Short GRBs: Opening Angles, Local Neutron Star Merger Rate, and Off-axis Events for GRB/GW Association
The jet breaks in the afterglow light curves of short gamma-ray bursts (SGRBs), rarely detected so far, are crucial for estimating the half-opening angles of the ejecta (θj) and hence the neutron star merger rate. In this work, we report the detection of jet decline behaviors in GRB 150424A and GRB...
Saved in:
Published in | The Astrophysical journal Vol. 857; no. 2; pp. 128 - 137 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
20.04.2018
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The jet breaks in the afterglow light curves of short gamma-ray bursts (SGRBs), rarely detected so far, are crucial for estimating the half-opening angles of the ejecta (θj) and hence the neutron star merger rate. In this work, we report the detection of jet decline behaviors in GRB 150424A and GRB 160821B, and find θj ∼ 0.1 rad. Together with five events reported before 2015 and three others "identified" recently (GRB 050709, GRB 060614, and GRB 140903A), we have a sample consisting of nine SGRBs and one long-short GRB with reasonably estimated θj. In particular, three Swift bursts in the sample have redshifts z ≤ 0.2, with which we estimate the local neutron star merger rate density to be or if the narrowly beamed GRB 061201 is excluded. Inspired by the typical θj ∼ 0.1 rad found currently, we further investigate whether the off-beam GRBs (in the uniform jet model) or the off-axis events (in the structured jet model) can significantly enhance the GRB/GW association. For the former, the enhancement is at most moderate, while for the latter the enhancement can be much greater and a high GRB/GW association probability of ∼10% is possible. We also show that the data of GRB 160821B may contain a macronova/kilonova emission component with a temperature of ∼3100 K at ∼3.6 days after the burst and more data are needed to ultimately clarify. |
---|---|
AbstractList | The jet breaks in the afterglow light curves of short gamma-ray bursts (SGRBs), rarely detected so far, are crucial for estimating the half-opening angles of the ejecta (θ j) and hence the neutron star merger rate. In this work, we report the detection of jet decline behaviors in GRB 150424A and GRB 160821B, and find θ j ∼ 0.1 rad. Together with five events reported before 2015 and three others “identified” recently (GRB 050709, GRB 060614, and GRB 140903A), we have a sample consisting of nine SGRBs and one long-short GRB with reasonably estimated θ j. In particular, three Swift bursts in the sample have redshifts z ≤ 0.2, with which we estimate the local neutron star merger rate density to be \(\sim {1109}_{-657}^{+1432}\,{\mathrm{Gpc}}^{-3}\,{\mathrm{yr}}^{-1}\) or \({162}_{-83}^{+140}\,{\mathrm{Gpc}}^{-3}\,{\mathrm{yr}}^{-1}\) if the narrowly beamed GRB 061201 is excluded. Inspired by the typical θ j ∼ 0.1 rad found currently, we further investigate whether the off-beam GRBs (in the uniform jet model) or the off-axis events (in the structured jet model) can significantly enhance the GRB/GW association. For the former, the enhancement is at most moderate, while for the latter the enhancement can be much greater and a high GRB/GW association probability of ∼10% is possible. We also show that the data of GRB 160821B may contain a macronova/kilonova emission component with a temperature of ∼3100 K at ∼3.6 days after the burst and more data are needed to ultimately clarify. The jet breaks in the afterglow light curves of short gamma-ray bursts (SGRBs), rarely detected so far, are crucial for estimating the half-opening angles of the ejecta ( θ j ) and hence the neutron star merger rate. In this work, we report the detection of jet decline behaviors in GRB 150424A and GRB 160821B, and find θ j ∼ 0.1 rad. Together with five events reported before 2015 and three others “identified” recently (GRB 050709, GRB 060614, and GRB 140903A), we have a sample consisting of nine SGRBs and one long-short GRB with reasonably estimated θ j . In particular, three Swift bursts in the sample have redshifts z ≤ 0.2, with which we estimate the local neutron star merger rate density to be or if the narrowly beamed GRB 061201 is excluded. Inspired by the typical θ j ∼ 0.1 rad found currently, we further investigate whether the off-beam GRBs (in the uniform jet model) or the off-axis events (in the structured jet model) can significantly enhance the GRB/GW association. For the former, the enhancement is at most moderate, while for the latter the enhancement can be much greater and a high GRB/GW association probability of ∼10% is possible. We also show that the data of GRB 160821B may contain a macronova/kilonova emission component with a temperature of ∼3100 K at ∼3.6 days after the burst and more data are needed to ultimately clarify. The jet breaks in the afterglow light curves of short gamma-ray bursts (SGRBs), rarely detected so far, are crucial for estimating the half-opening angles of the ejecta (θj) and hence the neutron star merger rate. In this work, we report the detection of jet decline behaviors in GRB 150424A and GRB 160821B, and find θj ∼ 0.1 rad. Together with five events reported before 2015 and three others "identified" recently (GRB 050709, GRB 060614, and GRB 140903A), we have a sample consisting of nine SGRBs and one long-short GRB with reasonably estimated θj. In particular, three Swift bursts in the sample have redshifts z ≤ 0.2, with which we estimate the local neutron star merger rate density to be or if the narrowly beamed GRB 061201 is excluded. Inspired by the typical θj ∼ 0.1 rad found currently, we further investigate whether the off-beam GRBs (in the uniform jet model) or the off-axis events (in the structured jet model) can significantly enhance the GRB/GW association. For the former, the enhancement is at most moderate, while for the latter the enhancement can be much greater and a high GRB/GW association probability of ∼10% is possible. We also show that the data of GRB 160821B may contain a macronova/kilonova emission component with a temperature of ∼3100 K at ∼3.6 days after the burst and more data are needed to ultimately clarify. |
Author | Yuan, Qiang He, Hao-Ning Zou, Yuan-Chuan Wei, Da-Ming Jin, Zhi-Ping Li, Xiang Wang, Yuan-Zhu Zhang, Fu-Wen Wang, Hao Fan, Yi-Zhong |
Author_xml | – sequence: 1 givenname: Zhi-Ping orcidid: 0000-0003-4977-9724 surname: Jin fullname: Jin, Zhi-Ping email: jin@pmo.ac.cn organization: University of Science and Technology of China School of Astronomy and Space Science, Hefei, Anhui 230026, People's Republic of China – sequence: 2 givenname: Xiang surname: Li fullname: Li, Xiang organization: Key Laboratory of dark Matter and Space Astronomy , Purple Mountain Observatory, Chinese Academy of Science, Nanjing, 210008, , People's Republic of China – sequence: 3 givenname: Hao orcidid: 0000-0002-0556-1857 surname: Wang fullname: Wang, Hao organization: University of Science and Technology of China School of Astronomy and Space Science, Hefei, Anhui 230026, People's Republic of China – sequence: 4 givenname: Yuan-Zhu orcidid: 0000-0001-9626-9319 surname: Wang fullname: Wang, Yuan-Zhu organization: University of Science and Technology of China School of Astronomy and Space Science, Hefei, Anhui 230026, People's Republic of China – sequence: 5 givenname: Hao-Ning surname: He fullname: He, Hao-Ning organization: Key Laboratory of dark Matter and Space Astronomy , Purple Mountain Observatory, Chinese Academy of Science, Nanjing, 210008, , People's Republic of China – sequence: 6 givenname: Qiang surname: Yuan fullname: Yuan, Qiang organization: University of Science and Technology of China School of Astronomy and Space Science, Hefei, Anhui 230026, People's Republic of China – sequence: 7 givenname: Fu-Wen orcidid: 0000-0002-5936-8921 surname: Zhang fullname: Zhang, Fu-Wen organization: Guilin University of Technology College of Science, Guilin 541004, People's Republic of China – sequence: 8 givenname: Yuan-Chuan orcidid: 0000-0002-5400-3261 surname: Zou fullname: Zou, Yuan-Chuan organization: Huazhong University of Science and Technology School of Physics, Wuhan 430074, People's Republic of China – sequence: 9 givenname: Yi-Zhong orcidid: 0000-0002-8966-6911 surname: Fan fullname: Fan, Yi-Zhong email: yzfan@pmo.ac.cn organization: University of Science and Technology of China School of Astronomy and Space Science, Hefei, Anhui 230026, People's Republic of China – sequence: 10 givenname: Da-Ming orcidid: 0000-0002-9758-5476 surname: Wei fullname: Wei, Da-Ming email: dmwei@pmo.ac.cn organization: University of Science and Technology of China School of Astronomy and Space Science, Hefei, Anhui 230026, People's Republic of China |
BookMark | eNp9kN1LwzAUxYMouE3ffQz4urq0adLWtznmFKaDTdG3ks_ZUZOaZKL_vasVBUGfLvdyzrmHXx_sG2sUACcxOsN5mo1igvMoxSQbMcYzKvdA7_u0D3oIoTSiOHs8BH3vN-2aFEUP6NWTdQHOlhf-HC4aZSqzhmOzrpUfwrkVrIa3ahucNXAVmIM3yq2Vg0sW1BAyI-FC64i9VR5OX5UJHmrr2rTR7AGOvbeiYqGy5ggcaFZ7dfw1B-D-cno3uYrmi9n1ZDyPRBrTEEmeZjFONOM8Z0hIRAjJdIalLHiqqSQJxgppnhAiSCF5HFOBUoJUThPC4wQPwGmX2zj7slU-lBu7dWb3skwwJQXNSYF2KtqphLPeO6VLUYXPnsGxqi5jVLZMyxZg2QIsO6Y7I_plbFz1zNz7f5ZhZ6ls81PmT_kHvBOINw |
CitedBy_id | crossref_primary_10_3847_1538_4357_ad6b2a crossref_primary_10_3847_1538_4357_abd249 crossref_primary_10_3847_1538_4357_aca96c crossref_primary_10_1093_mnras_stad099 crossref_primary_10_1038_s41467_020_17998_5 crossref_primary_10_1093_mnras_sty2196 crossref_primary_10_3847_1538_4357_ada9e5 crossref_primary_10_3390_universe9060245 crossref_primary_10_3847_1538_4357_abe71b crossref_primary_10_3847_1538_4357_ab0703 crossref_primary_10_1103_PhysRevResearch_6_033078 crossref_primary_10_1103_PhysRevD_106_023011 crossref_primary_10_3847_1538_4357_aba75a crossref_primary_10_3847_1538_4357_acac9b crossref_primary_10_1093_mnras_stae197 crossref_primary_10_3847_1538_4357_ab1914 crossref_primary_10_1093_mnras_stz506 crossref_primary_10_3847_1538_4357_ac68e1 crossref_primary_10_3390_galaxies6040130 crossref_primary_10_1093_mnras_stae1443 crossref_primary_10_1088_1674_4527_ad7fb5 crossref_primary_10_3847_1538_4357_ab77bf crossref_primary_10_3389_fspas_2020_609460 crossref_primary_10_3847_1538_4357_ac8e60 crossref_primary_10_3847_1538_4357_ad6305 crossref_primary_10_1126_science_aap9455 crossref_primary_10_1103_PhysRevD_101_063029 crossref_primary_10_1093_mnras_stad1648 crossref_primary_10_1051_0004_6361_202243705 crossref_primary_10_3390_universe10100403 crossref_primary_10_3847_2041_8213_ac8421 crossref_primary_10_3847_1538_4357_aaf961 crossref_primary_10_3847_1538_4357_ad9023 crossref_primary_10_1093_mnras_stz2252 crossref_primary_10_3847_1538_4357_abee85 crossref_primary_10_1007_s41114_021_00034_3 crossref_primary_10_1103_PhysRevResearch_5_043106 crossref_primary_10_3847_1538_4357_ab88b7 crossref_primary_10_3847_1538_4357_acc383 crossref_primary_10_1051_0004_6361_201832940 crossref_primary_10_1103_PhysRevD_109_024041 crossref_primary_10_3847_1538_4357_abbf4c crossref_primary_10_1093_mnras_stad541 crossref_primary_10_1093_mnras_stad2990 crossref_primary_10_1093_mnras_stab1031 crossref_primary_10_3390_universe7090329 crossref_primary_10_1051_0004_6361_202450116 crossref_primary_10_3847_1538_4357_ab8f9a crossref_primary_10_3847_1538_4357_abc74a crossref_primary_10_3847_1538_4357_ab1f76 crossref_primary_10_1093_mnras_stad1028 crossref_primary_10_3847_1538_4357_ac91d0 crossref_primary_10_3390_galaxies10040078 crossref_primary_10_3847_1538_4357_ad17c0 crossref_primary_10_3847_1538_4357_abd39c crossref_primary_10_3847_2041_8213_ab1c64 crossref_primary_10_1093_mnras_stad175 crossref_primary_10_1103_PhysRevX_9_031028 crossref_primary_10_1002_asna_201913660 crossref_primary_10_3389_fspas_2020_578849 crossref_primary_10_3847_1538_4357_ab275d crossref_primary_10_3847_1538_4357_aabafe crossref_primary_10_3847_1538_4357_abedb1 crossref_primary_10_3847_1538_4357_acf830 crossref_primary_10_3847_1538_4357_ab328e crossref_primary_10_3847_1538_4365_ac082f crossref_primary_10_3847_1538_4357_acc83b crossref_primary_10_1093_mnras_stab2189 crossref_primary_10_1088_1475_7516_2021_07_044 crossref_primary_10_1093_mnras_stad3463 crossref_primary_10_1093_mnras_sty2541 crossref_primary_10_1093_mnras_stz891 crossref_primary_10_1093_mnras_staa3241 crossref_primary_10_3847_1538_4357_ac04b4 crossref_primary_10_1088_1674_4527_20_4_56 crossref_primary_10_3847_1538_4357_aae30a crossref_primary_10_3390_universe8120612 crossref_primary_10_1016_j_physletb_2020_135402 crossref_primary_10_3847_1538_4357_abb407 crossref_primary_10_1016_j_jheap_2021_09_001 crossref_primary_10_1093_mnras_staa124 crossref_primary_10_3847_1538_4357_ac2d90 crossref_primary_10_3847_1538_4357_ab528a crossref_primary_10_3847_2041_8213_ab43e0 crossref_primary_10_3847_1538_4357_ac00b4 crossref_primary_10_1038_s41550_019_0892_y crossref_primary_10_1093_mnras_staa1034 crossref_primary_10_1088_1674_4527_21_10_254 crossref_primary_10_1093_mnras_stae1941 crossref_primary_10_3847_1538_4357_ac0bc7 crossref_primary_10_1051_0004_6361_202141325 crossref_primary_10_3847_1538_4357_ab38bb crossref_primary_10_1093_mnras_staa479 crossref_primary_10_1093_mnras_staa1845 crossref_primary_10_1103_PhysRevLett_120_241103 crossref_primary_10_3847_1538_4357_ab8d26 crossref_primary_10_1088_1674_4527_19_8_118 crossref_primary_10_3847_1538_4357_ab8d24 |
Cites_doi | 10.1086/312109 10.3847/2041-8213/aa8f41 10.1142/S0217751X0401746X 10.1086/307907 10.1126/science.aaq0049 10.1086/375186 10.1088/0004-637X/775/1/18 10.1111/j.1365-2966.2009.14913.x 10.1088/0004-637X/756/2/189 10.1088/1361-6382/aa61ce 10.1088/0004-637X/702/1/791 10.1016/j.physrep.2014.09.008 10.1146/annurev-astro-081913-035926 10.1038/nature24298 10.1086/382132 10.1086/155360 10.1086/339981 10.1088/0264-9381/27/17/173001 10.1038/nature01998 10.1086/320463 10.1088/0004-637X/809/1/53 10.1103/PhysRevD.90.122004 10.1111/j.1365-2966.2010.16864.x 10.1088/0004-637X/767/2/140 10.1088/0067-0049/207/2/19 10.1051/0004-6361:20077232 10.3847/2041-8213/aa799d 10.1103/PhysRevLett.119.161101 10.1126/science.aap9811 10.1088/2041-8205/778/1/L16 10.1051/0004-6361/201321591 10.1046/j.1365-8711.2002.05363.x 10.1086/187083 10.1086/338119 10.1088/0004-637X/696/1/971 10.1088/2041-8205/779/2/L25 10.1088/0004-637X/780/1/31 10.3847/2041-8213/aa5b9e 10.1086/506429 10.1088/0004-637X/776/1/18 10.3847/2041-8213/aa7fb2 10.1007/s11214-005-5096-3 10.1088/2041-8205/811/2/L22 10.1051/0004-6361:20078006 10.1038/nature12505 10.1088/0004-637X/815/2/102 10.3847/0004-637X/827/2/102 10.1051/0004-6361:20041702 10.1088/0004-637X/751/1/49 10.1086/512971 10.3847/1538-4357/835/2/181 10.1111/j.1365-2966.2012.21604.x 10.1126/science.aap9455 10.1016/j.physrep.2007.02.005 10.1088/0004-637X/764/2/179 10.1103/RevModPhys.76.1143 10.3847/2041-8205/832/2/L21 10.1093/mnras/stx1683 10.1088/0004-637X/783/1/24 10.1088/0004-637X/750/2/88 10.1051/0004-6361:20030007 10.1038/nature04213 10.1086/169332 10.1146/annurev.astro.43.072103.150558 10.1051/0004-6361:20041865 10.1038/ncomms12898 10.1086/311680 10.1088/0004-637X/739/1/47 10.3847/2041-8213/aa9d7f 10.1051/0004-6361/201116657 10.1038/nature05376 10.1088/1361-6633/aa67bb 10.1038/340126a0 10.1088/0004-637X/806/2/263 10.1086/498423 10.1038/nature24290 10.3847/2041-8205/827/1/L16 10.1086/186969 10.1088/0004-637X/737/2/103 10.3847/2041-8213/aa90b6 10.1086/508740 10.1088/0004-637X/775/2/113 10.1088/0004-637X/725/2/2209 10.3847/1538-4357/835/1/73 10.1111/j.1365-2966.2005.08685.x 10.1038/ncomms8323 10.1088/2041-8205/784/2/L28 10.3847/0004-637X/829/1/7 10.1088/2041-8205/774/2/L23 10.1088/0004-637X/780/2/118 |
ContentType | Journal Article |
Copyright | 2018. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Apr 20, 2018 |
Copyright_xml | – notice: 2018. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Apr 20, 2018 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/aab76d |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Short GRBs: Opening Angles, Local Neutron Star Merger Rate, and Off-axis Events for GRB/GW Association |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_aab76d apjaab76d |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c416t-db47132fabb8a0cd05557f73dd9b4f6d5233e0fb255c59db116c0450e8625b123 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Wed Aug 13 07:00:11 EDT 2025 Tue Jul 01 04:09:22 EDT 2025 Thu Apr 24 23:12:04 EDT 2025 Wed Aug 21 03:41:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c416t-db47132fabb8a0cd05557f73dd9b4f6d5233e0fb255c59db116c0450e8625b123 |
Notes | AAS07086 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9758-5476 0000-0002-5936-8921 0000-0002-5400-3261 0000-0003-4977-9724 0000-0002-0556-1857 0000-0002-8966-6911 0000-0001-9626-9319 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/aab76d/pdf |
PQID | 2365968590 |
PQPubID | 4562441 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_3847_1538_4357_aab76d iop_journals_10_3847_1538_4357_aab76d crossref_citationtrail_10_3847_1538_4357_aab76d proquest_journals_2365968590 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-20 |
PublicationDateYYYYMMDD | 2018-04-20 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2018 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Kumar (apjaab76dbib53) 2003; 591 Evans (apjaab76dbib26) 2009; 397 Perley (apjaab76dbib79) 2015; 17745 Jin (apjaab76dbib45) 2007; 656 Berger (apjaab76dbib12) 2013; 744 Piran (apjaab76dbib82) 2004; 76 Troja (apjaab76dbib100) 2016a; 827 Fan (apjaab76dbib29) 2013; 779 Fong (apjaab76dbib31) 2012; 756 Guetta (apjaab76dbib39) 2005; 435 Troja (apjaab76dbib99) 2017; 551 Berger (apjaab76dbib13) 2003; 426 Siellez (apjaab76dbib90) 2016 Kasliwal (apjaab76dbib48) 2017b; 358 Kouveliotou (apjaab76dbib51) 1993; 413 Li (apjaab76dbib59) 2016; 827 Bromberg (apjaab76dbib14) 2013; 764 Melandri (apjaab76dbib70) 2015; 17760 Li (apjaab76dbib60) 2017; 844 Kochanek (apjaab76dbib50) 1993; 417 Abadie (apjaab76dbib1) 2010; 27 Rossi (apjaab76dbib85) 2002; 332 Fan (apjaab76dbib28) 2012; 751 Tanaka (apjaab76dbib95) 2014; 780 Goldstein (apjaab76dbib36) 2017; 848 Metzger (apjaab76dbib71) 2010; 406 Barnes (apjaab76dbib6) 2013; 773 Clark (apjaab76dbib18) 2015; 809 Baiotti (apjaab76dbib5) 2017; 80 Hotokezaka (apjaab76dbib40) 2013; 778 Dai (apjaab76dbib22) 2001; 552 Eichler (apjaab76dbib25) 1989; 340 Nakar (apjaab76dbib74) 2007; 442 Wu (apjaab76dbib107) 2005; 357 Zhang (apjaab76dbib116) 2017; 835 Gehrels (apjaab76dbib35) 2006; 444 Yang (apjaab76dbib111) 2015; 6 Lien (apjaab76dbib62) 2016; 829 Nagakura (apjaab76dbib73) 2014; 784 Stratta (apjaab76dbib93) 2007; 474 Woosley (apjaab76dbib106) 2006; 44 Meegan (apjaab76dbib69) 2009; 702 Pian (apjaab76dbib81) 2017; 551 Malesani (apjaab76dbib66) 2015; 17756 Rybicki (apjaab76dbib86) 1979 Tanvir (apjaab76dbib97) 2015; 18100 Berger (apjaab76dbib11) 2014; 52 Beardmore (apjaab76dbib10) 2015; 17743 Levan (apjaab76dbib57) 2016; 19846 Kasliwal (apjaab76dbib47) 2017a; 843 Marshall (apjaab76dbib68) 2015; 17751 Murguia-Berthier (apjaab76dbib72) 2017; 835 Barthelmy (apjaab76dbib7) 2005; 120 Xu (apjaab76dbib110) 2009; 696 Paschalidis (apjaab76dbib78) 2017; 34 Kumar (apjaab76dbib54) 2015; 561 Zhang (apjaab76dbib113) 2002; 571 Zhang (apjaab76dbib114) 2004; 19 Fong (apjaab76dbib30) 2013; 776 Liang (apjaab76dbib61) 2010; 725 Zhang (apjaab76dbib115) 2012; 750 Butler (apjaab76dbib16) 2015; 17762 Li (apjaab76dbib58) 1998; 507 Aloy (apjaab76dbib4) 2005; 436 Zhang (apjaab76dbib112) 2004; 601 Huang (apjaab76dbib41) 2006; 637 Planck Collaboration (apjaab76dbib83) 2014; 571 Fan (apjaab76dbib27) 2011; 739 Petrillo (apjaab76dbib80) 2013; 767 Wei (apjaab76dbib104) 2003; 400 Williamson (apjaab76dbib105) 2014; 90 Golenetskii (apjaab76dbib37) 2015; 17752 Sari (apjaab76dbib87) 1999; 519 Castro-Tirado (apjaab76dbib17) 2015; 17758 Rhoads (apjaab76dbib84) 1999; 525 Siegel (apjaab76dbib89) 2016; 19833 Gottlieb (apjaab76dbib38) 2017 Jin (apjaab76dbib43) 2016; 7 Lamb (apjaab76dbib55) 2017 Fong (apjaab76dbib33) 2014; 780 Paczyński (apjaab76dbib76) 1990; 363 Schlafly (apjaab76dbib88) 2011; 737 Tanaka (apjaab76dbib94) 2013; 775 Xu (apjaab76dbib109) 2016; 19834 Tanvir (apjaab76dbib96) 2013; 500 Troja (apjaab76dbib101) 2016b; 20222 Wang (apjaab76dbib103) 2017; 851 Lazzati (apjaab76dbib56) 2017; 471 Tanvir (apjaab76dbib98) 2017; 848 Coward (apjaab76dbib21) 2012; 425 Fong (apjaab76dbib32) 2015; 815 Soderberg (apjaab76dbib91) 2006; 650 Drout (apjaab76dbib24) 2017; 358 Barthelmy (apjaab76dbib8) 2015; 17761 Kulkarni (apjaab76dbib52) 2005 Mangano (apjaab76dbib67) 2007; 470 LIGO Scientific Collaboration (apjaab76dbib2) 2016; 832 Burrows (apjaab76dbib15) 2006; 653 Kann (apjaab76dbib46) 2015; 17757 Dominik (apjaab76dbib23) 2015; 806 Baumgartner (apjaab76dbib9) 2013; 207 Lü (apjaab76dbib65) 2012; 751 Frail (apjaab76dbib34) 2001; 562 Nicuesa Guelbenzu (apjaab76dbib75) 2011; 531 Palmer (apjaab76dbib77) 2016; 19844 Villasenor (apjaab76dbib102) 2005; 437 Coulter (apjaab76dbib20) 2017; 358 Jin (apjaab76dbib44) 2015; 811 Lien (apjaab76dbib63) 2014; 783 LIGO Scientific Collaboration (apjaab76dbib3) 2017; 119 Knust (apjaab76dbib49) 2017 Lü (apjaab76dbib64) 2017; 835 Jeong (apjaab76dbib42) 2016; 19847 Clark (apjaab76dbib19) 1977; 215 Stanbro (apjaab76dbib92) 2016; 19843 |
References_xml | – volume: 519 start-page: L17 year: 1999 ident: apjaab76dbib87 publication-title: ApJL doi: 10.1086/312109 – volume: 20222 start-page: 1 year: 2016b ident: apjaab76dbib101 publication-title: GCN Circ – volume: 848 start-page: L14 year: 2017 ident: apjaab76dbib36 publication-title: ApJL doi: 10.3847/2041-8213/aa8f41 – volume: 19 start-page: 2385 year: 2004 ident: apjaab76dbib114 publication-title: IJMPA doi: 10.1142/S0217751X0401746X – volume: 17756 start-page: 1 year: 2015 ident: apjaab76dbib66 publication-title: GCN Circ – volume: 17745 start-page: 1 year: 2015 ident: apjaab76dbib79 publication-title: GCN Circ – volume: 19833 start-page: 1 year: 2016 ident: apjaab76dbib89 publication-title: GCN Circ – volume: 17752 start-page: 1 year: 2015 ident: apjaab76dbib37 publication-title: GCN Circ – volume: 525 start-page: 737 year: 1999 ident: apjaab76dbib84 publication-title: ApJ doi: 10.1086/307907 – volume: 358 start-page: 1570 year: 2017 ident: apjaab76dbib24 publication-title: Sci doi: 10.1126/science.aaq0049 – volume: 591 start-page: 1075 year: 2003 ident: apjaab76dbib53 publication-title: ApJ doi: 10.1086/375186 – volume: 773 start-page: 18 year: 2013 ident: apjaab76dbib6 publication-title: ApJ doi: 10.1088/0004-637X/775/1/18 – volume: 397 start-page: 1177 year: 2009 ident: apjaab76dbib26 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14913.x – volume: 18100 start-page: 1 year: 2015 ident: apjaab76dbib97 publication-title: GCN Circ – volume: 756 start-page: 189 year: 2012 ident: apjaab76dbib31 publication-title: ApJ doi: 10.1088/0004-637X/756/2/189 – volume: 34 year: 2017 ident: apjaab76dbib78 publication-title: CQGra doi: 10.1088/1361-6382/aa61ce – volume: 702 start-page: 791 year: 2009 ident: apjaab76dbib69 publication-title: ApJ doi: 10.1088/0004-637X/702/1/791 – volume: 561 start-page: 1 year: 2015 ident: apjaab76dbib54 publication-title: PhR doi: 10.1016/j.physrep.2014.09.008 – volume: 52 start-page: 43 year: 2014 ident: apjaab76dbib11 publication-title: ARA&A doi: 10.1146/annurev-astro-081913-035926 – volume: 17760 start-page: 1 year: 2015 ident: apjaab76dbib70 publication-title: GCN Circ – volume: 551 start-page: 67 year: 2017 ident: apjaab76dbib81 publication-title: Natur doi: 10.1038/nature24298 – volume: 601 start-page: L119 year: 2004 ident: apjaab76dbib112 publication-title: ApJL doi: 10.1086/382132 – volume: 215 start-page: 311 year: 1977 ident: apjaab76dbib19 publication-title: ApJ doi: 10.1086/155360 – volume: 571 start-page: 876 year: 2002 ident: apjaab76dbib113 publication-title: ApJ doi: 10.1086/339981 – year: 2017 ident: apjaab76dbib38 – volume: 27 year: 2010 ident: apjaab76dbib1 publication-title: CQGra doi: 10.1088/0264-9381/27/17/173001 – volume: 426 start-page: 154 year: 2003 ident: apjaab76dbib13 publication-title: Natur doi: 10.1038/nature01998 – volume: 552 start-page: 72 year: 2001 ident: apjaab76dbib22 publication-title: ApJ doi: 10.1086/320463 – year: 2016 ident: apjaab76dbib90 – volume: 809 start-page: 53 year: 2015 ident: apjaab76dbib18 publication-title: ApJ doi: 10.1088/0004-637X/809/1/53 – volume: 90 start-page: 122004 year: 2014 ident: apjaab76dbib105 publication-title: PhRvD doi: 10.1103/PhysRevD.90.122004 – volume: 406 start-page: 2650 year: 2010 ident: apjaab76dbib71 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16864.x – volume: 767 start-page: 140 year: 2013 ident: apjaab76dbib80 publication-title: ApJ doi: 10.1088/0004-637X/767/2/140 – volume: 207 start-page: 19 year: 2013 ident: apjaab76dbib9 publication-title: ApJS doi: 10.1088/0067-0049/207/2/19 – volume: 470 start-page: 105 year: 2007 ident: apjaab76dbib67 publication-title: A&A doi: 10.1051/0004-6361:20077232 – volume: 17761 start-page: 1 year: 2015 ident: apjaab76dbib8 publication-title: GCN Circ – volume: 843 start-page: L34 year: 2017a ident: apjaab76dbib47 publication-title: ApJL doi: 10.3847/2041-8213/aa799d – volume: 19843 start-page: 1 year: 2016 ident: apjaab76dbib92 publication-title: GCN Circ – volume: 17743 start-page: 1 year: 2015 ident: apjaab76dbib10 publication-title: GCN Circ – volume: 119 year: 2017 ident: apjaab76dbib3 publication-title: PhRvL doi: 10.1103/PhysRevLett.119.161101 – volume: 358 start-page: 1556 year: 2017 ident: apjaab76dbib20 publication-title: Sci doi: 10.1126/science.aap9811 – volume: 778 start-page: L16 year: 2013 ident: apjaab76dbib40 publication-title: ApJL doi: 10.1088/2041-8205/778/1/L16 – volume: 571 start-page: 16 year: 2014 ident: apjaab76dbib83 publication-title: A&A doi: 10.1051/0004-6361/201321591 – volume: 332 start-page: 945 year: 2002 ident: apjaab76dbib85 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05363.x – volume: 417 start-page: L17 year: 1993 ident: apjaab76dbib50 publication-title: ApJL doi: 10.1086/187083 – volume: 562 start-page: L55 year: 2001 ident: apjaab76dbib34 publication-title: ApJ doi: 10.1086/338119 – volume: 17762 start-page: 1 year: 2015 ident: apjaab76dbib16 publication-title: GCN Circ – volume: 696 start-page: 971 year: 2009 ident: apjaab76dbib110 publication-title: ApJ doi: 10.1088/0004-637X/696/1/971 – volume: 779 start-page: L25 year: 2013 ident: apjaab76dbib29 publication-title: ApJL doi: 10.1088/2041-8205/779/2/L25 – volume: 780 start-page: 31 year: 2014 ident: apjaab76dbib95 publication-title: ApJ doi: 10.1088/0004-637X/780/1/31 – volume: 835 start-page: L34 year: 2017 ident: apjaab76dbib72 publication-title: ApJL doi: 10.3847/2041-8213/aa5b9e – year: 2005 ident: apjaab76dbib52 – volume: 650 start-page: 261 year: 2006 ident: apjaab76dbib91 publication-title: ApJ doi: 10.1086/506429 – volume: 19834 start-page: 1 year: 2016 ident: apjaab76dbib109 publication-title: GCN Circ – volume: 776 start-page: 18 year: 2013 ident: apjaab76dbib30 publication-title: ApJ doi: 10.1088/0004-637X/776/1/18 – volume: 19847 start-page: 1 year: 2016 ident: apjaab76dbib42 publication-title: GCN Circ – volume: 844 start-page: L22 year: 2017 ident: apjaab76dbib60 publication-title: ApJL doi: 10.3847/2041-8213/aa7fb2 – volume: 120 start-page: 143 year: 2005 ident: apjaab76dbib7 publication-title: SSRv doi: 10.1007/s11214-005-5096-3 – volume: 811 start-page: L22 year: 2015 ident: apjaab76dbib44 publication-title: ApJL doi: 10.1088/2041-8205/811/2/L22 – volume: 474 start-page: 827 year: 2007 ident: apjaab76dbib93 publication-title: A&A doi: 10.1051/0004-6361:20078006 – volume: 500 start-page: 547 year: 2013 ident: apjaab76dbib96 publication-title: Natur doi: 10.1038/nature12505 – volume: 815 start-page: 102 year: 2015 ident: apjaab76dbib32 publication-title: ApJ doi: 10.1088/0004-637X/815/2/102 – volume: 827 start-page: 102 year: 2016a ident: apjaab76dbib100 publication-title: ApJ doi: 10.3847/0004-637X/827/2/102 – volume: 435 start-page: 421 year: 2005 ident: apjaab76dbib39 publication-title: A&A doi: 10.1051/0004-6361:20041702 – volume: 19844 start-page: 1 year: 2016 ident: apjaab76dbib77 publication-title: GCN Circ – volume: 751 start-page: 49 year: 2012 ident: apjaab76dbib28 publication-title: ApJ doi: 10.1088/0004-637X/751/1/49 – volume: 656 start-page: L57 year: 2007 ident: apjaab76dbib45 publication-title: ApJL doi: 10.1086/512971 – volume: 835 start-page: 181 year: 2017 ident: apjaab76dbib64 publication-title: ApJ doi: 10.3847/1538-4357/835/2/181 – volume: 425 start-page: 2668 year: 2012 ident: apjaab76dbib21 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21604.x – volume: 358 start-page: 1559 year: 2017b ident: apjaab76dbib48 publication-title: Sci doi: 10.1126/science.aap9455 – volume: 442 start-page: 166 year: 2007 ident: apjaab76dbib74 publication-title: PhR doi: 10.1016/j.physrep.2007.02.005 – volume: 764 start-page: 179 year: 2013 ident: apjaab76dbib14 publication-title: ApJ doi: 10.1088/0004-637X/764/2/179 – volume: 76 start-page: 1143 year: 2004 ident: apjaab76dbib82 publication-title: RvMP doi: 10.1103/RevModPhys.76.1143 – volume: 832 start-page: L21 year: 2016 ident: apjaab76dbib2 publication-title: ApJL doi: 10.3847/2041-8205/832/2/L21 – year: 2017 ident: apjaab76dbib49 – volume: 471 start-page: 1652 year: 2017 ident: apjaab76dbib56 publication-title: MNRAS doi: 10.1093/mnras/stx1683 – volume: 783 start-page: 24 year: 2014 ident: apjaab76dbib63 publication-title: ApJ doi: 10.1088/0004-637X/783/1/24 – volume: 750 start-page: 88 year: 2012 ident: apjaab76dbib115 publication-title: ApJ doi: 10.1088/0004-637X/750/2/88 – volume: 400 start-page: 415 year: 2003 ident: apjaab76dbib104 publication-title: A&A doi: 10.1051/0004-6361:20030007 – volume: 437 start-page: 855 year: 2005 ident: apjaab76dbib102 publication-title: Natur doi: 10.1038/nature04213 – volume: 363 start-page: 218 year: 1990 ident: apjaab76dbib76 publication-title: ApJ doi: 10.1086/169332 – volume: 19846 start-page: 1 year: 2016 ident: apjaab76dbib57 publication-title: GCN Circ – volume: 17757 start-page: 1 year: 2015 ident: apjaab76dbib46 publication-title: GCN Circ – volume: 44 start-page: 507 year: 2006 ident: apjaab76dbib106 publication-title: ARA&A doi: 10.1146/annurev.astro.43.072103.150558 – volume: 436 start-page: 273 year: 2005 ident: apjaab76dbib4 publication-title: A&A doi: 10.1051/0004-6361:20041865 – volume: 751 start-page: 49 year: 2012 ident: apjaab76dbib65 publication-title: ApJ doi: 10.1088/0004-637X/751/1/49 – volume: 7 start-page: 12898 year: 2016 ident: apjaab76dbib43 publication-title: NatCo doi: 10.1038/ncomms12898 – volume: 17751 start-page: 1 year: 2015 ident: apjaab76dbib68 publication-title: GCN Circ – volume: 17758 start-page: 1 year: 2015 ident: apjaab76dbib17 publication-title: GCN Circ – volume: 507 start-page: L59 year: 1998 ident: apjaab76dbib58 publication-title: ApJL doi: 10.1086/311680 – volume: 739 start-page: 47 year: 2011 ident: apjaab76dbib27 publication-title: ApJ doi: 10.1088/0004-637X/739/1/47 – volume: 851 start-page: L20 year: 2017 ident: apjaab76dbib103 doi: 10.3847/2041-8213/aa9d7f – volume: 531 start-page: L6 year: 2011 ident: apjaab76dbib75 publication-title: A&A doi: 10.1051/0004-6361/201116657 – volume: 444 start-page: 1044 year: 2006 ident: apjaab76dbib35 publication-title: Natur doi: 10.1038/nature05376 – volume: 80 year: 2017 ident: apjaab76dbib5 publication-title: RPPh doi: 10.1088/1361-6633/aa67bb – volume: 340 start-page: 126 year: 1989 ident: apjaab76dbib25 publication-title: Natur doi: 10.1038/340126a0 – volume: 806 start-page: 263 year: 2015 ident: apjaab76dbib23 publication-title: ApJ doi: 10.1088/0004-637X/806/2/263 – volume: 637 start-page: 873 year: 2006 ident: apjaab76dbib41 publication-title: ApJ doi: 10.1086/498423 – volume: 551 start-page: 71 year: 2017 ident: apjaab76dbib99 publication-title: Natur doi: 10.1038/nature24290 – volume: 827 start-page: 75 year: 2016 ident: apjaab76dbib59 publication-title: ApJ doi: 10.3847/2041-8205/827/1/L16 – volume: 413 start-page: L101 year: 1993 ident: apjaab76dbib51 publication-title: ApJL doi: 10.1086/186969 – volume: 737 start-page: 103 year: 2011 ident: apjaab76dbib88 publication-title: ApJ doi: 10.1088/0004-637X/737/2/103 – volume: 848 start-page: L27 year: 2017 ident: apjaab76dbib98 publication-title: ApJL doi: 10.3847/2041-8213/aa90b6 – year: 2017 ident: apjaab76dbib55 – year: 1979 ident: apjaab76dbib86 – volume: 653 start-page: 468 year: 2006 ident: apjaab76dbib15 publication-title: ApJ doi: 10.1086/508740 – volume: 775 start-page: 113 year: 2013 ident: apjaab76dbib94 publication-title: ApJ doi: 10.1088/0004-637X/775/2/113 – volume: 725 start-page: 2209 year: 2010 ident: apjaab76dbib61 publication-title: ApJ doi: 10.1088/0004-637X/725/2/2209 – volume: 835 start-page: 73 year: 2017 ident: apjaab76dbib116 publication-title: ApJ doi: 10.3847/1538-4357/835/1/73 – volume: 357 start-page: 1197 year: 2005 ident: apjaab76dbib107 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.08685.x – volume: 6 start-page: 7323 year: 2015 ident: apjaab76dbib111 publication-title: NatCo doi: 10.1038/ncomms8323 – volume: 784 start-page: L28 year: 2014 ident: apjaab76dbib73 publication-title: ApJL doi: 10.1088/2041-8205/784/2/L28 – volume: 829 start-page: 7 year: 2016 ident: apjaab76dbib62 publication-title: ApJ doi: 10.3847/0004-637X/829/1/7 – volume: 744 start-page: L23 year: 2013 ident: apjaab76dbib12 publication-title: ApJL doi: 10.1088/2041-8205/774/2/L23 – volume: 780 start-page: 118 year: 2014 ident: apjaab76dbib33 publication-title: ApJ doi: 10.1088/0004-637X/780/2/118 |
SSID | ssj0004299 |
Score | 2.6188486 |
Snippet | The jet breaks in the afterglow light curves of short gamma-ray bursts (SGRBs), rarely detected so far, are crucial for estimating the half-opening angles of... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 128 |
SubjectTerms | Astrophysics binaries: close Ejecta Gamma ray bursts Gamma rays gamma-ray burst: individual (GRB 150424A, GRB 160821B) gravitational waves Light curve Neutron stars Neutrons Star mergers Stars & galaxies |
Title | Short GRBs: Opening Angles, Local Neutron Star Merger Rate, and Off-axis Events for GRB/GW Association |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/aab76d https://www.proquest.com/docview/2365968590 |
Volume | 857 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5cRfAiPnF9MQcVBON2N23S6mkVn6grPnBvpWlaFbQr2xX03zvT1heKeMshnYZ8Sb5vkswEYEVLHTd14onItUq4Ta2FsV4gFKk5R7qkuIu8Badn6vDaPe563SHY_oiF6T1VS_8mFctEwWUX8vyWtJY2ijlKLK8bUWS0sjUYkb7y2fPqyJvPoMhWUGlfVyipu-UZ5a8WvnFSjf77Y2Eu2GZ_AsYrmYjtslGTMJRkUzDXznnjuvf4imtYlMt9iXwKRs_L0jSkl3ekqPHgYiffQr4uQtyE7ez2Ick38ISZC8-SZ7aDJDT7eMrhl328IM25gVFmsZOmInq5z3GPr0LmSKqWrTUObvALljNwvb93tXsoqscUREyaayCsIRqSrTQyxo-c2HKiL51qaW1g3FRZckhl4qSGXIzYC6xpNlVMcs9JyOXxDPHbLAxnvSyZA9SOspLzxERacu6bwPGNTzRvaTz4Kvbq0HjvzjCuMo3zgxcPIXkcDEDIAIQMQFgCUIf1jy-eyiwbf9RdJYTCaqrlf9RbfMfws3JLKi9Q3OT5f5pZgDHSSD4fILWcRRge9J-TJdIhA7MMtaPO-XIx6t4ANFHTfw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYBOKCWMVSYA6AhIRJWid2wq0sZS-IRe0tiuMEkCCtmlaCv2cmCZtAiJsPzsTys_3eeJlhbF0JFVVV7PLQMZI7VaW4Nq7PJao5WziouPO4BRdNeXznnLbddpnnNH8L0-mWS_8OFotAwUUX0vwWuJZa-RxFlldWGGoljdU1yTAbdYWUlLvhUrQ-H0bW_FL_OlwK1S7OKX-18o2XhvHfPxbnnHEaU2yylIpQLxo2zYbidIYt1DPavO48v8Im5OVibyKbYWNXRWmWJTcPqKrh6Hov2wW6MoL8BPX0_inOtuGc2Aua8YDsAIrNHlzQE8weXKPu3IYwNXCZJDx8eczgkK5DZoDKlqxZRy34guccu2sc3u4f8zKhAo9Qd_W50UhFopaEWnuhHRkK9qUSJYzxtZNIg06piO1Eo5sRub7R1aqMUPLZMbo9rkaOm2cjaSeNFxgoWxpBsWJCJSj-jW972kOqNzgmPBm5i8x6784gKqONU9KLpwC9DgIgIAACAiAoAFhkWx9fdItIG3_U3UCEgnK6ZX_Uq7xj-Fm5JqTrS2ry0j_NrLHxq4NGcH7SPFtmEyiZPDpPqtkVNtLvDeIVlCV9vZoPvTdjRdZl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short+GRBs%3A+Opening+Angles%2C+Local+Neutron+Star+Merger+Rate%2C+and+Off-axis+Events+for+GRB%2FGW+Association&rft.jtitle=The+Astrophysical+journal&rft.au=Zhi-Ping+Jin&rft.au=Li%2C+Xiang&rft.au=Wang%2C+Hao&rft.au=Yuan-Zhu%2C+Wang&rft.date=2018-04-20&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=857&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Faab76d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |