHdXsvRHxTceegj0XO_wdgVfsXt4IOOL6ez8ObvvUOsPMQf7R6xX3JT6BWK3InnZnBJg8R2fy79JAGG2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Administration+of+Lactobacillus+reuteri+Combined+with+Clostridium+butyricum+Attenuates+Cisplatin-Induced+Renal+Damage+by+Gut+Microbiota+Reconstitution%2C+Increasing+Butyric+Acid+Production%2C+and+Suppressing+Renal+Inflammation&rft.jtitle=Nutrients&rft.au=Hsiao%2C+Yu-Ping&rft.au=Chen%2C+Hsiao-Ling&rft.au=Tsai%2C+Jen-Ning&rft.au=Lin%2C+Meei-Yn&rft.date=2021-08-15&rft.pub=MDPI&rft.eissn=2072-6643&rft.volume=13&rft.issue=8&rft_id=info:doi/10.3390%2Fnu13082792&rft_id=info%3Apmid%2F34444952&rft.externalDocID=PMC8402234 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6643&client=summon |