Coherence in logical quantum channels

We study the effectiveness of quantum error correction against coherent noise. Coherent errors (for example, unitary noise) can interfere constructively, so that in some cases the average infidelity of a quantum circuit subjected to coherent errors may increase quadratically with the circuit size; i...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 22; no. 7; pp. 73066 - 73135
Main Authors Iverson, Joseph K, Preskill, John
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the effectiveness of quantum error correction against coherent noise. Coherent errors (for example, unitary noise) can interfere constructively, so that in some cases the average infidelity of a quantum circuit subjected to coherent errors may increase quadratically with the circuit size; in contrast, when errors are incoherent (for example, depolarizing noise), the average infidelity increases at worst linearly with circuit size. We consider the performance of quantum stabilizer codes against a noise model in which a unitary rotation is applied to each qubit, where the axes and angles of rotation are nearly the same for all qubits. In particular, we show that for the toric code subject to such independent coherent noise, and for minimal-weight decoding, the logical channel after error correction becomes increasingly incoherent as the length of the code increases, provided the noise strength decays inversely with the code distance. A similar conclusion holds for weakly correlated coherent noise. Our methods can also be used for analyzing the performance of other codes and fault-tolerant protocols against coherent noise. However, our result does not show that the coherence of the logical channel is suppressed in the more physically relevant case where the noise strength is held constant as the code block grows, and we recount the difficulties that prevented us from extending the result to that case. Nevertheless our work supports the idea that fault-tolerant quantum computing schemes will work effectively against coherent noise, providing encouraging news for quantum hardware builders who worry about the damaging effects of control errors and coherent interactions with the environment.
AbstractList We study the effectiveness of quantum error correction against coherent noise. Coherent errors (for example, unitary noise) can interfere constructively, so that in some cases the average infidelity of a quantum circuit subjected to coherent errors may increase quadratically with the circuit size; in contrast, when errors are incoherent (for example, depolarizing noise), the average infidelity increases at worst linearly with circuit size. We consider the performance of quantum stabilizer codes against a noise model in which a unitary rotation is applied to each qubit, where the axes and angles of rotation are nearly the same for all qubits. In particular, we show that for the toric code subject to such independent coherent noise, and for minimal-weight decoding, the logical channel after error correction becomes increasingly incoherent as the length of the code increases, provided the noise strength decays inversely with the code distance. A similar conclusion holds for weakly correlated coherent noise. Our methods can also be used for analyzing the performance of other codes and fault-tolerant protocols against coherent noise. However, our result does not show that the coherence of the logical channel is suppressed in the more physically relevant case where the noise strength is held constant as the code block grows, and we recount the difficulties that prevented us from extending the result to that case. Nevertheless our work supports the idea that fault-tolerant quantum computing schemes will work effectively against coherent noise, providing encouraging news for quantum hardware builders who worry about the damaging effects of control errors and coherent interactions with the environment.
Author Preskill, John
Iverson, Joseph K
Author_xml – sequence: 1
  givenname: Joseph K
  orcidid: 0000-0003-4665-8839
  surname: Iverson
  fullname: Iverson, Joseph K
  organization: California Institute of Technology Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, Pasadena CA 91125, United States of America
– sequence: 2
  givenname: John
  orcidid: 0000-0002-2421-4762
  surname: Preskill
  fullname: Preskill, John
  organization: California Institute of Technology Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, Pasadena CA 91125, United States of America
BookMark eNp9kEtLAzEUhYNUsK3uXRbEnbX3JpN5LKX4goIbXYc7maRNmSZtZrrw39txfCHo6l4O5xwO34gNfPCGsXOEa4Q8n6FIsylPBcyozI3UR2z4JQ1-_Cds1DRrAMSc8yG7nIeVicZrM3F-Uoel01RPdnvy7X4z0Svy3tTNKTu2VDfm7OOO2cvd7fP8Ybp4un-c3yymOsG0nVYaUiuttpw4CUMiAcw4IBAASM1BF5wqQVlZJWArA4LLpOSFFVKgxEKM2WPfWwVaq210G4qvKpBT70KIS0Wxdbo2qhJcW1mg5sImsrC5xEqUeWYQygxQHLou-q5tDLu9aVq1DvvoD_MVTwSg5JB1rrR36RiaJhqrtGupdcG3kVytEFSHV3X8VMdP9XgPQfgV_Jz7T-Sqj7iw_R7zp_0NBh6KUg
CODEN NJOPFM
CitedBy_id crossref_primary_10_1063_5_0187026
crossref_primary_10_1103_PhysRevA_104_022609
crossref_primary_10_1093_pnasnexus_pgaf063
crossref_primary_10_1103_PRXQuantum_5_030332
crossref_primary_10_22331_q_2023_09_21_1116
crossref_primary_10_1103_PhysRevApplied_17_034074
crossref_primary_10_1103_PhysRevLett_131_060603
crossref_primary_10_1038_s41586_023_06927_3
crossref_primary_10_1103_PhysRevA_111_012419
crossref_primary_10_1007_JHEP04_2021_138
crossref_primary_10_1126_science_adp6016
crossref_primary_10_1103_PhysRevA_107_042422
crossref_primary_10_1103_PhysRevX_11_041058
crossref_primary_10_1103_PhysRevApplied_22_014007
crossref_primary_10_1103_PhysRevApplied_23_034014
crossref_primary_10_1103_PhysRevResearch_4_023041
crossref_primary_10_1103_PRXQuantum_5_040313
crossref_primary_10_1038_s41534_024_00893_y
crossref_primary_10_1103_PhysRevLett_132_250604
crossref_primary_10_1103_PhysRevResearch_4_043052
crossref_primary_10_1103_PhysRevResearch_6_013142
crossref_primary_10_1109_TIT_2021_3130155
crossref_primary_10_22331_q_2024_08_27_1448
crossref_primary_10_1103_PhysRevResearch_2_043412
crossref_primary_10_1103_PRXQuantum_6_010334
crossref_primary_10_1103_PhysRevLett_127_240501
crossref_primary_10_1103_PhysRevA_105_052409
crossref_primary_10_1103_PhysRevA_111_032424
crossref_primary_10_1103_PhysRevResearch_5_033049
crossref_primary_10_1103_PRXQuantum_4_020335
crossref_primary_10_22331_q_2022_05_09_707
crossref_primary_10_1103_PhysRevA_103_062404
crossref_primary_10_1103_PhysRevLett_131_200602
crossref_primary_10_1103_PhysRevA_105_022428
crossref_primary_10_1103_PhysRevResearch_6_013137
Cites_doi 10.1088/1464-4266/7/10/021
10.1103/physrevlett.121.250502
10.22331/q-2018-01-04-43
10.1103/physreva.95.042332
10.1103/physrevlett.96.050504
10.1103/PhysRevLett.121.190501
10.1103/PhysRevA.99.022313
10.1103/physreva.94.042338
10.1088/1367-2630/17/11/113020
10.1007/pl00013842
10.1103/physreva.77.012307
10.1103/physrevlett.117.170502
10.1103/physreva.94.052325
10.1063/1.1499754
10.1103/physreva.90.032326
10.1088/0305-4470/17/2/030
10.1088/2058-9565/aa9a06
10.1103/physrevlett.119.190503
10.4153/cjm-1965-045-4
10.1088/1367-2630/18/1/012002
10.1038/s41534-019-0233-0
10.1098/rspa.1998.0166
10.1088/1367-2630/16/10/103032
10.1088/1367-2630/9/6/199
10.1088/2058-9565/aab73c
10.1109/tac.2006.871942
10.1137/S0097539799359385
10.1017/s030500410003557x
10.1103/physrevlett.104.050504
ContentType Journal Article
Copyright 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
– notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
H8D
L7M
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1088/1367-2630/ab8e5c
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
Advanced Technologies Database with Aerospace
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Coherence in logical quantum channels
EISSN 1367-2630
ExternalDocumentID oai_doaj_org_article_d32cf591c23f459f851d3b87e10b7013
10_1088_1367_2630_ab8e5c
njpab8e5c
GrantInformation_xml – fundername: Army Research Office and Laboratory for Physical Sciences
  grantid: W911NF-18- 1-0103
– fundername: National Science Foundation
  grantid: PHY-1733907
  funderid: https://doi.org/10.13039/100000001
GroupedDBID 123
1JI
1PV
29N
2WC
5PX
5VS
7.M
AAFWJ
AAJIO
AAJKP
ABHWH
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
GROUPED_DOAJ
GX1
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
M45
M48
M~E
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XPP
XSB
ZMT
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c416t-dc06f5fcf2a2a3ea340172010a0005c20c92ad3a7bd40fde03254b29f35315193
IEDL.DBID M48
ISSN 1367-2630
IngestDate Wed Aug 27 01:13:51 EDT 2025
Fri Jul 04 21:55:29 EDT 2025
Tue Jul 01 01:30:27 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Wed Aug 21 03:34:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c416t-dc06f5fcf2a2a3ea340172010a0005c20c92ad3a7bd40fde03254b29f35315193
Notes NJP-111731.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2421-4762
0000-0003-4665-8839
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1088/1367-2630/ab8e5c
PQID 2430152073
PQPubID 4491272
PageCount 70
ParticipantIDs crossref_citationtrail_10_1088_1367_2630_ab8e5c
doaj_primary_oai_doaj_org_article_d32cf591c23f459f851d3b87e10b7013
proquest_journals_2430152073
crossref_primary_10_1088_1367_2630_ab8e5c
iop_journals_10_1088_1367_2630_ab8e5c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle New journal of physics
PublicationTitleAbbrev NJP
PublicationTitleAlternate New J. Phys
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Iyer (njpab8e5cbib11) 2018; 3
Kueng (njpab8e5cbib9) 2016; 117
Wallman (njpab8e5cbib24) 2014; 16
Preskill (njpab8e5cbib28) 2013; 13
Suzuki (njpab8e5cbib22) 2017; 119
Bravyi (njpab8e5cbib32) 2014; 90
Aliferis (njpab8e5cbib4) 2006; 6
Cai (njpab8e5cbib13) 2020; 6
Huang (njpab8e5cbib18) 2019; 99
Dennis (njpab8e5cbib30) 2002; 43
Raussendorf (njpab8e5cbib5) 2007; 9
Aharonov (njpab8e5cbib27) 2006; 96
Yu Kitaev (njpab8e5cbib26) 2002; vol 47
Emerson (njpab8e5cbib6) 2005; 7
Bravyi (njpab8e5cbib21) 2017
Beale (njpab8e5cbib19) 2018; 121
Duclos-Cianci (njpab8e5cbib31) 2010; 104
Guttmann (njpab8e5cbib36) 2001; 5
Guttmann (njpab8e5cbib35) 1984; 17
Napp (njpab8e5cbib37) 2013; 13
Debroy (njpab8e5cbib16) 2018; 121
Knill (njpab8e5cbib7) 2008; 77
Sanders (njpab8e5cbib8) 2015; 18
Wallman (njpab8e5cbib10) 2015; 17
Knill (njpab8e5cbib1) 1998; 454
Gutiérrez (njpab8e5cbib20) 2016; 94
Slater (njpab8e5cbib29) 1966
Edmonds (njpab8e5cbib33) 1965; 17
Fern (njpab8e5cbib23) 2006; 51
Aharonov (njpab8e5cbib2) 1998; 38
Hammersley (njpab8e5cbib34) 1960; 57
Gottesman (njpab8e5cbib3) 1997
Greenbaum (njpab8e5cbib17) 2017; 3
Chamberland (njpab8e5cbib14) 2017; 95
Chamberland (njpab8e5cbib15) 2018; 2
Wallman (njpab8e5cbib12) 2016; 94
Carignan-Dugas (njpab8e5cbib25) 2016
References_xml – volume: 7
  start-page: S347
  year: 2005
  ident: njpab8e5cbib6
  article-title: Scalable noise estimation with random unitary operators
  publication-title: J. Opt. B: Quantum Semiclass. Opt.
  doi: 10.1088/1464-4266/7/10/021
– volume: 121
  year: 2018
  ident: njpab8e5cbib16
  article-title: Stabilizer slicing: coherent error cancellations in low-density parity-check stabilizer codes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.121.250502
– year: 2017
  ident: njpab8e5cbib21
  article-title: Correcting coherent errors with surface codes
– volume: 2
  start-page: 43
  year: 2018
  ident: njpab8e5cbib15
  article-title: Fault-tolerant quantum computing in the Pauli or Clifford frame with slow error diagnostics
  publication-title: Quantum
  doi: 10.22331/q-2018-01-04-43
– year: 1997
  ident: njpab8e5cbib3
  article-title: Stabilizer codes and quantum error correction
– volume: 95
  year: 2017
  ident: njpab8e5cbib14
  article-title: Hard decoding algorithm for optimizing thresholds under general markovian noise
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.95.042332
– volume: 6
  start-page: 97
  year: 2006
  ident: njpab8e5cbib4
  article-title: Quantum accuracy threshold for concatenated distance-3 codes
  publication-title: Quant. Inf. Comput.
– volume: 96
  year: 2006
  ident: njpab8e5cbib27
  article-title: Fault-tolerant quantum computation with long-range correlated noise
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.96.050504
– year: 2016
  ident: njpab8e5cbib25
  article-title: Efficiently characterizing the total error in quantum circuits
– volume: 121
  year: 2018
  ident: njpab8e5cbib19
  article-title: Quantum error correction decoheres noise
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.190501
– volume: 99
  year: 2019
  ident: njpab8e5cbib18
  article-title: Performance of quantum error correction with coherent errors
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.022313
– volume: 94
  year: 2016
  ident: njpab8e5cbib20
  article-title: Errors and pseudothresholds for incoherent and coherent noise
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.94.042338
– volume: 17
  year: 2015
  ident: njpab8e5cbib10
  article-title: Estimating the coherence of noise
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/11/113020
– volume: 13
  start-page: 0490
  year: 2013
  ident: njpab8e5cbib37
  article-title: Optimal bacon-shor codes
  publication-title: Quant. Inf. Comput.
– volume: 5
  start-page: 319
  year: 2001
  ident: njpab8e5cbib36
  article-title: Square lattice self-avoiding walks and polygons
  publication-title: Ann. Comb.
  doi: 10.1007/pl00013842
– volume: 77
  year: 2008
  ident: njpab8e5cbib7
  article-title: Randomized benchmarking of quantum gates
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.77.012307
– volume: vol 47
  year: 2002
  ident: njpab8e5cbib26
– volume: 117
  year: 2016
  ident: njpab8e5cbib9
  article-title: Comparing experiments to the fault-tolerance threshold
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.117.170502
– volume: 94
  year: 2016
  ident: njpab8e5cbib12
  article-title: Noise tailoring for scalable quantum computation via randomized compiling
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.94.052325
– year: 1966
  ident: njpab8e5cbib29
– volume: 43
  start-page: 4452
  year: 2002
  ident: njpab8e5cbib30
  article-title: Topological quantum memory
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1499754
– volume: 90
  year: 2014
  ident: njpab8e5cbib32
  article-title: Efficient algorithms for maximum likelihood decoding in the surface code
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.90.032326
– volume: 17
  start-page: 455
  year: 1984
  ident: njpab8e5cbib35
  article-title: On two-dimensional self -avoiding random walks
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/17/2/030
– volume: 3
  year: 2017
  ident: njpab8e5cbib17
  article-title: Modeling coherent errors in quantum error correction
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/aa9a06
– volume: 119
  year: 2017
  ident: njpab8e5cbib22
  article-title: Efficient simulation of quantum error correction under coherent error based on non-unitary free-fermionic formalism
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.119.190503
– volume: 17
  start-page: 449
  year: 1965
  ident: njpab8e5cbib33
  article-title: Paths, trees, and flowers
  publication-title: Can. J. Math.
  doi: 10.4153/cjm-1965-045-4
– volume: 18
  year: 2015
  ident: njpab8e5cbib8
  article-title: Bounding quantum gate error rate based on reported average fidelity
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/1/012002
– volume: 6
  start-page: 17
  year: 2020
  ident: njpab8e5cbib13
  article-title: Mitigating coherent noise using Pauli conjugation
  publication-title: npj Quant. Inf.
  doi: 10.1038/s41534-019-0233-0
– volume: 454
  start-page: 365
  year: 1998
  ident: njpab8e5cbib1
  article-title: Resilient quantum computation: error models and thresholds
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.1998.0166
– volume: 16
  year: 2014
  ident: njpab8e5cbib24
  article-title: Randomized benchmarking with confidence
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/10/103032
– volume: 9
  start-page: 199
  year: 2007
  ident: njpab8e5cbib5
  article-title: Topological fault-tolerance in cluster state quantum computation
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/6/199
– volume: 3
  year: 2018
  ident: njpab8e5cbib11
  article-title: A small quantum computer is needed to optimize fault-tolerant protocols
  publication-title: Quant. Sci. Technol.
  doi: 10.1088/2058-9565/aab73c
– volume: 51
  start-page: 448
  year: 2006
  ident: njpab8e5cbib23
  article-title: Generalized performance of concatenated quantum codes–a dynamical systems approach
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/tac.2006.871942
– volume: 38
  start-page: 1207
  year: 1998
  ident: njpab8e5cbib2
  article-title: Fault-tolerant quantum computation with constant error rate
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539799359385
– volume: 57
  start-page: 516
  year: 1960
  ident: njpab8e5cbib34
  article-title: The number of polygons on a lattice
  publication-title: Math. Proc. Camb. Phil. Soc.
  doi: 10.1017/s030500410003557x
– volume: 13
  start-page: 181
  year: 2013
  ident: njpab8e5cbib28
  article-title: Sufficient condition on noise correlations for scalable quantum computing
  publication-title: Quant. Inf. Comput.
– volume: 104
  year: 2010
  ident: njpab8e5cbib31
  article-title: Fast decoders for topological quantum codes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.104.050504
SSID ssj0011822
Score 2.5063157
Snippet We study the effectiveness of quantum error correction against coherent noise. Coherent errors (for example, unitary noise) can interfere constructively, so...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 73066
SubjectTerms Circuits
Coherence
coherent noise
Decoding
Depolarization
Error analysis
Error correction
Error correction & detection
Fault tolerance
Noise
Physics
Quantum computing
quantum error correcting codes
Qubits (quantum computing)
Rotation
surface code
toric code
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6xW2YM9eAjNTpJ9HFUsRdCThd6WPKGg22rb_-8ku62KUC9elyzJzmRmvtlkviHkmrsUtEs5FVopKrhVVKeFpmClYs5ICS78Gnh6zkZj8TiRk2-tvsKdsIYeuBHcwHIwXpapAe6FLD0iBMt1kbuU6ZzFfrWAMW-dTLXnB4iaoT2URDMaBF4yChlnA6ULJ82PIBS5-jG0TGfzXw45RpnhAdlv4WFy2yzrkOy4-ojsxmuaZnFM-qGaItbnJdM6ad1W8r5C8azeklDEW2OsOyHj4cPL_Yi2jQ6oQTy0pNawzEtvPChQ3CkuQmaGmZIKkMoAMyUoy1WurWDeOsYxrdNQeo4WFCDYKenUs9qdkcRbBDQ-N4FFXeS512EGlSlwGLgzobtksP7yyrQs4KEZxWsVT6OLogqyqoKsqkZWXXKzeWPeMGBsGXsXhLkZF7ir4wPUaNVqtPpLo13SR1VUrS0ttkzWWyvrazAI9FgS0HGd_8daLsgehAQ73s_tkc7yY-UuEYUs9VXccJ_-xNRr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSsRAEC1cELy4i6Oj5KAHD5lJesmCJxVlEFwODsxBCL2CqHGbXPx6q5OeiAsi3kLoTqequ6tepateAHapiYk0MQ2ZFCJkVItQxpkMieYiMopzYtyngfOLZDBkZyM-moKDthbm8cmb_h5eNkTBjQp9QlzWdyRjIUlo1BcyM1xNwyzN0HG66r3Lq_YIAYEz8eeSP_X65Idqun70LjjkN5tcO5rTRbiZvGKTX3LXq8ayp96-sDf-U4YlWPAANDhsmi7DlClXYK5OBFWvq7Dn6jXqCsDgtgy8YQyeK5yA6iFwZcIletM1GJ6eXB8PQv8rhVAh4hqHWkWJ5VZZIoigRlDmYj-MxYQDbYpEKidCU5FKzSKrTUQxcJQktxT3qAN56zBTPpZmAwKrETLZVDmedpamVroRRCKIQWiQMNmB_kSxhfI84-53F_dFfd6dZYUTvnDCF43wHdhvezw1HBu_tD1yc9W2c-zY9Q3UcuG1XGhKlOV5rAi1jOcWUaWmMktNHMkUMW8H9nBiCr9bX38ZrDtZCx-NCUObyAmaxs0_PmYL5omL0usk3y7MjF8qs41QZix36iX7DnAZ6o4
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60RfAiPrG-yMEePCxN9pGkJ7GiiGARsdBb2KcUNOnz_zuTbltE6DWZsGR2Ht_s7MwQcstdwrRLOBVaKSq4VVQnuabMShU7IyVzeDTw1k9fBuJ1KIfhwG0WrlWubGJtqG1l8Iy8wwSIomQgkffjCcWpUZhdDSM0dkkTTHCeN0iz99R__1jnEQA9s5CcBHXqYH8yylIed5TOnTR_nFHdsx9czKga_zPMtbd5PiQHASZGD8t9PSI7rjwme_V1TTM7IW2sqqjr9KJRGQXzFU0WwKbFT4TFvCX4vFMyeH76fHyhYeABNYCL5tSaOPXSG88UU9wpLjBCg4hJIbQyLDZdpixXmbYi9tbFHMI7zbqegyYhFDsjjbIq3TmJvAVg4zOD3dRFlnmNK6hUMQcOPBW6RTqrPy9M6AaOQym-izornecF8qpAXhVLXrXI3fqL8bITxhbaHjJzTYc9rOsH1fSrCCpRWM6Ml93EMO6F7HrAfpbrPHNJrDNApi3Shq0ogk7Ntix2tdqsDfFGXC62v74k-wxD6PoG7hVpzKcLdw04Y65vgjD9Ak0mzd8
  priority: 102
  providerName: ProQuest
Title Coherence in logical quantum channels
URI https://iopscience.iop.org/article/10.1088/1367-2630/ab8e5c
https://www.proquest.com/docview/2430152073
https://doaj.org/article/d32cf591c23f459f851d3b87e10b7013
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60IngRn1gfJQc9eIhN9pGkBxGVFhXUIhZ7C_sUQVPtA_TfO7NNW8TSyx6SWZbM7sx8k9mZIeSY2ZgqG7OQKylDzowMVZypkBohI6uFoBZ_Ddw_JDcdftcV3Vl6dMnAwVzXDvtJdfrvZ99fPxcg8OfjG3JZHauOhTRhUV2qzAq9TFbALqXYz-Cez2IKgKRpGaicN-uPYfL1-8HcvPU-_ylpb3laG2S9hIzB5XiPN8mSLbbIqr-6qQfb5AQzLHzOXvBWBKUqC75GwLLRR4CJvQXYvx3SaTWfr2_CsvlBqAEjDUOjo8QJpx2VVDIrGUdvDbwniTBL00g3qDRMpsrwyBkbMXD1FG04BlKFsGyXVIpeYfdI4AyAHJdqrKzO09QpXEEmklow5glXVVKffHmuy8rg2KDiPfcR6izLkVc58iof86pKTqczPsdVMRbQXiEzp3RYz9o_6PVf81I8csOodqIRa8ocFw0HONAwlaU2jlQKKLVKTmAr8snxWLDY4WSzZsSUgxYTFJTZ_uLXB2SNojvtb-MeksqwP7JHgDmGqkZWrpoP7aea99lhvH1s1_zxgvGRvfwCbaTUbQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiKeatoAP5MDBij27azsHhCi0SmkbIdRKvS37RJXASZtEiD_Fb2TGsVMhpNx6tde2PPPtzjc7OzMAb0TI0YZcpNIak0rhTWrzyqbolcmCUwoDbw2cTYrxhfx8qS634E-XC8PHKrs1sVmo_dTxHvkQJUFRISHy_ew65a5RHF3tWmisYHESfv8il23-7vgT6XeAeHR4_nGctl0FUkfkY5F6lxVRRRfRoBHBCMluELklhvmLw8yN0HhhSutlFn3IBPlQFkdREFyZ79B778G2FEWGPdg-OJx8-bqOWxBbxzYYStN3yPXQUixENjS2Csr9Y_yaHgFk0q6ms_8MQWPdjh7Do5aWJh9WOHoCW6F-Cveb46Fu_gwGnMXR5AUmV3XSLpfJ9ZLUsvyZcPJwTTb2OVzciSheQK-e1mEHkuiJSMXScfV2WZbR8hdMYTAQYSik7cOw-3Pt2urj3ATjh26i4FWlWVaaZaVXsurD2_UTs1XljQ1jD1iY63FcM7u5ML35rtspqL1AF9UodyiiVKNIXNMLW5Uhz2xJTLgPA1KFbufwfMPH9jtl3Q6-hefu5tuv4cH4_OxUnx5PTvbgIbL73pz-3Yfe4mYZXhLHWdhXLbAS-HbXWP4L6qAJsQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEIhLW15iYVtygAOH7CZ-JNkjfax4tAsHkLgZPyXUkl1g99Jf37HjXcRDqBK3KBrHydie-Sae-QywR21OlM1pypSUKaNGpiqvVEoMl5nVnBPrfw38GhRHl-zkil_Fc05DLcxwFE1_By8bouBGhTEhrup6krGUFDTrSlVZrrsj4-ZhkVP0nb6C7-x8to2A4JnEvcnXWj7xRYGyHz0MdvvCLgdn0_8I19PXbHJMfncmY9XRf58xOL7jOz7BhwhEk8NGfBXmbL0GSyEhVD-sw76v2wiVgMlNnUQDmdxNcCAmt4kvF67Rq27AZf_HxbejNB6pkGpEXuPU6Kxw3GlHJJHUSsp8DIgxmfTgTZNM94g0VJbKsMwZm1EMIBXpOYpr1YO9TVioh7XdgsQZhE6u1J6vnZWlU74HWUhiESIUTLWgO1Wu0JFv3B978UeEfe-qEl4BwitANApowcGsxajh2nhD9qsfr5mcZ8kON1DTImpaGEq0471cE-oY7zlEl4aqqrR5pkrEvi3Yx8ERcdU-vNFZezofHoUJQ9vICZrI7f98zC4sn3_vi5_Hg9MdWCE-cA95v21YGN9P7GdEN2P1Jczgf1Mn7_I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherence+in+logical+quantum+channels&rft.jtitle=New+journal+of+physics&rft.au=Iverson%2C+Joseph+K&rft.au=Preskill%2C+John&rft.date=2020-07-01&rft.pub=IOP+Publishing&rft.eissn=1367-2630&rft.volume=22&rft.issue=7&rft_id=info:doi/10.1088%2F1367-2630%2Fab8e5c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon